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Simple topological measures and a lifting problem

by

Finn F. Knudsen (Trondheim)

This paper is dedicated to my colleague Johan Aarnes who has introduced
me and many others to tread on this beautiful virgin ground

where exotic topological measures live

Abstract. We state a certain lifting conjecture and prove it in the case of a torus.
From this result we are able to construct a connected dense subset of the space of intrin-
sic simple topological measures on the torus, consisting of push forwards of compactly
supported generalized point-measures on the universal covering space. Combining this re-
sult with an observation of Johansen and Rustad, we conclude that the space of simple
topological measures on a torus is connected.
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Introduction. By a space we will mean a topological space that is
Hausdorff, connected, locally connected and semi-locally one-connected. Re-
call that semi-locally one-connected is the property that ensures that the
space has a universal covering. Topological measures will only be considered
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on compact spaces. Note that if X is a compact space, its universal covering
space need not be compact.

Topological measures were first introduced by Johan Aarnes under the
name of quasi-measures. Perhaps their proper name should be Aarnes mea-
sures. They differ from conventional measures mainly because they need
not be subadditive. In fact, the measure of a union of measurable sets, if
measurable, might be strictly greater than the sum of the measures of the
individual sets. The definition given by Aarnes is essentially the following.

Definition 0.1. A topological measure on a compact space X is a non-
negative function µ, defined on the collection of open and closed subsets
of X, A(X), with the following properties.

(a) For any pairwise disjoint family {Ai}ni=1 of sets in A(X) whose union⋃n
i=1Ai also belongs to A(X), we have

µ
( n⋃
i=1

Ai

)
=

n∑
i=1

µ(Ai).

(b) For any open set U , µ(U) = sup{µ(C) | C ⊆ U, C closed}.
A topological measure is called normalized if µ(X) = 1, and simple if its
only values are 0 and 1. The set of simple topological measures on X is
denoted by X∗.

The reader may verify that a topological measure is an increasing func-
tion on A(X) partially ordered by inclusion. The restrictions of Borel mea-
sures to closed or open sets are topological measures. These are exactly
the topological measures that are subadditive. The important discovery of
Aarnes was the existence of a non-Borel topological measure [1]. With the
help of an integration theory for continuous functions, this non-Borel topo-
logical measure gave an example of a non-linear quasi-state on a commuta-
tive C∗-algebra.

A subset of a space is called solid if both it and its complement are
connected. Intuitively this means the absence of holes. In [9] it was proved
that a simple topological measure is completely determined by its restriction
to the family of closed solid subsets. Later this was proved by Aarnes for
general topological measures [2]. Unless a space X has a certain topological
property, namely that the union of a pairwise disjoint family of closed solid
sets remain co-connected, it is very hard to verify whether or not a real-
valued function on the closed solid sets is the restriction of a topological
measure. Among insiders the spaces with this property are called spaces
of “genus” zero, or q-spaces. This particular genus is defined in [2], and
should be called the Aarnes genus. One may use the Mayer–Vietoris sequence
to show that the property that disjoint unions of co-connected sets stay
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co-connected holds if the Čech cohomology group H1(X,Z) vanishes. For
reasonable spaces the converse is also true (see [9]). On spaces of Aarnes
genus zero, one can construct topological measures quite freely, and it is
proved in [9] that this construction yields arbitrarily good approximations
to any simple topological measure. An amazing result, proved by Butler
in [4], is that on q-spaces which are CW -complexes of dimension at least 2,
arbitrary topological measures can be approximated by extreme topological
measures. Simple measures are extreme, but there are non-simple extreme
measures (see [2]). On a torus and on generalized tori it is not too hard to
construct some topological measures (see [6] in the case of general topological
measures, and [9] and [10] in the case of simple topological measures). On
the torus some simple topological measures kill all contractible sets. These
measures are intrinsic and they are simpler to deal with because the space
of intrinsic simple topological measures has a product structure and we
can deal with one component at a time. There is one component for each
maximal rank one subgroup σ of the fundamental group of the torus.

1. The lifting conjecture. In this section we state a general conjecture
and the main theorem, and we make some reductions. For any family F of
subsets of a space X we consider the graph G(F) of F . It is the simple graph
whose set of nodes is F , and whose set of edges is {{F, F ′} | F, F ′ ∈ F ,
F 6= F ′, F ∩ F ′ 6= ∅}. In other words, two distinct nodes are joined by an
edge if they intersect.

Definition 1.1. A family F of connected subsets of a space X will be
called linked if its graph G(F) is connected, and strongly linked if G(F) is
complete (1).

The next definition is a crucial one.

Definition 1.2. Let p : Y → X be a covering map and let F ⊆ P (X)
and G ⊆ P (Y ) be strongly linked families of connected subsets of X and
of Y . We will say that G lifts F if there is a unique one-to-one correspondence
F ′→ G such that for each F ∈ F , p maps F ′ onto F and the restriction
p|F ′ : F ′ → F is a covering map.

Definition 1.3. Let p : Y → X be a covering map and let F ⊆ P (X)
be a strongly linked family of connected subsets of X. We will say that F is
liftable to Y , or p-liftable, if there is a strongly linked family G of connected
subsets of X which lifts F . Note that if F is liftable to the universal covering

(1) Some authors call strongly linked families simply linked families, but I feel that
the term linked only suggests connectedness of the graph. In [9] strongly linked families
are called PNI-families, which is short for pairwise non-empty intersection.
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space, then it is liftable to any covering space. We will call such a family
universally liftable.

Lemma 1.4. Let E and F be strongly linked families of connected subsets
of X, and suppose every member of F contains a member of E. Then if E
is p-liftable, so is F .

Definition 1.5. If µ is a simple topological measure and F is any fam-
ily of closed or open subsets of a space X, we denote by Fµ the subset
{A ∈ F | µ(A) = 1}. A family F of subsets of X such that µ(F ) = 1 for
each F ∈ F will be called a µ-family .

If X is a manifold and F is a finite universally liftable strongly linked
family of connected open or closed subsets of X, then F is a µ-family for
a simple topological measure µ on X, and this µ can be chosen to be the
direct image of a generalized point-measure supported by a compact sub-
space of the universal covering space of X (see [9]). In this article, however,
we shall be more concerned with the converse. We believe that the following
holds.

Conjecture 1.6. If µ is a simple topological measure on a space X,
then any µ-family of connected open or closed subsets of X is universally
liftable.

The reason for this conjecture is that we can prove it when X is a torus,
and the family consists of non-contractible sets. The techniques we use may
possibly work also for the n-torus.

In the rest of this paper X is a torus, and p : Y → X is a universal
covering space for X.

Definition 1.7. Let (2) σ ⊆ π1(X) be a maximal rank one subgroup
of the fundamental group of X. A connected open set U ⊆ X will be called
a σ-set of X if the inclusion induces an isomorphism of π1(U) onto σ.
A connected closed set will be called a σ-set of X if its complement has a
connected component which is a σ-set. The set of all open and closed σ-sets
is denoted by Aσ.

Definition 1.8. Let P denote the set of all maximal rank one subgroups
of π1(X). The two-sided sets of X are the open or closed subsets of X that
are σ-sets for some σ ∈ P,

AII =
⋃
{Aσ | σ ∈ P}.

There is a generalization of two-sided sets to n-sided sets (see [6]). It will
take the rest of the paper to prove the following theorem.

(2) We drop base-points since π1(X) is commutative.
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Theorem 1.9. For any simple topological measure µ on the torus, the
family AII,µ is universally liftable.

Lemma 1.10. A family F ⊆ AII is liftable if and only if F ∩ Aσ is
liftable for each σ ∈ P.

Proof. If σ 6= σ′, F ∈ Aσ and F ′ ∈ Aσ′ , and F̃ and F̃ ′ are any lifts of F
and F ′ to Y , then F̃ ∩ F̃ ′ 6= ∅.

The group σ acts on the left on Y . Let Z be the orbit space of this action,
and let r : Y → Z and q : Z → X be the corresponding decomposition of
p : Y → X. Then both r and q are even covers, Z is homeomorphic to a
cylinder R/Z× R and is acted on by π1(X)/σ ≈ Z.

Lemma 1.11. For any σ-set A, the map r induces a one-to-one cor-
respondence between the components of p−1(A) and q−1(A), and the re-
strictions of q induces homeomorphisms from each connected component of
q−1(A) to A.

Definition 1.12. For any space E, let Comp(E) be the set of connected
components of E. If E and F are both subspaces of a common space, we
write CompF (E) for the set of components meeting F .

Lemma 1.13. If E ⊆ X and F ⊆ X be σ-sets and E0 a connected
component of p−1(E), then CompE0

(p−1(F )) is finite.

Proof. By Lemma 1.11 the map r induces a one-to-one correspondence
between CompE0

(p−1(F )) and Compr(E0)(q−1(F )), so it suffices to show
that Compr(E0)(q−1(F )) is finite. Let {U, V } be a covering of X by open
σ-sets, and suppose F ⊆ U . If F is closed we can choose U to be the
complement of a simple closed curve homotopic to a generator of σ in V =
X \ F , and if F is open, we choose U = F and V the complement of a
simple closed curve homotopic to a generator of σ in U . Then since r(E0) is
relatively compact, it is covered be a finite number of connected components
of q−1(U) and q−1(V ).

Corollary 1.14. A strongly linked family of σ-sets F is universally
liftable if and only if every finite subfamily F ′ ⊆ F is universally liftable.

Proof. The restriction of any lifting of the family F to any subfamily
F ′ ⊆ F is a lifting of F ′ so we only have to look at the “if” part of the
corollary. Fix a connected component E0 ∈ p−1(E) for some E ∈ F and let

Γ =
∏
F∈F

CompE0
(p−1(F )).

Let pF denote the projection from Γ onto the factor set CompE0
(p−1(F )).

For any subfamily F ′ ⊆ F , we define the subset Γ (F ′) ⊆ Γ of lifts of
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F ′ ∪ {E} to be

Γ (F ′) = {x ∈ Γ | ∀(F,G ∈ F ′), pF (x) ∩ pG(x) 6= ∅}.
By definition F ′ ∪ {E} is universally liftable if and only if Γ (F ′) 6= ∅. If
we give each factor set CompE0

(p−1(F )) the discrete topology and Γ the
product topology, the sets Γ (F ′) are closed for finite families F ′. If P ′(F)
denotes the set of finite subfamilies of F , it follows from Tikhonov’s theorem
and our assumption that

⋂
F ′∈P ′(F) Γ (F ′) 6= ∅, and this is just another way

of saying that the family F is universally liftable.

Definition 1.15. A neighboring family of a family F is a family of
connected open sets V together with a one-to-one correspondence iV : F → V
such that F ⊆ iV(F ) for each F ∈ F .

Lemma 1.16. If F is a finite family of σ-sets, then F is universally
liftable if and only if every neighboring σ-family is universally liftable.

Proof. By Lemma 1.11, q-liftability is equivalent to p-liftability, so we
consider only q-liftability. Pick a connected component E of the pre-image
of a member F ∈ F , and let F ′ =

⋃
F∈F CompE(q−1(F )) be the family

of connected components of pre-images of members of F meeting E. By
Lemma 1.13, F ′ is finite and any lifting of F can be translated to a lifting
s : F → F ′. For any neighboring σ-family V of F , let V ′ be the neighboring
family of F ′ consisting of the connected components of the pre-images of the
members of V, containing members of F ′. If E1 and E2 are disjoint members
of F ′, it might happen that iV ′(E1) ∩ iV ′(E2) 6= ∅, but for a given disjoint
pair E1 and E2 of members of F ′ we can find a neighboring σ-family V of
F such that iV ′(E1) ∩ iV ′(E2) = ∅. For each disjoint pair (E1, E2), we pick
such a family and call it V(E1,E2). For F ∈ F , let iV0(F ) =

⋂
iV(E1,E2)

(F ),
where the intersection runs over all disjoint pairs. Since F ′ is finite, V0 =
{iV0(F ) | F ∈ F} is a neighboring σ-family of F , and s : F → F ′ is a lift of
F if and only if the composition s0 = iV0

′ ◦ s ◦ (iV0)−1 is a lift of V0.

Corollary 1.17. For a simple topological measure µ on the torus X,
if for all maximal rank one subgroups σ of the fundamental group the family
Uσ,µ of open µ-sets is liftable, so is AII,µ.

Corollary 1.18. For a simple topological measure µ on the torus X,
the family of all open or closed non-contractible µ-sets is liftable.

2. Outline of the proof. Since we prove only one theorem in this
paper, and the proof is rather long and technical, this outline of the proof
may be of some help to the reader. Many of the concepts we mention in this
section are not yet defined, but we will refer to the appropriate definitions.
The reason for basing the proof on vhσ-curves or fibers (see Sections 3
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and 4) is twofold. First, because the σ-component µσ of a simple topological
measure µ (see Section 4) is determined by its restriction to vhσ-fibers,
and secondly, because the order-function allows us to use induction. The
main technical lemma is Key Lemma 8.6, which we use to show that a
µ-fiber can be continuously shrunk through µ-fibers to a µ-fiber of lower
order. The reader is advised to familiarize herself/himself with this lemma
in the particular cases of fibers of order 4, 6 and 8. From the homotopy
lifting property of covering maps, continuous shrinkings can be lifted to
any covering of the torus, therefore we can shrink any lifting of a µ-fiber
to the lifting of a µ-fiber of order 0. The proof then consists of two rather
technical lemmas. The first is Lemma 9.4, which together with induction
shows that when a lifted µ-fiber is shrunk to a lifted µ-fiber of order 0, this
fiber is unique. The second is Lemma 9.8, which shows that two distinct
lifted µ-fibers that may be shrunk to the same order 0 fiber, intersect.

3. Properties of vh-curves and vh-domains on a torus. As in the
previous section, let p : Y → X be a universal covering of a torus X. We
fix a maximal rank one subgroup σ ⊆ π1(X) and two simple loops σ1 and
σ2 in X such that the homotopy class [σ1] generates σ, and the homotopy
classes [σ1] and [σ2] generate π1(X). In order to talk about vh-curves and
vh-domains we need special coordinates on Y .

Definition 3.1. A homeomorphism x = (x1, x2) : Y → R2 will be
called (σ1, σ2)-coordinates if the action of the class [σi] on Y is given by

x([σ1](y)) = x(y) + (1, 0), x([σ2](y)) = x(y) + (0, 1).

We define x̃ = (x̃1, x̃2) : X → R2/Z2 by the equation x̃ ◦ p = (mod 1) ◦ x.

In the following we will fix (σ1, σ2)-coordinates x = (x1, x2) : Y → R2,
and (x̃1, x̃2) : X → R2/Z2. Using these coordinates, we can define the
direction and the turning-direction of consecutive line-segments.

Definition 3.2. If e is any directed line-segment, we write v(e) ∈ R2

for its direction unit-vector. If e′ is a directed line-segment immediately
following e in a different, but not opposite direction, we write dir(e, e′) for
the turning-direction, which is either to the right or to the left. We have

dir(e, e′) =
{
l if det(v(e),v(e′)) > 0,
r if det(v(e),v(e′)) < 0.

Definition 3.3. A simple closed curve γ : [a, b] → X will be called a
vh-curve of order n > 0 with respect to x if there is a partition a = t0 < t1 <
· · · < tn = b such that on each interval [ti, ti+1], we have x̃(γ(t)) = x̃(γ(ti))+
(t−ti)v(γ(ti)), where v(γ(ti)) ∈ {(1, 0), (0, 1), (−1, 0), (0,−1)} is the velocity
of γ on the interval [ti, ti+1], and any two consecutive velocities are linearly
independent. This means that the curve turns at the parameter values t = ti.
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We write diri(γ) for the turning-direction at the turning-point γ(ti). We
denote by Turn(γ) = Turnl(γ) ∪ Turnr(γ) the set of turning-points of γ.
The ith leg of a vh-curve γ is the set legi(γ) = {γ(t) | t ∈ [ti−1, ti]}. The
length of the ith leg is |legi(γ)| = ti − ti−1. We denote by Leg(γ) the set of
legs of γ. We will write |γ| for the image of γ, so that |γ| =

⋃
Leg(γ). Since

the curve bites itself on the tail, we extend the indexing of the turning-points
to all of Z by periodicity. A vh-curve of order 0 is of the form x̃(γ(t)) =
x̃(γ(a)) + (t− a)v(γ(a)) for 0 ≤ t ≤ 1.

Definition 3.4. A vh-domain is a domain D bounded by the images
of vh-curves. We will say that a vh-domain D is proper if the interior of its
complement is also a vh-domain. Note that a proper vh-domain is solid. If D
is proper every connected component of the boundary gets an orientation. By
choosing a turning-point on the boundary, we get a unique parameterization
of that particular connected component of ∂D such that D lies to the left.
There are at most two connected components of ∂D, and D is contractible
if and only if the boundary consists of just one connected component.

Definition 3.5. The shape of a vh-curve γ is the string shape(γ) =
dir0(γ)dir1(γ) . . . dirn−1(γ). Curves of order 0 have no turns and therefore
the shape of such curves is the empty string λ.

Definition 3.6. Let v and w be strings over the alphabet {l, r}. A cir-
cular occurrence of v in w is a triple (y, x, z) of strings with x 6= w, y and z
possibly empty, such that w = xy, and y = vz or v = yz and x = zz′. We
have

circocc(v, w) = {(y, x, z) | x 6= w∧w = xy∧(y = vz∨(v = yz∧∃z′ x = zz′))}.
Intuitively, a circular occurrence of v in w is an occurrence of v in w when
we consider w as a circular string. For the number of circular occurrences
we write co(v, w) = |circocc(v, w)|.

Definition 3.7. Strings v, w in {l, r}∗ will be called circularly equiv-
alent , written v circw, if there are strings x and y such that v = xy and
w = yx. We let [w] denote the equivalence class of w. If we look at v and w
as circular strings, v circw means that w is obtained from v by a rotation.

The number of circular occurrences of a string v in a string w only
depends on the circular equivalence class of w, so we can make the following
definition.

Definition 3.8. For a string v and a class [w], we let co(v, [w]) =
co(v, w).

Example 3.9. co(rr, rr) = 2.

Definition 3.10. A turning-point q = γ(ti) of a vh-curve γ will be
called stair-like if the sequence diri−1(γ)diri(γ)diri+1(γ) is of the form rlr
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or lrl. In the first case it is a left stair-like turning-point and in the second
case it is a right stair-like turning-point. We denote by Stair(γ) the set of
stair-like turning-points of γ. We have Stair(γ) = Stairl(γ) ∪ Stairr(γ).

Observe the following formulas.

Lemma 3.11. For any vh-curve γ we have

|Stairl(γ)| = |co(rlr, shape(γ))|, |Stairr(γ)| = |co(lrl, shape(γ))|.
Definition 3.12. We will call a pair d = (d1, d2) of consecutive turning-

points of a vh-curve γ a double-turn if the string dirγ(d1)dirγ(d2) is of the
form ll or rr. In the first case it is a left double-turn and in the second case
it is a right double-turn. We denote by Double(γ) the set of double-turns
of γ. We have Double(γ) = Doublel(γ) ∪Doubler(γ).

Definition 3.13. If d ∈ Double(γ), midγ(d) will denote the leg between
d1 and d2.

Lemma 3.14. For any vh-curve γ we have

|Doublel(γ)| = |co(ll, shape(γ))|, |Doubler(γ)| = |co(rr, shape(γ))|.
Definition 3.15. Let [w] ∈ {r, l}∗/circ be a circular class. We choose a

representative string w, and if w contains both symbols we choose it such
that it begins and ends with different symbols. Then w = aα1

1 . . . aαnn with
ai ∈ {r, l}, ai 6= ai+1, an 6= a1 and αi ≥ 1. Let σ : {1, k} → {1, n} be the
increasing function onto the set of indices i such that ασ(i) ≥ 2. Then put
ds([w]) = [aσ(1) . . . aσ(k)]. We call ds([w]) the derived shape-class of [w] or
of w.

The reader can check that the derived shape-class is well defined. The
next two lemmas are crucial for showing the existence of what we will call
order-reducing roofs (see Definition 3.38). If as in Definition 3.15, w =
aα1

1 . . . aαnn and aσ(j)aσ(j+1) is a circular occurrence of rr in ds([w]), then
on the interval [σ(j), . . . , σ(j + 1)], a takes alternating values starting and
ending with r. Similarly a circular occurrence of ll in ds([w]) gives rise to
a circular occurrence of lrlrl . . . rl in w. Hence we have proved the formula
below.

Lemma 3.16. For any string w ∈ {l, r}∗ we have the formula

co(lrl, [w])− co(rlr, [w]) = co(ll, ds([w]))− co(rr,ds([w])).

Lemma 3.17. For any string w in {r, l}∗ of length |w| 6= 1, we have the
equality

co(rr, w)− co(ll, w) = co(r, w)− co(l, w).

Proof. We let F (w) = co(rr, w)− co(ll, w)− co(r, w) + co(l, w), and con-
sider the language L = {w | F (w) = 0}. The reader may check that L
contains all strings of length 2. By structural induction it suffices to show
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that L is closed under the operations w 7→ rw and w 7→ lw, and by symmetry
we need only consider w 7→ rw. If w ∈ L and |w| ≥ 2, there are four distinct
cases, w = lxl, w = lxr, w = rxl and w = rxr. In the first case co(rr, rw) =
co(rr, w) and co(ll, rw) = co(ll, w)−1. In the other three cases co(rr, rw) =
co(rr, w) + 1 and co(ll, rw) = co(ll, w). This shows that rw ∈ L.

Definition 3.18. For a turning-point p = γ(ti) of a vh-curve γ we will
denote by shadowγ(p) or shadowi(γ) the open rectangle determined by the
two adjacent legs legi(γ) and legi+1(γ).

Definition 3.19. For a double-turn d = (d1, d2) ∈ Double(γ), the
shadow of d is the intersection shadowγ(d) = shadowγ(d1) ∩ shadowγ(d2).
Shadows are shown in Figure 1.
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Fig. 1. Left: the shadow of a right stair-like turn. Middle: two primary obstructions. Right:
the shadow of a right double-turn.

Definition 3.20. Let Γ be a family of vh-curves. A turning-point p =
γ(ti) of a curve γ ∈ Γ is called Γ -unobstructed if the intersection of the clo-
sure of the shadow of γ(ti) with the union of all the curves in Γ is contained
in legi−1(γ) ∪ legi(γ) (see Figure 1). A double-turn d = (γ(ti−1), γ(ti)) of a
curve γ ∈ Γ is called Γ -unobstructed if the intersection of the closure of the
shadow of d with the union of all the curves in Γ is contained in the union
of the five segments legi−2(γ), legi−1(γ), . . . , legi+2(γ) (see Figure 2).

Definition 3.21. Let Γ be a finite disjoint family of simple closed vh-
curves. A turning-point q = γ′(tj) primary-obstructs a turning-point p =
γ(ti) if it lies in the γ-shadow of p, and the intersection of the closed rectangle
determined by the points p and q with all of the curves of Γ is contained
in the union of just the two adjacent legs at p and the point q. In symbols,
rectangle(p, q) ⊆ shadowγ(p), and rectangle(p, q) ∩

⋃
Γ ⊆ {q} ∪ legi(γ) ∪

legi+1(γ).

We leave the following observation to the reader.

Lemma 3.22. Whenever a turning-point q primary-obstructs a stair-like
turn p, p is unique, and therefore the relation of primary obstruction is a
partially defined function on the stair-like turns of the family Γ .

Definition 3.23. Let Γ be a finite disjoint family of simple closed
vh-curves, and let d and e be double-turns of curves in Γ . If mid(d) ⊆
shadow(e), we let shadow(e, d) be the open rectangle determined by the
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shadow of e and the extension of the leg mid(d). We will say that d primary-
obstructs e if shadow(e, d) ∩ Γ = ∅.

Definition 3.24. Whenever a double-turn d primary-obstructs e, e is
unique and the double-turn d is strictly narrower than the double-turn e.
Therefore the relation of primary obstruction defines for every such family
Γ a directed forest which we denote by Forest(Γ ). The leaves in the forest
are the unobstructed double-turns.

Certain double-turns will be called tags. These are the double-turns
whose closest successor or predecessor is a turn in the opposite direction. If
they are equally close, they must both be opposite turns. We call such tags
symmetric. This is the formal definition:

Definition 3.25. A double-turn d = (γ(ti−1), γ(ti)) will be called a tag
if the following holds:

(i) If |legi−1(γ)| < |legi+1(γ)|, then diri−2(γ) 6= diri−1(γ).
(ii) If |legi−1(γ)| > |legi+1(γ)|, then diri(γ) 6= diri+1(γ).
(iii) If |legi−1(γ)| = |legi+1(γ)|, then diri−2(γ) 6= diri−1(γ) and diri(γ) 6=

diri+1(γ).

Tags are shown in Figure 2.

-
6

-

?

-

?

-

6
-

-
-

�

6

?

?

Fig. 2. Left: an unobstructed right tag. Middle: a symmetric tag with one primary ob-
struction. Right: two consecutive unobstructed right tags or twin tags.

Lemma 3.26. Let γ be a vh-curve in a finite disjoint family Γ of vh-
curves. Let D = {d1, . . . , dk} be k consecutive double-turns. Let D′ ⊆ D
be the unobstructed ones. Then D′ ⊆ {d1, d2, dk−1, dk}. If D′ 6= ∅, we have
D′ ∩ {d1, dk} 6= ∅, and D′ ∩ {d1, dk} are the tags of D′.

Proof. We encourage the reader to draw the appropriate “fat” spirals.
Fatness is because the loose end has to retrace the spiral.

Corollary 3.27. A vh-curve γ in a disjoint family Γ of vh-curves
cannot have three consecutive tags. However , “twin tags” may occur and
any subset of them may be Γ -unobstructed. Unobstructed twin tags look like
framed corners (see Figure 2).

Lemma 3.28. If γ is a vh-curve in a disjoint family Γ of vh-curves,
and if γ has a Γ -unobstructed double-turn, then γ has a Γ -unobstructed
tag turning the same way.
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Proof. The proofs for right and left turns are similar, so we may as-
sume that d = (γ(ti−1), γ(ti)) is an unobstructed left double-turn and not
a tag. Assume that |legi−1(γ)| ≥ |legi+1(γ)|. Then since d is unobstructed,
diri+2(γ) = r, which shows that (γ(ti), γ(ti+1)) is an unobstructed tag. If
|legi−1(γ)| ≤ |legi+1(γ)|, it follows for the same reason that (γ(ti−2), γ(ti−1))
is an unobstructed tag.

Definition 3.29. A simple closed vh-curve of homology class 0 divides
the torus into two regions, exactly one of which is contractible. If the curve is
the oriented boundary of the contractible region, we will say that the curve
is left-turning , and in this case the contractible region lies to the left of the
curve. Otherwise the curve is right-turning .

For the most part we shall be concerned with simple closed vh-curves
whose free homotopy class generates the subgroup σ generated by the free
homotopy class of the loop σ1. Their dependence on the other generator σ2

is of minor importance.

Definition 3.30. A vh-curve or a vh-domain which is also a σ-set will
be called a vhσ-curve or a vhσ-domain. A vhσ-curve γ, if properly oriented,
is freely homotopic to σ1. A vhσ-domain D which is bounded by a vhσ-curve
γ′ on the left and a vhσ-curve γ on the right will be denoted by D(γ, γ′). It
is proper if and only if the curves are disjoint.

The reason for the right to left ordering is because we have chosen coor-
dinates in such a way that if we stand on the outside of the torus and look
in the x-direction, which is the direction of σ1, the y-direction is from right
to left.

Lemma 3.31. Any simple closed left-turning vh-curve has at least four
unobstructed left double-turns. The corresponding statement holds for right-
turning curves.

Proof. Let γ be a simple left-turning vh-curve. Since the contractible
domain defined by γ always lies to the left of γ, no left double-turn can
primary-obstruct a left double-turn. Primary obstruction defines a partial
function from the right double-turns to the left double-turns. By Lemma 3.17
there are at least four left double-turns that are leaves in the forest of γ,
and we can find two that are not consecutive.

Lemma 3.32. Any simple closed vhσ-curve of order at least four has at
least one unobstructed double-turn in each direction.

Proof. If all turning-points are stair-like, the curve cannot have the right
homotopy type, hence the forest of γ has leaves, and we may assume that
γ has an unobstructed right double-turn. Also by the forest property of
the primary obstruction relation and Lemma 3.17, not all left double-turns
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are obstructed by left double-turns. Hence either we have an unobstructed
left double-turn, or there is a right double-turn d primary-obstructing a left
double-turn e. In the second case we can choose points p and q in the interior
of the legs mid(d) and mid(e) so that the line-segment joining p and q in
the shadow e is perpendicular to mid(d) and has length l. Let δ : [0, l]→ X
be the function parameterizing this line-segment, with constant speed, and
such that δ(0) = p and δ(l) = q. Assume that γ : [a, b] → X has turning-
points {γ(t0), γ(t1), . . . , γ(tn)}, where a = t0 < t1 < · · · < tn = b, p = γ(u),
q = γ(v), t0 < u < t1 and tk < v < tk+1. Let γ̄ denote the periodic extension
of γ. We define two simple closed vh-curves γ′ : [v − l, b − a + u] → X and
γ′′ : [u, v + l]→ X as follows:

γ′ =
{
δ(t− v + l) for v − l ≤ t ≤ v,

γ̄(t) for v ≤ t ≤ b− a+ u,

γ′′ =
{
γ(t) for u ≤ t ≤ v,

δ(v + l − t) for v ≤ t ≤ v + l.

In π1(X) we can write [γ′] = l′[σ1] +m′[σ2] and [γ′′] = l′′[σ1] +m′′[σ2]. From
the relations

[γ′] ∩ [γ′] = [γ′′] ∩ [γ′′] = [γ′] ∩ [γ′′] = [γ′] ∩ [γ] = [γ′′] ∩ [γ] = 0,

and since γ′ and γ′′ are simple, it follows thatm′=m′′=0 and {l′, l′′}⊆{0, 1},
which shows that one of the curves γ′, γ′′ is a vhσ-curve and the other, say γ′′,
is a null-homotopic left-turning curve. The turning-points γ′′(tk), q, p, γ′′(t1)
belong to two consecutive left double-turns of γ′′ that may or may not be
unobstructed. By Lemma 3.31, γ′′ has at least two other γ′′-unobstructed
left double-turns, and these remain unobstructed when considered as left
double-turns of γ.

From Lemma 3.28 we get the following important result.

Corollary 3.33. Any simple closed vh-curve of order at least four has
at least one unobstructed tag in each direction.

Definition 3.34. A vhσ-domain D = D(γ, γ′) is simple if ord(γ) =
ord(γ′) and, possibly after re-indexing, shape(γ) = shape(γ′), each pair of
turning-point γ(ti), γ′(ti) can be joined by a straight line, whose interior lies
entirely in D.

Definition 3.35. A vhσ-domain will be called elementary if cutting off
the shadow of a tag or stair-like turn leaves a simple vhσ-domain. There are
three types of elementary vhσ-domains, shown in Figure 4.

Definition 3.36. A vhσ-domain D = D(γ, γ′) is left reduced if γ′ has no
{γ, γ′}-unobstructed right tags and no {γ, γ′}-unobstructed right stair-like
turning-points. It is right reduced if γ has no {γ, γ′}-unobstructed left tags
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and no {γ, γ′}-unobstructed left stair-like turns. If it is both right and left
reduced, it is simply reduced .

Lemma 3.37. Any reduced vhσ-domain is simple.

Proof. Note that if a double-turn is primary-obstructed by a turning-
point, this turning-point is part of a double-turn. Let d′ be the middle leg
of a double-turn primary-obstructing a left double-turn of γ, with middle
leg d. Assume that d′ is a leg of γ. Then since D lies to the left of γ, d and
d′ have opposite directions. A perpendicular line-segment e joining d and d′

to the left of both will cut the domain D into two disjoint domains with e as
the common boundary. One of these domains is contractible and is bounded
by a left-turning curve. By Lemma 3.31 this boundary has at least four
unobstructed left double-turns, and at most two of them involve the leg e,
showing that γ has an unobstructed left double-turn. By Lemma 3.28 it also
has an unobstructed left tag. This is a contradiction since D is reduced. It
follows that d′ is the middle leg of a left double-turn of γ′. Similarly, every
right double-turn of γ′ is primary-obstructed by a right double-turn of γ.
We have shown that we have partial surjections

Doublel(γ′) � Doublel(γ) and Doubler(γ) � Doubler(γ′).

Since a vhσ-curve has the same number of right turning-points and left
turning-points, it follows from Lemma 3.17 that the partial surjections above
are bijections, and hence if a left stair-like turning-point of γ is primary-
obstructed by a turning-point p′, then p′ is a left stair-like turning-point of
γ′. Therefore we have partial surjections of stair-like turning-points as well,

Stairl(γ′) � Stairl(γ) and Stairr(γ) � Stairr(γ′).

By cutting D at the end and at the beginning of consecutive strings of length
at least two of similar turns of γ, reducedness shows that γ and γ′ have equal
derived shapes, ds([γ]) = ds([γ′]). By Lemma 3.16,

|Stairr(γ)| − |Stairl(γ)| = |Stairr(γ′)| − |Stairl(γ′)|.
It follows that primary obstruction is a bijection of stair-like turns as well.
Therefore primary obstruction is a bijection between all turns of γ and γ′,
and hence D is simple.

Definition 3.38. A vh-roof or vh-fibration for a vhσ-domain D =
D(γ, γ′) is a continuous function f : D → [0, 1] with the following properties:

(1) For all t, f(γ(t)) = 0 and f(γ′(t)) = 1.
(2) For all s ∈ [0, 1], the fiber f−1(s) is the image of a simple vhσ-curve.
(3) There is a subdivision of D into trapeziums and triangles on which

the restriction of f is linear.
(4) The order-function ord(f−1(−)) : [0, 1]→ N is lower semicontinuous.
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(5) There is a sequence 0 = r0 < r1 < · · · < rn = 1 such that
ord(f−1(−)) is constant on the interval 〈ri, ri+1〉 for 0 ≤ i < n.

A vh-roof will be called order-reducing if in addition it satisfies:

(6) If m = min{ord(f−1(s)) | s ∈ [0, 1]}, the set {s | ord(f−1(s)) = m}
is an interval [a, b] ⊆ [0, 1], which is either equal to [0, 1] or con-
tained in 〈0, 1〉. In the latter case the order-function ord(f−1(−)) is
monotone on both [0, a] and [b, 1].

Fig. 3. Part of an order-reducing vh-roof

Note that by lower semicontinuity and monotonicity, the order-function
of an order-reducing vh-roof is constant in a neighborhood of {0, 1}.

Theorem 3.39. Every vhσ-domain has an order-reducing vh-roof.

Proof. If D is simple, the function which is linear on each trapezium of
the domain is an order-reducing roof. If D is not simple, we may assume
that the right boundary γ has an unobstructed left tag or a stair-like turn.
We cut off the shadow of this tag or stair-like turn and obtain a domain
D′ of lower order. By induction D′ has an order-reducing vh-roof f ′. Let
γs be the vhσ-curve with image the fiber f ′−1(s). If k > 0 is so small that
the domain E′ = D(γ0, γk) is simple, and g is a vh-roof on the elementary
domain E = D \D(γk, γ1) = D(γ, γk), as shown in Figure 4, the function f
defined by f(x) = (f ′(x) + k)/(1 + k) for x ∈ D(γk, γ) and k · g(x)/(1 + k)
for x ∈ E is an order-reducing vh-roof on D.
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Fig. 4. Vh-roofs on elementary domains in the case of a stair-like turn, symmetric tag
and asymmetric tag
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4. Simple topological measures and vh-fibers. In this section we
will show that the σ-component (Definition 4.2) of a simple topological
measure µ is determined by its restriction to vhσ-fibers, Vhσ.

Since a curve is a function, and we are often interested only in the image
of the curve, we make the following definition.

Definition 4.1. By a vh-fiber we shall simply mean the image of a
vh-curve. We denote the set of all vhσ-fibers of X by Vhσ.

Note that if K is a vhσ-fiber and p ∈ K is a corner of K, there is a unique
vhσ-curve γ with γ(a) = p , γ ∼ σ1 and γ([a, b]) = K. If K does not have
corners we can start the parameterization anywhere. The important thing
is the orientation, which enables us to define left and right corners and, up
to circular equivalence, the shape of a vhσ-fiber.

Recall that Aσ denotes the subfamily of the open or closed sets that are
σ-sets (see Definition 1.7).

Definition 4.2. For any topological measure µ on the torus X, we
denote by µσ the restriction of µ to the sets Aσ, and call it the σ-component
of µ.

Proposition 4.3. The σ-component of a simple topological measure is
determined by its restriction to Vhσ.

Proof. Let θ and θ′ be simple topological measures whose restrictions to
Vhσ coincide. By additivity and symmetry it suffices to show that if θ(U) =
1, then θ′(U) = 1 for any U ∈ Uσ, the open σ-sets. By Definition 0.1(b),
choose a solid closed σ-set F ⊆ U with θ(F ) = 1. By compactness we
can cover F with a finite number of open rectangles with sides parallel to
the coordinate axes and with closures lying in U . Their union is then a
vhσ-domain D = D(γ, γ′), with D ⊆ U . If f : D → [0, 1] is a reducing roof,
there is a unique fiber f−1(t) with θ(f−1(t)) = 1. The measures θ and θ′

agree on f−1(t), and by monotonicity θ′(U) = 1.

Corollary 4.4. In order to show Theorem 1.9, it suffices to show that
the family Vhσ,µ of vhσ-fibers with µ-measure equal to one is liftable.

5. Special domains. In this section we study vhσ-curves and vhσ-
domains on the cylinder Z covering the torus X. The main result is a cri-
terion for specialty, which will be used in Lemma 9.8, the final lemma in
the proof of the lifting conjecture. Except for the definition of the various
metrics, the reader may skip this section until then.

We let q : Z → X be the covering map. The coordinates on Z are (x̃1, x2)
and when σ2 acts on Z as a covering transformation, we have x2([σ2](z)) =
x2(z) + 1.
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Definition 5.1. A simply closed curve γ̃ : [a, b]→ Z will be called a vh-
curve if the composition γ = q◦γ̃ satisfies all the conditions of Definition 3.3,
except it need not be simply closed. We say that a vh-curve γ̃ is a vhσ-curve
if its projection is homotopic to σ1. A vh-curve γ̃ will be called special if q◦ γ̃
is simply closed. We make the same definition for fibers on Z. We denote
by Ṽhσ the set of all special vhσ-fibers in Z. The order-function defines
gradings on both Vhσ and Ṽhσ. We write Vh(2n)

σ for the set of vhσ-fibers of
order not exceeding 2n. Each vhσ-fiber K̃ on Z divides Z into two disjoint
sets: the points to the right of K̃, denoted by R(K̃) = {z | z < K̃}, and the
points to the left of K̃, denoted by L(K̃) = {z | z > K̃}.

Note that the group π1(X)/σ ≈ Z acts on Ṽhσ, and Vhσ is the quotient
of the set of special fibers under this action. For any vhσ-fiber K̃, Z =
R(K̃) ∪ K̃ ∪ L(K̃).

For each vh-curve γ : [a, b] → X and each point z ∈ q−1(γ(a)) we have
a unique commutative diagram

(5.1)

R

r

��

eγ
// Z

q

��

[a, b]
S3

eeKKKKK
99ttttt

yyttt
tt

γ

$$JJJ
JJ

S1 // X

where r is the covering map r(t) = exp
(
2πi t−ab−a

)
and γ̃(a) = z. We call γ̃

the lift of γ determined by the choice of the starting point z ∈ q−1(γ(a)).

Lemma 5.2. If γ̃ : [a, b] → Z is a special vh-curve, then γ = q ◦ γ̃ is
either homotopically trivial or a vhσ-curve.

Proof. If the homotopy class [γ] is not in σ and γ̃ : R→ Z is the lift as
defined by the commutative diagram (5.1), we have γ̃(a) 6= γ̃(b), and this is
a contradiction because γ̃ is a closed curve.

Definition 5.3. Let K̃ < K̃ ′ be special vhσ-fibers on Z. We call the
domain between them a vhσ-domain on Z, and denote it by D̃(K̃, K̃ ′). Even
though the boundaries of a vhσ-domain D̃ are special, the restriction to D̃
of the projection q may not be one-to-one. We say that a vhσ-domain D̃ is
special if q| eD : D̃ → q(D̃) is a homeomorphism.

Definition 5.4. For any subset D̃ ⊆ Z, we denote by D̃[1] the set
[σ2(D̃)]. Repeated actions of [σ2] and its inverse yield the sets D̃[n] for
every integer n.

For any special vhσ-fiber K̃, the domain D̃(K̃, K̃[1]) is a fundamental
domain for the action of [σ2], and we have the following result.



218 F. F. Knudsen

Lemma 5.5. The domain D̃ = D̃(K̃, K̃ ′) is special if and only if both K̃

and K̃ ′ are special , and K̃ ′ ≤ K̃[1].

In order to state our main specialty criterion and also for various pur-
poses later on, we need to use convenient metrics on the spaces Y , Z, X, Vhσ
and Ṽhσ, depending on the choice of (σ1, σ2)-coordinates. We will simply
write d for these metrics since there can be no ambiguity.

Let σ̃1 : [0, 1]→Z be the lift of σ1 given by x2(σ̃1(t))=0. For a set K̃∈Ṽhσ
and a point q̃ ∈ K̃, let γ̃(K̃, q̃) : [0, 1] → Z be the parameterization of K̃
starting at q̃, with uniform speed and the direction making γ̃(K̃, q̃) ∼ σ̃1.

Definition 5.6. For pairs of points (r1, r2) ∈ Y × Y , (q1, q2) ∈ Z × Z
and (p1, p2) ∈ X ×X, we define

d(r1, r2) = max{|x1(r1)− x1(r2)|, |x2(r1)− x2(r2)|},
d(q1, q2) = min{d(r1, r2) | r1 ∈ r−1(q1) and r2 ∈ r−1(q2)},
d(p1, p2) = min{d(r1, r2) | r1 ∈ p−1(p1) and r2 ∈ p−1(p2)}.

For continuous functions γ̃1, γ̃2 : [0, 1]→ Z we define

d(γ̃1, γ̃2) = max{d(γ̃1(t), γ̃2(t)) | t ∈ [0, 1]}.

For pairs of vhσ-fibers (K̃1, K̃2) ∈ Ṽhσ × Ṽhσ and (K1,K2) ∈ Vhσ × Vhσ,
we will use the Fréchet-like distances defined by

dF (K̃1, K̃2) = min{d(γ̃(K̃1, q̃1), γ̃(K̃2, q̃2)) | q̃1 ∈ K̃1, q̃2 ∈ K̃2},
dF (K1,K2) = min{d(K̃1, K̃2) | (K̃1, K̃2) a lift of (K1,K2)}.

For a point p and a compact set K, we define

d(p,K) = min{d(p, p′) | p′ ∈ K}.

This distance is used to fatten up sets. For any ε > 0, and any set D, we
call the set Dε = {p | d(p,D) < ε} the ε-fattening of D. For compact sets
K1 and K2, the Hausdorff distance is

dH(K1,K2) = max{dasym(K1,K2), dasym(K2,K1)},

where

dasym(K1,K2) = sup{d(p,K2) | p ∈ K1} = inf{ε | K1 ⊆ (K2)ε}.

Lemma 5.7. All of the above functions are metrics.

Proof. Note that if (p1, p2) ∈ X × X, and r2 ∈ Y is any point in the
fiber p−1(p2), then d(p1, p2) = min{d(r1, r2) | r1 ∈ p−1(p1)}.
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Remark 5.8. Note that when we restrict ourselves to fibers of order
< n, the Hausdorff and Fréchet metrics are equivalent.

In the rest of this section we will study the fine structure of vhσ-domains
in Z. Recall that they are of the form D̃ = D̃(K̃, K̃ ′) with K̃ < K̃ ′ and with
both boundaries special. Our main result is that an (ε, δ)-immobile, reduced
vhσ-domain is special.

Definition 5.9. Let K̃ be a special vhσ-fiber and let d eK : Z → R
denote the distance from K̃. A number ε > 0 will be called left admissible
for K̃ if for every δ < ε, the set K̃δ+ = L(K̃)∩ d−1eK (δ) is a special vhσ-fiber,

and the domain D̃(K̃, K̃δ+) is special. The least upper bound of the K̃ left
admissible numbers is called the left fattening number of K̃.

We define the the right fattening number of K̃ similarly.
An admissible number for K̃ is a number ε which is both left and right

admissible, and such that for each δ < ε, the δ-fattening K̃δ = D̃(K̃δ− , K̃δ+)
is special. The least upper bound of the K̃ admissible numbers is called the
fattening number of K̃. We denote these numbers by εl(K̃), εr(K̃) and ε(K̃).

The reader may show that ε(K̃) = 1
2 min{εr(K̃), εl(K̃)}.

Lemma 5.10. Let K̃ < K̃ ′ be special vhσ-fibers, and let 0 < δ < εl(K̃).
If d(z, K̃) ≤ δ for every z ∈ K̃ ′, then the domain D̃(K̃, K̃ ′) is special.

Note that we have a similar result using the right fattening number of K̃ ′.
Since any special fiber is a lifting of a vhσ-fiber on X, the fattening

numbers are defined for fibers K ⊆ X. In order to find the fattening numbers
without using lifts, we can do the following. It will be convenient to think
in a non-standard way. On the non-standard torus, we let a fiber K consist
of two disjoint fibers K l and Kr of a non-standard distance less than any
standard positive number. The points of K l will be called the left points
of K, and Kr consists of the right points of K. Two points p and p′ of
K will be called joinable if they belong to different parallel legs, possibly
of opposite direction, and they can be joined by a line-segment meeting K
only in p and p′. Using the joinability concept we can define the following
numbers:

εll(K) = inf{d(p, p′) | p ∈ K l, p′ ∈ K l, and (p, p′) joinable},
εlr(K) = inf{d(p, p′) | p ∈ K l, p′ ∈ Kr, and (p, p′) joinable},
εrl(K) = inf{d(p, p′) | p ∈ Kr, p′ ∈ K l, and (p, p′) joinable},
εrr(K) = inf{d(p, p′) | p ∈ Kr, p′ ∈ Kr, and (p, p′) joinable}.

Of course εlr(K) = εrl(K).



220 F. F. Knudsen

Lemma 5.11. We have the following local formulas for the fattening
numbers:

εl(K) = min{εlr(K), 1
2εll(K)}, εr(K) = min{εrl(K), 1

2εrr(K)}.

The fattening numbers are positive since distinct parallel legs have posi-
tive distance. In order to prove Lemma 9.8, we need to generalize the primary
obstruction relation on double-turns and stair-like turns.

Definition 5.12. Let K be a vhσ-fiber, and let 0 ≤ ε < ε(K), the
fattening number of K. Consider the two disjoint fibers Kε+ and Kε− . We
will say that a left (resp. right) double-turn or stair-like turn ofK is primary-
ε-obstructed if the corresponding turn of Kε+ (resp. Kε− ) is {Kε+ ,Kε−}-
obstructed.

Note that if K is a vhσ-fiber and 0 ≤ ε < εl(K), the primary ε-
obstruction relation makes the double-turns of K into a forest. The proof of
Lemma 3.32 essentially gives us the following strengthening.

Lemma 5.13. Any vhσ-fiber K of order at least four has at least one
ε-unobstructed tag in each direction, provided that ε < ε(K).

In particular, we observe the following.

Corollary 5.14. Let K be a vhσ-fiber , and let 0 < ε < ε(K). If e is
an ε-unobstructed tag of K, and if K ′ is the fiber obtained by chopping off
the tag defined by e, then ε ≤ ε(K ′).

Definition 5.15. Let ε > δ > 0. A vhσ-domain D̃ = D̃(K̃, K̃ ′) will be
said to have the (ε, δ)-property if the following holds:

1) ε ≤ min{ε(K), ε(K ′)}.
2) K̃δ+ ≤ K̃ ′.
3) Any double or stair-like turn of K that is {K}-unobstructed is ε-un-

obstructed, and the same for double and stair-like turns of K ′.

Note that for any vhσ-domain D̃, there are ε > δ > 0 such that D̃ has
the (ε, δ)-property.

Definition 5.16. Let ε > δ > 0 and let D̃ = D̃(K̃, K̃ ′) be a vhσ-domain
with the (ε, δ)-property. A leg of K (resp. K ′ ) will be said to be movable if it
can be moved a positive distance to the left (resp. right) without destroying
the (ε, δ)-property. The domain will be called (ε, δ)-immobile if there are no
movable legs.

Definition 5.17. A vhσ-domain D̃ = D̃(K̃, K̃ ′) will be called left re-
duced if the lift of every {K ′}-unobstructed right tag and right stair-like
turn of K ′ is {K̃}-obstructed. It will be called right reduced if the lift of
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every {K}-unobstructed left tag and left stair-like right turn of K is {K̃ ′}-
obstructed. A domain on Z will be called reduced if it is both left and right
reduced.

Definition 5.18. A double-turn e is snugly obstructed by a double-turn
d if d is the only double-turn that primary-obstructs e and meets the shadow
of e.

A stair-like turn e is snugly obstructed by a turning-point d if d is the
only turning-point that primary-obstructs e and meets the shadow of e.

A vhσ-domain D̃ = D̃(K̃, K̃ ′) is snugly reduced if all the right double-
turns and stair-like turns of K ′ that are primary-obstructed by K are snugly
obstructed by K̃, and the other way around.

Definition 5.19. A situation will be a 5-tuple s = (p, p′, K̃, K̃ ′, c),
where p and p′ are points in X that have lifts p̃ and p̃′ to the special
vhσ-fibers K̃ and K̃ ′. The points p and p′ belong to the interiors of par-
allel legs e and e′ of the projected fibers K and K ′, and c is a directed
line-segment containing the points p and p′, meeting the legs they belong to
transversally, and meeting p before p′.

Definition 5.20. The direction of a situation s = (p, p′, K̃, K̃ ′, c) is the
pair dir(s) = (dir(c, e), dir(c, e′)) ∈ {r, l}2, where e and e′ are the legs that
p and p′ belong to.

Definition 5.21. The level of a situation s = (p, p′, K̃, K̃ ′, c) is the
integer k with the property that if p̃, p̃′ and c̃ are lifts to Z of p, p′ and c
with p̃ ∈ K̃, p̃′ ∈ K̃ ′ and q(c̃) = c, then p̃′ ∈ c̃[k].

We have the following very basic lemmas.

Lemma 5.22. For situations s = (p, p′, K̃, K̃ ′, c), s′ = (p′, p′′, K̃ ′, K̃ ′′, c)
and s′′ = (p, p′′, K̃, K̃ ′′, c), where p, p′ and p′′ are three points on the seg-
ment c, we have

level(s′′) = level(s) + level(s′).

Lemma 5.23. If in the situation s = (p, p′, K̃, K̃, c), p and p′ are nearest
neighbors on c, then the level is determined by the direction only , and we
have

level(s) =


1 if dir(s) = ll,
0 if dir(s) ∈ {lr, rl},
−1 if dir(s) = rr.

Proof. The case rl has been treated in the proof of Lemma 3.32. The
case lr is similar. In the case ll, let α = γ(K, p′, p) ∗ γ(c, p, p′) and β =
−γ(c, p′, p) ∗ γ(K, p, p′). Then as K has no self-intersections we get [α] ∗ [β]
= [γ(K)] = [σ1], and the intersection number [α] ∩ [β] is 1. It follows that
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α ∼ (1−m)σ1− σ2 and β ∼ mσ1 + σ2, showing that p̃′ ∈ c̃[1]. We leave the
case rr to the reader.

Lemma 5.24. Let K̃ < K̃ ′ be vhσ-fibers and let c be a directed line-
segment on X meeting both K and K ′ transversally. Let p1, p2 ∈ K and
p′2 ∈ K ′ be points in c with p1 < p2 < p′2. Assume that both situations s1 =
(p1, p2, K̃, K̃, c) and s2 = (p2, p

′
2, K̃, K̃

′, c) have direction rr, that p1 and p2

are nearest neighbors, and that level(s2) = 0. Then there is at least one point
p′1 with p1 < p′1 < p′2 and with level(s3) = 0, where s3 = (p1, p

′
1, K̃, K̃

′, c).

Proof. We may assume that c starts at p1. If necessary we extend c,
without making a loop, so that its lift c̃ and its translations c̃[k] contain
all intersection points with K̃ and K̃ ′. Moving along c̃ from p̃1, where we
enter D̃ = D̃(K̃, K̃ ′), we have to eventually get out of the domain again, so
let p̃′1 be the first point where we leave the domain again, and let p′1 be the
projection. (Note that if c makes a rational angle with the coordinate axis we
may have to extend c̃ to get out of the domain.) By additivity (Lemmas 5.22
and 5.23) it follows that if on c we have p1 < p2 < p′2 < p′1 and p′2 and p′1
are nearest K ′-neighbors, then (−1) + 0 + (−1) = 0. This is impossible, so
either p1 < p′1 < p′2 or there are at least two points of K ′ of the opposite
direction between p′2 and p′1. Let q′ be such a point with dir(c, q′) = l and
level(p1, q

′, K̃, K̃ ′, c) = 0. But then the line-segment d̃ enters D̃ at q̃ ′ before
it has left it, which is impossible, and this proves the lemma.

Lemma 5.25. An (ε, δ)-immobile, snugly reduced vhσ-domain is special.

Proof. By assumption K̃ ′ forms the left border of every double or stair-
like left turn of K̃δ+ corresponding to {K}-unobstructed left double or stair-
like turns of K, and vice versa. We have to check this property for obstructed
ones as well. Let p be a left turning-point of K, obstructed by a right turning-
point q of K, and let c be a directed line-segment joining p and q. At least
one of the curves α = γ(K, p, q) ∗−γ(c, q, p) and β = γ(c, p, q) ∗ γ(K, q, p) is
a left loop, so by Lemmas 3.31 and 3.28, slightly modified, we see that there
is a {K}-unobstructed left tag of K inside the loop. By our assumption this
tag is snugly obstructed by K ′ and cannot get in there without crossing c at
least twice, in such a way that all situations that arise have level 0. Since K̃
and K̃ ′ enclose a domain, the part of K ′ that is inside the loop α or β is a
left-turning loop, which shows that p is obstructed by a left turning-point p′

of K ′. By our assumptions the obstruction is snug and d(p, p′) = δ. Consider
the case when p is primary-obstructed by another left turning-point q of K;
we will prove that p is snugly obstructed by a left turning-point of K ′ at
distance δ. Since a chain of such left-turning obstructions must terminate,
we only have to prove that if q is snugly obstructed by a left turning-point
of K ′ at distance δ, so is p. Let q′ be the left turning-point of K ′ obstructing
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q at distance δ. By Lemma 5.24, there is a point p′ of K ′ between p and q′.
But since ε > δ, it is in fact on the right side of q, which shows that
K ′ primary-obstructs p, and by the assumptions this obstruction is snug
and at distance δ. A completely symmetric argument shows that all right
turning-points of K ′ are snugly obstructed by right turning-points of K
at distance δ. Since the number of left turning-points equals the number
of right turning-points for both fibers, it follows that K̃ ′ = K̃δ+ . and the
proposition follows from Lemma 5.10.

6. Pseudo-vhσ-domains and pseudo-roofs. The ideas of this chap-
ter are quite simple and elementary, but a bit complicated to write down.
To make it as simple as possible we were forced to invent a number of terms.
We advice the reader to make her/his own drawings to see what is going on.
The main theme in this section is about building pseudo-roofs over pseudo-
vhσ-domains. The main theorem is that order-reducing pseudo-roofs always
exist, and can be approximated by regular order-reducing roofs of the same
order. We also prove the crucial Lemma 6.38 about rightmost and leftmost
fibers of directed pseudo-vhσ-domains. For vhσ-fibers on X we have a reflex-
ive relation which we will denote by ≤ even though it is neither symmetric
nor antisymmetric.

Definition 6.1. We will say that K1 ≤ K2 if there is an open solid
vhσ-domain U ⊆ X such that K1 forms the left boundary and K2 forms the
right boundary of U .

Definition 6.2. For fibers K1 and K2 with K1 ≤ K2, we denote by
D(K1,K2) the solid closed vhσ-set X \U , where U is the domain in Defini-
tion 6.1. We will call such a set a pseudo-vhσ-domain. If D = D(K1,K2),
we denote by Vhσ(D) the set of vhσ-fibers in D. Note that the restriction
of ≤ to Vhσ(D) is a partial order.

Note that a pseudo-vhσ-domain is the closure of a vhσ-domain if and
only if its complement is a proper vhσ-domain.

Definition 6.3. For any pseudo-vhσ-domain D = D(K1,K2), we define
the order to be the sum of the orders of K1 and K2.

Definition 6.4. For any pseudo-vhσ-domain D = D(K1,K2), the con-
nected components of the interior of D will be called the islands of D.

Definition 6.5. A pseudo-vhσ-domain D = D(K1,K2) will be called
simple if there is an ε > 0 such that for every 0 < δ < ε, the fattening Dδ

is simple.

Definition 6.6. We will say that a contractible vh-domain R in X or
Z is a generalized rectangle if its oriented boundary shape is ll(rl)jll(rl)k,
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|j−k| ≤ 1, and every inside shadow of stair-like turning-points is obstructed.
We will say that a real-valued function is linear on R if it is continuous and
linear on every trapezium determined by R.

Definition 6.7. A pseudo-vhσ-domain will be called elementary if there
is an ε > 0 such that for every 0 < δ < ε, the fattening Dδ is elementary,
and every island of D is a generalized rectangle.

Remark 6.8. If a vhσ-domain D is not simple, then D = E ∪D′, where
E is elementary, has only one island, which is a rectangle, and D′ is a pseudo-
vhσ-domain, possibly without interior, and ord(D)− ord(D′) ∈ {2, 4}.

Definition 6.9. Let K1 ≤ K2 be vhσ-fibers and let D = D(K1,K2).
A pseudo-roof on D consists of a pair of functions f1, f2 : D → [0, 1] and
a finite linearly ordered set F ⊆ Vhσ(D), called the critical fibers of the
pseudo-roof, containing K1 and K2 and satisfying the following conditions.

(a) f1 takes the value 0 on K1, and f2 takes the value 1 on K2.
(b) f1 is lower semicontinuous, f2 is upper semicontinuous, and f1 ≤ f2.

The functions coincide and are continuous on the interior of D.
(c) For every r ∈ [0, 1], the set Fr = {p | f1(p) ≤ r ≤ f2(p)} is a

vhσ-fiber.
(d) If f1(p) < f2(p), then p belongs to at least two distinct critical fibers.
(e) There is a finite sequence 0 = r0 < r1 < · · · < rn = 1 such that

F = {Fr0 , Fr1 , . . . , Frn}.
(f) For every pair of consecutive values ri, ri+1, the vhσ-domain Di =

D(Fri , Fri+1) is simple or elementary, and f1 = f2 is linear in the
interior of any trapezium or rectangle determined by the islands of
the Di’s. Note that the restrictions of f1 and f2 to Di are determined
by their values on the fibers Fri and Fri+1 , except in the case of an
elementary domain whose island is the shadow of a stair-like turn.
In this case there are two choices. The level curves may be either
horizontal or vertical.

Definition 6.10. A vh-pseudo-roof (f1, f2, F ) on D will be called order-
reducing if ord(Fi) is non-increasing on an interval of the form {0, . . . , l},
and non-decreasing on an interval of the form {l, . . . , n}, where 0 ≤ l ≤ n.

Definition 6.11. The distance between two vh-pseudo-roofs (f1, f2, F ),
and (f ′1, f

′
2, F

′) is the number max{dF (Fr, F ′r) | r ∈ [0, 1]}. We define the
distance between regular roofs and vh-pseudo-roofs in exactly the same way.

Lemma 6.12. Every pseudo-vhσ-domain has an order-reducing vh-
pseudo-roof , and for every vh-pseudo-roof (f1, f2, F ) on D, there is a do-
main D′ ⊇ D and a vh-roof f ′ on D′, arbitrarily close, which can be chosen
to be order-reducing if (f1, f2, F ) is.
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Proof. If D is simple, we leave it to the reader to see that we have a
unique reducing vh-pseudo-roof, and for all sufficiently small δ > 0, the
vh-roof on the fattening Dδ is a vh-roof of distance less than δ. Let D be a
pseudo-vhσ-domain which is not simple. We may assume that D = D′ ∪E,
where E is elementary and the left boundary of E coincides with the right
boundary of D′, and that this boundary has order strictly less than the
order of the right boundary of D or E. By induction we have an order-
reducing vh-pseudo-roof (f ′1, f

′
2, F

′) on D′ and a vh-pseudo-roof (f ′′1 , f
′′
2 , F

′′)
on E. Then for any k > 0 the triple (f1, f2, F ) defined by F = F ′ ∪ F ′′
and

f1(x) =


f ′1(x) + k

1 + k
for x ∈ D′,

k · f ′′1 (x)
1 + k

for x ∈ E \D′,

f2(x) =


f ′2(x) + k

1 + k
for x ∈ D′ \ E,

k · f ′′2 (x)
1 + k

for x ∈ E,

is an order-reducing vh-pseudo-roof on D.
To approximate a vh-pseudo-roof (f1, f2, F ) on D, let δ > 0. Let grid(F )

be the grid consisting of the extensions of all legs of fibers in F , and let
ε > 0 be so small that the fattening grid(F )ε is homotopy equivalent to
grid(F ). We suppose that δ < ε. Suppose F = {Fr0 , Fr1 , . . . , Frn}. Let
fi : (Fri)δ → [0, 1] be the vh-roof on the δ-fattening of the ith critical fiber,
and let Ki be the fiber f−1

i (i/n). The domains Di = D(Ki,Ki+1) are simple
or elementary vhσ-domains. We choose a vh-roof gi on Di. If Di is simple
there is only one choice, and if Di is elementary we choose gi so that the extra
triangles can be contained in a rectangle of thickness δ/n. In the case where
the elementary domain is of the type corresponding to a stair-like turn, we
have to make sure that we choose the triangle so that the level-curves of gi
are parallel to the level-curves of f1 or f2 outside the triangle. Then if we
define g so that

g|Di = (ri+1 − ri)gi + ri,

we obtain d(g, (f1, f2, F )) ≤ δ.

Before we end this section we will introduce the notion of elementary
distortions, and leftmost and rightmost fibers of a pseudo-vhσ-domain, and
their properties.

Definition 6.13. A leg a of a vhσ-fiber F in a pseudo-vhσ-domain D
will be called right movable if the following holds:
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(i) There are vhσ-fibers F ′ in D, with F ′ < F , not meeting the inte-
rior of the leg a, and such that the interior of the pseudo-domain
D(F ′, F ) is a single rectangle whose boundary has at most two legs
contained in F ′.

(ii) The fibers F ′ satisfying (i) have a minimum.

If a leg a is right movable and F ′ is a fiber satisfying (i), we say that F ′ is
a right distortion of F at a. The minimum fiber satisfying (i) is called the
maximum right distortion of F at a. If F ′′ is the maximum right distortion of
F at a and ord(F ′′) < ord(F ), we call any right distortion of F at a strict . If
ord(F ′′) = ord(F ), we call any right distortion of F at a neutral . We define
left movability and left distortions similarly. We say a leg is movable if it is
either left or right movable.
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Fig. 5. In the first figure K′ is a neutral right distortion of K and K is a maximal neutral
left distortion of K′. The next three figures show proper right distortions, the last two are
maximal.

Definition 6.14. For a vhσ-fiber F in a pseudo-vhσ-domain D we have
the following sets that may not be disjoint:

Lmoves(F,D) = the set of strictly left movable legs of F in D,
Rmoves(F,D) = the set of strictly right movable legs of F in D,
Lmoven(F,D) = the set of neutrally left movable legs of F in D,
Rmoven(F,D) = the set of neutrally right movable legs of F in D.

Definition 6.15. For vhσ-fibers F < F ′ in a pseudo-vhσ-domain D, we
call F ′ a simple left distortion of F if there is a left movable leg a of F such
that F ′ is a left distortion of F at a. We call F ′ a semisimple left distortion
of F ′ if there is a sequence F0 < F1 < · · · < Fm such that F0 = F , Fm = F ′,
Fi+1 is a simple left distortion of Fi for 0 ≤ i ≤ m−1, and the interior of the
domain D(F, F ′) consists of mutually disjoint open generalized rectangles.
If P is one of the properties: right, left, maximum, strict, neutral, we call a
semisimple distortion P if it is possible to choose a sequence of intermediate
simple distortions which are all P.

Remark 6.16. Note that the intermediate simple distortions are not
unique, but the generalized rectangles are, so the definition does not depend
on the particular sequence of simple distortions.
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Definition 6.17. A vhσ-fiber F in a pseudo-vhσ-domain D will be
called rightmost if none of the legs of F are right movable, which means
that Rmoves(F,D) = Rmoven(F,D) = ∅. Similarly we define a leftmost
fiber.

Note that a fiber of order zero is both leftmost and rightmost. In general
the closest we can get to fibers that are both leftmost and rightmost is the
following.

Definition 6.18. A vhσ-fiber F in a pseudo-vhσ-domain D will be
called central if it has no strictly movable legs and at most one neutrally
movable leg. This means that Rmoven(F,D) ∩ Lmoven(F,D) ∈ {∅, {a}}. If
F is central and has a two-way movable leg a, we call it the two-way movable
leg of F . If we move all the right movable legs of a central fiber F all the
way to the right, we get a fiber F1 of the same order as F , and F1 is a right
neutral semisimple distortion of F . Similarly we get a left neutral semisimple
distortion F2 of F , and F1 and F2 are neutral semisimple distortions of each
other. A subdomain of a pseudo-domain D of the form D(F1, F2), where
F1 is the maximal right distortion and F2 the maximal left distortion of a
central fiber F , will be called a central domain of D.

Proposition 6.19. Let D = D(F1, F2) be a pseudo-vhσ-domain such
that F1 has no strict left movable leg , and F2 has no strict right movable
leg. Then F1 and F2 are maximal neutral semisimple distortions of each
other.

Proof. Let R be the closure of a connected component of D. By our
assumption the part of the boundary that meets F1 cannot have two con-
secutive left turning-points, and the part of the boundary that meets F2

cannot have two consecutive right turning-points. This shows that R is
contractible. When we move around the boundary of R counterclockwise
we must have a surplus of four l’s and therefore at least four circular oc-
currences of ll. Also every shadow of a right stair-like turning-point of F2

must be obstructed by F1 and vice versa. It follows that the shape of R is
ll(rl)kll(rl)k or ll(rl)kll(rl)k−1 for some k ≥ 1. This shows the proposition.

Definition 6.20. A sequence of vhσ-fibers K1 = F0 < F1 < · · ·
< Fl+m = K2 will be called special if the following holds:

(i) For i ∈ {0, l−1}, Fi+1 is a semisimple maximal left strict distortion
of Fi.

(ii) The fibers Fl and Fl+1 are maximal neutral semisimple distortions
of each other.

(iii) For i ∈ {l, l + m − 1}, Fi is a maximal right strict semisimple dis-
tortion of Fi+1.



228 F. F. Knudsen

Definition 6.21. A vh-pseudo-roof f1, f2 :D→ [0, 1] on D=D(K1,K2)
will be called special if its critical fibers K1 =F0 <Fr1 < · · ·<Frn =F1 =K2

form a special sequence.

Note that special sequences are not unique, but the length might be well
defined if every distortion is simple. I do not know the answer.

Corollary 6.22. Every pseudo-vhσ-domain D(K1,K2) has a special
roof.

The pseudo-vhσ-domains that will play a leading role in what follows are
the ones that we get by filling in the closure of the shadows of all or some of
the unobstructed tags and double tags of a vhσ-curve. Such pseudo-domains
allow a decomposition into directed rectangles and hooks, i.e. domains of
shape lllllr. See Figure 6.
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Fig. 6. Part of a directed pseudo-domain. There are two right rectangles, two left rectan-
gles, one right hook and one left hook. The darker ones are the right ones.

Definition 6.23. A direction on a rectangle R in X or Z is a naming
of its sides in positive order, east, north, west, south, together with a value
right or left . We write east(R) for the eastern edge of R, and similarly for
the other directions. We will also consider degenerate directed rectangles.
A degenerate directed rectangle is simply a line-segment with an eastern end
a western end. The degenerate rectangles do not have a value right or left,
and their only leg is both a northern and a southern edge. Even though
their eastern and western edges are just points we will consider them to
have direction perpendicular to the long edge. The reader may feel free to
think non-standard.

Definition 6.24. A direction on a hook L in X or Z is a naming of its
sides in positive order, east, north2, north1, west, south1, south2, together
with a value right or left . The value of a directed hook is actually determined
by the naming of the edges. The value left is given to the hooks for which the
right turn is between the northern edges, and they will be called left-hooks.
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The right-hooks have the right-turn between the southern edges. We write
east(L) for the eastern edge of L, and similarly for the other directions.

Definition 6.25. A directional decomposition of a pseudo-vhσ-domain
D = D(K1,K2) consists of a finite set S of directed rectangles and hooks,
S = SLR ∪ SRR ∪ SLH ∪ SRH ∪ Sdeg, such that:

(i) D =
⋃
S.

(ii) There is a circular enumeration S = {S0, S1, . . . , Sn} such that only
neighbors meet, and Sj ∩ Sj+1 ⊆ east(Sj) ∩ west(Sj+1).

(iii) For each Sj ∈ S, south(Sj) ⊆ K1 and north(Sj) ⊆ K2.
(iv) If two non-degenerate members of S touch, they touch along parallel

east-west edges and have opposite values.
(v) The northern edge or edges of a left rectangle or hook always extend

to the northern edge to at least one of its neighbors. Ditto for the
southern edge or edges of right rectangles or hooks.

We will say that a directed pseudo-domain (D,S) is eligible if S contains
both left and right elements.

If S is a directional decomposition of a pseudo-vhσ-domain D =
D(K1,K2), we can single out a special subspace of Vhσ(D) consisting of
S-fibers, and we also define a special pseudo-metric dS on the S-fibers.

Definition 6.26. The S-fibers K ∈ Vhσ(D) are the fibers with no
turning-points in the interior of any of the rectangles of S, and exactly one
turning-point in every hook of S. We denote the set of S-fibers by T (D,S).

Definition 6.27. For a member S ∈ S and S-fibers K1 and K2, we
define d

(−)
S (K1,K2) to be the distance between K1 and K2 immediately

after entering S, and d
(+)
S (K1,K2) to be the distance between K1 and K2

immediately before leaving S. We define dS = d
(−)
S + d

(+)
S , and finally

dS =
∑
S∈S

dS .

Note that dS is a metric when restricted to S-fibers.

Definition 6.28. An S-vh-pseudo-roof on (D,S) is a vh-pseudo-roof
on D whose fibers are S-fibers.

Lemma 6.29. The S-fibers enjoy the following properties.

(i) The space T (D,S) is a lattice, but not a sublattice of Vhσ(D).
(ii) The order-function is lower semicontinuous.

(iii) If K1 ≤ L ≤ K2, then dS(K1, L) + dS(K2, L) = dS(K1,K2).
(iv) dS(K1,K2) = dS(K1 ∧K2,K1 ∨K2).

Proof. Left to the reader.
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It follows from Lemma 6.29(ii) that the order-function has a minimum
value.

Definition 6.30. The order of a directional decomposition S, ord(S),
on a vhσ-domain (D,S) is the maximum value the order of an S-fiber.

Lemma 6.31. For any eligible pseudo-vhσ-domain D = D(K1,K2) with
directional decomposition S, we have ord(D) < ord(S).

Proof. This is because by Definition 6.25(v), K1 will skip a corner along
the southern edge of a right rectangle or hook, and K2 will skip a corner
along the northern edge of a left rectangle or hook, and since it is eligible,
there are both left and right elements of S.

Example 6.32. Let K be a vhσ-fiber with a vhσ-curve γ = γ(K). Let
D be the vhσ-domain obtained by taking the union of K and the closures
of some of the unobstructed tags of γ. Then if we have added the shadows
of both some left tags and some right tags, we get a vhσ-domain with a
directional decomposition S consisting of the closures of the shadows of the
simple tags as the left and right rectangles, and the closures of the shadows
of the twin tags as the hooks. The rest will be the degenerate rectangles.
This decomposition is unique as long as we do not split legs into more
than one degenerate rectangle. Note that the right tags correspond to right
rectangles.

Note that there will be many different directed vhσ-domains correspond-
ing to a vhσ-fiber K. If we fill in the closures of the shadows of all the unob-
structed tags of K, we get the maximal directed vhσ-domain corresponding
to K, and this is always eligible by Lemma 3.32.

Definition 6.33. The maximal directed vhσ-domain corresponding to
a vhσ-fiber K of positive order will be denoted by (D(K),S(K)).

Lemma 6.34. For any directed vhσ-domain (D,S) such that no parallel
degenerate edges are joined , there is a unique vhσ-fiber K with D ⊆ D(K),
S \ Sdeg ⊆ S(K) \ S(K)deg, and ord(K) = ord((D,S)).

Proof. Let

∂′(S) =



⋃
{west(S), south(S), east(S)} for S ∈ SLR,⋃
{west(S), north(S), east(S)} for S ∈ SRR,⋃
{west(S), south1(S), south2(S), east(S)} for S ∈ SLH ,⋃
{west(S), north1(S),north2(S), east(S)} for S ∈ SRH ,

S for S ∈ Sdeg.

Then K =
⋃
{∂′(S) | S ∈ S}.
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Before we end this section we will prove some properties of leftmost,
rightmost and central S-fibers of a directed pseudo-vhσ-domain.

Definition 6.35. An S-fiber F in a directed vhσ-domain (D,S) will
be called a central S-fiber if either F is central, or there are central fibers
F1 < F < F2 without two-way movable legs and F contains consecutive legs
c, a, d, Rmoves(F ) = {a, c}, Lmoves(F ) = {a, d} such that F1 is a strict
right simple distortion of F both at a and c, and F2 is a strict left simple
distortion of F both at a and d.

Definition 6.36. By an extreme S-fiber we will mean an S-fiber that
is either leftmost, rightmost or central.

Definition 6.37. Let (D,S) be a directed pseudo-domain, and E a set
of east-west edges along which two consecutive members of S are attached.
We denote by T E(D,S) the space of S-fibers that cut straight through the
borders in E.

Lemma 6.38. In a directed vhσ-domain, (D(K),S(K)) = D(K1,K2),
the following holds:

(i) An S-fiber M is a rightmost (resp. leftmost) S-fiber if and only if
every leg of M of the form rr, rl or lr (resp. ll, lr or rl) contains
a leg of K1 (resp. K2). In particular , every north-south leg of M
contains a leg of K1 (resp. K2).

(ii) No leftmost or rightmost S-fiber enters or leaves a right member of
S at a left turning-point , nor does it enter or leave a left member
of S at a right turning-point.

(iii) If M is rightmost and cuts straight through an east-west attaching
border , then all rightmost or central S-fibers M ′ with M ≤ M ′

in the neighboring rectangles of this border cut straight through the
same border.

(iii∗) If L is leftmost and cuts straight through an east-west attaching
border , then all leftmost or central S-fibers L′ with L′ ≤ L in the
neighboring rectangles of this border cut straight through the same
border.

(iv) If M and L, then except if L is leftmost and M is rightmost and
M < L, there is an east-west border e along which two consecutive
members of S are attached , such that both M and L are members
of T {e}(D,S).

Proof. We leave the proof of (i) and (ii) to the reader. We proceed to
prove (iii). If M ′ has a leg along this border, it could be moved in a neutral,
improper way to make a right distortion, contradicting the fact that M ′ is
rightmost. This also shows that (iv) holds in case the fibers are both central,
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one central and one rightmost or leftmost, both rightmost or both leftmost,
and in the case of comparable leftmost and rightmost fibers. It remains to
check the case of non-comparable rightmost and leftmost fibers. Assume
then that L is leftmost, M is rightmost and L 6≤ M and M 6≤ L. Let p be
a left turning-point of L on the right side of M . Since the north-south leg
adjacent to q meets K2, which is the very leftmost fiber of D, M has to
cross or merge with this leg between q and where the leg meets K2. Since
L is leftmost, and M is to the left of L at p, the turn p preceding q is a
right turning-point. By (i) this forces the leg p, q to meet K2 as well, and
therefore M crosses or merges with the leg p, q between q and where the leg
meets K2. By symmetry, M has a right turning-point s on the right side
of L between the points where it meets L on either side of q, and the legs
of M adjacent to s both meet K1. This shows that the square determined
by the points q and s meet an even number of rectangles from S, and this
proves (iv).

7. Moving directed pseudo-vhσ-domains. In this section we study
families of vhσ-fibers Kt, and directed pseudo-domains (Dt,St) contained in
(D(Kt),S(Kt)). The problem is that even if Kt is continuous, (D(Kt),S(Kt))
might not be, even if the shape of Kt stays constant. If the family has
constant order, the shape will also stay constant, and we need to keep track
of the tags of Kt.

Definition 7.1. Let w ∈ {l, r}2n, and let K be a fiber with shape [w].
A matching m for the fiber K in w is an order-preserving correspondence
m between the turning-points of K and the word w.

Note that if |w| = 2n, the number of such matchings equals the order of
the isotropy subgroup of w in the translation group Z/2nZ acting on {l, r}2n.
In particular, there are exactly two matchings in the case w = rrllrrll.

Definition 7.2. For a matched fiber (K,m,w) we have a subset which
we name Unobst(K,m,w) ⊆ circocc(rr, w)∪ circocc(ll, w), consisting of the
circular occurrences that correspond to unobstructed tags.

Lemma 7.3. Let U be a connected component of Vh(2n)
σ \ Vh(2n−2)

σ of
shape [w]. Let U∗ be the cover on which m is globally well defined. Then the
function Unobst : U∗ → P (circocc(rr, w) ∪ circocc(ll, w)) is lower semicon-
tinuous. In other words, for any V ⊆ circocc(rr, w) ∪ circocc(ll, w), the set
{(K,m) | V ⊆ Unobst(K,m)} is open.

Proof. If a tag of a matched fiber (K,m) is unobstructed, the legs not
adjacent to the tag have some distance from the tag, so the tag remains
unobstructed in a neighborhood. Obstructed tags, on the other hand, may
be unobstructed at fibers arbitrarily close.
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Note that Unobst is constant in the case w = rrllrrll and may vary with
subsets having from two to five members in the case w = rllrlllrrrrl. By
Lemma 3.32, the cardinality of any subset Unobst(K,m) is at least 2.

Definition 7.4. Let w ∈ {l, r}2n, and let E ⊆ circocc(rr, w) ∪
circocc(ll, w). If K is a fiber with shape [w] and m is a matching for K
in w, we write SE(K) = SE(K,m,w) for the subset of S(K) consisting of
the rectangles and hooks corresponding, through m, to occurrences of xx’s,
or of xxx’s such that both suboccurrences of xx belong to E. We write
DE(K) = DE(K,m,w) for the corresponding directed pseudo-domain. We
will call E eligible for (K,m,w) if (DE(K,m,w),SE(K,m,w)) is eligible
(see Definition 6.25).

Definition 7.5. Let Kt, t ∈ 〈a, b〉, be a continuous family of fibers in
Vh(2n)

σ \Vh(2n−2)
σ of shape [w], and let mt be a continuous matching. A subset

E ⊆ circocc(rr, w) ∪ circocc(ll, w) will be called stable at a point t0 ∈ 〈a, b〉
if there is a neighborhood U of t0 such that DE(Kt,mt, w) is continuous (in
the Hausdorff metric).

Note that E is stable at t0 if and only if Unobst(Kt,mt, w)∩E is constant
for t near t0. From Lemma 7.3, we get the following corollary.

Corollary 7.6. For any continuous matched family (Kt,mt, w) and
any interior point t0, the set E = Unobst(Kt0 ,mt0 , w) is eligible and
stable.

The main result of this section is the following.

Proposition 7.7. Let Kt, t ∈ [0, 1〉, be a continuous family of fibers with
ord(Kt) = 2n for t > 0. Assume that w and v are the shapes of Kt and K0,
and that mt and n are matchings such that we can write v = α1, . . . , α2k,
w = x1, y1, . . . , x2k, y2k and for a turning-point p(t), the letter mt(p(t)) oc-
curs in xi if and only if lim p(t) is a turning-point of K0 and n(lim p(t))
= αi, and it occurs in yi if and only if lim p(t) ∈ 〈n−1(αi), n−1(αi+1)〉. Let
E be the set of xx occurrences in w occurring in the words xiyixi+1 for
which αi, αi+1 correspond to an unobstructed tag in K0. Then the following
holds:

(i) The limit limt→0+ DE(Kt) = D0 exists, and is contained in D(K0).
(ii) There is an ε > 0 such that E is eligible for all 0 < t < ε.

Proof. We see (i) because the rectangles and hooks of SE(Kt,mt, w)
that do not persist get absorbed by the interiors of the legs of K0 as t
tends to zero. Next let ε be so small that all vanishing turning-points p(t)
converge to points in closed intervals [q − ε, q′ + ε] of legs [q, q′] of K0,
and Unobst(K ′, n′, v) = Unobst(K0, n, v) for all matched fibers (K ′, n′, v)
of distance less than ε from (K0, n, v). We consider a rectangular domain
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of thickness less than ε containing the middle leg of an unobstructed tag,
hosting tag, of K0. For t < ε we join the part of Kt in this rectangle to a
leg parallel to the middle leg of the hosting tag. This will form a right (resp.
left)-turning closed curve if the hosting tag is a right (resp. left) tag, and
the proposition follows from Lemmas 3.31 and 3.32.

Note that the limit D0 may not be eligible. It can in fact be K0 itself.

8. Reduction. In this section we prove a key result. As in the earlier
sections, we consider the spaces Y , Z, X, with σ-coordinates x and x̃. We
also fix an intrinsic simple topological measure µ on X. From now on we
simplify our language and drop the index σ. The vhσ-fibers are simply called
fibers, and fibers with µ-measure equal to 1 are called µ-fibers. Before we
prove the key lemma we make some simple observations.

Lemma 8.1. If Υ is any bounded space of fibers in a pseudo-domain D,
say in the Hausdorff metric, the subspace Υµ of all µ-fibers in Υ is closed
in Υ .

Proof. This follows from Definition 0.1 since the fibers are closed and Υ
is a Hausdorff space.

Lemma 8.2. Let F1 ≤ F ≤ F2 be fibers in a pseudo-domain D. Then if
both F1 and F2 are µ-fibers, so is F .

Proof. Let K be a fiber in the complement U of the (closed) pseudo-
domain D(F1, F2). The interior V1 of D(F,K) has µ-measure 0 because it
is disjoint from F1, and the interior V2 of D(K,F ) has µ-measure 0 because
it is disjoint from F2. By additivity µ(V1 ∪K ∪ V2) = 0, so µ(F ) = 1.

Lemma 8.3. Let f1, f2 : D → [0, 1] be a pseudo-roof on a pseudo-
domain D. Then if µ(D) = 1, there is a non-empty interval [t1, t2] ⊆ [0, 1]
such that µ(Ft) = 1 if and only if t ∈ [t1, t2].

We consider a left movable leg a, and a right movable leg b 6= a of a fiber
F in a pseudo-domain D. We let F2 be the maximum simple left distortion
of F at a, and F1 be the maximum simple right distortion of F at b. We
denote by R1 the closed rectangle determined by F and F1, and we denote
by b′ the leg of F1 opposite b. Similarly we have F2, R2 and a′. We divide
this situation into three distinct, exhaustive cases:

Case 1: The rectangles are disjoint.

Case 2a: The rectangles touch, and a and b are not parallel.

Case 2b: The rectangles touch, and a and b are parallel.

Note that in Case 2a, D(F1, F2) = R1 ∪R2 is almost always a hook, but
possibly just one rectangle. In Case 2b, R1 ∪ R2 is almost always a shape
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of type (llrl)2, and in special cases a hook, a rectangle, or two rectangles
meeting at a corner.

Definition 8.4. Let D, F , a, a′, b′, b and R1, R2 be as above. A pair of
line segments a′′ and b′′ in the rectangles R1 and R2 will be called admissible
if either a and b are not parallel, or the smaller rectangles R′′1 ⊆ R1 deter-
mined by a and a′′ and R′′2 ⊆ R2 determined by b′′ are either disjoint or meet
only at a corner where necessarily a′′ and b′′ extend each other. We call the
corresponding pair (F ′′1 , F

′′
2 ) an admissible pair of simple distortions at the

pair (a, b). The fiber F ′′ with ord(F ′′) ≤ ord(F ) of D′′ = D(F ′′1 , F
′′
2 ) will be

called the critical (a′′, b′′)-fiber of F at (a, b); it contains at least a part of a′′

and b′′. We denote by Adm(F,D, a, b) the space of all critical (a′′, b′′)-fibers
of F at (a, b). A fiber H ∈ Adm(F,D, a, b) will be called maximal if either
a′ = a′′, b′ = b′′, or the legs a′′ and b′′ are extensions of each other, in which
case we are guaranteed that ord(H) < ord(F ).

Note that the critical fiber always divides the pseudo-domain D′′ into
rectangles.

Definition 8.5. Given D, F , a, a′, b′, b and R1, R2 as above, and sup-
pose that F is a µ-fiber. We will call a critical (c, d)-fiberG ∈ Adm(F,D, a, b)
with µ(G) = 1 a (c, d)-reduction of F at (a, b). We denote by Red(F,D, a, b)
the space of all (c, d)-reductions of F at (a, b). A (c, d)-reduction of F at
(a, b) is maximal if it is maximal as a member of Adm(F,D, a, b).

The key lemma is this:

Lemma 8.6. If F is a µ-fiber in a pseudo-domain D, and (a, b) a pair of
legs with a left movable and b right movable, then the space Red(F,D, a, b)
is connected and contains maximal reductions.

Proof. Note first that Red(G,D, c, d) ⊆ Red(F,D, a, b) for any (c, d)-
reduction G of F at (a, b). Also if G1 is a (c1, d1)-reduction with d1 closest
to b′, and if G2 is a (c2, d2)-reduction with c2 closest to a′, we have G1 ≤ G2,
and so by Lemma 8.2, there is a (c2, d1)-reduction of F at (a, b). Let (a′′, b′′)
be an admissible pair at (a, b), and let D′′ = D(F ′′1 , F

′′
2 ). Consider the re-

ducing pseudo-roof f1, f2 : D′′ → [0, 1] with one critical fiber F1/2 being the
critical (a′′, b′′)-fiber at F at (a, b). Then every fiber Ft either contains b′′

or at least part of a′′, so by Lemma 8.3 there is a fiber G = Ft which is a
(c, d)-reduction with a′′ = c or b′′ = d. If G is any (c, d)-reduction which is
not maximal, then c is a left movable and d a right movable leg of G, and
there is an admissible pair (c′′, d′′) for (c, d) and a (c′, d′)-reduction G′ of G
which is also a (c′, d′)-reduction of F and closer to a possible maximal one.
This proves the lemma.
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Lemma 8.7. Let F be a µ-fiber in a pseudo-domain D and suppose F
has legs a ∈ Lefts(F,D), b ∈ Rights(F,D) and a 6= b. If F ′ is a maximal
(a, b)-reduction, then ordF ′ < ordF .

Definition 8.8. We let Vh(2n)(D) be the space of fibers in a pseudo-
domain D of order not exceeding 2n. The more interesting space is the
subspace Vh(2n)

µ (D) of µ-fibers in Vh(2n)(D).

Corollary 8.9. For every natural number n, every connected compo-
nent of the compact space Vh(2n)

µ (D) contains either a leftmost , rightmost
or central fiber.

Proof. For n = 0, Vh(2n)
µ (D) is either empty or contains a single fiber,

which is both leftmost, rightmost and central. For n = 1, Vh(2n)
µ (D) is empty

and the corollary holds trivially. Assume that the corollary does not hold
and let n be the smallest number for which there is a connected component
W of Vh(2n)

µ (D) without a leftmost, rightmost or central fiber. By our choice
of n, all fibers of W have order 2n, and do not contain leftmost, rightmost
or central fibers. By Lemma 8.7, any fiber F in W cannot have both left
and right strictly movable legs. No fiber can have a single leg that is both
left and right strictly movable, because a two-way strictly movable leg has
strictly movable neighboring legs. Hence, by symmetry, we may assume that
Rmoves(F,D) = ∅. If Lmoves(F,D) 6= ∅, it follows from Lemma 8.6 that
we can use one of these legs to eliminate all right movable legs since by
assumption the order cannot decrease. But then the result is a leftmost
fiber. This is a contradiction, so F has only neutrally movable fibers. Let F
be any fiber inW and assume that |Lmoven(F,D)∩Rmoven(F,D)| > 1. We
can use the process of Lemma 8.6 to push all but possibly one of them to
the extreme left or right. The result is a central fiber, and this contradicts
our assumption.

Lemma 8.10. For any set E of east-west edges of a directed pseudo-
domain (D,S), T Eµ (D,S) is connected.

Proof. If not, we have compact disjoint non-empty sets whose union is
T Eµ (D,S). The minimum distance is obtained, say, by S-fibers K1 and K2.
Then K1 ∨ K2 and K1 ∧ K2, and every fiber in an S-pseudo-roof of
D(K1∨K2,K1∧K2), are all in T Eµ (D,S). Such a roof will contain a µ-fiber,
and any fiber L ∈ D(K1 ∨K2,K1 ∧K2) satisfies dS(K1, L) < dS(K1,K2).
This is a contradiction.

Lemma 8.11. If (D,S) is a directed pseudo-domain of order ord(S) = 2n,
then every connected component of the compact space Vh(2n−2)

µ (D) contain-
ing a central µ-fiber contains an S-central µ-fiber.
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Proof. Let F be a central µ-fiber of Vh(2n−2)
µ (D), and let F1 and F2 be

as in Definition 6.18. If F is an S-fiber there is nothing to prove, so we
may assume that F1 < F < F2. There will be an even number of rectangles
from S meeting the rectangle determined by F1 and F2, and if E denotes
the set of east-west borders of these rectangles, then |E| ≥ 1 and there is
an S-pseudo-roof of D(F, F ) all of whose fibers are in T Eµ (D,S). Hence we
have an S-central µ-fiber G with ord(G) ≤ 2n − 2 and F1 < G < F2. By
Lemma 8.7, F andG are in the same connected component of Vh(2n−2)

µ (D).

By combining these lemmas with Lemma 6.38(iv), we get another key
result.

Proposition 8.12. If (D,S) is an eligible directed pseudo-domain with
ord(S) = 2n and µ(D) = 1, then the compact space Vh(2n−2)

µ (D) is non-
empty and connected.

Proof. Note that in the exceptional case M < L in Lemma 6.38(iv), it
follows from Lemma 8.2 that Vh(2n−2)(D(M,L)) = Vh(2n)

µ (D(M,L)), and
Vh(2n−2)(D(M,L)) is connected since any fiber in D(M,L) of order not
exceeding 2n− 2 can occur in a pseudo-roof for D(M,L).

9. Lifting vhσ-fibers right. We fix notation as in the previous sec-
tions, and add to this the following special fiber, and its lifts to Z.

Definition 9.1. We denote by I the fiber whose curve γ is given by
x̃1(γ(t)) = t (mod 1) and x̃2(γ(t)) = 0 (mod 1). The lift of I to Z, whose
curve γ̃(n) is given by x̃1(γ(n)(t)) = t (mod 1) and x2(γ(n)(t)) = n, is denoted
by Ĩ(n). We call I the equator .

Without loss of generality, we assume that µ(I) = 1. Note that Ṽh(0)
µ =

{Ĩn | n ∈ Z} is just a discrete space. We next look into the connectivity of
Ṽh(2n)

µ for all n ∈ N.

Definition 9.2. We denote by W̃h
(2n)
µ the subspace of Ṽh(2n)

µ ×Ṽh(2n−2)
µ

consisting of pairs (K̃, K̃ ′) such that K̃ and K̃ are lifts of µ-fibers, and
K̃ ′ ∈ Ṽh(2n−2)

µ (D̃(K̃)). We let p1 and p2 be the two projections from W̃h
(2n)
µ .

If φ : [a, b] → Ṽh(2n)
µ is a continuous map, we simply denote by W̃h(φ) the

pullback of the image of φ by p1.

Definition 9.3. Let φ : [a, b] → Ṽh(2n)
µ be a continuous map, and

suppose ord(φ(t)) = 2n for all t. We can choose a matching w. For any
set of E ⊆ circocc(xx,w), we let W̃hE(φ) denote the subspace of fibers

K ′ ∈ Ṽh
(2n−2)

µ (D̃E(φ(t))).
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Lemma 9.4. Let φ : [a, b] → Ṽh(2n)
µ be a continuous map, and sup-

pose ord(φ(t)) = 2n for all t ∈ 〈a, b〉, and ord(φ(t)) < 2n for t ∈ {a, b}.
Then W̃h(φ) is connected , and {φ(a), φ(b)} belong to the same component

of Ṽh
(2n−2)

µ .

Proof. Connectedness of W̃h(φ) follows from Proposition 8.12, Lem-
ma 8.1, and Corollary 7.6, and the last statement follows from Proposi-
tion 7.7.

Corollary 9.5. Inclusion induces a one-to-one correspondence between
the connected components of Ṽh(2n−2)

µ and Ṽh(2n)
µ .

Corollary 9.6. There is a unique surjective function, which we call R,
from Ṽhµ to Z with the property that that it is continuous on each sub-
space Ṽh(2n)

µ , and takes the value n at the fiber Ĩ(n).

Proof. By induction on n, every µ-fiber of order 2n belongs to a con-
nected component of Ṽh(2n)

µ that contains exactly one of the fibers Ĩ(n).

Let B be the set of vhσ-domains D̃ = D̃(K̃, K̃ ′) such that K̃ ∩ K̃ ′ = ∅,
µ(K) = µ(K ′) = 1 and R(K̃) = R(K̃ ′) = 0. The set B is graded by the
function ord(D̃) = ord(K̃) + ord(K̃ ′). We will eventually see that B = ∅,
but first we prove some properties of domains in B if there are any. Recall
the concepts of snug obstructions and (ε, δ)-immobility of Definitions 5.18
and 5.15.

Lemma 9.7. If B 6= ∅, it contains snugly reduced (ε, δ)-immobile do-
mains for some ε > δ > 0.

Proof. Let D̃(K̃, K̃ ′) be a member ofB. IfK has a {K,K ′}-unobstructed
left tag or stair-like turn, the pseudo-domain obtained by adding the closure
of its shadow and the closures of the shadows of all {K}-unobstructed right
tags, which are automatically also {K ′}-unobstructed, has right and left
boundaries of order strictly smaller than ord(K), and building a pseudo-roof
over it gives us a fiberK1 with a lift K̃1 such that D̃(K̃1, K̃

′) is also a member
of B with strictly smaller order. We may therefore assume that D̃(K̃, K̃ ′)
is reduced. If D̃(K̃, K̃ ′) is reduced, but not necessarily snugly so, consider
the pseudo-domain D obtained by adding closed rectangles on the left side
of K to make every {K ′}-primary-obstructed left turn of the left boundary
of D snugly {K ′}-obstructed. Then add the closures of the shadows of all
{K}-unobstructed right tags. We choose a reducing pseudo-roof such that
there is a middle fiber to the left of all the rectangles added on the left side of
K and to the right of all the rectangles added on the right side of K. If there
is a µ-fiber on the left side of the middle fiber, this fiber, say K1, will have
all its {K ′}-primary-obstructed left turns snugly {K ′}-obstructed. If not we
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repeat the process. The order of the left side of each new domain will decrease
each time, so eventually we end up with a domain D̃(K̃, K̃ ′) such that all
{K ′}-primary-obstructed left turns ofK are snugly {K ′}-obstructed. We can
then switch the roles of K and K ′ and obtain a domain D̃(K̃, K̃ ′) such that
all {K}-primary-obstructed right turns of K ′ are snugly {K}-obstructed. In
the process, however, some {K ′}-primary-obstructed left turns of K may
become {K ′}-unobstructed, but then we may reduce the order and simply
cut off the shadow of that turn. Note that a snugly obstructed turn does not
become non-snugly obstructed. Alternating this process between K and K ′

always decreases the order so eventually we end up with a snugly reduced
domain. Let 0 < δ < ε and n be such that there is a snugly reduced domain
D̃(K̃, K̃ ′) of B with the (ε, δ)-property and with ord(D) = n. Let SBn

(ε,δ)

be the subset of B consisting of the snugly reduced domain D̃(K̃, K̃ ′) of B
with the (ε, δ)-property and with ord(D) ≤ n. We have just shown that there
exist 0 < δ < ε and n such that SBn

(ε,δ) 6= ∅. The space SBn
(ε,δ) is compact

because of Definition 0.1(b) and the continuity of distance. Since the area
of a domain D̃ = D̃(K̃, K̃ ′) is continuous on B, there is a domain D̃(K̃, K̃ ′)
in SBn

(ε,δ) of minimum area. We claim that D̃(K̃, K̃ ′) is (ε, δ)-immobile. If
K had a left movable leg, we could use an unobstructed right tag to move it
to the left and possibly gain some area because the right tag might shrink
too much. However, alternating the process back and forth between K and
K ′ eventually produces a snugly reduced pair of smaller area in the same
connected component.

We can now formulate our final lemma.

Lemma 9.8. If K̃ and K̃ ′ are lifts of µ-fibers K and K ′ such that
R(K̃) = R(K̃ ′), then K̃ ∩ K̃ ′ 6= ∅.

Proof. It follows from Lemmas 9.7 and 5.25 that B = ∅, which is a
reformulation of the lemma.

10. Density and connectedness. As before, let p : Y → X be a
universal covering of a torus, and let (x, y) : Y → R2 be coordinates such
that the unit square is a fundamental domain for p. Let P be the set of
maximal rank one subgroups of the fundamental group π1(X). For each
σ ∈ P, and each simple topological measure % ∈ X∗, let %σ be the restriction
of % to the σ-sets. We let X∗σ denote the corresponding quotient space, with
the quotient topology. Then if we give

∏
σ∈PX

∗
σ the product topology and

X∗int the subspace topology, the natural map

X∗int →
∏
σ∈P

X∗σ
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is a homeomorphism. According to Ørjan Johansen and Alf Birger Rus-
tad the map λ : X∗ → X∗int is a deformation retraction so the inclusion
X∗int ⊆ X∗ of the intrinsic simple topological measures into all the sim-
ple topological measures induces isomorphisms on the Čech cohomology
groups (see [8]). It follows that X∗ is connected if and only if X∗int is con-
nected.

Definition 10.1. Let Dn ⊆ Y be the square given by −n ≤ x ≤ n and
−n ≤ y ≤ n, and let in denote the inclusion. We set X∗n = λ ◦ (p ◦ in)∗(D∗n).

Proposition 10.2. The union
⋃∞
n=1X

∗
n is dense in X∗int.

Proof. Let % be an intrinsic simple topological measure and let F be a
finite family of two-sided open sets with %-measure 1. Let U be the neighbor-
hood of % given by {δ | δ(V ) = 1, ∀V ∈ F}. By Theorem 1.9, there is a lifting
F ′ of F to Y (see Definition 1.2). For each V ′ ∈ F ′ choose a point pV ′ ∈ V ′,
and for each pair (V ′,W ′) with V ′ 6= W ′ a point q(V ′,W ′) ∈ V ′ ∩W ′. Choose
curves γ′(V ′,W ′) from pV ′ to q(V ′,W ′) in V ′, and let CV ′ =

⋃
W ′ 6=V ′ γ(V ′,W ′).

Then CV ′ is compact. For each V ′ ∈ F ′, we have CV ′ ⊆ V ′, and the fam-
ily {CV ′ | V ′ ∈ F ′} is strongly linked. By compactness there is an n large
enough so that all the curves γ(V ′,W ′) lie in Dn. It follows that the family
F ′ ∩ Dn = {V ′ ∩ Dn|V ′ ∈ F ′} is strongly linked so there is a generalized
point-measure δ ∈ D∗n with δ(V ′ ∩ Dn) = 1 for all V ′ ∈ F ′, which shows
that X∗n ∩ U 6= ∅.

Since the maps λ◦(p◦in)∗ are continuous it follows that X∗n is a connected
subset of X∗int. Also, X∗n ⊆ X∗n+1 for each n. It follows that

⋃∞
n=1X

∗
n is

connected, and hence we have the corollary:

Corollary 10.3. The spaces X∗int and X∗ are connected.
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