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Non-locally compact Polish groups
and two-sided translates of open sets

by

Maciej Malicki (Urbana, IL, and Warszawa)

Abstract. This paper is devoted to the following question. Suppose that a Polish
group G has the property that some non-empty open subset U is covered by finitely many
two-sided translates of every other non-empty open subset of G. Is then G necessarily
locally compact? Polish groups which do not have the above property are called strongly
non-locally compact. We characterize strongly non-locally compact Polish subgroups of S∞
in terms of group actions, and prove that certain natural classes of non-locally compact
Polish groups are strongly non-locally compact. Next, we discuss applications of these
results to the theory of left Haar null sets. Finally, we show that Polish groups such as
the isometry group of the Urysohn space and the unitary group of the separable Hilbert
space are strongly non-locally compact.

1. Introduction. For a group G, subsets of G of the form fUg, where
U ⊆ G, f, g ∈ G, are called two-sided translates of U . Consider the following
theorem:

Theorem 1 (Solecki, Uspenskij). A Polish group G is not compact if
and only if there exists an open neighborhood U of the identity such that no
finite family of two-sided translates of U covers G.

Actually, Solecki’s result (see [11]) concerns Polish groups only, where-
as Uspenskij’s theorem (see [15]) is formulated in the general setting. The
proof of Theorem 1 is not immediate, essentially because it is not true in
general that Polish groups admit a compatible metric with respect to which
all two-sided translates of sets U of small diameter have small diameter.

It is natural to ask whether non-locally compact Polish groups can also
be characterized in terms of two-sided translates of neighborhoods of the
identity. Suppose that a Polish group G admits a non-empty open subset
U which is covered by finitely many two-sided translates of every other
non-empty open subset of G. Is then G necessarily locally compact?
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The way this problem was originally stated by Solecki uses the notion of
strong non-local compactness, introduced in [12]: a Polish group G is said
to be strongly non-locally compact if for every open neighborhood U of the
identity, there exists another neighborhood of the identity V such that no
finite family of two-sided translates of V covers U .

Now, the question we are concerned with in this paper is whether non-
local compactness implies strong non-local compactness (it is easy to see that
the converse is true.) As in the compact case, this problem becomes trivial
under an additional assumption that there exists a two-sided invariant com-
patible metric on G. Then one can show that the absence of strong non-local
compactness implies that, for some neighborhood U of the identity, every
infinite sequence of elements of U contains a convergent subsequence. The
proof rests on the observation that the diameters of all two-sided translates
of any given set are equal, so a straightforward diagonalization argument can
be applied to find such a subsequence. It is known though that there exist
Polish groups which do not admit a two-sided invariant compatible metric
(see [4]), thus the approach sketched above is of no use in the general case.

Our first main result is a characterization of closed strongly non-locally
compact subgroups of S∞, the group of all permutations of the natural
numbers, in terms of group actions. A seemingly much stronger condition,
found by Solecki, turns out to be equivalent to strong non-local compactness
for closed subgroups of S∞.

Next, we prove that all members of a class of closed subgroups of S∞
including all oligomorphic groups are strongly non-locally compact. We also
show that closed non-locally compact subgroups of products of locally com-
pact groups are strongly non-locally compact. This is the only natural class
of Polish strongly non-locally compact groups which is known to be closed
under taking (closed non-locally compact) subgroups.

In Section 3, we briefly discuss connections of the concept of strong
non-local compactness with left Haar null sets, and apply relevant results of
Solecki to the classes of strongly non-locally compact groups investigated in
Section 2.

Most of the remaining part of the paper is devoted to the study of par-
ticular examples. We show that homeomorphisms of metrizable compactifi-
cations of N (investigated in [8] and [14]), the isometry group of the Urysohn
space, and the unitary group of the separable Hilbert space are strongly non-
locally compact. Finally, we give a partial answer to the question whether
Polish compact groups can be characterized in terms of actions, in a way
analogous to Solecki’s condition of strong non-local compactness.

All notions that are not explicitly defined are standard. Recall that a
topological group is called Polish if its group topology is Polish, that is,
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separable and completely metrizable. A Polish group that we will be par-
ticularly interested in is S∞, the group of all permutations of the natural
numbers with the pointwise convergence topology.

2. Strongly non-locally compact Polish groups. In [12], the fol-
lowing notion was introduced.

Definition. A Polish group is called strongly non-locally compact if for
every neighborhood V of the identity there exists a neighborhood U of the
identity such that V cannot be covered by any finite family of two-sided
translates of U .

Proposition 2 (Solecki, [12]). Suppose that G is a Polish group such
that for every neighborhood U of the identity there is a continuous action of
G by uniformly continuous homeomorphisms on an infinite metric space X
and a natural number mU such that for any finite F ⊆ X there are F ′ ⊆ X
and gn ∈ U , n ∈ N, with ∣∣F ′∣∣ ≤ mU

and {gnF} converging to F ′ in the sense of the Hausdorff metric. Then G
is strongly non-locally compact.

The next theorem states that, for closed subgroups of S∞, strong non-
local compactness implies a strong version of the above condition.

Theorem 3. Suppose that G is a closed subgroup of S∞. If G is strongly
non-locally compact , then for every open neighborhood U of the identity there
exists a countable compact space Z, a point z∞ ∈ Z, and a continuous action
of G on Z such that for every finite F ⊆ Z there exist gn ∈ U , n ∈ N, with

gn.F → z∞.

In the proof of Theorem 3, we will need to extend actions of open sub-
groups of G to actions of G in a suitable manner, and it turns out that the
well-known canonical construction discovered by Mackey (see [7, p. 32]) will
be useful for this purpose. For the reader’s convenience, we briefly sketch
this construction and its main properties.

Suppose that H is a subgroup of an abstract group G, and α is an
H-action on a set X. An action β of G on a set Y can be constructed in
such a way that α is the restriction of β to the group H and an H-invariant
subset of Y . We will call this β and Y the Mackey extension of α.

Consider H as acting on G by left multiplication, and let Y = (X×G)/H
be the set of orbits of the action of H on X ×G by h.(x, g) = (h.x, hg).

Now, G acts on Y by β(g, [x, g′]) = g.[x, g′] = [x, g′g−1]. We check first
that this is well-defined. If [x, g′] = [y, g′′], then, for some h ∈ H, (y, g′′) =
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h.(x, g′), so h.x = y, hg′ = g′′. Thus, g.[y, g′′] = [y, g′′g−1] = [x, g′g−1] =
g.[x, g′].

Note that f(x) = [x, 1] is injective: if [x, 1] = [y, 1], then for some h ∈ H,
h.x = y, h1 = 1, so h = 1, and x = y.

Since [h.x, 1] = [x, h−1] = h.[x, 1], we also have f(h.x) = h.f(x) for
x ∈ X. Thus, f witnesses that X can be viewed as a subset of Y consisting
of elements of the form [x, 1], for x ∈ X. Under this identification, α is the
restriction of β to X.

The next proposition, even though stated in a much more general setting,
will actually be applied only to actions of Polish groups on Polish (even
discrete) spaces.

Proposition 4. Suppose that a topological group H acts continuously
on a Hausdorff space X and H is an open subgroup of a topological group G.
Then the Mackey extension (β, Y ) of α can be made into a continuous action
by choosing a topology on Y that agrees with the topology on X.

Proof. We prove the proposition only for first countable G and X. An
inspection of the proof shows that the same argument goes through not
only for sequences indexed by natural numbers, as considered in the proof,
but also for generalized sequences (that is, Moore–Smith sequences, see [5,
p. 52]).

Since H is open in G, we can pick a discrete subset C of G such that
any two distinct c, c′ ∈ C belong to disjoint right cosets of H, and each right
coset contains an element of C. Then the mapping π : X ×C → (X ×G)/G
is easily seen to be bijective, so it gives rise to a topology on Y = (X×G)/G
defined by

B ⊆ Y is open ⇔ π−1(B) is open.

We show that the Mackey extension of α is continuous in this topology.
Suppose that [xn, gn]→ [x, g] and fn → f , where fn, gn, f, g ∈ G, xn, x ∈ X.
Observe that since H is open and the group operations on G are continuous,
we can assume, without loss of generality, that gn = c, g = c for some c ∈ C,
that is, [xn, c]→ [x, c]. The very definition of the topology on Y then gives
xn → x.

Similarly, we can write cf−1
n = hnc

′ and cf−1 = hc′ for some hn, h ∈ H
and c, c′ ∈ C. Continuity of the group operations in G guarantees that in
this case hn → h. Since H acts continuously on X, we have

fn.[xn, c] = [xn, cf−1
n ] = [xn, hnc′] = [h−1

n .xn, c
′]

→ [h−1.x, c′] = [x, hc′] = [x, cf−1] = f.[x, c],

which finishes the proof.

The Mackey extension (β, Y ) of α with the topology defined in the proof
of Proposition 4 will be called the continuous Mackey extension of α.
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Now we are ready to prove Theorem 3.

Proof of Theorem 3. As G is a subgroup of S∞, there exists a neigh-
borhood basis {Hk} at the identity consisting of pointwise stabilizers of the
sets {1, . . . , k} ⊆ N. By strong non-local compactness of G, we can choose a
strictly increasing sequence {nk} so that no Hnk

can be covered by finitely
many two-sided translates of Hnk+1. In particular, the orbit of nk + 1 under
the action of Hnk

on N is infinite.
Fix an open subgroup H = Hnk

of G, for some k ∈ N, and let X be the
infinite orbit of nk + 1. Denote by α the action of H on X, and let (β, Y )
be the continuous Mackey extension of α.

Claim. Every orbit of the restriction of β to H is infinite.

Fix [n, g] ∈ Y , and consider h1, . . . , hr ∈ H and g1, . . . , gs ∈ G such that
the hi are in distinct left cosets of the stabilizer H ′ of n in H, and the gj
are in distinct right cosets of H. For ni = hi(n), i ≤ r, we show that there
is b ∈ H such that b.[n, g] 6= [ni, gj ] for all i ≤ r and j ≤ s.

Note that, since n and nk + 1 are in the same H-orbit, H ′ is conjugate
to Hnk+1 in H. Therefore, strong non-local compactness of G gives

(1) H 6⊆
⋃

i≤r, j≤s
g−1H ′h−1

i gj .

Suppose that b.[n, g] = [n, gb−1] = [ni, gj ] for some i ≤ r and j ≤ s. Then
hgb−1 = gj for some h ∈ H such that h(n) = ni, that is, h = hih

′, h′ ∈ H ′.
It follows that b−1 = g−1h′−1h−1

i gj . But (1) shows that there exists b ∈ H
which cannot be written in this way, so b.[n, g] 6= [ni, gj ] for all i ≤ r and
j ≤ s. This finishes the proof of the claim.

Recall the well-known Neumann lemma (see [3, p. 10]) which says that for
any group H, if some finite family of left cosets of subgroups of H covers H,
then one of the subgroups has finite index. Since all orbits in Y under the
restriction of β to H are infinite, that is, the stabilizer of every element of
Y has infinite index in H, we find that, for any finite F ,K ⊆ Y , there is a
single h ∈ H such that

h.F ∩K = ∅.

Indeed, otherwise, for any h ∈ H, there is f ∈ F with h.f ∈ K, that is, H
is covered by finitely many left translates of stabilizers (in H) of elements
of F . By Neumann’s lemma, one of these stabilizers has finite index in H,
which we know not to be the case.

Now we extend β to an action on the one-point compactification Z =
Y ∪ z∞ of Y by putting g.z∞ = z∞ for g ∈ G. Then for any finite F ⊆ Z,
there is a sequence {hn} of elements in H so that hn.F → z∞.
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Corollary 5. A closed subgroup G of S∞ is strongly non-locally com-
pact if and only if for every open neighborhood U of the identity there exists
a countable compact space Z, a point z∞ ∈ Z, and a continuous action of G
on Z such that for every finite F ⊆ Z there exist gn ∈ U , n ∈ N, with

gn.F → z∞.

In certain situations, we are able to show that non-locally compact
groups are strongly non-locally compact. We turn to these cases now.

The following lemma is essentially contained in [9].

Lemma 6. Let G be an abstract group, and let A1, . . . , An and F ′ be
subsets of G, with F ′ finite, such that

F ′(A1 ∪ · · · ∪An) = G.

Then, for some i ≤ n and finite F ′′ ⊆ G, we have F ′′AiA
−1
i = G or

F ′′Ai = G.

Proof. Let n = 2 and assume that F ′A1A
−1
1 6= G, that is, there exists

g ∈ G such that gA1 ∩ F ′A1 = ∅. Then A1 ⊆ g−1F ′A2, and (F ′ ∪ g−1F ′)A2

= G.
The general case is obtained by straightforward induction on n.

Proposition 7. Assume that G is a closed subgroup of S∞, and H,H ′

are pointwise stabilizers in G of finite sets A,B respectively , with A ⊆ B.
Suppose that H ⊆ F1H

′F2 for some finite F1, F2 ⊆ G. Then there exists a
stabilizer H ′′ in G of a finite set B′ ⊇ B and g ∈ G such that g−1H ′′g is a
finite index subgroup of H.

Proof. By Lemma 6, we can assume that H ⊆ FH ′g for some finite
F ⊆ G, g ∈ G: we take F ′ = {1}, and Ai to be sets of the form f1H

′f2 ∩H,
f1 ∈ F1, f2 ∈ F2.

Fix f ∈ F . Let H ′′ be the pointwise stabilizer of the set B∪g(A), and h1

an element of H ′ such that there exists f ∈ F such that h1(g(a)) = f−1(a)
for every a ∈ A. Then, for any h′ ∈ H ′, we have fh′g ∈ H ′ if and only if
h′ ∈ h1H

′′.
It follows that H = F ′H ′′g for some finite F ′ ⊆ G. In particular, F ′g

⊆ H, that is, F ′ ⊆ Hg−1, so there is F ′′ ⊆ H such that H = F ′′g−1H ′′g,
and H ′′ ≤ H.

Corollary 8. Suppose that G is a closed subgroup of S∞, and there
exists in G a neighborhood basis {Hn} of the identity consisting of pointwise
stabilizers of finite sets such that for each n ∈ N, the natural action of Hn

on N has only finitely many finite orbits. Then G is strongly non-locally
compact.
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Proof. It suffices to show that for every n ∈ N there exists m ∈ M
such that Hn cannot be covered by any finite union of two-sided translates
of Hm. Fix n ∈ N, let K be the size of the set of all elements in finite
orbits of the action of Hn, and let H ′ be the pointwise stabilizer in G of the
set B = {1, . . . ,K + 1}. If Hn can be covered by finitely many two-sided
translates of H ′, then, by the previous proposition, there exists a pointwise
stabilizer H ′′ ≤ H ′ of a set B′ ⊇ B, and g ∈ G such that g−1H ′′g has finite
index in Hn. But g−1H ′′g is a pointwise stabilizer of g−1(B′) which has size
at least K + 1, so some b ∈ B′′ is in an infinite orbit of Hn. This clearly
implies that g−1H ′′g has infinite index in H, which leads to a contradiction.
Thus, the group Hn cannot be covered by finitely many two-sided translates
of H ′ or any Hm with Hm ≤ H ′.

Recall that a subgroup G of S∞ is called oligomorphic if for each natural
number k, the natural action of G on Nk has only finitely many orbits (see [3]
for more on this important notion). It is straightforward to check that oligo-
morphic groups satisfy the assumptions of the above corollary. Thus, we have

Corollary 9. Oligomorphic groups are strongly non-locally compact.

It turns out that all closed non-locally compact subgroups of products
of locally compact Polish groups are strongly non-locally compact. This is
the only situation where strong non-local compactness is known to be closed
under taking (closed non-locally compact) subgroups.

Theorem 10. Let {Gn} be a countable family of locally compact Polish
groups and let G =

∏
Gn. Every non-locally compact closed subgroup H of

G is strongly non-locally compact.

Proof. Let H be a non-locally compact closed subgroup of G, and let U
be a fixed open neighborhood of the identity in H. Since the closure of U is
not compact, there must exist nU ∈ N such that the closure of the projection
πnU (U) of U on the nU th coordinate is non-compact. Fix a sequence {hk}
in U such that no infinite subset of {πnU (hk)} has compact closure in GnU ,
and consider an action αU of H on GnU by left translations:

h.g = πn0(h)g for h ∈ H, g ∈ GnU .

Clearly, no subsequence of any sequence of the form {πnU (hk)g}, g ∈ GnU ,
has compact closure. Observe that this implies that, for any finite F ⊆
GnU and compact K ⊆ GnU , there exists hk such that πn0(hk)F ∩K = ∅.
Otherwise, for some compact K there is g ∈ GnU such that πnU (hk)g ∈ K for
infinitely many k ∈ N, which contradicts our choice of {hk}. The extensions
of the actions αU of H on GnU to the actions on one-point compactifications
ofGnU by fixing the point at infinity witness thatH satisfies the assumptions
of Proposition 2. Therefore, it is strongly non-locally compact.
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We finish this section with a couple of additional remarks.
From Lemma 6 one can derive several interesting observations. First of

all, it implies that if H is a normal subgroup of G that can be covered by
finitely many two-sided translates of some subgroup H ′, then it can also be
covered by finitely many left translates of H ′. This is because right cosets
of H are also left cosets, so, for F and g such that H ⊆ FH ′g, we have
gH = Hg−1 ⊆ FH ′, that is, H ⊆ g−1FH ′. This implies that a non-locally
compact group with a basis of neighborhoods of the identity consisting of
normal subgroups is strongly non-locally compact. Yet, since it is well known
that this implies that such groups admit a two-sided invariant metric, the
above observation does not yield any new conditions implying strong non-
local compactness.

Notice also that ifG contains an open subgroupH of finite index inG that
can be covered by finitely many two-sided translates of any neighborhood of
the identity, then G is compact. This generalizes Lemma 1.1 from [11].

Fix a left invariant metric d on G and a sequence of neighborhoods Un
of the identity with the diameter of UnU−1

n converging to 0, and let Fn ⊆ G
and gn ∈ G be such that H ⊆ FnUnU

−1
n gn. Existence of such Fn, gn is

warranted by Lemma 6. Then we can pick infinitely many nk ∈ N such
that Hg−1

nk
= Hg′−1 for some g′ ∈ G. By continuity of group operations, if

diam(UnU−1
n )→ 0, then diam(UnU−1

n g′)→ 0, so H can be covered by finite
families of arbitrarily small neighborhoods of the identity in the sense of d.

Now we can repeat the same argument for the right invariant metric
d′(g, h) = d(g−1, h−1), g, h ∈ G. Therefore H can be covered by finite fami-
lies of arbitrarily small neighborhoods of the identity in the sense of d+ d′,
which is complete. Compactness of H follows by a standard diagonalization
argument.

Finally, we observe that preimages of strongly non-locally compact groups
are strongly-non locally compact.

Proposition 11. Assume that φ : H → G is a continuous surjective
homomorphism of Polish groups. Then strong non-local compactness of G
entails strong non-local compactness of H.

Proof. We show the contrapositive. Assume that H is not strongly non-
locally compact, and let V ′ be a neighborhood of the identity in H that can
be covered by a finite number of two-sided translates of any neighborhood
of the identity. Since φ is open (see [7]), V = φ(V ′) is a neighborhood of
the identity in G. Fix a neighborhood U of the identity in G. Find an open
U ′ in H such that φ(U ′) ⊆ U , and let F1, F2 ⊆ H be finite sets such that
F1U

′F2 ⊇ V ′. Clearly, V ⊆ φ(F1)Uφ(F2), so G is not strongly non-locally
compact either.



Non-locally compact Polish groups 287

3. Left Haar null sets. Results from the previous section have appli-
cations to the theory of Haar null sets in non-locally compact Polish groups.
In [12], Solecki introduced the following definition which is a natural gen-
eralization of the standard notion of Haar null subsets of a locally compact
group G, that is, subsets of measure zero with respect to the Haar measure
on G:

Definition. A subset A of a Polish group G is called left Haar null if
there is a universally measurable set B ⊇ A and a Borel probability measure
µ on G such that µ(gB) = 0 for all g ∈ G.

One can also define Haar null sets by requiring that µ(fBg) = 0 for
all f, g ∈ G in the above definition. Since Haar null sets are left Haar null,
Theorem 14 holds for them as well.

The behavior of left Haar null sets depends on the structure of G. Solecki
proved that if G is amenable at 1 (see [12, p. 3] for definition), then the
family of left Haar null sets forms a proper σ-ideal, and it has the Steinhaus
property, that is, if A ⊆ G is universally measurable and not left Haar
null, then 1 ∈ int(A−1A). On the other hand, strong non-local compactness
implies that Haar null sets are not ccc ([13]), and if we additionally assume
that G contains a non-discrete free group all of whose subgroups are discrete
(a free subgroup at 1), then they do not have the Steinhaus property either
([12]).

The assumption of strong non-local compactness in these results shows
up only in the following lemma ([12, Lemma 4.4]). We denote by K(X) the
space of all compact subsets of X with the Vietoris topology. (See [6].)

Lemma 12 (Solecki, [12]). Let G be a strongly non-locally compact Po-
lish group. Let X be a Borel subset of a Polish space and let F : X → K(G)
be Borel. Then there exists a Borel function X 3 x 7→ gx ∈ G such that for
any distinct x1, x2 ∈ X,

gx1F (x1) ∩ gx2F (x2) = ∅.

Corollary 13 (Solecki, [12]). Let G be a strongly non-locally compact
Polish group. Then the family of all left Haar null sets is not ccc.

Proof. Take X = 2N×K(G) and let F be the projection of X onto K(G).
Apply the lemma above to get g(K,z). Define now

Az =
⋃
{g(K,z)F (K) : K ∈ K(G)}.

It is easy to check that all Az are analytic, so universally measurable, and
Az1 ∩ Az2 = ∅ for distinct z1, z2. Now, since for every Borel probability
measure on a non-locally compact space there exists a compact K of positive
measure and K ⊂ g−1

(K,z)Az, none of the Az can be left Haar null.
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Combining results from Section 3 with the above considerations, we get:

Theorem 14. Let G be a Polish group that is either

(a) a closed subgroup of S∞ with a neighborhood basis at the identity
consisting of open subgroups whose actions on N have only finitely
many finite orbits; or

(b) a closed non-locally compact subgroup of
∏
Gn, where each Gn is a

locally compact Polish group.

Then

(i) the family of left Haar null subsets of G is not ccc;
(ii) if G has a free subgroup at 1, then G does not have the Steinhaus

property.

4. Examples. In this section, we consider several examples of strongly
non-locally compact groups that are not covered by results in Section 2.2.

Usually Polish groups come equipped with natural actions: groups of
homeomorphisms of compact spaces, groups of isometries of Polish spaces,
automorphism groups of countable models and so forth. The groups studied
in Examples 2–4 below are interesting in this respect because their natural
actions do not fit the assumption of Proposition 2. Example 2 is a group of
homeomorphisms of the interval [0, 1] with a metric defined in a way that
mappings “squeezing” points cannot be too close to the identity. Examples
3 and 4 are groups of isometries of Polish spaces, so obviously there is no
possibility for the actions of these groups on the spaces involved to change
distances between points.

Example 1 is actually a class of groups that do not have in general a
neighborhood basis at the identity consisting of subgroups, but an argument
similar to the one used in the proof of Theorem 3 allows us to show that
they are strongly non-locally compact.

Example 1. Consider a metrizable compactification X̃ of the natural
numbers N, that is, a metrizable compact space X̃ containing a countable
dense discrete subset. The homeomorphism group Hom(X̃) of X̃, equipped
with the uniform convergence topology, is a Polish group. These groups
were studied in [8] and [14]. In particular, Tsankov proved that every Polish
group is a continuous homomorphic image of a group of the form Hom(X̃),
X̃ a metrizable compactification of N, which means that the class of such
homeomorphism groups is large.

Proposition 15. For every metrizable compactification X̃ of N, that is,
a compact metric space X̃ containing a countable dense discrete subset , the
group Hom(X̃) is strongly non-locally compact.
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Proof. N as a subset of X̃ is a metric space with a totally bounded metric
% inherited from X̃. Note that G = Hom(X̃) can be naturally identified with
the group of all uniformly continuous homeomorphisms of (N, %) with the
uniform convergence topology.

We show that the continuous extension of the natural action of G on
N to an action on the one-point compactification N∞ of N, where we put
g.n∞ = n∞ for every g ∈ G, witnesses that the assumptions of Proposition 2
are met for G.

Denote by Uε the open ball around the identity in G of radius ε > 0 in
the supremum metric on G and fix a dense subset {qi} in X̃ \N. For a fixed
ε > 0, let {Ai} be a family of subsets of N such that:

(i) the Ai are pairwise disjoint;
(ii) elements of Ai converge to qi;

(iii) the distance between any a ∈ Ai and qi is less than ε/2;
(iv) every a ∈ N whose distance from X̃ \N is less than ε/2 is in some Ai.

Let H be the group of those g ∈ G that have the following properties:

(a) g(Ai) = Ai;
(b) g fixes all elements outside of

⋃
iAi;

(c) g restricted to Ai moves only finitely many elements in every Ai.

Clearly H ⊆ Uε. Since % is totally bounded, X̃ \
⋃
Ai is finite, say of

size k ∈ N. Consider a finite F ⊆ N∞. Since the infinite sets Ai are orbits
of H, for any given n ∈ N using Neumann’s lemma we can find hn ∈ H such
that hn.f > n for all f ∈ F except for those that are not in

⋃
Ai. But there

cannot be more than k such elements so hn.F converges to a set of size at
most k + 1. This proves the proposition.

It is obvious that every Polish group G is a continuous homomorphic
image of a strongly non-locally compact group. For instance, for a given G,
take G× S∞ and the projection of this group onto G. However, the results
from [14] combined with Proposition 15 give a little more. Recall that a
topological space X is called almost zero-dimensional if for every x ∈ X
there exists a neighborhood basis at x consisting of sets that are intersections
of clopen sets.

Corollary 16. Every Polish group is a continuous homomorphic image
of an almost zero-dimensional strongly non-locally compact group.

Proof. By results from [14], every homeomorphism group Hom(X̃) of a
metrizable compactification X̃ of N is almost zero-dimensional, and every
Polish group is a continuous image of such a Hom(X̃). Together with Propo-
sition 15, this implies the statement of the corollary.
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Example 2. LetG be the group of all increasing homeomorphisms of [0, 1]
such that, for every g ∈ G, the derivatives g′ and (g−1)′ exist everywhere
and are continuous. Define the following metric % on G:

%(f, g) = sup
x
|f ′(x)− g′(x)|+ sup

x
|(f−1)′(x)− (g−1)′(x)|, f, g ∈ G.

Proposition 17. The group G with the topology induced by % is a Polish
strongly non-locally compact group.

We will need two standard facts about C([0, 1]), the space of all continu-
ous real functions on [0, 1] with the uniform convergence topology (see [10]).

Lemma 18. C([0, 1]) is Polish and the supremum metric is complete on
C([0, 1]).

Lemma 19. Suppose that for some fn, f, g ∈ C([0, 1]), n ∈ N, all deriva-
tives f ′n exist everywhere and are continuous. If fn → f and f ′n → g uni-
formly , then f ′ exists everywhere and is equal to g.

Proof of Proposition 17. First, observe that if fn → f in %, then f ′n → g
and (f−1

n )′ → g1 uniformly for some g, g1 ∈ C([0, 1]). Also, for f(x) =	x
0 g(t) dt and f1(x) =

	x
0 g1(t) dt we have fn → f and f−1

n → f1 uniformly.
By Lemma 19, f ′ = g, f ′1 = g1 and f = f−1

1 , that is, f ∈ G.
Completeness and separability of % follow from Lemma 18. Therefore, %

induces a Polish topology on G.
Denote by Uε the open ball around the identity with radius ε > 0,

and fix f1, . . . , fn, h1, . . . , hn in G. We construct an element g ∈ Uε such
that fighi 6∈ Uε/2 for every i ≤ n, which is equivalent to showing that the
two-sided translates f−1

i Uε/2h
−1
i , i ≤ n, do not cover Uε.

The construction is as follows. Fix pairwise distinct x1, . . . , xn ∈ [0, 1]
such that

0 < hi(xi) < hj(xj) < 1 for i < j.

This can be done easily because the hi are bijective. Now let

Mi = f ′i(hi(xi))h
′
i(xi), mi =

{
1 if Mi ≥ 1,
−1 if 0 ≤Mi < 1.

We construct g′ in the following way. For each i ≤ n find zi1, . . . , z
i
7 ∈ [0, 1]

such that:

• hi−1(xi−1) < zij < zij+1 < hi+1(xi+1);
• zi4 = hi(xi);
• zi1, . . . , zi7 are equally spaced.

Put
g′(zi1) = g′(zi3) = g′(zi5) = g′(zi7) = 1,

g′(zi2) = g′(zi6) = 1−miε/4, g′(zi4) = 1 +miε/2.
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Let g′ be the simplest piecewise linear function interpolating these values.
Thus, g′ is most of the time close to 1 and its values at zij force it to look
partially like uneven saw-teeth. It is easy to check that

hi(xi)�

0

g′(x) dx = hi(xi),

that is, g(hi(xi)) = hi(xi) and g ∈ G.
Now consider the function fi◦g◦hi. Its derivative is given by the formula

(fi ◦ g ◦ hi)′(x) = f ′i(g(hi(x)))g′(hi(x))h′i(x),

so
(fi ◦ g ◦ hi)′(xi) = f ′i(hi(xi))h

′
i(x)g′(hi(xi)) = Mig

′(hi(xi))

(because g(hi(xi)) = hi(xi)). If Mi ≥ 1, then it is larger than 1 + ε/2,
otherwise it is smaller than 1−ε/2, so in any case xi witnesses the inequality
%(fi ◦ g ◦ hi, Id) > ε/2 for i ≤ n.

Example 3. In the next example, we analyse the group of all isometries of
the Urysohn space U, considered with the pointwise convergence topology.
For our present purposes, it suffices to know that U is the unique (up to
isometry) Polish metric space, which is

(a) universal, that is, U contains an isometric copy of every Polish space;
(b) ultrahomogeneous, that is, for every finite metric space B ⊇ A, every

isometric embedding φ : A → U can be extended to an isometric
embedding ψ : B → U. In particular, every isometry φ : A → B,
where A,B are finite subsets of U, can be extended to an isometry
of U.

Proposition 20. The group Iso(U) of all isometries of the Urysohn
space is strongly non-locally compact.

Proof. Fix x1, . . . , xn ∈ U, ε > 0, and consider the neighborhood of the
identity

Ux1,...,xn,ε = {h ∈ Iso(U) : d(h(xi), xi) < ε}.
We show that for any δ < ε no finite family of two-sided translates of
V = Ux1,...,xn,δ covers Ux1,...,xn,ε.

Fix finite F,G ⊆ Iso(U), and let a1
f , . . . , a

n
f , b

1
g, . . . , b

n
g , f ∈ F , g ∈ G, be

defined by
aif = f(xi), big = g−1(xi),

so that

fV g =
⋃

f∈F, g∈G
{h ∈ Iso(U) : d(h(aif , ), b

i
g) < δ for i ≤ n}.
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Fix ε0 with δ < ε0 < ε, and let

A = {aif , big : f ∈ F, g ∈ G, i ≤ n} ∪ {x1, . . . , xn}.
Let A′ be a disjoint copy of A, and define B = A ∪ A′, endowed with the
following metric dB:

dB(a, b) =
{
d(a, b) if a, b ∈ A or a, b ∈ A′,
d(a, b′) + ε0 if a ∈ A and b ∈ A′, where b′ is the copy of b.

It is easy to see that dB is a metric indeed, and that every element of A′

is at least ε0 away from any element of A′. By ultrahomogeneity of U, we
may assume that B is a metric subspace of U, that is, A′ is also a subset
of U, and dB is the restriction of d to B.

Now, since A and A′ are isometric and U is ultrahomogeneous, there is
h ∈ Iso(U) that maps every element of A to its copy in A′. Observe that
h ∈ Ux1,...,xn,ε because d(xi, h(xi)) = ε0 < ε for i ≤ n. On the other hand,
such an h clearly cannot be in FV G, because h(aif ) ∈ A′ for every f ∈ F
and i ≤ n, so its distance from any big must be greater than ε0 > δ. This
finishes the proof, since Ux1,...,xn,ε was arbitrary.

Remark. The same argument proves strong non-local compactness for
Iso(U1), where U1 is the Urysohn space with metric bounded by 1.

Example 4. As the following argument shows, the group of all unitary
operators of the separable Hilbert space with pointwise convergence topology
is strongly non-locally compact.

Proposition 21. The group U(H) of unitary operators on the infinite-
dimensional separable Hilbert space is strongly non-locally compact.

Proof. Fix an orthonormal base {ei} of H, and note that in the pointwise
convergence topology on U(H) the sets

Un,ε = {f ∈ U(H) : ‖f(ei)− ei‖ < ε, i ≤ n}
form a basis of neighborhoods of the identity. We need the following fact:

Lemma 22. For every n ∈ N there exists δ > 0 such that for any f ,g ∈
U(H) there are x, y ∈ H with

‖h(x)− y‖ < δ, ‖x− ej‖ > δ for all j ≤ n and h ∈ fUn+1,δg.

The proof is straightforward.
Fix ε > 0, n ∈ N and let δ > 0 be as in the lemma. Also, for given

f1, . . . , fk, g1, . . . , gk in U(H) let xi, yi be as in the lemma for each fi, gi.
We can write each xi as

xi = x′i + x′′i ,

where ‖x′i‖ > δ and x′i ⊥ x′′i , x′i ⊥ ej for j ≤ n.
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Let

X = span{x′1, . . . , x′k}, Y = span{y1, . . . , yk}, E = span{e1, . . . , en},
and fix a linear subspace Z of H, orthogonal to Y and E, with dimZ =
dimX. There exists g ∈ U(H) such that g(ej) = ej for j ≤ n, and g(xi) ∈ Z
for i ≤ k. Since

‖g(xi)− yi‖2 = ‖g(x′i) + g(x′′i )− y‖2 = ‖g(x′i)‖2 + ‖g(x′′i )− y‖2 > δ2,

we have g /∈ fiUn+1,δgi for every i ≤ k.

Remark. Notice that the proof of the above proposition also shows that
the sets

Un = {g ∈ U(H) : g(ei) = ei for i ≤ n}, n ∈ N,

cannot be covered by finitely many two-sided translates of sufficiently small
neighborhoods of the identity. This is interesting because each Un has empty
interior.

5. Actions of non-compact Polish groups. In this section, we give a
partial positive answer to the following question, motivated by Proposition 2.
Is it true that for every non-compact Polish group G there exists an action
of G by uniformly continuous homeomorphisms on an infinite metric space
X and a natural number N such that for any finite F ⊆ X there is some
F0 ⊆ X and a sequence {gn} in G with

|F0| ≤ N and gnF → F0 as n→∞?

Theorem 23. Assume that a Polish group G admits a left invariant
unbounded metric. Then there exists a continuous action of G on an infinite
compact Polish space X, a point x∞ ∈ X, and a sequence {gn} in G such
that

gnF → x∞ as n→∞
for any finite F ⊆ X.

Definition. Let (Y, d) be a metric space. We define

CL(Y ) = {d(A, ·) : Y → R : A is a closed non-empty subset of Y },
where d(A, ·) assigns to every y ∈ Y its distance from A.

We view CL(Y ) as a subset of the space Cp(Y,R) of all continuous real
functions on Y with the pointwise convergence topology. Now, we have

Proposition 24 (Beer, [2]). Let Y be a Polish space with a compatible
metric d on it. Then, for every y0 ∈ Y , CL(Y ) ⊆ Cp(Y,R) is the union of
the family {∆Y

n } of sets defined by ∆Y
n = {f ∈ CL(Y ) : f(y0) ≤ n}, and for

every n ∈ N,
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(a) ∆Y
n is compact ;

(b) ∆Y
n ⊆ Int(∆Y

n+1).

In particular , CL(Y ) is Polish.

Proof of Theorem 23. Let d be an unbounded left invariant metric on G.
Let xg, g ∈ G, stand for the distance function d(g, ·) : G→ R. Note that X ′,
for X ′ = {xg : g ∈ G}, is a closed subset of CL(G), so it is Polish locally
compact by Proposition 24. It is not compact because of unboundedness
of d.

Consider the action α of G on X ′ given by

g.f(a) = f(g−1a), f ∈ X ′.
To make sure that this is an action, two observations suffice. The first is
that, after identifying g ∈ G with xg ∈ X ′, α is an action of G on itself
by left translations, so X ′ is an orbit under α. The second observation is
that g.f ∈ X ′ for any f ∈ X ′ and g ∈ G. This is because if xhn → f ∈ X ′
pointwise, then

xghn(a) = d(ghn, a) = d(hn, g−1a) = xhn(g−1a)→ f(g−1a) = g.f(a)

for every a ∈ G. Therefore, xghn → g.f pointwise, and since f was arbitrary,
α is well-defined on X ′.

By Proposition 24 and Theorem 3.4 from [1], continuity of α follows from
continuity in each coordinate, and this is straightforward to check: assume
that gn → g in G and fn → f in X ′ pointwise. Then for every a ∈ G,

gn.f(a) = f(g−1
n a)→ f(g−1a) = g.f(a),

(g.fn)(a) = fn(g−1a)→ f(g−1a) = (g.f)(a).

Let ∆G
n be as in Proposition 24 for y0 = 1, and put ∆n = ∆G

n ∩X ′. We
show that for every n ∈ N there is gn ∈ G such that gn.∆n ∩ ∆n = ∅. As
every finite F ⊆ X ′ is contained in some ∆n0 , this implies that the extension
of α to an action on the one-point compactification X of X ′ defined by
g.x∞ = x∞, g ∈ G, is as required.

Fix a sequence {gn} of elements of G with d(gn, 1) ≥ 2n+ 1. Then

d(g−1
n h, e) = d(h, gn) ≥ d(gn, e)− d(h, e) ≥ 2n+ 1− n = n+ 1

for all h ∈ ∆n. Thus, g−1
n .xh /∈ ∆n+1. Since such xh form a dense subset of

∆n and ∆n ⊆ Int(∆n+1), it is clear that gn.∆n ∩∆n = ∅.
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