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A countable dense homogeneous space with a
dense rigid open subspace

by

Jan van Mill (Amsterdam)

Abstract. We show that there is a Polish space which is countable dense homoge-
neous but contains a dense open rigid connected subset. This answers several questions of
Fitzpatrick and Zhou.

1. Introduction. All spaces under discussion are separable and metriz-
able.

A space X is countable dense homogeneous (abbreviated CDH) provided
that for all countable dense subsets D and E of X there is a homeomorphism
f ofX such that f(D) = E. Bennett [2] showed that a connected, CDH-space
is homogeneous.

Fitzpatrick and Zhou [6] proved that there is a connected, locally con-
nected, CDH, Baire Hausdorff space with a dense, open, connected subspace
that is not CDH. See Watson and Simon [16] for a completely regular space
with similar properties. Fitzpatrick and Zhou [6] asked whether there is such
a space that is metrizable. This question was repeated in [7, Problem 2] and
specified in [7, Problem 2′]. The aim of this paper is to answer these ques-
tions.

Ungar [15] proved that a continuum other than S1 is CDH if and only if
it is strongly n-homogeneous for every n. It was stated as a corollary to his
main results that every open dense subset of a locally compact CDH-space
is itself CDH. As Ungar mentioned in a private conversation, the argument
for this corollary is incomplete, and it is unclear whether it is true (see
also [8, p. 2]). Our example is Polish but not locally compact. So the question
whether Ungar’s result is true remains open. This seems a rather delicate
problem. Kennedy [9] proved that if a continuum is 2-homogeneous, and has
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a nontrivial homeomorphism that is the identity on some nonempty open
set, then it is strongly locally homogeneous. Hence every open subspace of
such a space is CDH.

A space is rigid if the identity is its only homeomorphism. Based on a
construction in [13], we will prove the following:

Example 1.1. There is a convex subspace S of Hilbert space `2 with
dense open convex subspace T such that:

(1) S is CDH (hence S is homogeneous),
(2) T is rigid,
(3) S × S ≈ T × T ≈ `2.

Observe that (3) implies that both S and T are Polish (among other things).

I am indebted to Tadek Dobrowolski for suggesting a simplification in
one of my arguments.

2. Preliminaries

(A) Notation. If X and (Y, %) are spaces, then C(X,Y ) denotes the
collection of all continuous functions from X to Y . If f, g ∈ C(X,Y ), then

%̂(f, g) = sup{%(f(x), g(x)) : x ∈ X}.
If X is compact, then %̂ is a metric and the topology induced by %̂ is sepa-
rable. See e.g. [12, §1.3] for details.

Let Q denote the Hilbert cube
∏∞
n=1[−1, 1]n with its admissible metric

%(x, y) =
∞∑
n=1

2−n|xn − yn|.

We assume that the reader is familiar with the basic notions in infinite-
dimensional topology and shape theory, see [12] and [3, 11].

We say that an indexing {Xn : n ∈ I} is faithful provided that Xn 6= Xm

if n 6= m. We let I denote the closed unit interval [0, 1].
If f : X → Y is a function, then

Γ (f) = {(x, f(x)) : x ∈ X} ⊆ X × Y
denotes its graph. The identity function on a set X will be denoted by 1X .

(B) Complements of σZ-sets. Our example will be the complement of
a σZ-set in Q. The following result will be important in the construction.

Theorem 2.1. Let B1 and B2 be σZ-sets in Q for which there exists a
homeomorphism h : Q \ B1 → Q \ B2. Let πi : Γ (h) → Q be the projection
maps, i = 1, 2. Then

(a) π1 and π2 are monotone surjections such that π−1
1 (B1) = π−1

2 (B2),
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(b) if K1 and K2 are compacta in B1 respectively B2 such that π−1
1 (K1)

= π−1
2 (K2), then Sh(K1) = Sh(K2).

Proof. For (a), see the proof of Lemma 3.6 in Anderson, Curtis and van
Mill [1].

For (b) we use the technique in the proof of the easy part of Chapman’s
Complement Theorem (see Chapman [4, 25.1]). For the convenience of the
reader, we provide all details.

Since B1 is a σZ-set, there is a homotopy F : Q × I → Q such that
F0 = 1Q and F (Q× (0, 1]) ⊆ Q \B1 (since we can think of B1 as a subset of
the pseudo-boundary ofQ this is obvious). Similarly, there exists a homotopy
G : Q × I → Q such that G0 = 1Q and G(Q × (0, 1]) ⊆ Q \ B2. For each n
define fn, gn : Q→ Q by

fn = h ◦ F1/n, gn = h−1 ◦G1/n.

We will prove that f = {fn,K1,K2} : K1 → K2 and g = {gn,K2,K1} :
K2 → K1 are shape maps such that f ◦g ' 1K2 and g ◦ f ' 1K1 . Therefore,
K1 and K2 have the same shape.

To see that f is a shape map, let W be an arbitrary open neighborhood
of K2. Since π1 and π2 are closed maps, and π−1

1 (K1) = π−1
2 (K2), there is

an open neighborhood V of K1 such that π−1
1 (V ) ⊆ π−1

2 (W ). Let U be an
open neighborhood of K1 in Q such that U ⊆ V . There clearly exists ε > 0
such that

F (U × [0, ε]) ⊆ V.
Observe that h(U \ B1) ⊆ h(V \ B1) ⊆ W \ B2. Since for n ≥ 1/ε we have
F1/n�U ' F1/(n+1)�U (in V \ B1), it follows that fn�U ' fn+1�U (in W ).
Hence f is indeed a shape map, and similarly it follows that g is a shape
map.

To prove g ◦ f ' 1K1 , let U be an arbitrary open neighborhood of K1.

Claim 1. There are open neighborhoods W and N of K2 and ε1 > 0
such that

(1) G(W × [0, ε1]) ⊆ N ,
(2) h−1(N \B2) ⊆ U .

Proof. As above, there is an open neighborhood N of K2 such that
π−1

2 (N) ⊆ π−1
1 (U). Then clearly h−1(N \ B2) ⊆ U . Now let W be an open

neighborhood of K2 such that W ⊆ N and find ε1 > 0 such that G(W ×
[0, ε1]) ⊆ N. �

By exactly the same method, it is clearly possible to prove the following:

Claim 2. There are open neighborhoods V and M of K1 and 0 < ε2 ≤ ε1
such that
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(3) F (V × [0, ε2]) ⊆M ⊆ U ,
(4) h(M \B1) ⊆W .

Then for n ≥ 1/ε2 we have (gn ◦fn)�V = (h−1 ◦G1/n ◦h◦F1/n)�V. Define
S : V × [0, 1/n]→ Q by

S(x, t) = h−1GthF1/n.

Then clearly S is well-defined and continuous, S0 = F1/n�V and S1/n =
(gn ◦ fn)�V . If x ∈ V is arbitrary then, by (3), S(x, 0) = F1/n(x) ∈M ⊆ U .
Moreover, if t ∈ (0, 1/n], then by (3) and (4), hF1/n(x) ∈W \B2, and so by
(1) and (2),

S(x, t) = h−1GthF1/n(x) ∈ h−1Gt(W \B2) ⊆ h−1(N \B2) ⊆ U.

Hence S0 and S1/n are homotopic in U , and the range of S0 is contained
in M . Since by (3) also F1/n�V and the identity on V are homotopic in U ,
this shows that the identity on V and the function (gn◦fn)�V are homotopic
(in U). So we conclude that g◦f ' 1K1 . It follows similarly that f◦g ' 1K2 .

3. Dense collections of compacta. Let X be a nonempty compact
space. We say that a countable collection of Z-sets X in Q is X-dense if

(1) X is pairwise disjoint and every X ′ ∈ X is homeomorphic to X,
(2) for every f ∈ C(X,Q) and ε > 0 there are an X ′ ∈ X and a homeo-

morphism α : X → X ′ such that %̂(α, f) < ε.

The basic properties of X-dense collections that are important to us are
listed in the following result.

Proposition 3.1 ([13]). Let X be a nonempty compact space.

(a) There is an X-dense collection of Z-sets in Q.
(b) Let S and T be X-dense collections of Z-sets in Q. Then there is an

arbitrarily close to the identity homeomorphism h : Q→ Q such that
h(
⋃

S) =
⋃

T.

Now let Q be a Q-dense collection of Z-sets in Q (Proposition 3.1(a)),
and put Y = Q \

⋃
Q. Then Y is a dense Gδ-subset of Q and hence is

Polish. It was shown in [13] that Y is an example of a CDH-space which
is not strongly locally homogeneous. We will show here that Y has many
other interesting properties. In fact, Y is homeomorphic to the space S in
Example 1.1.

Let {Qn : n ∈ N} be a faithful enumeration of Q. Since there are arbi-
trarily small maps Q→ Q \ Y , it follows that every compact subspace of Y
is a Z-set in Q.
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Lemma 3.2. There are a compact set K in Q \ Y and an open base B

for Q \K such that

(1) for every B ∈ B, B ∩K = ∅,
(2) for all B,B′ ∈ B such that B ∩ B′ = ∅, there exists n such that

Qn ∩K 6= ∅, Qn ∩B 6= ∅ but Qn ∩B′ = ∅.
Proof. Let K ′ denote an arbitrary convergent sequence with limit in Y .

In addition, let A be a countable open base for Q \K such that for every
A ∈ A,

(3) A ∩K = ∅,
(4) Q \A is connected.

Let {(An, A′n) : n ∈ N} enumerate all pairs (A,A′) of elements of A such
that A ∩A′ = ∅.

Enumerate K ′ faithfully as {en : n ∈ N}. Let D = {dn : n ∈ N} be
a faithfully indexed subset of Y such that dn ∈ An for every n. We will
construct for every n an imbedding gn : Q→ Y such that

(5) dn, en ∈ gn(Q),
(6) gn(Q) ∩ ((D \ {dn}) ∪

⋃n−1
i=1 gi(Q) ∪ (K ′ \ {en})) = ∅,

(7) gn(Q) ∩A′n = ∅.
The inductive construction is a triviality. Put M = Q \ A′n. Then M is a
connected open subset of Q containing both dn and en. Let J be a path in
M connecting dn and en, and let ξ : Q → J be any continuous surjection.
Observe that

T =
⋃

Q ∪ (D \ {dn}) ∪
n−1⋃
i=1

gi(Q) ∪ (K ′ \ {en})

belongs to Zσ(Q) and misses {dn, en}. Hence M ∩ T belongs to Zσ(M). So
by [12, 7.3.5(g)], ξ : Q→ J can be approximated by an imbedding gn : Q→
Y ∩M satisfying (5)n and (6)n. And it is trivial that (7)n holds.

Now observe that the sequence

{Qn : n ∈ N} ∪ {gn(Q) : n ∈ N}
is Q-dense because the sequence {Qn : n ∈ N} is. Consequently, by Propo-
sition 3.1(b) there is a homeomorphism α : Q→ Q such that

α
( ∞⋃
n=1

Qn ∪
∞⋃
n=1

gn(Q)
)

=
∞⋃
n=1

Qn.

It is clear that K = α(K ′) and B = {α(A) : A ∈ A} are as required.

Let Z = {yn : n ∈ N} be a discrete subset of Y such that Z \ Z = K.
Since Y is dense and K is nowhere dense in Q, it is clearly possible to pick
such a sequence. Since Q\Y ∈ Zσ(Q), the constant function Sn → {yn} can
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be approximated arbitrarily closely by an imbedding Sn → Y ([12, 7.3.5(g)])
(here Sn denotes the n-sphere of course). This means that we can enlarge
the singleton set {yn} to a copy of the n-sphere Sn in Y such that

(A) if n 6= m, then Sn ∩ Sm = ∅,
(B) limn→∞ diam(Sn) = 0.

Observe that (B) implies (C), where

(C) S \ S = K, and S =
⋃∞
n=1 Sn.

There is nothing special about the use of spheres in our construction. From
the remaining part of this paper it will be clear that any sequence consisting
of compacta of pairwise different but nontrivial shape will do equally well.

4. The example. Consider the following collection of pairwise disjoint
continua in Q:

P = {Qn : n ∈ N} ∪ {Sn : n ∈ N}.
Let Y = Q \

⋃∞
n=1Qn be the space introduced in §3, and put X = Y \⋃∞

n=1 Sn. Then X is dense in Q, being the complement of a σZ-set in Q,
and is a dense open subset of Y .

Theorem 4.1. Y is CDH and X is rigid.

Proof. That Y is CDH was proved in [13]. To prove that X is rigid, let
h be any homeomorphism of X. Consider the graph Γ (h) of h in Q×Q. We
adopt the notation of Theorem 2.1 (with B1 = B2 = Z).

We will first prove by the method of [13, 4.2] that h permutes P.

Claim 1. There is a bijection α : P→ P such that for every A ⊆ X and
P ∈ P, if A ∩ P 6= ∅ then h(A) ∩ α(P ) 6= ∅ (here closure means closure
in Q).

Proof. Take an arbitrary P ∈ P. Then π−1
1 (P ) is a continuum since π1

is monotone (Theorem 2.1(a)). Hence π2(π−1
1 (P )) is a continuum, and is

therefore, by the Sierpiński theorem from [14], contained in some member
P ′ ∈ P′. Since π2 is monotone as well, π−1

2 (P ′) is a subcontinuum of Γ (h)
containing π−1

1 (P ). Hence π1(π−1
2 (P ′)) is a subcontinuum of Z containing P .

But again by the Sierpiński theorem, P is a maximal subcontinuum of
⋃

P,
hence π1(π−1

2 (P ′)) = P . From this we conclude that π−1
1 (P ) = π−1

2 (P ′).
Define α(P ) = P ′. It is clear that α is a bijection.

Let A ⊆ X and P ∈ P be such that A ∩ P 6= ∅. Pick an arbitrary
open neighborhood U of α(P ). Then π−1

2 (U) is an open neighborhood of
π−1

2 (α(P )) = π−1
1 (P ). Since π1 is a closed map, there is an open neighbor-

hood V of P such that π−1
1 (V ) ⊆ π−1

2 (U). Pick an element a ∈ A ∩ V .
Then (a, h(a)) ∈ π−1

1 (V ), hence h(a) = π2(a, h(a)) ∈ π2(π−1
1 (V )) ⊆ U , as

required. �
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Claim 2. For every n ∈ N, α(Sn) = Sn. Moreover , if Qn ∩K 6= ∅, then
α(Qn) = Qn.

Proof. That α(Sn) = Sn for every n is a direct consequence of Theo-
rem 2.1(b). Simply observe that Q has trivial shape, and 0 6= Sh(Sn) 6=
Sh(Sm) 6= 0 if n 6= m.

Assume that Qn ∩ K 6= ∅ for some n, and let p ∈ K ∩ Qn. There is a
sequence (ni)i such that the sequence (Sni)i of continua converges to p. By
compactness it is clear that π−1

1 (p)∩
⋃∞
i=1 π

−1
1 (Sni) 6= ∅. Hence π2(π−1

1 (p))∩⋃∞
i=1 π2(π−1

1 (Sni)) 6= ∅, and therefore since α(Sj) = Sj for every j, α(Qn) ∩⋃∞
i=1 Sni 6= ∅. Since {p} =

⋃∞
i=1 Sni \

⋃∞
i=1 Sni we therefore conclude that

α(Qn) ∩Qn 6= ∅, i.e., α(Qn) = Qn. �

Striving for a contradiction, assume that there exists x ∈ X such that
h(x) 6= x. Since {x, h(x)} ∩ K = ∅, there are B,B′ ∈ B such that x ∈ B,
h(B∩X) ⊆ B′∩X, and B∩B′ = ∅. By Lemma 3.2 there exists n such that
Qn ∩K 6= ∅, Qn ∩ B 6= ∅ but Qn ∩ B′ = ∅. Pick a sequence (xi)i in B ∩X
that converges to an element of Qn ∩B. By Claim 1, the sequence (h(xi))i
has a cluster point in α(Qn). But α(Qn) = Qn by Claim 2 and all cluster
points of (h(xi))i are contained in B′, which is disjoint from Qn. This is a
contradiction.

We will now show that Y has the additional properties promised in
Example 1.1. That (Y,X) is homeomorphic to a pair of convex subsets of
`2 follows from [1, Theorem 3.1] since Q \X is a σZ-set in Q. By observing
that the identity function Q → Q can be approximated arbitrarily closely
by maps Q→ Q \X, Y × Y ≈ X ×X ≈ `2 follows from [1, Theorem 3.5].

Remark 4.2. In [13, Remark 4.5], it was shown that if h : Y → Y is any
homeomorphism that restricts to the identity on a certain zero-dimensional
closed subset L of Y , then h is the identity. The set L is not a Z-set in Y , and
this is precisely why the argument there worked. With the method used in
the proof of Theorem 4.1, it is easy to show that if h is any homeomorphism
of Y that restricts to the identity on the countable closed discrete subset Z
of Y , then h is the identity. Observe that Z is a Z-set in Y .

Remark 4.3. We see that X is an example of a rigid space whose
square is `2. Such spaces were earlier constructed by Dijkstra [5]. For a zero-
dimensional rigid space whose square is homogeneous, see Lawrence [10].
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