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Intrinsic linking and knotting are arbitrarily complex

by

Erica Flapan (Claremont, CA), Blake Mellor (Los Angeles, CA)
and Ramin Naimi (Los Angeles, CA)

Abstract. We show that, given any n and α, any embedding of any sufficiently large
complete graph in R3 contains an oriented link with components Q1, . . . , Qn such that for
every i 6= j, |lk(Qi, Qj)| ≥ α and |a2(Qi)| ≥ α, where a2(Qi) denotes the second coefficient
of the Conway polynomial of Qi.

1. Introduction. The study of embeddings of graphs in R3 is a natural
extension of knot theory. However, in contrast with knots, whose properties
depend only on their extrinsic topology, there is a rich interplay between the
intrinsic structure of a graph and the extrinsic topology of all embeddings
of the graph in R3. Conway and Gordon [1] obtained groundbreaking results
of this nature by showing that every embedding of the complete graph K6

in R3 contains a non-trivial link and every embedding of K7 in R3 contains
a non-trivial knot. Because this type of linking and knotting is intrinsic
to the graph itself rather than depending on the particular embedding of
the graph in R3, K6 is said to be intrinsically linked and K7 is said to be
intrinsically knotted . On the other hand, Conway and Gordon [1] illustrated
an embedding of K6 such that the only non-trivial link L1 ∪ L2 contained
in K6 is the Hopf link (which has |lk(L1, L2)| = 1); and they illustrated an
embedding of K7 such that the only non-trivial knot Q contained in K7 is
the trefoil knot (which has |a2(Q)| = 1, where a2(Q) denotes the second
coefficient of the Conway polynomial of Q). In this sense, we see that K6

exhibits the simplest type of intrinsic linking and K7 exhibits the simplest
type of intrinsic knotting.

More recently, it has been shown that for sufficiently large values of r,
the complete graph Kr exhibits more complex types of intrinsic linking and
knotting. In particular, Flapan [2] showed that for every λ ∈ N, there is a

2000 Mathematics Subject Classification: 57M25, 57M15, 05C10.
Key words and phrases: intrinsically linked graphs, intrinsically knotted graphs.

[131] c© Instytut Matematyczny PAN, 2008



132 E. Flapan et al.

complete graph Kr such that every embedding of Kr in R3 contains both
a 2-component oriented link L whose linking number is at least λ and a
knot Q with |a2(Q)| ≥ λ (though L and Q have no particular relationship).
Fleming [4] showed that for any n ∈ N, there is a graph G such that every
embedding of G in R3 contains a non-split link of n + 1 components where
n of the components are non-trivial knots. In the current paper, we show
that for sufficiently large complete graphs, intrinsic linking with knotted
components is arbitrarily complex both in terms of linking number and in
terms of the knotting of every component. In particular, our main result is
the following.

Theorem 2. For all n, α ∈ N, there is a complete graph Kr such that
every embedding of Kr in R3 contains an oriented link with components
Q1, . . . , Qn such that for any i 6= j, |lk(Qi, Qj)| ≥ α and |a2(Qi)| ≥ α.

If linking is measured with linking number and knotting is measured
with a2, then this is the strongest result one could hope for about the com-
plexity of simultaneous intrinsic knotting and linking. Furthermore, observe
that for a given c ∈ N, there are only finitely many knots whose minimal
crossing number is less than or equal to c. If we pick λ larger than the |a2| of
all of the knots with minimal crossing number less than or equal to c, then
the knots Q1, . . . , Qn given by Theorem 2 will each have minimal crossing
number greater than c. It follows that the complexity of intrinsic knotting
as measured by the crossing number can also be made arbitrarily large.

In order to prove our main result, we first prove in Section 2 that intrin-
sic linking is arbitrarily complex in the sense of the structure of a link. In
particular, we prove the following.

Theorem 1. For all n, λ ∈ N, there is a complete graph Kr such that
every embedding of Kr in R3 contains an oriented link with components
Q1, . . . , Qn such that for any i 6= j, |lk(Qi, Qj)| ≥ λ.

The idea of the proof of Theorem 2 is then as follows. Taniyama and
Yasuhara [9] have shown that for any embedding of the pseudo-graph D4

(see Figure 5), the product of the linking numbers of the two opposite pairs
of cycles, Ci and Cj , is related to the sum of the a2’s of all of the Hamiltonian
cycles Q according to the formula∑

Q∈S
|a2(Q)| ≥ |lk(C1, C3)lk(C2, C4)|.

We use Theorem 1 to find a complete graph Kr so that every embedding of
Kr contains a link with a “large enough” number of components all pairwise
linked with linking number at least λ. We then use a recursive argument
to successively exchange opposite pairs of linked cycles in a D4 (which is a
minor of Kr) for a knotted Hamiltonian cycle in D4 which is linked with all
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of the previous knotted cycles in the construction. We do this in such a way
that for all of the knotted cycles Qi and Qj we have |lk(Qi, Qj)| ≥ λ ≥ α
and |a2(Qi)| ≥ λ2/16 ≥ α.

We wish to thank Alan Tarr for suggesting that we represent the struc-
ture of a link with a linking pattern, for reading a preliminary draft of this
paper, and for suggesting that we prove the current version of Theorem 1.
We also want to thank Kouki Taniyama for asking us whether the conclusion
of Theorem 1 could be strengthened by removing the absolute value on the
linking number. The current version of Proposition 2, together with Corol-
lary 1, and Proposition 3 grew out of our response to Taniyama’s question.

2. Intrinsic linking. We will use a weighted graph to describe the
structure of a link as follows.

Definition 1. Given an oriented link L with components L1, . . . , Ln,
the linking pattern of L is the graph with vertices v1, . . . , vn such that there
is an edge between vi and vj if and only if lk(Li, Lj) 6= 0. The weighted
linking pattern of L is the linking pattern with a weight assigned to each
edge {vi, vj} representing the value of |lk(Li, Lj)|.

For example, the linking pattern of a Hopf link is a single edge. As another
example, consider a keyring link, that is, a link consisting of a ring , J , and
keys, L1, . . . , Ln, such that lk(J, Li) 6= 0 and lk(Li, Lj) = 0 for all i 6= j.
The linking pattern of a keyring link is an n-star (i.e., a graph consisting of
n vertices all connected to a single additional vertex).

Many results about intrinsic linking use the mod 2 linking number,

ω(J, L) = lk(J, L) mod 2,

as a simpler measure of linking than the ordinary linking number. Thus we
will also use the following definition.

Definition 2. Given a link L with components L1, . . . , Ln, the mod 2
linking pattern of L is the graph with vertices v1, . . . , vn such that there is
an edge between vi and vj if and only if ω(Li, Lj) = 1.

Using this terminology, Conway and Gordon [1] and Sachs [7]–[8]
showed that every embedding of K6 in R3 contains a link whose mod 2
linking pattern is a single edge. Fleming and Diesl [5] showed that there is a
graph G such that every embedding of G in R3 contains a link J∪L1∪· · ·∪Ln
where ω(J, Li) = 1 for each i. Thus every embedding of G in R3 contains a
link whose mod 2 linking pattern contains an n-star, possibly with additional
edges. We call such a link a generalized keyring link, since some of the Li’s
may be linked with one another.
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Prior to this paper, a chain of n edges and a circle of n edges [3], and
an n-star [5] were the only linking patterns Γ which were known to have
the property that for some graph G every embedding of G in R3 contains a
link whose linking pattern contains Γ . We prove in Theorem 1 that for every
complete graph Kn, there is a graph G such that every embedding of G in
R3 contains a link whose linking pattern is Kn. It follows that for any linking
pattern Γ , there is a graph G such that every embedding of G in R3 contains
a link whose linking pattern contains Γ . In particular, using the language of
linking patterns we prove the following restatement of Theorem 1.

Theorem 1. Let λ ∈ N. For every n ∈ N, there is a graph G such that
every embedding of G in R3 contains a link whose linking pattern is Kn with
every weight at least λ.

This theorem implies that given any n, λ ∈ N, there exists a graph G
which has the property that every embedding of G contains an n-component
link all of whose components are pairwise linked with the absolute value of
their linking number at least λ (this was our statement of Theorem 1 in the
introduction). Furthermore, in Proposition 2 we show that complete graphs
are the only linking patterns that have the property described by Theorem 1.
In other words, complete graphs can be said to be the only intrinsic linking
patterns.

Before we prove Theorem 1, we will show in Proposition 1 that for ev-
ery n, there is a graph such that every embedding of the graph contains a
link whose linking pattern contains the complete bipartite graph Kn,n. We
will use this result to prove Theorem 1. In fact, in Proposition 1, we prove
the stronger result that we can ensure that all of the weights are odd. It is
an open question whether this stronger formulation can be extended to the
linking pattern Kn.

In order to prove Proposition 1, we need the following lemma which allows
us to combine many pairs of linked cycles into a single cycle that links some
proportion of the original components. Throughout the paper we use the
term cycle to mean a simple closed curve within a graph, and the notation

J O L = (J ∪ L)− (J ∩ L)

for the closure of the symmetric difference.

Lemma 1. Let Kp be embedded in R3 in such a way that it contains
a link with components J1, . . . , Jn2 and X1, . . . , Xn2 , and ω(Ji, Xi) = 1 for
every i ≤ n2. Then there is a cycle Z in Kp with vertices on J1 ∪ · · · ∪ Jn2 ,
and an index set I with |I| ≥ n/2, such that ω(Z,Xj) = 1 for all j ∈ I.

Proof. We begin by creating a cycle C in Kp which cyclicly joins the Ji
as follows. For each i = 1, . . . , n2, let ui and wi be vertices on the cycle Ji,
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Fig. 1. Illustration of Lemma 1

and let qi be a path on Ji from ui to wi. For i = 1, . . . , n2 − 1, let ei be the
edge in Kp from wi to ui+1, and let en2 be the edge in Kp from wn2 to u1.
Let C be the cycle

⋃n2

i=1 qi ∪ ei. Observe that if at least n/2 of the ω(C,Xj)’s
are equal to 1, then we are done by letting Z = C. So we shall assume that
fewer than n/2 of the ω(C,Xj)’s are equal to 1.

We create an n2 × n2 matrix M with entries in Z2 as follows. For each
i, j = 1, . . . , n2, let the entry Mij equal ω(Ji, Xj). By hypothesis, for each i,
Mii = 1. Using row reduction mod 2, let M ′ denote the reduced row-echelon
form ofM . Observe that since every column ofM contains a 1, every column
of M ′ also contains a 1.

Next we will add together rows ofM ′ as follows to create a row vector V ,
at least n of whose entries are 1’s. Let r denote the rank ofM ′ over Z2. First
suppose that r ≥ n. In this case, let V be the vector obtained by adding
together all of the non-trivial rows of M ′ modulo 2. Then V has at least
r ≥ n entries which are 1’s. So V is the desired vector. On the other hand,
suppose that r < n. Then n2/r > n. Observe that M ′ contains r non-trivial
rows and has n2 columns which contain 1’s. So by the Pigeonhole Principle,
some row of M ′ has at least n2/r > n entries which are 1’s. In this case, let
V be the vector representing this row.

In either case, V can be written as the sum of some of the rows of M ,
say rows i1, . . . , ik. Thus, for each j = 1, . . . , n2, the jth entry of the vector
V is Vj = ω(Ji1 , Xj) + · · ·+ ω(Jik , Xj) mod 2. Recall that V was chosen so
that at least n of the Vj ’s are equal to 1. Also we assumed that fewer than
n/2 of the ω(C,Xj)’s are equal to 1. Let I denote the subset of {1, . . . , n2}
such that for each j ∈ I, we have simultaneously Vj = 1 and ω(C,Xj) = 0.
Then |I| > n − n/2 = n/2. Now let Z = COJi1O · · ·OJik . Then for each
j ∈ I, ω(Z,Xj) = 1, as required.

Recall the following definition from graph theory. The complete bipartite
graph, Km,n, is defined as the graph whose vertices are partitioned into
subsets P1 and P2, where P1 contains m vertices, P2 contains n vertices, and
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there is an edge between two vertices if and only if one vertex is in P1 and
the other is in P2.

Proposition 1. For every n, there is a graph G such that every embed-
ding of G in R3 contains a link whose mod 2 linking pattern contains the
complete bipartite graph Kn,n.

Proof. Let n be given. It was shown in Fleming and Diesl [5, Lemma 2.3]
that there exists some p such that every embedding of Kp in R3 contains
a mod 2 generalized keyring link with a ring and n keys. Observe that the
existence of such a p also follows from our Lemma 1 together with Conway
and Gordon’s [1] result that every embedding of K6 contains a link J ∪ X
such that ω(J,X) = 1.

Let m = (4n)2
n
/4. Every embedding of Kmp in R3 contains m disjoint

mod 2 generalized keyring links each with a ring and n keys. We will prove
that every embedding of Kmp in R3 contains a link whose mod 2 linking
pattern contains Kn,n.

Let Kmp be embedded in R3. Let X1, . . . , Xm denote the rings of the
generalized keyring links in the m disjoint copies of Kp in Kmp. For each
i ≤ m and j ≤ n, let Jij be a key on the ring Xi.

Since ω(Ji1, Xi) = 1 for all i = 1, . . . ,m, we can apply Lemma 1 to the
link in Kmp with components J11, J21, . . . , Jm1 and X1, . . . , Xm. This gives
us a cycle Z1 with vertices on J11 ∪ · · · ∪ Jm1 and an index set I1 with
|I1| ≥

√
m/2 = (4n)2

n−1
/4 = r1 such that for each i ∈ I1, ω(Z1, Xi) = 1.

Now since ω(Ji2, Xi) = 1 for all i ∈ I1, we can apply Lemma 1 to the link
in Kmp whose components are all those Ji2 and Xi with i ∈ I1. This gives
us a cycle Z2 with vertices on J12 ∪ · · · ∪ Jm2 and an index set I2 ⊆ I1 with
|I2| ≥

√
r1/2 = (4n)2

n−2
/4 = r2 such that for each i ∈ I2, ω(Z2, Xi) = 1.

Continue this process to get disjoint cycles Z1, . . . , Zn in Kmp and index sets
In ⊆ · · · ⊆ I1 with |In| ≥

√
rn−1/2 = (4n)2

n−n
/4 = n such that for every

i ∈ In and every j ≤ n, ω(Zj , Xi) = 1.
Thus the mod 2 linking pattern of the link with components Z1, . . . , Zn

and all those Xi with i ∈ In contains Kn,n. Hence every embedding of Kmp

in R3 contains a link whose mod 2 linking pattern contains Kn,n.

Before we prove Theorem 1, we need one more lemma that allows us to
combine components of distinct links.

Lemma 2. Let λ ∈ N. Let Kp be embedded in R3 in such a way that it
contains a link with oriented components J1, . . . , Jr, L1, . . . , Lq, X1, . . . , Xm,
and Y1, . . . , Yn, where r ≥ m(2λ+ 1)2m and q ≥ (m+ n)(2λ+ 1)3m2n, and
for any i, j, α, β, lk(Ji, Xα) 6= 0 and lk(Lj , Yβ) 6= 0. Then Kp contains a
cycle Z with vertices in J1∪· · ·∪Jr∪L1∪· · ·∪Lq such that for all α and β,
|lk(Z,Xα)| > λ and |lk(Z, Yβ)| > λ.
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Proof. First we consider the signs of the linking numbers lk(Ji, X1) for
i ≤ r. At least half of these linking numbers have the same sign. Thus
without loss of generality, J1, . . . , Jdr/2e all have the same sign linking number
with X1. Furthermore, we may assume these linking numbers are all positive
(otherwise, simply reverse the orientation of X1). Now, consider the signs of
the linking numbers lk(Ji, X2) for i ≤ dr/2e. At least half of these have the
same sign. We continue this process for each subsequent Xα. In this way,
we end up with cycles J1, . . . , Jr′ which each have positive linking number
with every Xα, and r′ ≥ r/2m ≥ m(2λ + 1). From now on the only Ji that
we consider will be J1, . . . , Jm(2λ+1), which all have positive linking number
with every Xα.
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Fig. 2. Illustration of Lemma 2

Next we consider the signs of the linking numbers lk(Lj , Y1) for j ≤ q.
By using an argument analogous to the one above, we end up with cycles
L1, . . . , Lq′ which each have positive linking number with every Yβ , and
q′ ≥ q/2n ≥ (m+ n)(2λ+ 1)3m.

Now we consider the signs (positive, negative, or zero) of the linking
numbers lk(Lj , X1) for j ≤ q′. By the Pigeonhole Principle at least one-
third of these signs are the same. Without loss of generality, we can assume
that L1, . . . , Ldq′/3e each have the same sign (positive, negative, or zero)
linking number with X1. We continue this process for each subsequent Xα.
In this way, we end up with cycles L1, . . . , Lq′′ which each have the same
sign (positive, negative, or zero) linking number with every Xα, and q′′ ≥
q′/3m ≥ (m + n)(2λ + 1). From now on the only Lj that we consider are
L1, . . . , L(m+n)(2λ+1), which all have positive linking number with every Yβ
and all have the same sign linking number with every Xα.

We shall create a cycle C0 which cyclicly joins J1, . . . , Jm(2λ+1) and
L1, . . . , L(m+n)(2λ+1) as follows. For i ≤ m(2λ + 1), let ui and wi be ver-
tices on Ji, and for j ≤ (m+ n)(2λ+ 1), let um(2λ+1)+j and wm(2λ+1)+j be
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vertices on Lj . Also, for k ≤ (2m+ n)(2λ+ 1)− 1, let ek be the edge in Kp

from wk to uk+1, and let e(2m+n)(2λ+1) be the edge in Kp from w(2m+n)(2λ+1)

to u1. Finally, for i ≤ m(2λ+1), let qi be the path on Ji from ui to wi which
travels opposite to the orientation on Ji, and for j ≤ (m + n)(2λ + 1), let
qm(2λ+1)+j be the path on Lj from um(2λ+1)+j to wm(2λ+1)+j which travels
opposite to the orientation of Lj . Now let

C0 =
(2m+n)(2λ+1)⋃

k=1

ek ∪ qk

with the induced orientation. Also for each s ≤ m(2λ+ 1), let
Cs = C0OJ1O · · ·OJs.

Observe that for every α and s ≤ m(2λ + 1) − 1, lk(Cs+1, Xα) =
lk(Cs, Xα) + lk(Js+1, Xα) and lk(Js+1, Xα) > 0. Hence for a given α,
lk(Cs, Xα) is a strictly increasing function of s. In particular, for a given α,
the values of lk(Cs, Xα) are distinct for different values of s. As there are
2λ+1 distinct values of a with |a| ≤ λ, for a given α there are at most 2λ+1
values of s such that |lk(Cs, Xα)| ≤ λ. Since there arem values of α, there are
at most m(2λ+ 1) values of s such that there is an α with |lk(Cs, Xα)| ≤ λ.
Now by the Pigeonhole Principle, since there are m(2λ + 1) + 1 values of s
(including s = 0), there must be at least one Cs such that |lk(Cs, Xα)| > λ
for every α. Let D0 denote such a Cs.

Let us recall that each Yβ has positive linking number with L1, . . . ,
L(m+n)(2λ+1), and each Xα has the same sign (positive, negative or zero)
linking number with L1, . . . , L(m+n)(2λ+1). In fact, by changing the orien-
tation of some Xα, we can assume that each Xα has non-negative linking
number with L1, . . . , L(m+n)(2λ+1). Note that changing the orientation of a
particular Xα does not change the fact that |lk(D0, Xα)| > λ. Now let S
denote the set of all the Yβ ’s together with those Xα’s which have positive
linking number with all of L1, . . . , L(m+n)(2λ+1). For each t ≤ (m+n)(2λ+1),
let

Dt = D0OL1O · · ·OLt.

Since α ≤ m and β ≤ n, the set S contains at most m+ n cycles. Also,
each cycle in S has positive linking number with L1, . . . , L(m+n)(2λ+1). Thus
we can use the same argument as the one we used for the Cs to show that
there is some Dt such that |lk(Dt, A)| > λ for each A ∈ S. Let Z denote
such a Dt. Finally, observe that for each Xα not in S, lk(Lj , Xα) = 0 for all
j ≤ (m+ n)(2λ+ 1). Hence if Xα 6∈ S, then |lk(Z,Xα)| = |lk(D0, Xα)| > λ.
So, for every α and β, |lk(Z,Xα)| > λ and |lk(Z, Yβ)| > λ as desired.

In the proof of Theorem 1, we will use Lemma 2 together with the fol-
lowing definition from graph theory. A complete m-partite graph is defined
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as a graph whose vertices are partitioned into subsets P1, . . . , Pm and there
is an edge between two vertices if and only if the two vertices are in distinct
subsets of the partition.

Theorem 1. Let λ ∈ N. For every n ∈ N, there is a graph G such that
every embedding of G in R3 contains a link whose linking pattern is Kn with
every weight at least λ.

Proof. For all m,n ∈ N, let H(n,m) denote the complete (n+ 2)-partite
graph with partitions P1 and P2 containing m vertices each and partitions
Q1, . . . , Qn each containing a single vertex. We will prove by induction on n
that for each n ≥ 0, for every m ≥ 1, there is a graph G such that every
embedding ofG in R3 contains a link whose weighted linking pattern contains
H(n,m), and the weight of every edge between vertices in Qi and Qj is
greater than λ.

The base case is for n = 0. Observe thatH(0,m) is the complete bipartite
graph Km,m. Hence by Proposition 1 we know that, for every m, there is a
graph G such that every embedding of G in R3 contains a link whose linking
pattern contains H(0,m).

As our induction hypothesis we suppose that for some n ≥ 0, for every
m ≥ 1 there is a graph G such that every embedding of G in R3 contains a
link whose linking pattern contains H(n,m), and the weight of every edge
between vertices in Qi and Qj is greater than λ. Let m be given. Let q =
(2m+n)(2λ+1)3m2m+n and let s = m+q. Consider the graph H(n, s) with
partitions P1, P2, Q1, . . . , Qn, where the vertices in each partition are denoted
as follows. The s vertices in P1 are denoted by X1, . . . , Xm, L1, . . . , Lq. The
s vertices in P2 are denoted by Y1, . . . , Ym, J1, . . . , Jq. For each i ≤ n, the
partition Qi contains a single vertex denoted by Ym+i.

It follows from our inductive hypothesis that there is a graph G such that
every embedding of G in R3 contains a link L whose linking pattern contains
H(n, s), and for any i 6= j the weight of the edge between vertices Ym+i and
Ym+j is greater than λ. Without loss of generality, G is a complete graph Kp.
Let Kp be embedded in R3. We will prove that Kp also contains a link whose
weighted linking pattern contains H(n+ 1,m) with the desired weights. We
shall abuse notation and let each of the components of the link L in Kp be
denoted by the name of the vertex that represents that component in the
linking pattern described above.

We can apply Lemma 2 to the oriented link with components J1, . . . , Jq,
L1, . . . , Lq, X1, . . . , Xm, and Y1, . . . , Ym+n in Kp with

r = q = (2m+ n)(2λ+ 1)3m2m+n,

to get a cycle Ym+n+1 with vertices in J1∪· · ·∪Jq∪L1∪· · ·∪Lq such that for
every α ≤ n and β ≤ m+n, |lk(Ym+n+1, Xα)| > λ and |lk(Ym+n+1, Yβ)| > λ.
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ThusKp contains a link L′ with componentsX1, . . . ,Xm, Y1, . . . , Ym+n+1.
The components of L′ can be partitioned into subsets P ′1, P ′2, Q′1, . . . , Q′n+1,
where P ′1 contains X1, . . . , Xm, P ′2 contains Y1, . . . , Ym, and for each i =
1, . . . , n+ 1, Q′i contains Ym+i. Furthermore, every component in one parti-
tion is linked with every component in all the other partitions. Also, for all
i, j ≤ n + 1 with i 6= j, |lk(Ym+i, Ym+j)| > λ. It follows that the weighted
linking pattern of L′ contains H(n + 1,m), and the weight of every edge
between vertices Q′i and Q

′
j is greater than λ.

Thus, we have shown that for every n ≥ 0 and m ≥ 1, there is a graph G
such that every embedding of G in R3 contains a link whose weighted linking
pattern contains H(n,m), and the weight of every edge between vertices
Ym+i and Ym+j in Qi and Qj respectively is greater than λ. Observe that the
subgraph ofH(n,m) consisting of the vertices Ym+1, . . . , Ym+n in Q1, . . . , Qn
respectively, together with the edges between them, is the complete graph
Kn. Hence every embedding of G in R3 contains a link whose linking pattern
is Kn, and the weight of every edge of Kn is greater than λ.

The following proposition shows that every graph G has some embedding
in R3 such that the linking pattern of every link in that embedding is a
complete graph. Hence complete graphs are the only linking patterns which
have the property described by Theorem 1.

Proposition 2. Given any λ > 0 and any graph G, there exists an
embedding G′ of G in R3 and an orientation of the cycles in G′ such that
for every pair of disjoint oriented cycles C1 and C2 in G′, lk(C1, C2) ≥ λ.

Proof. We start with any embedding of the graph G in R3. We arbitrarily
assign to each edge a unique positive integer which will be the weight of that
edge. The weights give the set of edges of G a linear ordering. We put an
arbitrary orientation on each edge, and then orient each cycle according to
the orientation of its edge whose weight is the largest. For each pair (ei, fi)
of disjoint edges we denote the smaller weighted edge by ei and the larger
weighted edge by fi. Note that a given edge may occur in multiple pairs,
sometimes as the smaller weighted edge and sometimes as the larger weighted
edge. Let (e0, f0), . . . , (en, fn) denote the set of all pairs of disjoint edges
ordered lexicographically from smallest weighted pair to largest weighted
pair. We describe as follows how to add twists between each pair of edges so
as to obtain the desired embedding of the graph in R3.

Let M = max{|lk(C1, C2)|} with the maximum taken over all pairs of
disjoint cycles C1 and C2 in G, and let t = M + λ.

For each i, we choose an arc ai with one endpoint in the interior of ei
and the other endpoint in the interior of fi so that ai is otherwise disjoint
from G. In addition, we require that the arcs a0, . . . , an be pairwise disjoint
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with neighborhoods that are also pairwise disjoint. For each i = 0, . . . , n, we
change the embedding of ei and fi by adding 3it positive full twists between
them within the neighborhood of ai (see Figure 3). Note that a given edge
will occur in multiple pairs (ei, fi) and hence will be changed within the
disjoint neighborhoods of multiple ai’s.

ei f i

ai

ei f i

Fig. 3. We add 3it positive full twists between ei and fi within a tubular neighborhood
of ai

Adding these twists gives us a new embedding G′ of G. Fix a pair of
disjoint cycles C1 and C2 in G, and let C ′1 and C ′2 denote the corresponding
pair of cycles in G′. Observe that any crossings between pairs of aj ’s or
between an aj and an ei or fi that added new crossings between C ′1 and C ′2
occur in pairs with opposite sign since we added an integer number of full
twists between ei and fi. Hence such crossings do not contribute to the value
of lk(C ′1, C

′
2). Thus lk(C ′1, C

′
2) = lk(C1, C2)+ε0t+· · ·+εn3nt, where εi equals

0 or ±1 depending on which edges ei and fi are in C1 and C2, and on whether
the twists we have added between ei and fi induce negative or positive twists
between C1 and C2.

Pick the largest k such that εk 6= 0. Clearly k ≥ 1. Then the pair (ek, fk)
is lexicographically the largest weighted pair with one edge in C1 and the
other in C2. Therefore the orientations of C1 and C2 are induced by those of
ek and fk. Since we have added 3kt positive full twists between ek and fk,
it follows that εk = 1. Thus we have

lk(C ′1, C
′
2) ≥ −M − (1 + 3 + · · ·+ 3k−1)t+ 3kt

= 3kt− (3k − 1)t/(3− 1)−M = (3k + 1)t/2−M
= (3k + 1)(M + λ)/2−M ≥ λ.

Since the choice of the pair of cycles C1 and C2 was arbitrary this proves the
proposition.

We saw in Theorem 1 that for any λ > 0 there is a graph G such that
every embedding of G contains a link whose linking pattern is Kn with every
weight at least λ. Recall that the weight of an edge in the linking pattern
is defined as the absolute value of the linking number of the associated link
in the embedded graph. It is natural to wonder whether we can remove the
absolute value from the conclusion of Theorem 1. That is, we would like to
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know if is there a graph G such that every embedding of G in R3 contains a
link with components L1, . . . , Ln which can be oriented in such a way that
lk(Li, Lj) ≥ λ for all i 6= j. We now prove Corollary 1 which shows that the
answer to this question is no.

Corollary 1. Let G be a graph. There is some embedding G′ of G
in R3 such that for any three disjoint cycles in G′, no matter how they are
oriented , at least one of the three pairs of oriented cycles will have posi-
tive linking number ; and there is some embedding G′′ of G in R3 such that
for any three disjoint cycles in G′′, no matter how they are oriented , at
least one of the three pairs of oriented cycles will have negative linking num-
ber.

Proof. We begin with the embedding G′ and the orientation of all of the
cycles of G′ which is given by Proposition 2. Thus for any pair of oriented
cycles C ′1 and C ′2 in G′, lk(C ′1, C

′
2) ≥ λ > 0. Now, consider any three disjoint

cycles inG′. With the given orientations, their three pairwise linking numbers
are all positive. If we change the orientation of one of the three cycles, then
the linking number between the two unchanged cycles remains positive. If
we change the orientation of two of the three cycles, then the linking number
between the two changed cycles remains positive. Finally, if we change the
orientation of all three cycles, then all three linking numbers remain positive.
Thus no matter how they are oriented, at least one pair will have positive
linking number.

Now let G′′ denote the mirror image of G′. It follows that for any three
disjoint cycles in G′′ and every orientation of these three cycles at least one
of the three will have negative linking number.

Thus we have shown that there is no graph whose every embedding con-
tains a link of three cycles where for some orientation of the cycles all the
linking numbers are positive, and there is no graph whose every embedding
contains a link of three cycles where for some orientation of the cycles all
the linking numbers are negative. By contrast, the next proposition shows
that there is a graph whose every embedding contains a link of three cycles
(indeed, of n cycles for any given n ≥ 3) such that for any orientation of the
cycles all the linking numbers have the same sign (either positive or nega-
tive). However, the sign (as well as the cycles) will depend on the specific
embedding of the graph in R3.

Proposition 3. Given any n ∈ N, there exists an r such that every
embedding of Kr in R3, with an arbitrary orientation assigned to every
cycle, contains an n-component link such that the linking numbers of every
pair of components in the oriented link are either all positive or all nega-
tive.
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Proof. By Ramsey theory [6], there is an m such that for any 2-coloring
of the edges of Km with red or blue, there is a subgraph Kn whose edges are
all red or all blue. We know by Theorem 1 that, given the above m, every
sufficiently large Kr embedded in R3 contains an m-component link whose
linking pattern is Km. Given an embedding of this Kr in R3, we put an arbi-
trary orientation on each of the m components of the link in this embedding.
Then we color each edge in the associated linking pattern Km red or blue
according to whether that edge corresponds to a positive or negative linking
number respectively. Now we know there is a subgraph Kn of this colored
Km whose edges are all red or all blue. This means that for the n-component
oriented link corresponding to this monocrhromatic Kn linking pattern, the
pairwise linking numbers are either all positive or all negative.

3. Intrinsic knotting of the components. We extend our definition
of weighted linking pattern to include knotted components as follows.

Definition 3. Given an oriented link L with components L1, . . . , Ln,
the weighted knotting and linking pattern of L is the weighted linking pattern
of L together with a weight assigned to each vertex vi representing the value
of |a2(Li)|.

In light of Theorem 1, it is natural to ask whether for any weighted
knotting and linking pattern Γ , there is a graphG such that every embedding
of G in R3 contains a link whose weighted knotting and linking pattern is
at least as “complex” as Γ . The goal of this section is to prove that this
is indeed the case. In particular, we will prove the following restatement of
Theorem 2.

Theorem 2. Let α ∈ N. For every n ∈ N, there is a graph G such that
every embedding of G in R3 contains a link whose linking pattern is Kn with
every edge weight and vertex weight at least α.

We begin with some preliminary results. In the following lemma we shall
use the notation AOεB where ε ∈ {0, 1}. If ε = 1, we shall mean AOB. If
ε = 0, we shall mean AO∅ = A.

Lemma 3. Let λ > 0, and let A1, . . . , An and B1, . . . , B6n+6 be dis-
joint oriented cycles in a complete graph Kr embedded in R3 such that
lk(Ah, Bi) ≥ λ for all h and i. Then there exist disjoint cycles C1, C2, C3, C4

∈ {Bi} and an oriented cycle W ′ in Kr with vertices on
⋃
iBi such that W ′

intersects each of C1, C2, C3, C4 in exactly one arc with orientation opposite
that of each Ci, and for every h,

|lk(Ah,W ′Oε1C1Oε2C2Oε3C3Oε4C4)| ≥ λ
for every choice of ε1, . . . , ε4 ∈ {0, 1}.
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Proof. On each oriented cycle Bi, pick adjacent vertices xi and yi so
that the orientation induced on the edge βi = {xi, yi} goes from xi to yi.
Let W0 be the cycle which is the union of the edges βi and the edges
{yi, xi+1}, 1 ≤ i ≤ 6n + 5, and {y6n+6, x1}. Orient W0 so that on each βi
the orientation goes from yi to xi. For the remainder of this proof, we rela-
bel B1, . . . , B6n+6 as B1

1 , . . . , B
6
1 , B1

2 , . . . , B
6
2 , . . . , B

1
n+1, . . . , B
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For 1 ≤ i ≤ n, let Wi = Wi−1OB1
i O · · ·OB6

i . We have two cases:

Case 1: For some r ≥ 0, lk(Wr, Ah) ≥ 0 for all h. Then letting W ′ =
WrOB6

r+1 and Cj = Bj
r+1 for j = 1, 2, 3, 4 gives us the desired result.

Case 2: For every k ≥ 0, lk(Wk, Ah) < 0 for some h. In this case, for
each k let n(k) be the number of Ah’s for which lk(Wk, Ah) < 0. Then
1 ≤ n(k) ≤ n for each k = 0, 1, . . . , n. Since there are n + 1 values of k, by
the Pigeonhole Principle, n(r) = n(r′) for some r and r′. Without loss of
generality, r < r′. We see as follows that n(k) is a non-increasing function
of k. For each h and k, lk(Wk, Ah) > lk(Wk−1, Ah) since lk(Bj

k, Ah) ≥ λ > 0
for all j. It follows that n(r) = n(r + 1). So, for each h, lk(Ah,Wr) has the
same sign as lk(Ah,Wr+1).

Now, as in Case 1, we letW ′ = WrOB6
r+1 and Cj = Bj

r+1 for j = 1, 2, 3, 4.
We verify as follows that this gives us the desired result. Fix an Ah. If
lk(Ah,Wr) ≥ 0, then clearly

lk(Ah,W ′Oε1C1Oε2C2Oε3C3Oε4C4) ≥ λ

for every choice of ε1, . . . , ε4 ∈ {0, 1}, as desired. So suppose lk(Ah,Wr) < 0.
Then lk(Ah,Wr+1) < 0, since lk(Ah,Wr) has the same sign as lk(Ah,Wr+1).
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Now, for every choice of ε1, . . . , ε4 ∈ {0, 1},

lk(Ah,W ′Oε1C1Oε2C2Oε3C3Oε4C4) ≤ lk(Ah,W ′OC1OC2OC3OC4)

≤ lk(Ah,Wr+1)− lk(Ah, B5
r+1) < −λ

as desired.

Lemma 4. Let λ > 0, and let A1, . . . , An and B1, . . . , B6n+6 be disjoint
oriented cycles in an embedded complete graph Kr such that lk(Ah, Bi) ≥ λ
and |lk(Bi, Bj)| ≥ λ for all h, i, and j. Then there exists an oriented cycle
K in Kr with vertices on

⋃
iBi such that |a2(K)| ≥ λ2/16 and , for every h,

|lk(Ah,K)| ≥ λ.

Proof. Let W ′ and C1, C2, C3, C4 denote the oriented cycles given by
Lemma 3. We collapse the four arcs of W ′ which are not in any of the Ci to
obtain the pseudograph illustrated on the right in Figure 5. We denote this
pseudograph by D4.

W´

C 1

C 2

C 3

C 4

C 1

C2

C 3

C 4

Fig. 5. We collapse the four arcs of W ′ not in any Ci to obtain the pseudograph D4

Let S denote the set of all Hamiltonian cycles in D4. It follows from [9]
that ∑

Q∈S
|a2(Q)| ≥ |lk(C1, C3)lk(C2, C4)|.

Since C1, C2, C3, C4 ∈ {Bi}, we deduce that both |lk(C1, C3)| ≥ λ and
|lk(C2, C4)| ≥ λ. Thus

∑
Q∈S |a2(Q)| ≥ λ2. As we are taking the sum of

16 non-negative integers, there must be some Q0 ∈ S such that |a2(Q0)| ≥
λ2/16. Let K denote the cycle of the form

W ′Oε1C1Oε2C2Oε3C3Oε4C4

which collapses to Q0 when we collapse the four edges of W ′ not in any
Ci. Then |a2(K)| ≥ λ2/16. Also, it follows from Lemma 3 that for every h,
|lk(Ah,K)| ≥ λ. Thus K has both of the required properties.
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Roughly speaking, our goal is to show that every sufficiently large com-
plete spatial graph contains a link with a given large number of components,
all with large pairwise linking numbers and large a2 coefficients. The idea is
that, by Theorem 1, our large complete spatial graph contains a link with a
large number of components whose pairwise linking numbers have large ab-
solute value. We would like to apply Lemma 4 repeatedly to this link, each
time increasing the number of components that have large a2 coefficients,
at the expense of decreasing the total number of components in the link at
hand. However, to use Lemma 4, we need positive linking numbers between
the Ah’s and the Bi’s. We accomplish this by giving ourselves the luxury
of starting out with a lot of Bi’s and discarding those with negative linking
numbers, as follows.

Lemma 5. Let n, λ ∈ N. Suppose that a complete graph Kr embedded in
R3 contains an oriented link L0 with fn(n) components, where f(n) = n−1+
(6n)2n−2, such that the linking number of every pair of components of L0 has
absolute value at least λ. Then Kr contains an oriented link with components
Q1, . . . , Qn such that , for any i 6= j, |lk(Qi, Qj)| ≥ λ and |a2(Qi)| ≥ λ2/16.

Proof. Before we begin a recursive argument, we start by introducing
some variables. For every i = 1, . . . , n, we let mi = f i−1(n) − 1. So for
each i,

f i(n) = f(mi + 1) = mi + (6mi + 6)2mi−1.

Now for each i, we let
m′i = (6mi + 6)2mi−1,

so that f i(n) = mi +m′i.
We start our recursive argument with the given link L0, which has

fn(n) = mn + m′n components. We begin by partitioning the components
of L0 into two subsets: A1, . . . , Amn and B1, . . . , Bm′n . For simplicity, we
shall refer to these two sets as “A’s” and “B’s”. By reversing the orienta-
tion of some of the B’s if necessary, we can assume they all have positive
linking numbers with A1. Now, A2 has linking numbers of the same sign
with at least half of the B’s. We keep these B’s and discard the rest. By
reversing the orientation of A2 if necessary, we can assume that A2 has pos-
itive linking number with the B’s that we kept. We repeat this process for
A3, A4, . . . , Amn , each time discarding at most half of the B’s. This reduces
the number of B’s by a factor of at most 2mn−1, leaving us with at least
m′n/2

mn−1 = 6mn + 6 remaining B’s, which are each linked to all of the A’s
with linking number at least λ.

Next we apply Lemma 4 to the link whose components are A1, . . . , Amn

together with 6mn + 6 of the remaining B’s. This gives us an oriented knot
Q1 which is linked to all the A’s with absolute value of its linking number at
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least λ and |a2(Q1)| ≥ λ2/16. Let L1 be the oriented link whose components
are A1, . . . , Amn together with Q1. Then L1 hasmn+1 = fn−1(n) = mn−1+
m′n−1 components.

We can repeat the above process for the link L1, beginning by partitioning
the components of L1 into a set of mn−1 components which includes the
knot Q1 and a set of m′n−1 components. We abuse notation and refer to
the first set as a set of A’s and the second set as a set of B’s. By applying
the above argument to these sets of A’s and B’s we get an oriented link
L2 whose components are the mn−1 A’s including Q1, plus a new oriented
knot Q2 with |a2(Q2)| ≥ λ2/16 such that Q2 is linked to all of the A’s with
absolute value of its linking number at least λ.

We repeat the above process a total of n − 1 times making sure that at
each stage all of the Qi’s that we have constructed so far are included among
the new A’s. In this way we get the desired link with components Q1, . . . , Qn,
all of whose pairwise linking numbers have absolute value at least λ and each
component Qi satisfies |a2(Qi)| ≥ λ2/16.

We now prove our main result using Lemma 5 and Theorem 1.

Theorem 2. For all n, α ∈ N, there is a complete graph Kr such that
every embedding of Kr in R3 contains an oriented link with components
Q1, . . . , Qn such that for every i 6= j, |lk(Qi, Qj)| ≥ α and |a2(Qi)| ≥ α.

Proof. Let λ = max{α, 4
√
α}. Let

f(n) = n− 1 + (6n)2n−2 and m = fn(n).

It follows from Theorem 1 that there is a complete graph Kr such that every
embedding of Kr in R3 contains an oriented link L0 with m components
such that the linking number of every pair of components of L0 has absolute
value at least λ. Now it follows from Lemma 5 that every embedding of Kr

in R3 contains an oriented link with components Q1, . . . , Qn such that, for
any i 6= j, |lk(Qi, Qj)| ≥ λ ≥ α and |a2(Qi)| ≥ λ2/16 ≥ α.

Recall that it follows from Corollary 1 that there is no graph G with the
property that every embedding of G in R3 contains a link with components
Q1, . . . , Qn such that, for some orientation of the components, lk(Qi, Qj) ≥ λ
for any i 6= j. Thus the conclusion of Theorem 2 cannot be strengthened by
removing the absolute value on the linking number.
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