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An indecomposable Banach space of
continuous functions which has small density

by

Rogério Augusto dos Santos Fajardo (São Paulo)

Abstract. Using the method of forcing we construct a model for ZFC where CH
does not hold and where there exists a connected compact topological space K of weight
ω1 < 2ω such that every operator on the Banach space of continuous functions on K is
multiplication by a continuous function plus a weakly compact operator. In particular,
the Banach space of continuous functions on K is indecomposable.

1. Introduction. In Banach space theory, several questions about com-
plemented subspaces have been asked. Recall that a closed subspace Y of a
Banach space X is complemented in X if there exists a closed subspace Z
of X such that X = Y ⊕ Z, where ⊕ means direct sum. For many years it
remained an open problem if every infinite-dimensional Banach space X has
infinite-dimensional closed subspaces Y and Z such that X = Y ⊕Z. When
it occurs we say that X is decomposable. Since decompositions of Banach
spaces are given by projections, indecomposable Banach spaces are related
to the property of having few operators, in some sense.

In 1993 Gowers and Maurey [GM] constructed the first example of an
indecomposable Banach space. Moreover, that space is hereditarily indecom-
posable, i.e., all its closed subspaces are indecomposable.

All operators on the space constructed by Gowers and Maurey have the
form cI+S, where I is the identity operator, c ∈ R and S is strictly singular,
i.e., the restriction of S to no infinite-dimensional closed subspace is an
isomorphism onto its range.
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In [Ko2], Koszmider constructed the first example of an indecomposable
Banach space of the form C(K), i.e., the Banach space of continuous func-
tions on a compact space K, with the supremum norm. All the operators
on C(K) are weak multipliers (see Definition 3.1). Assuming the contin-
uum hypothesis, Koszmider constructed an indecomposable C(K) space on
which all operators have the form gI + S, where g ∈ C(K), I is the identity
operator and S is weakly compact. Plebanek [Pl] constructed in ZFC an
indecomposable Banach space on which all operators have the above form.
Operators of the form gI + S with g ∈ C(K) and S weakly compact are
weak multipliers.

Unlike Gowers and Maurey’s space, which is separable, the spaces built
by Koszmider and Plebanek have density continuum. An indecomposable
C(K) cannot be separable, since a separable C(K) contains a complemented
copy of c0. Neither can a C(K) where all operators are weak multipliers
be separable, since in [Ko2] it is shown that if all operators on C(K) are
weak multipliers then none of its proper subspaces or proper quotients is
isomorphic to itself.

In this paper, using iterated forcing (see [Ku]) we prove that there exists
consistently a Banach space C(K) of density ω1 < 2ω such that all operators
on C(K) have the form gI+S for some g ∈ C(K) and S weakly compact. The
compact space K can be constructed either 0-dimensional or connected. In
the latter case, C(K) is indecomposable. We will only present the connected
case, which is technically more complicated.

It is proved in [Fr] that under MA +¬ CH every infinite compact space K
of weight smaller than continuum contains a non-trivial converging sequence,
which implies that C(K) can be written as c0 ⊕ Y .

We say that a Banach space X has the Grothendieck property if a se-
quence in X∗ converges in the weak topology iff it converges in the weak∗
topology. It is shown in [Sc] that a Banach space C(K) has the Grothendieck
property iff it does not contain a complemented copy of c0. In particular,
if C(K) is indecomposable then it has the Grothendieck property. Further-
more, it is proved in [Ko2] that if C(K) has few operators then it has the
Grothendieck property.

The first consistent construction of a Banach space C(K) of density
smaller than continuum which has the Grothendieck property is due to
Brech [Br]. The compact K constructed in [Br] is the Stone space of P(ω)∩
M , in a generic extension over a ground modelM of ZFC. It is easy to verify
that C(K) has many operators.

2. Measures on a compact topological space. The purpose of this
section is to fix some notations and to state some properties that we will use
throughout this paper. Proposition 2.3 and Corollary 2.5 will be used in the
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proof of Lemma 5.7. Corollary 2.5 is an easy consequence of Proposition 2.4,
rephrased for measures instead of functionals.

Throughout, by a topological space we mean a Hausdorff topological
space.

Let K be a compact topological space. By a measure on K we mean
a regular Borel measure of bounded variation. We define M(K) to be the
Banach space of measures on K with the norm ‖µ‖ = |µ|(K).

If B is a topological basis for K, closed under finite unions and intersec-
tions, then a measure on K is uniquely determined by its restriction to B.
In other words, if µ|B = ν|B, then µ = ν.

For each α ≤ ω1 we let Bα be the set of all finite unions of open sets of the
kind

∏
β<α(aβ, bβ) ∩ [0, 1], where aβ, bβ ∈ Q and {β < α : (aβ, bβ) ∩ [0, 1] 6=

[0, 1]} is finite. It is clear that Bα is a basis for [0, 1]α and it is closed under
finite unions and intersections. Moreover, if K ⊆ [0, 1]α is compact, then
{V ∩ K : V ∈ Bα} is also a basis for K closed under finite unions and
inteserctions. Since we may identify measures on K with measures on [0, 1]α

whose variations are null on [0, 1]α r K, we may interpret a measure on a
subspace of [0, 1]α as a function from Bα into R.

Definition 2.1. Let K be a compact topological space and let ε > 0.
We say that a bounded set S ⊆ M(K) is ε-weakly relatively compact if for
every sequence (Vn)n∈ω of pairwise disjoint open subsets of K,

sup{|µ(Vn)| : µ ∈ S} ≤ ε
for all but finitely many n ∈ ω.

We state the Dieudonné–Grothendieck theorem (see [Di, VII, 14]) re-
phrased by use of Definition 2.1.

Theorem 2.2 (Dieudonné–Grothendieck Theorem). For any compact
topological space K and bounded S ⊆M(K) we have:

(a) S is weakly relatively compact iff S is ε-weakly relatively compact for
all ε > 0.

(b) Given ε > 0, S is not ε-weakly relatively compact iff there exist a
sequence (µn)n∈ω in S and a pairwise disjoint sequence (Vn)n∈ω of
open subsets of K such that |µn(Vn)| > ε for all n ∈ ω.

We say that a sequence (µn)n∈ω of measures on K is pairwise disjoint
iff there exists a pairwise disjoint sequence (An)n∈ω of Borel sets such that
|µn|(K rAn) = 0 for all n. A sequence of L1 functions is pairwise disjoint if
they have pairwise disjoint supports.

Proposition 2.3 (Pełczyński). Suppose that K is a compact topological
space, ε > 0 and (µn)n∈ω is a pairwise disjoint sequence of probability mea-
sures on K. Then there exist a subsequence (µ′n)n∈ω of (µn)n∈ω and a pair-
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wise disjoint sequence (Un)n∈ω of open subsets of K such that µ′n(Un) ≥ 1−ε
for all n ∈ ω.

Proposition 2.4 (Kadec, Pełczyński). Suppose that (X,Σ, µ) is a mea-
sure space with a probability measure µ. Let (vn)n∈ω be a bounded sequence
of elements of L1(µ). Then there exist a subsequence (v′n)n∈ω of (vn)n∈ω, a
weakly converging sequence (gn)n∈ω ⊆ L1(µ) and a pairwise disjoint sequence
(hn)n∈ω ⊆ L1(µ) such that v′n = gn + hn for all n.

Propositions 2.3 and 2.4 follow from the proof of Lemma 1 of [Pe1] and
Theorem 6 of [KP], respectively. We use the versions presented in [Ta] (Lem-
mas 1 and 2). The following result is a corollary of Proposition 2.4.

Corollary 2.5. Let (µn)n∈ω be a bounded sequence in M(K) for a
compact space K. Then there exist a subsequence (µ′n)n∈ω of (µn)n∈ω, a
weakly converging sequence (λn)n∈ω and a pairwise disjoint sequence (νn)n∈ω
such that µ′n = νn + λn for all n.

Proof. Take µ =
∑∞

n=0 |µn|/‖µn‖2n+1. It is clear that µ is a probability
measure.

Define i : L1(µ)→M(K) as i(h)(E) =
	
E h dµ for all h ∈ L1(µ) and all

Borel E ⊆ K. One can easily verify that i is an isometry onto its range. Using
the Radon–Nikodým theorem ([Ru, 6.10]), for each n ∈ ω we find a unique
hn ∈ L1(µ) such that i(hn) = µn. It is also easy to see that i maps pairwise
disjoint sequences in L1(µ) into pairwise disjoint sequences in M(K), and
weakly converging sequences in L1(µ) into weakly converging sequences in
M(K).

Hence, applying Proposition 2.4 for (hn)n∈ω concludes the proof.

3. Weak multipliers. The definition of weak multipliers first appears
in [Ko2]. In this section we cite the main results about weak multipliers.

Definition 3.1 ([Ko2, 2.1]). An operator T : C(K) → C(K) is called
a weak multiplier if for every bounded sequence (en)n∈ω of pairwise disjoint
elements of C(K) (i.e., en ·em = 0 for n 6= m) and any sequence (xn)n∈ω ⊆ K
such that en(xn) = 0 we have

lim
n→∞

T (en)(xn) = 0.

Let us recall that Y ⊆ X is C∗-embedded in X iff every bounded con-
tinuous function on Y can be extended to a bounded continuous function
on X.

Lemma 3.2 ([Ko2, 2.8]). Suppose that K is a compact space with no
disjoint open subsets U1 and U2 such that U1 ∩ U2 is singleton. Then for
every x ∈ K the space K r {x} is C∗-embedded in K.



An indecomposable Banach space 47

Theorem 3.3 ([Ko2, 2.7]). The following are equivalent for a compact
space K:

(a) All operators T : C(K) → C(K) are of the form gI + S where
g ∈ C(K) and S is weakly compact.

(b) All operators on C(K) are weak multipliers and for every x ∈ K the
space K r {x} is C∗-embedded in K.

The following lemma is an adaptation of Lemma 2.5 of [Ko2].

Lemma 3.4. Let K be a compact and connected space such that all op-
erators on C(K) have the form gI + S, where g ∈ C(K) and S is a weakly
compact operator. Then C(K) is an indecomposable Banach space.

Proof. Let K be as in the hypothesis and suppose that X and Y are
closed subspaces of C(K) such that C(K) = X ⊕ Y . We will prove that X
or Y is finite-dimensional.

Let P : C(K) → C(K) be a projection such that Im(P ) = X and
Ker(P ) = Y . Fix g ∈ C(K) and a weakly compact operator S such that
P = gI + S. Since P 2 = P we have P 2I + S2 + gS + Sg = gI + S. Thus
S′ = (g2− g)I is weakly compact, and therefore strictly singular (see [Pe2]).
If (g2 − g)(x) 6= 0 for some x ∈ K we find an open neighbourhood V of
x such that |(g2 − g)(y)| > ε for some ε > 0 and every y ∈ V . Let Z
be the subspace of C(K) consisting of all continuous functions on K with
supports in V . Since K is connected, it does not have isolated points and so
Z is infinite-dimensional. But S′|Z is an isomorphism onto its range, since
(g2 − g)−1 is well defined and continuous in V and determines the inverse
operator of S′, contradicting the fact that S′ is strictly singular.

Thus (g2 − g)(x) = 0 for all x ∈ K, which implies that g(x) ∈ {0, 1} for
all x ∈ K. By the connectedness of K we have g ≡ 0 or g ≡ 1. Therefore
P = S or P = I + S, which means that P or I − P is weakly compact. In
the first case P |Im(P ) is an isomorphism onto its range and hence Im(P ) is
finite-dimensional. In the second case Ker(P ) is finite-dimensional.

Lemma 3.5. Suppose that K is compact , D is a dense subset of K and
T : C(K) → C(K) is not a weak multiplier. Then there exists a sequence
(xn)n∈ω in D such that for every bounded Borel function f : K → R, the set
{T ∗(δxn) − fδxn : n ∈ ω} is not weakly relatively compact in M(K), where
fδx = f(x)δx ∈M(K).

Proof. As T is not a weak multiplier, there exists a bounded pairwise
disjoint sequence (en)n∈ω of continuous functions from K into R, a se-
quence (xn)n∈ω of distinct points of K and ε > 0 such that en(xn) = 0
and |T (en)(xn)| > ε for all n. Since D is dense in K, we may assume that
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xn ∈ D. Set µn = T ∗(δxn)− fδxn . We have

T (en)(xn) =
�
en dT

∗(δxn) =
�
en dµn +

�
en d(fδxn).

Since en(xn) = 0, we have
	
en d(fδxn) = 0, and hence

|T (en)(xn)| =
∣∣∣ � en dµn∣∣∣ > ε for all n.

Let M be a real number such that ‖en‖ < M for all n. We have
|µn|(supp(en)) > ε/M . By the definition of variation we find Borel sets
Un ⊆ supp(en) such that |µn(Un)| > ε/2M . By regularity of µn we may
assume that Un are pairwise disjoint open sets. Since T and f are bounded,
(µn)n∈ω is a bounded sequence in M(K). By the Dieudonné–Grothendieck
theorem we conclude that (µn)n∈ω is not weakly relatively compact.

4. Construction of a forcing. In this section we introduce a forcing
R(K) for every connected first countable compact space K. The idea of
this construction is based on the forcing R(A) defined in Section 6 of [Ko1],
where A is a countable boolean subalgebra of P(N). The generic extension
adds a new set g ⊆ N to obtain the boolean algebra generated by A ∪ {g}
used in the next step of the iteration. Following the idea of [Ko2], we replace
the countable boolean algebra A by a first countable compact space K,
in order to obtain connectedness. Instead of adding a new element to the
algebra A, we add a new continuous real function on K, taking the closure
of the graph of a continuous function defined on a dense open subset of K.
This new function separates a weak∗ converging sequence of measures in K
(Lemma 4.6 makes it clear), eliminating one undesirable operator on C(K).

Fix α < ω1 and a compact set K ⊆ [0, 1]α with no isolated points. Let
Bα be a basis for [0, 1]α as defined previously, at the beginning of Section 2.

For α < β we interpret Bα as a subset of Bβ , identifying V ∈ Bα with
V × [0, 1]βrα ∈ Bβ . Thus, if µ is a measure on [0, 1]β and ν is a mea-
sure on [0, 1]α, we say that µ|Bα = ν when µ(π−1

α [E]) = ν(E) for all Borel
E ⊆ [0, 1]α.

For a function f we denote by Gr(f) the graph of f .
We define a forcing R(K) consisting of the conditions p = (fp, Ωp,Mp,

εp, ∆p) such that:

A.1. fp : K → [0, 1] is continuous;
A.2. Ωp ∈ Bα r {[0, 1]α};
A.3. supp(fp) ⊆ K ∩Ωp;
A.4. Mp is a finite set of positive measures on K;
A.5. εp ∈ Q ∩ (0,∞);
A.6. µ(Ωp) < εp for all µ ∈Mp;
A.7. ∆p ∈ Bα+1;
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A.8. πα[∆p] = Ωp;
A.9. Gr(fp|Ωp∩K) ⊆ ∆p.

The order ≤ on R(K) is given by q ≤ p if and only if

B.1. Ωq ⊇ Ωp;
B.2. Mq ⊇Mp;
B.3. εq ≤ εp;
B.4. ∆q ∩ (Ωp × [0, 1]) ⊆ ∆p.

Given p ∈ R(K) we define

diam(∆p) = sup{|y1 − y2| : ∃x ∈ Ωp ({(x, y1), (x, y2)} ⊆ ∆p)}
when ∆p 6= ∅. Otherwise we define diam(∆p) = 0. It is easy to see that for
every p ∈ R(K) and every q, r ≤ p we have

(∗) ∀x ∈ Ωp ∩K (|fq(x)− fr(x)| ≤ diam(∆p)).

Lemma 4.1. For every p ∈ R(K) and ε > 0 there exists q ≤ p such that
fq = fp, Ωq = Ωp, Mq = Mp, εq = εp and diam(∆q) ≤ ε.

Proof. Using the Tietze theorem, we find f : [0, 1]α → [0, 1] continuous
which extends fp. Let L be the graph of f . By the continuity of f , for each
x ∈ L there exists Vx ∈ Bα such that x ∈ Vx and |f(y)− f(x)| < ε/8 for all
y ∈ Vx. Fix an open interval Ix in [0, 1] with rational endpoints such that

(f(x)− ε/8, f(x) + ε/8) ∩ [0, 1] ⊆ Ix ⊆ (f(x)− ε/4, f(x) + ε/4) ∩ [0, 1].

SetWx = Vx×Ix ∈ Bα+1. By the construction, (y, f(y)) ∈Wx for all y ∈ Vx.
So {Wx : x ∈ [0, 1]α} is an open cover of L. Since L is closed in [0, 1]α+1, as
the graph of a continuous function, and so is compact, we can take a finite
set F ⊆ [0, 1]α such that L ⊆

⋃
x∈F Wx. Define ∆q = ∆p ∩

⋃
x∈F Wx. Since

L ⊆
⋃
x∈F Wx, condition A.9 is satisfied. From the construction of ∆q we

have ∆q ∈ Bα+1, proving A.7. From A.9 and the fact that ∆q ⊆ ∆p we have
A.8 and B.4. It remains to prove that diam(∆q) ≤ ε.

Let (x, y1), (x, y2) ∈ ∆q. Choose x1, x2 ∈ F such that (x, y1) ∈ Wx1

and (x, y2) ∈ Wx2 . Since y1 ∈ Ix1 we have |y1 − f(x1)| < ε/4, because
Ix1 ⊆ (f(x1)−ε/4, f(x1)+ε/4). Since x ∈ Vx1 , we have |f(x)−f(x1)| < ε/8.
So

|y1 − f(x)| ≤ |y1 − f(x1)|+ |f(x1)− f(x)| ≤ ε/4 + ε/8 < ε/2.

Analogously we conclude that |y2−f(x)| < ε/2 and therefore |y1−y2| < ε.

Lemma 4.2. Suppose that we have a compact set K ⊆ [0, 1]α, a forcing
condition p ∈ R(K), an open set Ω ∈ Bα, a finite set M of positive measures
on [0, 1]α, a continuous function f : K → [0, 1] with support in Ω ∩ K
and a positive rational number ε. Suppose that Ω ⊇ Ωp, Gr(f |Ωp∩K) ⊆ ∆p,
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M ⊇ Mp and ε ≥ εp, and µ(Ω) < ε for all µ ∈ M . Then there exists q ≤ p
such that fq = f , Ωq = Ω, Mq = M and εq = ε.

Proof. Define ∆q = (Ωq r Ωp) × [0, 1] ∪ ∆p. It is easy to verify that
Ωq r Ωp ∈ Bα, and conditions A.7, A.8, A.9 and B.4 are clearly satisfied.
The other conditions follow immediately from the hypothesis.

Lemma 4.3. Suppose that K ⊆ [0, 1]α is compact for α < ω1. Then

∀ε > 0∀p ∈ R(K) ∃q ≤ p ∀p1, p2 ≤ q ∀x ∈ Ωq ∩K (|fp1(x)− fp2(x)| < ε).

Proof. Fix ε > 0 and p ∈ R(K). By Lemma 4.1, Dε = {q ∈ P :
diam(∆p) < ε} is dense in R(K). Hence there exists q ≤ p such that
diam(∆q) < ε. From (∗) it follows that for all p1, p2 ≤ p and x ∈ Ωp ∩K we
have |fp1(x)− fp2(x)| < ε.

Let M be a transitive standard model for ZFC and take R(K) ∈M . Let
G be an R(K)-generic over M . We note that, since RM 6= RM [G], the space
K may not be compact in M [G], and the elements of Bα may change too.
But using the definition at the beginning of Section 2 each element of Bα may
be characterized by a finite collection of finite sets of triples (β, a, b), where
β < α and a, b are rational numbers such that 0 ≤ a < b ≤ 1. With this
characterization, elements of Bα are absolute sets (see [Ku] for absoluteness).
Thus, for V ∈ Bα, we denote both VM and VM [G] by V , unless it is not clear
from context. We note that VM [G] ∩K = VM ∩K.

Let p ∈ R(K). Since fp is continuous in the compact set K, in the
ground model M , it is uniformly continuous in M . Therefore it is uniformly
continuous in M [G], because uniform continuity is absolute for transitive
models. Hence, in M [G] we may extend fp continuously to a function f̃n :
K → [0, 1] by defining f̃p(x) = limn∈ω fp(xn) for xn ∈ K such that xn

n→ x.
Let ḟp be an R(K)-name for f̃p.

We recall the definition of limit for directed systems: if F is a filter over a
partial order P , (xp)p∈F ⊆ R and x ∈ R, we say that limp∈F xn = x if for all
ε > 0 there exists p ∈ F such that |xq − x| < ε for all q ≤ p. Completeness
of R implies that a directed system (xp)p∈F converges to some x ∈ R iff for
all ε > 0 there exists p ∈ F such that |xq − xr| < ε for all q, r ≤ p.

In M [G] define ΩG =
⋃
p∈GΩp and let fG : ΩG ∩K → [0, 1] be given by

fG(x) = lim
p∈G

f̃p(x).

It follows from Lemma 4.3 and the genericity of G that fG is well-defined.
LetKG be the closure of the graph of fG. Let ḟG and K̇G be the R(K)-names
for fG and KG, respectively.

Lemma 4.4. Suppose that K ⊆ [0, 1]α is compact with no isolated points
in the ground model M , and let G be an R(K)-generic over M . Then the
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following statements hold in M [G]:

(a) ΩG ∩K is dense in K;
(b) fG is continuous;
(c) if K is connected in M , then KG is connected in M [G].

Proof. Working in M , we will show that given x ∈ K, an open neigh-
bourhood V of x belonging to Bα and p ∈ P , there exists q ≤ p such that
V ∩Ωq 6= ∅. This is enough to prove (a), using, in M [G], the genericity of G
and the fact that K is dense in K.

If x ∈ Ωp, take q to be p except that Ωq ⊇ Ωp preserving the condition
µ(Ωq) < εp for all µ ∈ Mp (this is possible by the regularity of µ), and use
Lemma 4.2 to obtain ∆q. If x /∈ Ωp, pick an open neighbourhood W ∈ Bα
of x included in V and disjoint from Ωp. Since V ∩K is a non-empty open
set in a compact space with no isolated points, it is uncountable. So there
exists y ∈ V such that µ({y}) = 0 for all µ ∈Mp. Fix γ = min{εp − µ(Ωp) :
µ ∈ Mp}. Select an open neighbourhood U ∈ Bα of y included in W such
that µ(U) < γ for all µ ∈ Mp. Pick U ′ ∈ Bα such that x ∈ U ′ ⊆ U ′ ⊆ U .
Define q = (fp, Ωp ∪ U ′,Mp, εp, ∆q), where ∆q is obtained by Lemma 4.2.

Let us prove (b). Working in M [G], fix x ∈ ΩG ∩K and ε > 0. Choose
p ∈ G such that x ∈ Ωp and |f̃p1(y)− f̃p2(y)| < ε/3 for all y ∈ Ωp ∩K and
p1, p2 ≤ p (using Lemma 4.3). By the continuity of f̃p, let V ⊆ Ωp be an
open neighbourhood of x such that |f̃p(y)− f̃p(x)| < ε/3 for all y ∈ V ∩K.
Thus for all q ≤ p,

|f̃q(y)− f̃q(x)| ≤ |f̃q(y)− f̃p(y)|+ |f̃p(y)− f̃p(x)|+ |f̃p(x)− f̃q(x)| < ε,

implying that |fG(y) − fG(x)| ≤ ε (because we can take q ≤ p such that
|fG(y) − fq(y)| and |fG(x) − fq(x)| are sufficiently small), proving the con-
tinuity of fG at x.

To prove (c) we will first see that if K is connected in M then K is
connected in M [G]. If K is not connected, there exist open sets U and V in
[0, 1]α such that K ∩ U ∩ V = ∅, K ⊆ U ∪ V , K ∩ U 6= ∅ and K ∩ V 6= ∅.
Therefore K ∩ U ∩ V = ∅, K ⊆ U ∪ V , K ∩ U 6= ∅ and K ∩ V 6= ∅. By the
compactness of K we may assume that U, V ∈ Bα. Since elements of Bα are
determined by finite rational coordinates,K∩UM∩VM = ∅,K ⊆ UM∪VM ,
K ∩UM 6= ∅ and K ∩ VM 6= ∅, contradicting the connectedness of K in M .

Having proved that K is connected, we now show that for every x ∈
K r ΩG, every open neighbourhood V of x, r ∈ [0, 1] ∩ Q and n ∈ ω there
exists y ∈ V ∩ K ∩ ΩG such that |fG(y) − r| < 1/n. This will imply that
π−1
KG,K

(x) = {x} × [0, 1]. We may assume that x ∈ K, taking some x′ ∈
V ∩KrΩG instead of x. We note that V ∩KrΩG 6= ∅, because if V ∩K ⊆ ΩG,
we may assume that VM ⊆ Ωp for some p ∈ G, which implies that x ∈ ΩG.
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Working in M , given x ∈ K, a neighbourhood V ∈ Bα of x, r ∈ [0, 1]∩Q
and p ∈ R(K), we will show that there exists q ≤ p such that diam(∆q) ≤
1/n and either x ∈ Ωq or there exists y ∈ V ∩Ωq such that |fq(y)−r| < 1/n.
If x ∈ Ωp, by the regularity of the measures we find an open set W such
that Ωp ⊆ W and µ(W ) < εp for all µ ∈ Mp. Select Ωq ∈ Bα such that
Ωp ⊆ Ωq ⊆ Ωq ⊆ W , Mq = Mp, εq = εp and fq = fp and use Lemmas 4.2
and 4.1 to obtain ∆q such that q ∈ R(K) and diam(∆q) < 1/n. If x /∈ Ωp

we choose an open neighbourhood W ⊆ V of x disjoint from Ωp. Consider
y ∈W such that µ({y}) = 0 for all µ ∈Mp. Let U be an open neighbourhood
of y included in W such that µ(U) < εp − µ(Ωp) for all µ ∈ Mp. Define
Ωq = Ωp ∪ U . By the Tietze theorem we find fq : K → [0, 1] with support
in Ωq such that fq|Ωp = fp and fq(y) = r. Define εq = εp and Mq = Mp and
use Lemmas 4.1 and 4.2 to obtain ∆q such that diam(∆q) ≤ 1/n.

We conclude that, in M [G], if x ∈ K r ΩG then π−1
KG,K

(x) = {x} ×
[0, 1]. By items (a) and (b), for x ∈ ΩG we have π−1

KG,K
(x) = {(x, fG(x))}.

Therefore π−1
KG,K

(x) is connected for all x ∈ K, which easily implies that KG

is connected.

From Lemma 4.4(a) we conclude that πα[KG] = K.

Lemma 4.5. For any α < ω1 and any compact set K ⊆ [0, 1]α with no
isolated points, the forcing R(K) is c.c.c.

Proof. Let (pξ : ξ < ω1) be an uncountable family of conditions of R(K).
We may assume that Ωpξ , εpξ and ∆pξ are constant with respect to ξ; we
will denote them, respectively, by Ω, ε and ∆. Given ξ, η < ω1 define p =
(fpξ , Ω,Mpξ ∪Mpη , ε,∆). It is easy verify that p ∈ R(K) and p ≤ pξ, pη.

Lemma 4.6. Let α < ω1, K ⊆ [0, 1]α be a compact set with no iso-
lated points, ε > 0, µ a positive measure and p ∈ R(K) such that εp ≤ ε
and µ ∈ Mp. Let (µn)n∈ω ⊆ M([0, 1]α) and (xn)n∈ω ⊆ K be such that
µn({xn})

n→ 0, (|µn|)n∈ω weak∗ converges to µ, {µn : n ∈ ω} is not 5ε-weakly
relatively compact , and there exists a pairwise disjoint sequence (An)n∈ω ⊆
Bα such that ‖µn‖ − |µn|(An) < ε

18‖µn‖. Then there exist δ1 > δ2 > 0 such
that for all k ∈ ω there exist q ≤ p and n1, n2 > k such that

(i) |
	
K fq dµn1 | > δ1;

(ii) |
	
K fq dµn2 | < δ2;

(iii) |µn1 |(K rΩq) < (δ1 − δ2)/3;
(iv) |µn2 |(K rΩq) < (δ1 − δ2)/3;
(v) xn1 , xn2 ∈ Ωq, |fq(xn1)− fq(xn2 | < 1/k;
(vi) diam(∆q) ≤ 1/k.

Proof. By Definition 2.1, passing to a subsequence we may assume that
there exists a pairwise disjoint sequence (Wn)n∈ω ⊆ Bα such that |µn(Wn)|
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> 5ε for all n ∈ ω. Since (µn)n∈ω is not weakly convergent (by Theorem 2.2),
‖µn‖ does not converge to 0. Passing to a subsequence we assume that ‖µn‖
converges to r > 0.

Define δ1 = 5ε/3r and δ2 = 3εr/2. To simplify the notation we will
assume that r = 1, substituting µn by µn/r for all n, and µ by µ/r. Passing to
a subsequence and using the hypothesis we assume that |µn|(An) > 1−ε/18
for all n.

Fix δ > 0 such that δ < (εp − ν(Ωp))/6 for all ν ∈ Mp. Such a δ exists
by the definition of R(K). Using the Rosenthal lemma ([Di, p. 82]) and the
hypothesis that µn({xn}) converges to 0, passing to a subsequence we assume
that |µn({xm})| < δ for all n,m ∈ ω.

Fix k ∈ ω. Since |µn| converges weak∗ to µ, and µ(Ωp) < ε, we choose
k0 ≥ k such that |µn|(Ωp) < ε for all n ≥ k0, and therefore∣∣∣ � fp dµn∣∣∣ < ε.

Setting Un = Wn rΩp we have, for all n > k0,

|µn(Un)| > 5ε− ε = 4ε.

But
|µn|(K rAn) < ε/18,

which implies that |µn(Un ∩An)| > 3ε. Define Bn = Un ∩An.
Since An’s are pairwise disjoint, we can find k1 ≥ k0 such that µ(An) < δ

and ν(An) < δ for all n > k1 and ν ∈Mp. Thus, noting that ν(Ωp) ≤ εp−4δ,
for all ν ∈ Mp, we have ν(Ωp ∪ An ∪ Aj) < εp − 2δ for all n, j > k1 and
ν ∈Mp.

Now we will take care of item (v). Passing to a subsequence, we assume
that xn converges to x ∈ K. If x ∈ Ωp we may assume that x ∈ Ωp,
extending p to p′ such that Ωp ⊆ Ωp′ (using regularity of measures). In this
case, passing to a subsequence, we assume that xn ∈ Ωp for all n, and define
Cn = ∅. If x /∈ Ωp, we assume that xn /∈ Ωp for all n and |ν({xn})| < δ for
all ν ∈ Mp. Select Cn ∈ Bα disjoint from Ωp such that xn ∈ Cn, ν(Cn) < δ
for all ν ∈ Mp, and |µn|(Cm) < δ for all n,m ∈ ω. It is possible to choose
such Cn because we have assumed that µn({xm}) < δ for all n,m.

By the continuity of fp we find distinct integers n1, n2 > k1 such that
|fp(xn1)− fp(xn2)| < 1/k. Define

Ωq = Ωp ∪An1 ∪An2 ∪ Cn1 ∪ Cn2 .

Since |µn(Bn)| > 3ε, by the regularity of µn we find a closed set Fn ⊆ Bn
such that |µn(Fn)| > 3ε.

Let f : K → [0, 1] be a continuous function such that f |Fn1
= 1 and

f |KrBn1
= fp|KrBn1

, and g : K → [0, 1] be a continuous function such
that g|Kr(Cn1∪Cn2 ) = 1 and g(xn1) = g(xn2) = 0 if Cn 6= ∅ for all n, and
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g = 1 otherwise. Define fq = f · g, Mq = Mp, εq = εp and define ∆q as in
Lemma 4.2. By Lemma 4.1 we assume that diam(∆q) < 1/k. It is easy to
see that q ∈ R(K) and fq|Ωp = fp|Ωp , because Bn ∩ Ωp = ∅. Hence q ≤ p.
Then∣∣∣ � fqdµn1

∣∣∣ ≥ |µn1(Fn1)| − |µn1 |(Ωp)− |µn1 |(Cn1 ∪Cn2) > 3ε− ε− 2δ ≥ 5ε/3

and ∣∣∣ � fq dµn2

∣∣∣ ≤ |µn2(Bn1)|+
∣∣∣ � fp dµn2

∣∣∣+ |µn2 |(Cn1 ∪ Cn2)

< ε/18 + ε+ 2δ < 3ε/2.

Since An1 ∪An2 ⊆ Ωq we have

|µn|(K rΩq) <
ε

18
=
δ1 − δ2

3
for n ∈ {n1, n2}. Thus we have proved items (i) to (iv). Item (v) follows
from the choice of k1 and k2, in the case x ∈ Ωp, because we will have
fq(xn) = fp(xn). In the case x /∈ Ωp we have Cn 6= ∅ and item (v) follows
from fq(xn1) = fq(xn2) = 0. Item (vi) is imediate from the choice of ∆q.

5. Iteration of the forcing. In this section we iterate forcings of the
kind R(K), as described below, to prove the main result of this paper: the
consistent existence of an indecomposable C(K) space with density smaller
than continuum.

We will construct by induction forcings (Pα)α≤ω1 and Pα-names (K̇α)α≤ω1

such that Pα 
 “K̇α is compact of countable weight”. Let P0 be a trivial
forcing and K0 = [0, 1]2. Having defined Pα and K̇α we define

Pα+1 = Pα ∗ Q̇α,
where Q̇α is a Pα-name such that

Pα 
 Q̇α = R(K̇α),

and we define K̇α+1 to be a Pα+1-name such that Pα+1 
 K̇α+1 = (K̇α)Ġα .
If α ≤ ω1 is a limit ordinal and (Pβ)β<α and (K̇β)β<α are defined, we define
Pα to be the iteration with finite supports of (Pβ)β<α, and we define K̇α so
that

Pα 
 K̇α = lim←− (K̇β)β<α.

Set P = Pω1 . In M [Gα] consider Kα = (K̇α)Gα .
By the definition we have Kα ⊆ [0, 1]α for α ≥ ω, and Kα ⊆ [0, 1]α+2 for

α < ω. To get uniform notation, if α < ω and x ∈ Kγ with γ > α, we denote
x|α+2 by x|α.

Since P is an iteration with finite supports of c.c.c. forcings, P is also
c.c.c. and hence it preserves cardinals.
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In Kα we define (qn|α)n∈ω ⊆ Kα inductively, in Mα. In M , we fix an
enumeration {qn|0 : n ∈ ω} of the pairs of rationals in [0, 1]2. Having de-
fined {qn|α : n∈ω} inMα, inMα+1 we define qn|(α+1)=(qn|α, fG(qn|α)) if
qn|α∈ΩG{α} , and qn|(α+1)=(qn|α, 0) otherwise. For α a limit ordinal we de-
fine qn|α=

⋃
β<α qn|β. Let q̇n|α be a Pα-name for qn|α. Set qn=qn|ω1 inMω1 .

Lemma 5.1. In M [G], the set {qn : n ∈ ω} is dense in Kω1.

Proof. By the hypothesis {qn|0 : n ∈ ω} is dense in K0. If {qn|β : n ∈ ω}
is dense inKβ for all β < α and α a limit ordinal, then, inMα, {qn|α : n ∈ ω}
is dense in Kα. In fact, if there exists a non-empty set V ∈ Bα such that V
is disjoint from {qn|α : n ∈ ω}, then since V is a finite union of elementary
open sets there exists β < α such that πβ[V ] is a non-empty open set in Kβ ,
contradicting the assumption that {qn|β : n ∈ ω} is dense in Kβ .

Suppose that {qn|α : n ∈ ω} is dense in Kα. Let V be a non-empty open
set of Kα+1. Since Gr(fG{α}) is dense in Kα+1, V intersects Gr(fG{α}) =
π−1(ΩG{α}), which is open in Kα+1. Therefore, taking this intersection in-
stead of V we assume that V ⊆ Gr(fG{α}). By Lemma 4.4, fG{α} is contin-
uous in ΩG{α} , so π

−1
Kα+1,Kα

is a homeomorphism when restricted to ΩG{α} ,
hence πKα+1,Kα [V ] is open in Kα, and therefore it intersects {qn|α : n ∈ ω},
implying that V intersects {qn|(α+ 1) : n ∈ ω}.

Lemma 5.2. In M [G], the space Kω1 is connected.

Proof. We proceed by induction. For α = 0, K0 = [0, 1]2 is connected
in M0. If Kα is connected in Mα, then by Lemma 4.4, Kα+1 is connected
in Mα+1. Let α ≤ ω1 be a limit ordinal and suppose that, in Mβ , Kβ is
connected, for all β < α, but Kα is not connected. By the compactness of
Kα there exist U, V ∈ Bα such that Kα∩U∩V = ∅, Kα ⊆ U∪V , Kα∩U 6= ∅
and Kα ∩ V 6= ∅. Since elements of Bα are determined by finite coordinates
below α, there exists β < α such that πβ[U ] and πβ[V ] are open sets such
that U = π−1

β [πβ[U ]] and V = π−1
β [πβ[V ]], which implies that Kβ , and so

Kβ , is not connected.

Lemma 5.3. Let µ̇ be a P -name for a measure on Kω1 and let ż be a
P -name for an element of Kω1 . Then the following sets are closed unbounded
in ω1:

(a) Cµ̇ = {α < ω1 : P 
 µ̇|Bα ∈Mα and |µ̇||Bα = |µ̇|Bα |};
(b) Cż = {α < ω1 : P 
 ż|α ∈Mα}.

Proof. Fix α0 ∈ ω1. We will construct by induction an increasing se-
quence (αn)n∈ω in ω1 such that P forces the following statements:

µ̇|Bαn ∈Mαn+1 ,(∗)
∀V ∈ Bαn (|µ̇|(V ) = |µ̇|Bαn+1

|(V )).(∗∗)
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Working in M [G] for G a P -generic over a ground model M , given n we find
αn+1 > αn such that µ̇G ∈Mαn , since Bαn ∈M [Gα] is countable and µ̇G|Bαn
may be identified as a countable sequence of countable sequences of integers.
We may also choose αn+1 large enough to contain the elements of Bω1 which
decide the value of |µ̇G|(V ) for V ∈ Bα, since |µ̇G|(V ) is the supremum of
finite sums of measures of disjoint Borel sets and each Borel set in Kω1 may
be approximated by elementary open sets.

Therefore, for each p ∈ P we find q ≤ p which forces (∗) and (∗∗) for
some αn+1. This means that the set D consisting of all conditions p ∈ P
such that, for some β < ω1,

p 
 β = min{β < ω1 : µ̇|Bαn ∈Mβ ∧ ∀V ∈ Bαn (|µ̇|(V ) = |µ̇|β|(V ))},
is dense in P . For each p ∈ D we define βp as the least β such that p forces
(∗) and (∗∗) with β instead of αn+1. Note that βp 6= βq implies that p and
q are incompatible. Since P is c.c.c., {βp : p ∈ D} is countable. Since D is
dense in P , taking αn+1 = sup{βp : p ∈ D} we have (∗) and (∗∗) satisfied.

Setting α = sup{αn : n ∈ ω} we have α ∈ Cµ̇, which proves that Cµ̇ is
umbounded. The proof that Cµ̇ is closed uses the same argument. Thus we
have handled item (a). Item (b) is analogous.

For G an R(K)-generic over M , in M [G] we define f ′G : KG → [0, 1] by
f ′G(x, t) = t for (x, t) ∈ KG ⊆ K × [0, 1]. In M we let ḟ ′G be an R(K)-name
for f ′G. We note that

(∗∗∗) f ′G|KG∩ΩG×[0,1] = fG ◦ π,

since π−1
KG,K

(x) = {fG(x)} for x ∈ ΩG.

Let G be a P -generic over M and fix α < ω1. In M [G] we define f̃ ′G{α}
to be the continuous extension of f ′G{α} in KM [G]

α , which exists since f ′G{α}
is uniformly continuous in Kα. Let f̄ ′G{α} be a P -name for f̃ ′G{α} .

Lemma 5.4. Let ε > 0 be rational , α < ω1 and p ∈ P be such that εp(α) ≤
ε and µ̇ ∈ Mp, for µ̇ a Pα-name. Let (µ̇n)n∈ω and (ẋn)n∈ω be sequences of
P -names such that p forces:

(i) µ̇n ∈M(Kω1);
(ii) ẋn ∈ Kω1 ;
(iii) µn|Bα ∈Mα;
(iv) ẋn|α ∈Mα;
(v) |µ̇n|Bα | = |µ̇n||Bα ;
(vi) µ̇n|Bα({ẋn|α})

n→ 0;
(vii) |µ̇n|Bα | weak

∗ converges to µ̇;
(viii) {µ̇n|Bα : n ∈ ω̌} is not 5̌ε̌-weakly relatively compact;
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(ix) there exists a pairwise disjoint sequence (An)n∈ω ⊆ Bα such that
‖µ̇n‖ − |µ̇n|(An) < ε

18‖µ̇n‖ for all n.

Then there exist δ1, δ2 > 0 such that p 
 ∀k ∈ ω̌ ∃n1, n2 > k∣∣∣ �
K

f̄ ′G{α} ◦ πα+1 dµ̇n1

∣∣∣ > δ̌1,
∣∣∣ �
K

f̄ ′G{α} ◦ πα+1 dµ̇n2

∣∣∣ < δ̌2,

|ḟG{α}(ẋn1 |α)− ḟG{α}(ẋn2 |α)| < 2/k.

Proof. Let G be a P -generic over a ground model M such that p ∈ G.
In M [G], set µn = (µ̇n)G and xn = (ẋn)G. In M [Gα], take µ = µ̇G{α} .

By hypothesis, µn|Bα ∈ M [Gα] and xn|α ∈ M [Gα] for all n. Let us
work in M [Gα]. By Lemma 4.6 there exist δ′1 > δ′2 > 0 such that for all
p′ ≤ p(α) ∈ R(Kα) and k ∈ ω, there exist n1, n2 > k and q ≤ p′ such that
|
	
fq dµn1|Bα | > δ′1, |

	
fq dµn2|Bα | < δ′2, and |µni|Bα |(Kα r Ωq) < (δ′1 − δ′2)/3

for i = 1, 2. By Lemma 4.1 we may assume that

diam(∆q) ≤ min
{ | 	 fq dµn1|Bα | − δ′1

‖µn1|Bα‖
,
δ′2 − |

	
fq dµn2|Bα |

‖µn2|Bα‖

}
.

Therefore, for all r ≤ q we have∣∣∣ �
Ωq

fr dµn1|Bα

∣∣∣ > ∣∣∣ � fq dµn1|Bα

∣∣∣− diam(∆q) · |µn1|Bα |(Ωq) ≥ δ
′
1

and ∣∣∣ �
Ωq

fr dµn2|Bα

∣∣∣ < ∣∣∣ � fq dµn2|Bα

∣∣∣+ diam(∆q) · |µn2|Bα |(Ωq) ≤ δ
′
2.

Since µn|Bα ∈M [Gα], in M [G] we have
�

ΩM [G]∩K

f̃r dµn|Bα =
�

ΩM∩K

fr dµn|Bα

for all Ω ∈ Bα, and so in M [G],∣∣∣ �

Ωr∩Kα

f̃r dµn1|Bα

∣∣∣ > δ′1,(1)

∣∣∣ �

Ωr∩Kα

f̃r dµn2|Bα

∣∣∣ < δ′2(2)

and

(3) |µni|Bα |(Kα rΩr) < (δ′1 − δ′2)/3

for i ∈ {1, 2}. We observe that at this moment f̃r represents the continuous
extension of fr in K

M [G]
α , and not in K

M [Gα+1]
α , as with the previous def-

inition. In the same way we interpret fG{α} as a continuous function from

ΩG{α} ∩K
M [G]
α+1 into [0, 1].
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The inequalities (1) and (2) also hold for fG{α} instead of f̃r, since, by
the definition of fG{α} , for all x ∈ ΩG{α} and ε′ > 0 there exists r ≤ p(α)
such that for all s ≤ r we have |fG(x)− fs(x)| < ε′.

From (3) and the hypothesis (v) we conclude that |µni|(KrΩr×[0, 1]ω1rα)
< (δ′1 − δ′2)/3, for i ∈ {1, 2}, and from (1) and (2) for fG and from (∗∗∗) we
have ∣∣∣ �

K∩Ωr×[0,1]ω1rα

f ′G{α} ◦ πα+1 dµn1

∣∣∣ > δ′1,∣∣∣ �

K∩Ωr×[0,1]ω1rα

f ′G{α} ◦ πα+1 dµn2

∣∣∣ < δ′2.

Hence ∣∣∣ �
K

f ′G{α} ◦ πα+1 dµn1

∣∣∣ > δ′1 − (δ′1 − δ′2)/3,∣∣∣ �
K

f ′G{α} ◦ πα+1 dµn2

∣∣∣ < δ′2 + (δ′1 − δ′2)/3.

Thus, taking δ1 = δ′1 − (δ′1 − δ′2)/3 and δ2 = δ′2 + (δ′1 − δ′2)/3 we see that
δ1 > δ2 > 0 satisfy the assertion of the lemma. The last inequality of the
assertion follows from items (v) and (vi) of Lemma 4.6.

Lemma 5.5. Let a, b ∈Mα be disjoint subsets of ω such that

{qn|α : n ∈ a} ∩ {qn|α : n ∈ b} 6= ∅.
Then {qn : n ∈ a} ∩ {qn : n ∈ b} 6= ∅ in Mω1.

Proof. If {qn|β : n ∈ a} ∩ {qn|β : n ∈ b} = ∅ for β a limit ordinal, there
exists γ < β where the separation occurs, in the model Mβ . Thus, in order
to prove the lemma it is enough to show that

{qn|(α+ 1) : n ∈ a} ∩ {qn|(α+ 1) : n ∈ b} 6= ∅
and use induction.

Fix α < ω1 and a, b ⊆ ω as in the hypothesis. Working inMα let us prove
that

R(Kα) 
 {q̇n|(α+ 1) : n ∈ ǎ} ∩ {q̇n|(α+ 1) : n ∈ b̌} 6= ∅ in K̇α+1.

Fix p ∈ R(Kα). We will show that there exists q ≤ p such that

(4) q 
 {q̇n|(α+ 1) : n ∈ ǎ} ∩ {q̇n|(α+ 1) : n ∈ b̌} 6= ∅.
Using the fact that Kα is metrizable and passing to a subsequence, we

assume that there exists z ∈ Kα such that qn|α converges to z.
We will consider two cases. If there exists q ≤ p such that z ∈ Ωq, by the

regularity of the measures in Mq we may assume that z ∈ Ωq. Since fG{α} is
continuous in ΩG{α} and R(Kα) 
 K̇α+1 = Gr(ḟG{α}), we see that (4) holds.
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In the second case, z /∈ Ωq for all q ≤ p. Fix q ≤ p and k ∈ ω. Choose
an open neighbourhood V of z disjoint from Ωq. Since µ({qn|α})

n→ 0 for all
µ ∈Mq, we may find n1, n2 > k and disjoint open sets U1, U2 ⊆ V such that

• n1 ∈ a, n2 ∈ b;
• qn1 |α ∈ U1, qn2 |α ∈ U2;
• µ(U1 ∪ U2) < εq − µ(Ωq) for all µ ∈Mq.

Define Ωr = Ωq ∪ U1 ∪ U2, fr = fq, εr = εq, Mr = Mq and ∆r such that
r ∈ R(Kα) and diam(∆r) ≤ 1/k. By the above conditions we have r ≤ q
and, for all i ∈ {1, 2},

r 
 q̌ni |α ∈ ΩG{α} and ḟG{α}(q̌ni |α) < 1/k,

proving that

p 
 (ž, 0) ∈ {q̇n|(α+ 1) : n ∈ ǎ} ∩ {q̇n|(α+ 1) : n ∈ b̌}.
Lemma 5.6. If U, V are disjoint open subsets of Kω1 such that U∩V 6= ∅,

then U ∩ V has at least two elements.

Proof. Let U̇ and V̇ be P -names for disjoint open subsets of Kω1 such
that

P 
 U̇ ∩ V̇ 6= ∅.
For any α < ω1 let U̇α and V̇α be P -names such that

P 
 πα[U̇ ] = U̇α, πα[V̇ ] = V̇α.

SinceKω1 is separable, if V is an open set ofKω1 then there exists a countable
union V ′ of basic open sets such that V = V ′. Thus, we may assume that,
in M [G], (U̇)G and (V̇ )G are countable unions of basic open sets. Choose
γ < ω1 and p ∈ P such that

p 
 ∀α ≥ γ (U̇ = π−1
α [U̇α] and V̇ = π−1

α [V̇α]).

Fix q ≤ p. Let ż be a P -name for an element of K such that

q 
 ż ∈ U̇ ∩ V̇ .
Pick α > γ, supp(q) such that q 
 ż|α ∈Mα, which is possible by Lemma 5.3.

By Lemma 5.1 and since Kα is metrizable, there exist P -names ȧ and ḃ
for disjoint subsets of ω such that q 
 ȧ, ḃ ∈Mα and

q 
 {q̇n : n ∈ ȧ} ⊆ U̇ , {q̇n : n ∈ ḃ} ⊆ V̇ , q̇n|α
n∈ȧ−→ ż|α, q̇n|α

n∈ḃ−→ ż|α.
Define r ≤ q as r(β) = q(β) if β 6= α, and take for fr(α) the null function,

Ωr(α) = ∅, Mr(α) = {δż|α}, ∆r(α) = ∅ and εr(α) = 1.
In M [Gα] we will denote (ż|α)Gα by z|α.
In R(Kα), working in Mα, there is no s ≤ r(α) such that z|α ∈ Ωs,

because this would imply δz|α(Ωs) = 1. Thus, analogously to the proof of
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Lemma 5.5, we conclude that, in Mα,

r(α) 
 (ż|α, 0) ∈ {q̌n|(α+ 1) : n ∈ ǎ} ∩ {q̌n|(α+ 1) : n ∈ b̌},

where a = ȧGα and b = ḃGα .
Recall the last paragraph of the proof of Lemma 5.5. We may modify

it taking fr such that fr(qi|α) = 1 for i ∈ {n1, n2} and fr|Kr(U1∪U2) =
fq|Kr(U1∪U2) instead of fr = fq. Defining r(α) ∈ R(Kα) in this way in
M [Gα] we will have

r(α) 
 q̌ni |α ∈ ΩG{α} and |fG{α}(q̌ni |α)− 1| < 1/k,

and therefore

r(α) 
 (ż|α, 1) ∈ {q̌n|(α+ 1) : n ∈ ǎ} ∩ {q̌n|(α+ 1) : n ∈ b̌}.

We have proved that

r 
 π−1
α+1[(ż|α, 0)] ⊆ U̇ ∩ V̇ , π−1

α+1[(ż|α, 1)] ⊆ U̇ ∩ V̇

and so r 
 |U̇ ∩ V̇ | ≥ 2.

Lemma 5.7. Every operator on C(Kω1) is a weak multiplier.

Proof. Fix p ∈ P and a P -generic G over a ground model M . Let us
work in M [G]. Let K = Kω1 and B = Bω1 .

Suppose that there exists an operator T : C(K) → C(K) which is not
a weak multiplier. By Lemmas 3.5 and 5.1 there exist distinct xn ∈ {qm :
m ∈ ω} such that for every Borel bounded function f : K → R, the set
{T ∗(δxn)−fδxn : n ∈ ω} is not relatively weakly compact. Define f : K → R
by f(xn) = T ∗(δxn)({xn}) for all n ∈ ω, and f(x) = 0 at the other points
of K. Passing to a subsequence we assume that f(xn) converges to L ∈ R.
By Corollary 2.5 there exist sequences of measures (µn)n∈ω and (λn)n∈ω such
that (µn)n∈ω are pairwise disjoint, (λn)n∈ω converges weakly to λ ∈ M(K)
and

T ∗(δxn)− fδxn = µn + λn.

Let µ̇n be P -names for µn and ẋn be P -names for xn.
Set C =

⋂
n∈ω Cµ̇n , where Cµ̇n is defined as in Lemma 5.3. Since count-

able intersections of closed unbounded subsets of ω1 are closed unbounded
(see [Ku, Ch. II, Lemma 6.8]), from Lemma 5.3 we deduce that C is closed
unbounded in ω1.

Choose α ∈ C such that ‖µn|Bα‖ = ‖µn‖ for all n ∈ ω. Let us prove that
such an α exists. For any pair (n,m) of positive integers pick a(µn,m) ∈ B such
that |µn(a(µn,m))| > ‖µn‖−1/m. Choose β(µn,m) such that a(µn,m) ∈ Bβ(µn,m)

.
Letting β be the supremum of all β(µn,m) we find α > β, supp(p) belonging
to C.
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We may also assume that {µn|Bα : n ∈ ω} is not weakly relatively com-
pact in M(Kα), by taking α sufficiently large to contain a sequence Wn in
B such that |µn(Wn)| > % for some % > 0. Similarly, using Proposition 2.3
and the fact that (µn)n∈ω are pairwise disjoint, we assume that there exist
(An)n∈ω ⊆ Bα pairwise disjoint such that ‖µn‖ − |µn|(An) < %

90‖µn‖. We
assume yet that

T ∗(δxn)|Bα({xn|α}) = T ∗(δxn)({xn}),
fδxn|Bα({xn|α}) = fδxn({xn}),
λn|Bα({xn|α}) = λn({xn}).

Here we use regularity of the measures, taking an,m, bn,m, cn,m ∈ B containing
xn such that

|T ∗(δxn)(an,m)− T ∗(δxn)({xn})| < 1/m,
|fδxn(bn,m)− fδxn({xn})| < 1/m,
|λn(cn,m)− λn({xn})| < 1/m,

and choosing α large enough for Bα to contain all an,m’s, bn,m’s and cn,m’s.
Note that µn|Bα({xn|α})

n→ 0 because

µn|Bα({xn|α}) = µn({xn}) = T ∗(δxn)({xn})− fδxn({xn}) + λn({xn})

= T ∗(δxn)({xn})−
�

{xn}

fδxn + λn({xn})

= T ∗(δxn)({xn})− f(xn) + λn({xn}) = λn({xn}),

which converges to 0, since, by the Dieudonné–Grothendieck theorem, for ev-
ery pairwise disjoint sequence (Vn)n∈ω of open neighbourhoods of xn, λn(Vn)
converges to 0.

Let us work in Mα. Since Kα has countable weight, the space C(Kα)
is separable. Therefore BC(Kα)∗ , the unit ball of C(Kα)∗ with the weak∗
topology, is metrizable (see [Fa, Proposition 3.24]). Since, by the Alaoglu
theorem, BC(Kα)∗ is compact in the weak∗ topology (see [Fa, Theorem 3.1]),
we may assume, passing to a subsequence, that |µn|Bα | weak∗ converges in
M(Kα). Let µ be the weak∗ limit of |µn|Bα |.

Passing to a subsequence we may assume that (xn|α)n∈ω converges.
Set ε = %/5. Define q ∈ P by q(α) = (0, ∅, {µ}, ε, ∅) and q(β) = p(β) for

β 6= α. Select r ≤ q satisfying the hypothesis of Lemma 5.4. Define

fα = f̃ ′G{α} ◦ πα+1

and let ḟα be a P -name for fα. Since fα(xn) = fG{α}(xn|α) for all n, by
Lemma 5.4 we get δ1 > δ2 > 0 such that
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r 
 ∀k ∃n1, n2 > k
∣∣∣ � ḟαd µ̇n1

∣∣∣ > δ1 > δ2 >
∣∣∣ � ḟαd µ̇n2

∣∣∣,
ẋn1 , ẋn2 ∈ ΩG{α} , |ḟα(ẋn1)− ḟα(ẋn2)| < 2/k.

Thus we find infinite disjoint subsets aα, bα ∈ Mα[Gα] of ω such that
|
	
fα dµn| > δ1 for n ∈ aα, |

	
fα dµn| < δ2 for n ∈ bα, and

lim
n∈aα

fα(xn) = lim
n∈bα

fα(xn).

We will call the above limit L′.
Since λn weakly converges to λ,

	
fα dλn

n→
	
fα dλ. Refining aα and bα

we may assume that for all n ∈ aα ∪ bα,∣∣∣ � fα dλn − �
fα dλ

∣∣∣ < (δ1 − δ2)/8.

Refining aα and bα again, we may assume that for all n ∈ aα ∪ bα,

|f(xn)− L| < (δ1 − δ2)/8.

We remark that L is the limit of f(xn). Since (xn|α+1)n∈aα and (xn|α+1)n∈bα
converge to (z, L), where z is the limit of (xn|α)n∈ω, we have

{xn|α+1 : n ∈ aα} ∩ {xn|α+1 : n ∈ bα} 6= ∅

in Kα+1. Since aα, bα ∈Mα[Gα] = Mα+1 and {xn : n ∈ ω} ⊆ {qm : m ∈ ω},
by Lemma 5.5 we have

{xn : n ∈ aα} ∩ {xn : n ∈ bα} 6= ∅

in K.
On the other hand, since T (fα)(xn) =

	
fα dT

∗({δxn}) and fδxn(fα) =
f(xn), setting

U =
{
x ∈ R :

∣∣∣x− L− �
fα dλ

∣∣∣ > δ1 − (δ1 − δ2)/4
}
,

V =
{
x ∈ R :

∣∣∣x− L− �
fα dλ

∣∣∣ < δ2 + (δ1 − δ2)/4
}
,

we see that U and V are open disjoint subsets of R and

T (fα)(xn) =
�
fα dµn + f(xn) +

�
fα dλn ∈ U for n ∈ aα,

T (fα)(xn) =
�
fα dµn + f(xn) +

�
fα dλn ∈ V for n ∈ bα,

which implies, by the continuity of T (fα), that {xn :n ∈ aα} and {xn :n ∈ bα}
are disjoint, giving a contradiction.

Theorem 5.8. It is relatively consistent with ZFC that there exists an
indecomposable Banach space C(K) of density ω1 < 2ω such that every op-
erator on C(K) has the form gI + S for some g ∈ C(K) and S weakly
compact.
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Proof. Suppose that CH does not hold in the ground model M . Since P
is c.c.c., it preserves cardinals, and since (2ω)M ≤ (2ω)M [G], ¬CH also holds
in M [G]. In M [G] the space Kω1 has weight ω1, because it is a subspace of
[0, 1]ω1 , and therefore the density of C(Kω1) is ω1 < 2ω. From Lemmas 3.2,
5.6 and 5.7 and Theorem 3.3 it follows that every operator on C(Kω1) has the
form gI +S for some g ∈ C(Kω1) and S weakly compact. From Lemmas 5.2
and 3.4 we conclude that C(Kω1) is indecomposable.
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