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Positivity of Thom polynomials II:
the Lagrange singularities

by

Malgorzata Mikosz, Piotr Pragacz and Andrzej Weber (Warszawa)

Abstract. We study Thom polynomials associated with Lagrange singularities. We
expand them in the basis of Q-functions. This basis plays a key role in the Schubert
calculus of isotropic Grassmannians. We prove that the @-function expansions of the
Thom polynomials of Lagrange singularities always have nonnegative coefficients. This
is an analog of a result on the Thom polynomials of mapping singularities and Schur
S-functions, established formerly by the last two authors.

1. Introduction. In the present paper, we study the Thom polynomi-
als of Lagrange singularities. This is a continuation of [16]|, where the case
of singularities of maps was investigated. We look at the positivity proper-
ties of Thom polynomials. Such positivity properties are nowadays widely
investigated in algebraic geometry (see the monograph of Lazarsfeld [13]).

Let L be a Lagrangian submanifold in the linear symplectic space

V=WaWw,

equipped with the standard symplectic form. Classically, in real symplectic
geometry, the Maslov class ([1]) is represented by the cycle

Y={x e L:dim(T,LNW")>0}.

This cycle is the locus of singularities of the projection L. — W. It defines
an integral cohomology class whose reduction modulo 2 is equal to wq (T*L),
the first Stiefel-Whitney class. In complex symplectic geometry the same
construction applied for a Lagrangian submanifold L contained in a sym-
plectic manifold fibering over a base B with Lagrangian fibers leads to the
cohomology class which is equal to

e1(T*L — T*B).
2000 Mathematics Subject Classification: 05E05, 14C17, 14N15, 55R40, 57R45.
Key words and phrases: Lagrange singularities, Thom polynomials, Q-functions, jets,

numerical positivity.
Research of M. Mikosz and A. Weber supported by the KBN grant NN201 387034.

[65] © Instytut Matematyczny PAN, 2009



66 M. Mikosz et al.

A generalization of the Maslov class is provided by Thom polynomials as-
sociated with higher order types of singularities. These types are defined by
imposing conditions on higher order jets of L (see Definition 3).

For real singularities, the associated cohomology classes were studied by
Arnold and Fuks (see, e.g., [5]), Vassiliev [17], Audin [3|, and others. The
complex case was studied by Kazarian [11] who also computed a substantial
number of examples. The Thom polynomials in this case can always be
written as polynomials in the Chern classes of T*L — T*B (see Remark 13).

Given a Thom polynomial, one can expand it in different bases. The
Thom polynomial of a singularity of a map, in general, is not a positive
combination of monomials in Chern classes. As shown in [16], such a Thom
polynomial is always a positive Z-linear combination of Schur S-functions.

The Thom polynomial of a Lagrange singularity is, in general, neither a
positive combination of monomials in Chern classes nor a positive combina-
tion of Schur S-functions.

In the present paper, we use the é—functions of [15] and show that the
Thom polynomial of a Lagrange singularity, expanded in the basis of @—
functions, has nonnegative coefficients.

Here is a brief outline of the content of the paper.

In Section 2, we recall the definitions and properties of Lagrange singu-
larities. We introduce the space of jets of Lagrange submanifolds and define
the notion of a “Lagrange singularity type”.

In Section 3, we recall from [15] the algebraic properties of @—functions.
We also recall from [14] their cohomological interpretation in terms of Schu-
bert classes for the Lagrangian Grassmannian.

In Section 4, we attach the “Thom polynomial” to a Lagrange singularity
type. Then we state and prove our main result, Theorem 9, asserting that the
Thom polynomial of a Lagrange singularity type is a nonnegative Z-linear
combination of Q-functions.

The proof of the theorem is quite different from the one in [16]. There
are two reasons for that. First, the @—functions do not admit—up to now—a
characterization similar to that of Schur S-functions from [8]|. Second, the
Lagrangian case is “more rigid” than the one of singularities of maps, and
does not admit a functorial interpretation like that in [16]. The proof in
the present paper relies on the computation, in Lemma 12, of some normal
bundle in the space of jets of Lagrangian submanifolds. This lemma is based
on a result about actions of linear transformations on jets of functions (see
Proposition 11) which seems to be of independent interest. In the key step,
the proof uses deformation to the normal cone.

We finish Section 4 with some discussion of Thom polynomials of Legen-
dre singularities.
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In the last section, we list the @—function expansions of Thom polyno-
mials up to codimension 6.

2. Jets of Lagrangian submanifolds. Let us fix a positive integer n.
Suppose that W is a complex linear space, where dim W = n. Let

V=Wew"*

be a linear symplectic space, equipped with the standard symplectic form
(—,—), defined by

(w1, f1), (wa, f2)) = fi(wa) — fa(w1)

for w; € W and f; € W*, i = 1,2. We shall view V as a symplectic manifold.
If we write ¢ = (q1,- . ., qn) for the coordinates of W and p = (p1,...,p,) for
the dual coordinates of W*, the symplectic form on V is Y " ; dp; A dg;.

Denote by o : V — W the projection.

Any germ L of a Lagrangian submanifold of V' with the nonsingular
projection gy, is the graph of a 1-form « : W — W*. The condition that
L is Lagrangian is equivalent to da = 0. Since we deal with germs (in fact,
with their jets), we can write o = dF for some function F' : W — C.

In the present paper, we shall investigate (the germs of) singular La-
grangian submanifolds L, that is, L itself is smooth but the projection g,
is singular.

Here is the simplest example. Suppose that dimW = 1, and set

(1) L={(g,;p)eWaW"*: q¢=p°}.

(In the classification of Lagrange singularities, this corresponds to the sin-
gularity of type As.)

To classify the (germs of) Lagrangian submanifolds, one introduces a
suitable notion of a generating family of a Lagrangian germ (for motiva-
tion, see |2, Example 5 in §18.3], and for a precise definition, see [2, §19.1]).
(These generating families are usually versal deformations of suitable func-
tions f : C* — C (loc. cit.).) Then one introduces, in |2, §19.4], the notions of
R-equivalence and (stable) RT-equivalence of two generating families of La-
grangian germs. The crucial result (see |2, Theorem in §19.4, p. 304]) asserts
that the germs of two Lagrangian submanifolds are Lagrangian equivalent if
and only if the corresponding generating families are stably Rt-equivalent.
We illustrate these issues by the following example.

ExXAMPLE 1. The Lagrangian submanifold corresponding to the singu-
larity As, i.e. f(x) = 2*, is obtained in the following way. The generating
family

F(z,q) = 2" + q12° + g
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is a universal deformation of f(x) = F(x,0) = 2* (with additional condition
F(0,q) = 0). This generating family defines the Lagrangian submanifold

L—{(q,p)EW@W*:axec, OF(.q) _ W_p},
ox dq
that is,
43 4 2q1x +qu =0, 2*=p1, x=ps.
We thus obtain

L={(q,p) e WaW*:p1=p3, g2 =—(4p3 + 2qup2)}.

We will study the space of germs of Lagrangian submanifolds L C V
passing through 0. This space has infinite dimension, which is inconvenient
from the point of view of algebraic geometry. Therefore we fix once for all
a nonnegative integer k£ and we identify two germs if the degree of their
tangency at 0 is greater than k. This way we obtain the space of k-jets of
Lagrangian manifolds, denoted by £(V'). This space is homogeneous. Every
germ of a Lagrangian submanifold can be obtained from the “distinguished”
Lagrangian submanifold W by application of a germ symplectomorphism
preserving 0. We have the following description:

(2) L(V) = Aut(V)/P,
where Aut(V) is the group of k-jet symplectomorphisms preserving 0 € V,
and P is the stabilizer of W.

Denote now by LG(V) the Lagrangian Grassmannian parametrizing all
linear Lagrangian subspaces of V. This manifold is embedded in £(V') in a
natural way.

On the other hand, we have the Gauss map © : L(V) — LG(V'), which
is a retraction to LG(V), defined for a Lagrangian submanifold L by

m(L) = To(L),
the tangent space to L at 0 € L.

LEMMA 2. The fiber of the projection 7 is the affine space isomorphic to
Dty Sym' (W) ().

Proof. The fiber L(V)y = 7~ (W) consists of those (jets of ) Lagrangian
submanifolds which have the tangent space equal to W. Every Lagrangian

submanifold L with nondegenerate projection onto W is the graph of the
differential of a function F' : W — C (note that dF acts from W to W*). The

(*) We point out that 7 : L(V) — LG(V) is not a vector bundle. This projection is
of the form
L(V)=8p(V) xp LV)w — Sp(V)/P' = LG(V),
where P’ = PN Sp(V) is the group of linear symplectomorphisms stabilizing W. A cal-
culation shows that P’ does not act linearly on £L(V)w already for k = 3.
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condition 0 € L corresponds to the condition dF'(0) = 0, and the condition
To(L) = W corresponds to vanishing of the second derivatives of F' at 0.
This proves the lemma. =

We end this section with the definition of a Lagrange singularity type.
Consider the subgroup H of Aut(V') consisting of the holomorphic symplec-
tomorphisms preserving the fibration o : V' — W. Such symplectomorphisms
are compositions of maps induced by biholomorphisms of the base and dif-
ferentials of functions on the base (see [2, §18.5, Theorem, p. 284]).

We say, following [2, §18.6], that two jets of Lagrangian submanifolds are
Lagrangian equivalent if they belong to the same orbit of H.

We study not only individual orbits of the group H but also families of
orbits. Moreover, together with an orbit we are forced to consider its closure.
Therefore we introduce the following definition.

DEFINITION 3. A Lagrange singularity type X' is any closed pure-dimen-
sional algebraic subset of £(V') which is invariant with respect to the action
of H.

(In other words, a Lagrange singularity type is a closed algebraic set which
is the union of some Lagrangian equivalence classes.)

For instance, the closure of the orbit of the singularity As is described
by the condition corank(Dgz,(0)) > 1. Similarly, the closure of the orbit
of the singularity Dy is given by the condition corank(Dg|(0)) > 2. The
singularity class Py is not the closure of a single orbit. The family Ps has one
parameter (i.e. it has modality 1). The orbit of a germ belonging to Pg has
codimension 7, while the singularity type P3 has codimension 6. It can be
described by the condition corank(Dp;(0)) > 3. To define the singularity
type Az one has to consider the degeneracy locus S C L of the differential
Do, The singularity type As consists of the jets of L for which S is singular
or g|s is not an immersion. These conditions can be translated into algebraic
equations in L(V).

In the literature (|2, §21.3]), one can find the notion of stable Lagrangian
equivalence classes. They are classified in small codimensions (loc. cit.).

3. Lagrangian Grassmannians and @—functions. We start with rec-
ollections on @-functions from [15].

Let X be an alphabet (?). We shall denote by X? the alphabet consisting
of the squares of elements of X. Given an alphabet X of variables, we shall
denote by Sym(X) the ring of symmetric functions in X. Given any alphabet

(?) By an alphabet we understand a finite multiset of elements in a commutative ring.
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X = {x1,22,...}, we set
(3) @z(X ) =e(X Z LTjr " L
J1<-<Ji

the ith elementary symmetric function in X.
Given two nonnegative integers ¢ > j , we put

(4) Qi5(X) = Qi(X)Qs(X) + 22 ) Qip(X)Qj—p(X).

For example, we have Q;;(X) = e; (XQ).

Given any partition I = (i; > -+ > i, > 0), where we can assume h to
be even, we set
(5) Q1(X) = Pfaffian(M),

where M = (m,, 4) is the h x h skew-symmetric matrix with

Mpq = Qz‘p,iq (X)
for1<p<qg<h.

For an alphabet X = {z1,x9,...} of degree 1 variables, the degree of
Qr(X) is equal to |I] := i1 + - - + ip.

For a fixed positive integer n, let X,, be an alphabet of n variables of
degree 1. Then the set {@ 1(X,,)} indexed by all partitions such that iy <n
forms an additive basis of the ring Sym(X,,) (see [15]). We shall say that a
partition is strict if its parts are distinct. Then the set {Q;(X,)} indexed by
all strict partitions such that iy < n forms a basis of the ring Sym(X,,) as
a free Sym(X2)-module (loc. cit.). The same assertions hold for a countable
alphabet of variables without restriction on 4.

Let ¢1,co,... be a sequence of commuting variables, where deg(c;) = 1,
and let X = {z1,x2,...} be an alphabet of degree 1 variables. We get a ring
isomorphism

& : Sym(X) — Zey, ca, . .

by setting @(e;(X)) =¢; fori=1,2,....
Given a partition I, we put

(6) Qr = (Q1(X)).
If E is a vector bundle, then we define
(7) Q1(E) = Qr(X),

where X is the alphabet of the Chern roots of E. In other words, Q;(E)

is equal to C~2 1, where ¢; is specialized to ¢;(E), the ith Chern class of E,
i=1,2,....
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REMARK 4. The family of @—functions was invented and investigated
in [15] when studying Lagrangian degeneracy loci. It is modelled on the
classical Schur Q-functions (see, e.g., [14]). More precisely, for a strict par-
tition [, the Schur Q-function of a vector bundle F is obtained from C~2 7 by
the substitution N

Qr(E)=Q;(E—FE").
See also Remark 5.3 in [12] for another link between these two families of
functions. We refer the reader to [15] and [12] for details.

We shall now use @—functions to describe some cohomological properties
of the Lagrangian Grassmannian LG(V). First, we recall a presentation of
the cohomology ring of LG (V) by generators and relations that goes back
to Borel [4].

PROPOSITION 5. With the above notation, we have
(8) H*(LG(V),Z) = Zlcy, .., cnl [(Qii)i=1,..n-

(Here the ¢;’s correspond to the Chern classes of the dual of the tautological
subbundle on LG(V).)

The Lagrangian Grassmannian LG(V') has an algebraic cell decompo-
sition which is a particular case of the classical Schubert—-Bruhat cell de-
composition, but here it admits the following concrete form. Suppose that a
general flag

Ve .Vic---CcV,CV
of isotropic subspaces with dim V; = i is given (i.e., equivalently, V,, is La-
grangian). Given a partition [ = (n > 143 > --- > i, > 0), we define
9)  21(Va) ={L € LG(V) : dim(L N Vpry1-3,) 2 p, p=1,..., h}.
This is a Schubert variety associated with I. Note that
(10) codim($2;(Vs), LG(V)) = |I|,
and the cohomology class of £27(V4), denoted by 27, does not depend on the
choice of the flag Vs. Let us recall the following expression for {27 in terms
of Q-functions.

THEOREM 6 ([14, Sect. 6]). Let V' be a 2n-dimensional linear symplectic
space. Then in H*W(LG(V),Z), we have

(11) 21 = Qr(R"),
where R is the tautological subbundle on LG(V').

(In [14, Sect. 6], this result was given in terms of the special Schubert classes
Qi but Qi = Cl(R*))

Since Schubert varieties are the closures of cells of a cellular decomposi-
tion of LG(V'), the Schubert classes {{27}, with [ strict and i; < n, form a
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Z-basis of H*(LG(V'),Z). Hence also the polynomials {Q;(R*)} indexed by
the partitions from the same set have this property.

In the proof of Theorem 9 below, we shall use the following result. For
a strict partition I = (n > 43 > --- > 45 > 0), we denote by I’ the strict
partition whose set of parts complements {i1,...,i,} in {1,...,n}.

PROPOSITION 7. For a strict partition I with 11 < n, there exists a
unique strict partition J with j; <n and |J| = dim LG(V') — |I| for which

Qi(R")- 25 #0.
In fact, this J is equal to I', and we have
(12) | Qury-op=1
LG(V)

By virtue of Theorem 6, this proposition follows, e.g., from [15, Theorem
5.23|. See also Example 4.2(5) in [14].

4. Thom polynomials of Lagrange singularities and @-functions.
A Lagrange singularity type X C £(V') defines the cohomology class

(Y] € H*(L(V),Z) =2 H*(LG(V),Z).
Suppose that this class is equal to

> arQr(RY),
T

where the sum runs over strict partitions I with iy < n, and ay € Z (it is
important here to use the bundle R*). Then

(13) T = Zajéf
1

is called the Thom polynomial associated with the Lagrange singularity
type V.

ExAMPLE 8. We list here the @—function expansions of the Thom poly-
nomials of some Lagrange singularities. They were computed in [11] in the
basis of monomials in Chern classes.

Ay Q
Az 30Q9
Dy Q2

DGZ 12@32 + 24@41
A7 135Q301 + 1275Q 40 + 2004Q51 + 2520Q¢
Ps: Qs21.
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Note that all the coefficients in the formulas of Example 8 are nonnega-
tive. For a more extensive list of examples, see Section 5.

The Thom polynomials of the singularities Az, Dy and Py are equal to
single @-functions because they are defined by conditions involving only the
differential of |7, that is, by conditions defining single Schubert varieties in
the Lagrangian Grassmannian.

For example, Py is defined by the condition corank(Dpjz(0)) > 3. This
singularity type is the closure of a one-dimensional family of orbits. Therefore
the germs of the type Pg are not stable in the sense of |2, §21.3|. On the other
hand, Pk is worth mentioning since it is the first example of modality that
appears in the classification. The Thom polynomial Q321 is an obstruction
to deforming the map to one without this singularity.

We now state our main result.

THEOREM 9. For any Lagrange singularity type X, all the coefficients oy
in (13) are nonnegative.

For the proof of this theorem, we need several preliminary results.

First of all, we shall use the nonnegativity property of globally generated
bundles [7] (see also [6], [13]). Let E be a vector bundle on a variety X. By
a cone in E, we mean a subvariety of F which is stable under the natural
Gm-action on E. If C C E is a cone, then one may intersect its cycle [C]
with the zero-section of the vector bundle:

(14) 2(C, B) := sp([C)),

where s}, : H*(E,Z) — H*(X,Z) is induced by the zero-section s : X — E.
We now record the following variant of a result from [7].

LEMMA 10. Let m : E — X be a globally generated bundle on a proper
homogeneous variety X. Let C be a cone in E, and let Z be any algebraic
cycle in X of the complementary dimension. Then the intersection [C] - [Z]
18 monnegative.

Proof. We decompose C into Whitney strata Cj, each stratum fibered over
S; C X (in C*-topology). Note that 7=1Z is transverse to C; if and only if
Z is transverse to S;. (One has to stratify the set Z into Whitney strata and
check transversality of each pair of strata. For the notion of transversality
of stratified cycles and their intersections, see [9].) Since X is homogeneous,
we can move Z to make it transverse to each 5;. Therefore, we can assume
that 7—1Z is transverse to C. Then we have

(15) [C]-[21=[C]-[x"'2)- [X] = [Cn=~'2] - [X].

The last number is equal to the degree of the cone class 2(C' N7 17, F),
which is nonnegative by [7, Theorem 1(A)]. m
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Our next aim, in the proof of Theorem 9, is to determine the normal
bundle of LG(V) in L£(V). To this end, we need a general result about
actions of linear transformations on jets. Let J be the space of jets (of order
k fixed at the beginning) of functions f : (C™,0) — (C",0) satisfying the
condition D f(0) = 0.

Let A:C"™ — C™ be a linear map. The map A acts on C™ & C" by

(¢,p) — (¢ + Ap,p)

and it acts on J by transforming the graphs of functions. (Note that the
action of A is well defined because D f(0) = 0.) More precisely, the image of
the function f is the function f4 satisfying the following implicit equation:

(16) fla+Afa(q) = fale).
We state

PROPOSITION 11. The derivative at 0 of A acting on J is equal to the
identity.

(We shall use this proposition in the proof of Lemma 12, where the setting
stems from Section 2; in particular, there m = n and ¢ (resp. p) are the
coordinates of W (resp. of W*) used in that section.)

Proof. We compute the derivative of A in the direction of an arbitrary
feJ. Weset

(17) gt = A(Lf).
By (16), the function g; is given by the implicit equation
(18) tf(q+ Agi(q)) = g:(q)-

We want to show that g;/t — f as t — 0. Since we assume
9:(0) = f(0) =0,
it is enough to show that Dg;/t — Df as t — 0. Differentiating (18) gives
(19) tDf o(Id+ Ao Dg;) = Dgy.
Hence, we get
(20) Dg; = (Id —tDf o A"t otDf.

It follows from (20) that Dg;/t — Df as t — 0, and the proposition has
been proved. m

Let us come back to the setting of Section 2, and put
L=L(V) and G=LGV).

Recalling that R denotes the tautological vector bundle on G, we give
the following description of the normal bundle of G in L.
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LEMMA 12. We have a natural isomorphism

k+1

(21) NgL = P Sym'(RY).
=3

Proof. Let L € G be a Lagrangian linear subspace. Let us choose a
splitting
(22) VeLeL".
Using this splitting, by Lemma 2 we construct an isomorphism
k+1

(23) 7 1(L) = D Sym’(L*).
=3

Two splittings of the exact sequence
0—-L—-V—->L"—=0

differ by a linear map A : L* — L. By Proposition 11, the action of A on the
tangent space to jets is the identity. Hence the isomorphism (23) does not
depend on the choice of the splitting (22), and we have (globally) a natural
isomorphism (21). =

We are now ready to complete the proof of Theorem 9.

Suppose that X' is a Lagrange singularity class (in fact, it can be any
algebraic pure-dimensional cycle in £). Let i : G < L be the inclusion, and
denote by

i*:H"(L,Z) — H*(G,Z)

the induced map on cohomology rings. We have to examine the coefficients
ay of the expression

(24) 18] = 3 G (R).

Let us fix a strict partition I with i3 < n. By invoking Proposition 7, the
coefficient ay is equal to

(25) 1Y) Qp

(intersection in G). Since the cohomology ring and the Chow ring of G are
equal, we can compute (25) using the Chow groups. Let

C =CanxX C NoL

be the normal cone of GN X in Y. Denote by j : G — NgL the zero-section
inclusion. By deformation to the normal cone [6, §6.1, §6.2|, we have in A,.G
the equality

(26) [2] =570,
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where * and j* are the pull-back maps of the corresponding Chow groups
(see [6]). It follows that
ar = [C]- 2p

(intersection in NgL). The bundle R* is globally generated; therefore, by
Lemma 12, the vector bundle NgL is globally generated. The Lagrangian
Grassmannian G = LG(V) is a homogeneous space with respect to the
action of the symplectic group Sp(V'). By Lemma 10, applied to the bundle
NgL — G, the intersection [C] - £2p is nonnegative.

This ends the proof of Theorem 9.

REMARK 13. We may compare jets of Lagrangian manifolds by increas-
ing the number of variables. For a Lagrangian submanifold L C V = WaW™*,
we consider

LeCCVa(CaocCH.

This induces an embedding of L(W & W*) into L(W' & W), where W' =
W @ C. In this way, we obtain a chain of inclusions

LV)=LyoCL C---CL C---
where £, = L(W & C") & (W & C")*). We say that the singularity type X

is closed with respect to suspension if one can find a sequence of singularity
classes X, C L, for r > 0 such that

(27) ET - ErJrl N Er

and Xy = X. Moreover, we assume that the property (27) holds at the
cohomological level, i.e. the restriction H*(L,4+1,7Z) — H*(L,,Z) maps the
cohomology class [Y,41] to [X}]. (This holds when X, ,; and £, intersect
transversely along some smooth open and dense subset of X..)

Suppose now that E is a symplectic manifold, and F — B is a fibration
with Lagrangian fibers. (Such objects have recently been widely investigated.
We do not intend to survey this activity here, but refer the reader to, e.g.,
[10] and the references therein.) Let, in addition, L C E be a Lagrangian
submanifold. We denote by g the restriction of the projection to L. We study
the singular points of the projection p. The definition of the singularity type
(invariance with respect to change of coordinates) allows us to define the
singular points of ¢ of type Y. Denote the set of those singular points by
X(p). Assume that the singularity type is closed with respect to suspension
(see (27)). Then, if the map o satisfies suitable transversality conditions,
the class [X(o)] € H*(L,Z) is equal to 7> applied to the virtual bundle
T*L — o*T*B. See also [11, Theorem 2 and §3.1].

REMARK 14. In the case of Legendre singularities, using some refinement
of our methods, we can get the following positivity result (not as transpar-
ent as the one in the Lagrangian case). We adopt the definition of the Thom
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polynomial of a Legendre singularity class from [11, p. 730] (3). That defi-
nition makes use of the classifying space of Legendre singularities (loc. cit.).
Let £ be the canonical line bundle on BU(1), appearing in that definition.
Let 1™ denote the rank n trivial bundle. The Thom polynomial of a Legendre
singularity class can be uniquely represented as a Z-linear combination

(28) YN anQi((T°L-1") @) - ¢,
j>0 I
where
t:=%c1(€) € H*(BU(1),Z[1)),
the second sum is over strict partitions I, and «ay; € Z. We then have
Oqj Z 0

for any strict partition I and j > 0. In other words, we get a positivity result
after “perturbing” the argument “I™*L” by subtracting a bundle and twisting
by some line bundle. If we formally assume that & is trivial, then we get the
Lagrangian case.

5. Examples. We now list the Thom polynomials of Lagrange and Le-
gendre singularities up to codimension 6. These polynomials were computed
in [11] in the basis of square free monomials in the Chern classes of the bun-
dles involved. We represent them as Z-linear combinations of the products
of the “twisted” @-functions from (28):

Qr:=Q(T"L-1") ® ¢'/?)
(note the difference in notation with respect to (6)), and powers of t = %¢1 ().

The bold terms give the Thom polynomials of the corresponding Lagrange
singularities.

Ay Qq

As: 3Qa +tQs

Ay 3Qa1 + 12Qs +£10Q5 + 220,
Dy Qi

As: 27Qs1 + 60Qq + 1(22Q21 + 86Q3) + t240Q2 + °6Q:

Ds: 6Qg1 +t4Q

Ag: 87Qaz+228Qa1 +360Qs +(343Q31 +756Q4) +1>(151Qn1 +584Q3) +
t3196Q9 + t424Q

Dg: 12Qsz + 24Qu1 + 132Q31 + 212Qx

Es: 9Qsz + 6Qu1 + £ 9Q31 + 123Q2

(®) Our reference for Legendre singularities and characteristic classes is [11, §3.2].
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A7 135Qga1 + 1275Qu2 + 2004Q51 + 2520Q¢ + £(7052Q5 + 4399Q41 +
1693Q32) +12(3445Q31 +7748Q4) +13(1046Q21 +4172Q3) +t*6388Q2 +
£55400Q;

D7: 24Qs21+120Q42+144Q51 +£(152Q32+288Q 1) +12208Q 31 +t356Q a1
E7: 9Qsa1 + 60Quz + 24Qs1 + t(56Q4 + 66Q32) + t242Q51 + t310Qs;
Ps: Qso1.
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