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On expansions of weakly o-minimal non-valuational
structures by convex predicates
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Roman Wencel (Wrocław)

Abstract. We prove that ifM = (M,≤, +, . . .) is a weakly o-minimal non-valuational
structure expanding an ordered group (M,≤, +), then its expansion by a family of “non-
valuational” unary predicates remains non-valuational. The paper is based on the author’s
earlier work on strong cell decomposition for weakly o-minimal non-valuational expansions
of ordered groups.

0. Introduction. Several examples of weakly o-minimal structures are
obtained as expansions of o-minimal structures by predicates interpreted as
certain convex sets [MMS]. Among these we have an expansion of a real
closed field by a valuation ring and an expansion of the ordered field of real
algebraic numbers by a predicate interpreted as (−α, α), where α is a tran-
scendental number. Structures of the first sort were investigated by L. van
den Dries and A. H. Lewenberg (see [DL] and [D2]) who showed for instance
that if R is an o-minimal expansion of a real closed field and V is a proper
non-empty convex subring closed under 0-definable continuous functions,
then the expansion (R, V ) is weakly o-minimal. The phenomenon occuring
in all the mentioned examples was addressed in general by Y. Baisalov and
B. Poizat (see [BP]) who proved that an expansion of any o-minimal struc-
ture by a family of convex predicates has weakly o-minimal theory (so in
particular it is a weakly o-minimal structure). The result of [BP] was gener-
alized by B. Baizhanov (see [Bz]) who proved that an expansion of a model
of a weakly o-minimal theory by a family of convex predicates has weakly
o-minimal theory. It is worth mentioning that Baizhanov’s theorem also has
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an easy proof when one uses the fact that weakly o-minimal theories do not
have the independence property and the result of S. Shelah (see [Sh783]) con-
cerning quantifier elimination for the theory of an expansion of a sufficiently
saturated model of a theory without the independence property by all exter-
nally definable sets. The question of G. Cherlin whether every expansion of a
weakly o-minimal structure (not necessarily with weakly o-minimal theory)
by a family of convex predicates is also weakly o-minimal still remains an
open problem.

This paper is a sequel to the study of expansions of weakly o-minimal
structures by convex predicates. In [We07] I introduced weakly o-minimal
non-valuational expansions of ordered groups as a natural generalization of
weakly o-minimal non-valuational expansions of real closed fields considered
in [MMS]. A weakly o-minimal expansion of a real closed field is said to
be non-valuational iff it does not define a non-trivial valuation. Similarly,
a weakly o-minimal expansion M of an ordered group (M,≤,+) is called
non-valuational (or of non-valuational type) iff there is no proper and non-
trivial subgroup of (M,+) definable inM. Being of non-valuational type is
equivalent to several conditions which are discussed in [We07]. One of them
says that the distance between the two parts of a definable cut is zero (the
precise definition appears in §1).

Assume thatM = (M,≤,+, . . .) is a weakly o-minimal non-valuational
expansion of an ordered group. If P ⊆M is a finite union of convex sets, then
P in a natural way determines a finite family of cuts in (M,≤). If the parts of
all these cuts are “close” to each other, then P is said to be non-valuational.
Moreover, the expansion (M, P ) is interdefinable with some expansion ofM
by a family of convex predicates. By [We07], Th(M) is weakly o-minimal.
Therefore by [Bz] also any expansion of M by a family of non-valuational
predicates has weakly o-minimal theory. The main result of this paper is
Theorem 2.11, which says that every expansion of M by a family of non-
valuational predicates is of non-valuational type. We also show that the
theory of such an expansion is weakly o-minimal without using Baizhanov’s
theorem (cf. Corollary 2.10).

The paper is organized as follows. In §1 we fix our notation and termi-
nology, and recall some particularly useful results, mainly from [MMS] and
[We07]. In §2 we outline the proofs of the results mentioned above.

Last but not least, I would like to thank the referee whose comments
allowed me to improve the quality of the paper.

1. Notation and preliminaries. Let (M,≤) be a dense linear order-
ing without endpoints. A set I ⊆ M is called convex in (M,≤) iff for any
a, b ∈ I and c ∈ M with a ≤ c ≤ b we have c ∈ I. If additionally I 6= ∅ and
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inf I, sup I ∈M ∪{−∞,+∞}, then I is called an interval in (M,≤). A max-
imal convex subset of a non-empty subset ofM is called a convex component
of it. A pair 〈C,D〉 of non-empty subsets of M is called a cut in (M,≤) iff
C < D, C ∪ D = M and D has no lowest element. A first order structure
M = (M,≤, . . .) expanding (M,≤) is said to be weakly o-minimal iff every
subset of M , definable in M, is a finite union of convex sets. A complete
first order theory is called weakly o-minimal iff all its models are weakly
o-minimal. The following remark characterizes weakly o-minimal structures
in terms of sets definable in them.

Remark 1.1. Assume that (M,≤) is a dense linear ordering without
endpoints and for m ∈ N+, Dm is a family of subsets of Mm for which the
following conditions are satisfied.

(a) If I ⊆M is an interval, then I ∈ D1.
(b) If X ∈ D1, then X is a union of finitely many convex sets.
(c) {〈x, y〉 ∈M2 : x < y} ∈ D2.
(d) Dm with the usual set-theoretic operations is a Boolean algebra.
(e) If X ∈ Dm, then X ×M,M ×X ∈ Dm+1.
(f) If X ∈ Dm+1 and π : Mm+1 → Mm is the projection dropping the

last coordinate, then π[X] ∈ Dm.
(g) If 1 ≤ i < j ≤ m, then {(x1, . . . , xm) ∈Mm : xi = xj} ∈ Dm.

Then there is a weakly o-minimal structureM expanding (M,≤) such that
for every X ⊆Mm, X is definable inM iff X ∈ Dm.

Note that if one replaces “convex sets” in (b) with “intervals”, then (a)–(g)
in Remark 1.1 imply that there is an o-minimal expansion M of (M,≤)
such that for every X ⊆ Mm, X is definable in M iff X ∈ Dm (cf. [D1,
Chapter 1]).

Assume that M = (M,≤, . . .) is a weakly o-minimal structure. A cut
〈C,D〉 in (M,≤) is called definable in M iff the sets C,D are definable
in M. The set of all such cuts will be denoted by MM. The set M can be
regarded as a subset of MM by identifying an element a ∈ M with the cut
〈(−∞, a], (a,+∞)〉. After such an identification, MM is naturally equipped
with a dense linear ordering without endpoints extending that of (M,≤),
and (M,≤) is dense in (MM,≤). For a definable set X ⊆ Mm, a function
f : X → MM is said to be definable in M iff the set {〈x, y〉 ∈ X ×M :
f(x) > y} is definable inM.

Now assume that M = (M,≤,+, . . .) is a weakly o-minimal structure
expanding an ordered group (M,≤,+). A cut 〈C,D〉 is called non-valuational
iff inf{y − x : x ∈ C, y ∈ D} = 0. We will say thatM is non-valuational (or
of non-valuational type) iff all cuts definable in M are non-valuational. If
M is non-valuational, then MM can be naturally equipped with an ordered
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group structure extending that of (M,≤,+). The ordered groups (M,≤,+)
and (MM,≤,+) are divisible, abelian and torsion free. For details we refer
the reader to §1 of [We07].

Assume thatM = (M,≤, . . .) is a weakly o-minimal structure. Below, for
everym ∈ N+ we inductively define strong cells inMm and their completions
in (MM)m. The completion in (MM)m of a strong cell C ⊆ Mm will be
denoted by C.

(1) A one-element subset of M is a strong 〈0〉-cell in M and is equal to
its completion.

(2) A non-empty convex open definable subset of M is a strong 〈1〉-cell
in M . If C ⊆ M is a strong 〈1〉-cell in M , then C := {x ∈ MM :
(∃a, b ∈ C)(a < x < b)}.

Assume that m ∈ N+, i1, . . . , im ∈ {0, 1} and suppose that we have already
defined strong 〈i1, . . . , im〉-cells in Mm and their completions in (MM)m.

(3) If C ⊆ Mm is a strong 〈i1, . . . , im〉-cell in Mm and f : C → M
is a continuous definable function which has a continuous extension
f : C →MM, then Γ (f), the graph of f , is a strong 〈i1, . . . , im, 0〉-cell
in Mm+1. The completion of Γ (f) in (MM)m+1 is defined as Γ (f).

(4) If C ⊆Mm is a strong 〈i1, . . . , im〉-cell in Mm and f, g : C →MM∪
{−∞,+∞} are continuous definable functions which have continuous
extensions f, g : C → MM such that f(x) < g(x) for x ∈ C, then
the set

(f, g)C := {〈a, b〉 ∈ C ×M : f(a) < b < g(a)}

is called a strong 〈i1, . . . , im, 1〉-cell inMm. The completion of (f, g)C
in (MM)m+1 is defined as

(f, g)C := (f, g)C := {〈a, b〉 ∈ C ×MM : f(a) < b < g(a)}.

(5) We say that C ⊆Mm is a strong cell inMm iff there are i1, . . . , im ∈
{0, 1} such that C is a strong 〈i1, . . . , im〉-cell in Mm.

If C ⊆ Mm is a strong cell, then a definable function f : C → MM is
called strongly continuous iff f has a continuous extension f : C →MM. In
a standard way we define the notion of decomposition of a definable set into
strong cells partitioning a given definable set (for details we refer the reader
to §2 of [We07]). We will say that M has the strong cell decomposition
property iff for any m, k ∈ N+ and any definable sets X1, . . . , Xk ⊆ Mm,
there is a decomposition of Mm into strong cells partitioning each of the
sets X1, . . . , Xk.

Fact 1.2 ([MMS, Ar]). Let M = (M,≤, . . .) be a weakly o-minimal
structure and A ⊆ M . If U ⊆ M is an infinite A-definable set and f :
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U →MM is an A-definable function, then there is a partition of U into A-
definable sets X, I0, . . . , Im such that X is finite, I0, . . . , Im are non-empty
convex open sets, and for every i ≤ m, f�Ii is locally constant or locally
strictly increasing or locally strictly decreasing.

The following fact easily follows from the definition of strong cells.

Fact 1.3. Assume thatM = (M,≤, . . .) is a weakly o-minimal structure
with the strong cell decomposition property and A ⊆M . If U ⊆M is a non-
empty A-definable set and f : U → MM is an A-definable function, then
there is a partition of U into A-definable sets X, I0, . . . , Im such that X is
finite, I0, . . . , Im are non-empty convex open sets, and for every i ≤ m, f�Ii
is strongly continuous and strictly monotone or constant.

Proof. By assumption, there is a decomposition C ofM2 into A-definable
strong cells partitioning the set {〈x, y〉 ∈ U×M : y < f(x)}. This yields a de-
composition of U into finitely many A-definable convex open sets J0, . . . , Jk
and a finite set X such that

{J0, . . . , Jk} ∪ {{a} : a ∈ X} = {π[C] : C ∈ C},

where π : M2 → M is the projection dropping the second coordinate. By
our definition of strong cells, f�Ji is strongly continuous for i ≤ m. In such
a situation, weak o-minimality of M implies that each of the Ji’s could be
decomposed into finitely many A-definable convex open sets and some finite
set so that on each of the open sets, f is strictly monotone or constant. This
finishes the proof.

Theorem 1.4 ([We07]). Let M = (M,≤,+, . . .) be a weakly o-minimal
structure expanding an ordered group (M,≤,+). ThenM is of non-valuational
type iffM has the strong cell decomposition property.

2. The main result. Throughout this section we shall work in a weakly
o-minimal structure M = (M,≤, . . .), usually assuming that M has the
strong cell decomposition property or is a non-valuational expansion of an
ordered group. Let C denote a non-empty, convex and non-definable (inM)
proper subset ofM such that inf C = −∞. Then 〈C,M\C〉 is a cut in (M,≤)
(in [Bz] and [BVT] such cuts are called irrational). By Corollary 2.15 from
[We07], we know that if M is a non-valuational expansion of an ordered
group, then Th(M) is weakly o-minimal. Hence, by [Bz], also Th(M, C)
is weakly o-minimal. In a series of lemmas below we will show that if M
is a weakly o-minimal non-valuational expansion of an ordered group and
the cut 〈C,M \ C〉 is non-valuational, then also the expansion (M, C) is
of non-valuational type. Moreover, we will give a direct proof of the weak
o-minimality of Th(M, C).
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For m ∈ N+ and i ∈ {1, . . . ,m + 1}, we denote by πm+1
i the projection

from Mm+1 to Mm dropping the ith coordinate, and by Dm(M) the family
of all subsets of Mm definable inM.

Lemma 2.1. Assume thatM = (M,≤, . . .) is a weakly o-minimal struc-
ture and I ⊆ M is a convex open definable set such that I ∩ C 6= ∅ and
I\C 6= ∅. If f : I →MM is a definable function such that (∀x ∈ I)(f(x) > c)
[(∀x ∈ I)(f(x) < c)] for some c ∈ M , then there are an open interval
J ⊆ I and α > c [α < c], α ∈ M , such that J ∩ C 6= ∅, J \ C 6= ∅ and
(∀x ∈ J)(f(x) > α) [(∀x ∈ J)(f(x) < α)].

Proof. Let f : I → MM be a definable function such that (∀x ∈ I)
(f(x) > c), where c ∈M . By Fact 1.2 and the non-definability of C, there is
an open interval I1 ⊆ I such that I1 ∩ C 6= ∅, I1 \ C 6= ∅ and f�I1 is either
strictly monotone or constant. Fix a ∈ I1 ∩ C, b ∈ I1 \ C and α ∈ M such
that c < α < min{f(a), f(b)}. It is clear that f(x) > α whenever x ∈ (a, b).
The other case is proved in a similar way.

Lemma 2.2. LetM = (M,≤, . . .) be a weakly o-minimal non-valuational
expansion of an ordered group. Assume that I ⊆ M is a non-empty convex
open definable set such that I ∩ C 6= ∅ and I \ C 6= ∅, and f, g : I → MM

are definable functions such that (∀x ∈ I)(f(x) < g(x)). Then there are an
element a ∈ M and an open interval J ⊆ I such that J ∩ C 6= ∅, J \ C 6= ∅
and f(x) < a < g(x) for x ∈ J .

Proof. By Theorem 1.4 and Fact 1.3, without loss of generality we can
assume that the functions f, g are strongly continuous. By Lemma 2.1, there
are an open interval I1 ⊆ I and an element α > 0 inM such that I1∩C 6= ∅,
I1 \C 6= ∅ and (∀x ∈ I1)(g(x)−f(x) > α). Fix ε > 0 inM such that 2ε < α.
For x0 ∈ I1 define

δf (x0) = min(ε, sup{d ∈M : d > 0,
(∀x ∈ (x0 − d, x0 + d) ∩ I1)(|f(x)− f(x0)| < ε)}),

δg(x0) = min(ε, sup{d ∈M : d > 0,
(∀x ∈ (x0 − d, x0 + d) ∩ I1)(|g(x)− g(x0)| < ε)}).

Again, by Lemma 2.1, there are an open interval I2 ⊆ I1 and an element
β > 0 in M such that I2 ∩ C 6= ∅, I2 \ C 6= ∅ and min(δf (x0), δg(x0)) > β
for x0 ∈ I2. Fix c1 ∈ I2 ∩ C and c2 ∈ I2 \ C such that c2 − c1 < β. For
x1, x2 ∈ (c1, c2) we have

g(x2)− f(x1) = (g(x2)− g(x1)) + (g(x1)− f(x1)) > −ε+ 2ε = ε.

Consequently,

inf{g(x) : x ∈ (c1, c2)} − sup{f(x) : x ∈ (c1, c2)} ≥ ε.
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If a ∈M is such that sup{f(x) : x ∈ (c1, c2)} < a < inf{g(x) : x ∈ (c1, c2)},
then for x ∈ (c1, c2) we have f(x) < a < g(x).

Lemma 2.3. LetM be a weakly o-minimal non-valuational expansion of
an ordered group. Assume that X ⊆M2 is a set definable inM such that for
any a, b ∈M , if 〈a, b〉 ∈ X, then there are a1, a2 ∈M such that a1 < a < a2

and (a1, a2)× {b} ⊆ X. The following conditions are equivalent.

(a) There are a1 ∈ C, a2 ∈M\C and b ∈M such that (a1, a2)×{b} ⊆ X.
(b) There are a1 ∈ C and a2 ∈M \ C such that (a1, a2) ⊆ π2

2[X].

Proof. The implication (a)⇒(b) is obvious, so assume that (b) holds. Let
C be a decomposition of M2 into strong cells in M2 partitioning the set X.
There is a convex open definable set I ⊆M such that I ∩ C 6= ∅, I \ C 6= ∅
and for every D ∈ C, either I = π2

2[D] or π2
2[D] ∩ I = ∅. Below we consider

two cases.
Case 1: The set (I ×M)∩X has empty interior. The following claim is

a consequence of Lemma 2.1 from [We06] but for the sake of completeness
we give the proof in our particular situation.
Claim. For every x ∈ I, the set {y ∈M : 〈x, y〉 ∈ X} is finite.

Proof of the Claim. Suppose for a contradiction that for some a ∈ I, the
set {y ∈ M : 〈a, y〉 ∈ X} is infinite, so it contains an open interval J . For
b ∈ J define

f(b) = sup{c ∈M : c > a and {a} × (b, c) ⊆ (I ×M) ∩X}.
The function f assumes values greater than a in MM ∪ {+∞}. By Fact
1.3, there is an open interval J ′ ⊆ J such that f�J ′ is strongly continuous
and strictly monotone or constant. It is clear that the set {〈x, y〉 : a < x <
f(y), y ∈ J ′} is contained in (I ×M) ∩X and contains an open box itself.
This means that (I ×M) ∩X has non-empty interior, a contradiction.

Using the Claim, for x∈I, we can define f(x)=min{y ∈M : 〈x, y〉∈X}.
Our assumptions guarantee that f is constant (say f(x) = b whenever x ∈ I),
so for any a1 ∈ I ∩ C and a2 ∈ I \ C, we have (a1, a2)× {b} ⊆ X.
Case 2: There are definable strongly continuous functions f : I →

MM ∪{−∞} and g : I →MM ∪{+∞} such that f(a) < g(a) for a ∈ I and
D := (f, g)I ⊆ X ∩ (I ×M). By Lemma 2.2, there are a1 ∈ I ∩C, a2 ∈ I \C
and b ∈M such that (a1, a2)× {b} ⊆ D ⊆ X.

For a weakly o-minimal structureM and a set X ∈ Dm+1(M) let
I(X,C) = {a ∈Mm : (∃b ∈ C)(∃c ∈M \ C)({a} × (b, c) ⊆ X)}.

Define also Em(M, C) = {I(X,C) : X ∈ Dm+1(M)}. Below we will show
that ifM is a non-valuational expansion of an ordered group, then Em(M, C)
is exactly the family of subsets of Mm definable in (M, C).
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Lemma 2.4. LetM be a weakly o-minimal structure with the strong cell
decomposition property.

(a) If X ∈ D2(M) is a strong cell , then I({〈x, y〉 ∈M2 : 〈y, x〉 ∈ X}, C)
is a convex set.

(b) If Y ∈ E1(M, C), then Y is a finite union of convex sets.
(c) C ∈ E1(M, C).

Proof. (a) is obvious from the definition of strong cells. (b) follows from
(a) and the strong cell decomposition property of M. For the proof of (c),
note that

C = I({〈x, y〉 ∈M2 : y > x}, C).

Here the strong cell decomposition property in not needed.

Lemma 2.5. Assume that M is a weakly o-minimal structure and
m ∈ N+.

(a) Dm(M) ⊆ Em(M, C).
(b) Em(M, C) is closed under Boolean operations.
(c) If X ∈ Em(M, C), then X ×M,M ×X ∈ Em+1(M, C).

Proof. (a) If m ∈ N+ and X ∈ Dm(M), then X = I(X ×M,C).
(b) Fix m ∈ N+ and X,Y ∈ Em(M, C). There are X1, Y1 ∈ Dm+1(M)

such that X = I(X1, C) and Y = I(Y1, C). Clearly, X ∪ Y = I(X1 ∪ Y1, C),
X ∩ Y = I(X1 ∩ Y1, C) and Mm \X = I(Mm+1 \X1, C).

(c) Let m ∈ N+ and X ∈ Em(M, C). Then X = I(X1, C) for some
X1 ∈ Dm+1(M). HenceM ×X = I(M ×X1, C) and X×M = I({〈x, y, z〉 ∈
Mm+1 : 〈x, z〉 ∈ X}, C).

Lemma 2.6. LetM be a weakly o-minimal expansion of an ordered group.
If X ∈ Em+1(M, C), then πm+1

m+1[X] ∈ Em(M, C).

Proof. Fix m ∈ N+ and X ∈ Em+1(M, C). There is X1 ∈ Dm+2(M)
such that X = I(X1, C). Let

X2 =
⋃
{{a} × (b, c) : a∈Mm+1, b∈C, c ∈M \ C and {a} × (b, c) ⊆ X1}.

Clearly, X = I(X2, C) and X2 ∈ Dm+2(M). We claim that πm+1
m+1[X] =

I(πm+2
m+1[X2], C).
In order to prove that πm+1

m+1[X] ⊆ I(πm+2
m+1[X2], C), fix a ∈ πm+1

m+1[X].
There is b ∈ M such that 〈a, b〉 ∈ X = I(X2, C). So there are c ∈ C and
d ∈ M \ C such that {〈a, b〉} × (c, d) ⊆ X2. Hence {a} × (c, d) ⊆ πm+2

m+1[X2]
and a ∈ I(πm+2

m+1[X2], C).
For the reverse inclusion, let a ∈ I(πm+2

m+1[X2], C). There are c ∈ C and
d ∈ M \ C such that {a} × (c, d) ⊆ πm+2

m+1[X2]. Let Z = {〈x, y〉 ∈ M2 :
〈a, y, x〉 ∈ X2}. Clearly, (c, d) ⊆ π2

2[Z]. By Lemma 2.3, there are c′ ∈ C,
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d′ ∈M \ C and e ∈M such that (c, d)× {e} ⊆ Z. Consequently, {〈a, e〉} ×
(c, d) ⊆ X2. The latter implies that 〈a, e〉 ∈ X and a ∈ πm+1

m+1[X].

Lemmas 2.4–2.6 imply that ifM is a weakly o-minimal non-valuational
expansion of an ordered group, then:

(a) all intervals in (M,≤) belong to E1(M, C);
(b) every set belonging to E1(M, C) is a union of finitely many convex

sets;
(c) {〈x, y〉 ∈M2 : x < y} ∈ E2(M, C);
(d) for every m ∈ N+, ∅,Mm ∈ Em(M, C) and (E(M, C),∩,∪,c ) is a

Boolean algebra;
(e) if X ∈ Em(M, C), then X ×M,M ×X ∈ Em+1(M, C);
(f) if 1 ≤ i < j ≤ m, then {〈x1, . . . , xm〉 ∈Mm : xi = xj} ∈ Em(M, C);
(g) if X ∈ Em+1(M, C) and i ∈ {1, . . . ,m}, then πm+1

i [X] ∈ Em(M, C);
(h) C ∈ E1(M, C).

Therefore, by Remark 1.1, there is a weakly o-minimal structureM′ expand-
ingM such that a set X ⊆Mm is definable inM′ iff X ∈ Em(M, C). In the
following lemma, Dm(M, C) denotes the family of all subsets of Mm which
are definable in the structure (M, C).

Lemma 2.7. LetM be a weakly o-minimal non-valuational expansion of
an ordered group. For every m ∈ N+, Em(M, C) = Dm(M, C).

Proof. The inclusion ⊆ is obvious. That Dm(M, C) ⊆ Em(M, C) follows
easily by induction from the above remark.

Corollary 2.8. IfM is a weakly o-minimal non-valuational expansion
of an ordered group, then (M, C) is weakly o-minimal.

Lemma 2.9. LetM=(M,≤,+, . . .) be aweakly o-minimal non-valuational
expansion of an ordered group (M,≤,+). Assume that I is a non-empty
convex open definable (inM) set with I ∩C 6= ∅ and I \C 6= ∅. Let f : I →
MM be a definable strongly continuous and strictly monotone function.

(a) If f is strictly increasing , then

〈{a ∈M : (∃c ∈ C)(f(c) > a)}, {a ∈M : (∃d ∈M \ C)(f(d) < a)}〉
is a non-definable and non-valuational cut in (M,≤,+).

(b) If f is strictly decreasing , then

〈{a ∈M : (∃d ∈M \ C)(f(d) > a)}, {a ∈M : (∃c ∈ C)(f(c) < a)}〉
is a non-definable and non-valuational cut in (M,≤,+).

Proof. As both cases are similar, we will only prove (a). Assume that f
is strictly increasing and let

C ′ = {a ∈M : (∃c ∈ C)(f(c) > a)}
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and
D′ = {a ∈M : (∃d ∈M \ C)(f(d) < a)}.

It is clear that C ′ and D′ are both convex definable sets with inf C ′ = −∞
and supD′ = +∞. The sets C ′, D′ are disjoint since otherwise we would
have f(d) < a < f(c) for some a ∈M , c ∈ C and d ∈M \ C.

To show that C ′ ∪D′ = M , suppose for a contradiction that there exists
an element a ∈ M \ (C ′ ∪D′). This means that f(c) ≤ a ≤ f(d) whenever
c ∈ C and d ∈ M \ C. Note that if there was a c ∈ C with f(c) = a,
then there would also be a c′ ∈ C with c′ > c and f(c′) > f(c) = a, a
contradiction. So (∀c ∈ C)(f(c) < a) and similarly (∀d ∈M \C)(f(d) > a).
Now,

C = {x ∈M : x ≤ inf I} ∪ {x ∈ I : f(x) < a},
which means that C is definable inM, a contradiction. In this way we have
shown that 〈C ′, D′〉 is a cut in (M,≤). Its non-definability is a consequence
of the non-definability of C.

In order to complete the proof, suppose for a contradiction that
inf{z − y : y ∈ C ′, z ∈ D′} = inf{f(d)− f(c) : c ∈ C, d ∈M \ C} > 0

and fix ε > 0 in M such that ε < inf{f(d) − f(c) : c ∈ C, d ∈ M \ C}. So
clearly f(x2) − f(x1) > ε whenever x1 ∈ I ∩ C and x2 ∈ I \ C. For x0 ∈ I
define

δ(x0) = min{ε, sup{d ∈M : d > 0 and |f(x)− f(x0)| < ε

for x ∈ (x0 − d, x0 + d) ∩ I}}.
By Lemma 2.1, there are an open interval J ⊆ I and an element α > 0 in
M such that J ∩ C 6= ∅, J \ C 6= ∅ and (∀x0 ∈ J)(δ(x0) > α). Since the cut
〈C,M \ C〉 is non-valuational, we can choose x1 ∈ J ∩ C and x2 ∈ J \ C so
that x2 − x1 < α. We then have δ(x1) > α and |f(x2) − f(x1)| < ε, which
contradicts our choice of ε.

Corollary 2.10. LetM be a weakly o-minimal non-valuational expan-
sion of an ordered group.

(a) The structure (M, C) is of non-valuational type.
(b) Th(M, C) is weakly o-minimal.

Proof. Wealready knowbyCorollary 2.8 that (M, C) is weakly o-minimal.
To demonstrate that (M, C) is of non-valuational type, fix a cut 〈D,D′〉 in
(M,≤) which is definable in (M, C). We have to show that 〈D,D′〉 is non-
valuational. As there is nothing to do in case D ∈ D1(M), suppose that D is
not definable inM. By Lemma 2.7, there exists a set X ∈ D2(M) such that
D = I(X,C). Denote by X ′ the union of all sets of the form {a} × (b, c),
where a, b, c ∈ M , b < c and {a} × (b, c) ⊆ X. Obviously, X ′ is definable
in M and I(X ′, C) = D. Fix a decomposition C of M2 into strong cells
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partitioning X ′ and let I0, . . . , In be an enumeration of all convex sets of the
form π2

2[Y ], where Y ∈ C and Y ⊆ X ′, such that Ii precedes Ij whenever
i < j ≤ n. Without loss of generality we can assume that the functions
appearing in definitions of cells from C are strictly monotone or constant.
Non-definability of D guarantees that there is k ≤ n such that Ik is a convex
open set intersecting both D and M \ D. There are strongly continuous
functions f0, g0, . . . , fm, gm : Ik →MM ∪ {−∞,+∞} such that

(a) each of f0, g0, . . . , fm, gm is either strictly monotone or constant;
(b) f i(x) < gi(x) for i ≤ m and x ∈ Ik;
(c) gi(x) < f i+1(x) for i < m and x ∈ Ik;
(d) X ′ ∩ (Ik ×M) = (f0, g0)Ik ∪ · · · ∪ (fm, gm)Ik .

There is a unique i ≤ m such that sup I((fi, gi)Ik , C) = supD ∩ Ik and
exactly one of the following two conditions holds.

(1) fi is strictly increasing and D ∩ Ik = I((fi,+∞)Ik , C).
(2) gi is strictly decreasing and D ∩ Ik = I((−∞, gi)Ik , C).

Since the reasoning is similar in both cases, we will only consider (1). To
simplify notation let f := fi. Fix a ∈ C such that a > inf{f(x) : x ∈ Ik}
and b ∈ M \ C such that b < sup{f(x) : x ∈ Ik}, and let J = (a, b). For
y ∈ J define

h(y) = sup{x ∈M : 〈x, y〉 ∈ (f,+∞)Ik}.

The function h is strictly increasing and strongly continuous. As

D = {x ∈M : (∃x′ ∈ C)(h(x′) > x)},

by Lemma 2.9 the cut 〈D,D′〉 is non-valuational.
The weak o-minimality of Th(M, C) now follows from the fact that

(M, C) is a weakly o-minimal non-valuational structure and from Corollary
2.15 from [We07].

Before formulating the main result, we will introduce so called unary non-
valuational predicates. Assume thatM = (M,≤, . . .) is a weakly o-minimal
non-valuational expansion of an ordered group and let X ⊆ M be a finite
union of convex sets. For a ∈ X denote by R(a,X) the convex component
of X containing a. Similarly, for a ∈ M \ X, let R(a,X) be the convex
component of M \X containing a. For a ∈M define

D(a,X) =
⋃

α∈R(a,X)

(α,+∞).

Clearly, if D(a,X) 6= M , then 〈M \ D(a,X), D(a,X)〉 is a cut in (M,≤).
A cut 〈C,D〉 in (M,≤) is said to be determined by X if it is of the form
〈M \D(a,X), D(a,X)〉 for some a ∈M .
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We say that a set X ⊆ M is a unary non-valuational predicate iff X
is a union of finitely many convex sets and all cuts determined by X are
non-valuational.

Theorem 2.11. Assume thatM is a weakly o-minimal non-valuational
expansion of an ordered group and N is an expansion of M by a family of
non-valuational unary predicates. Then N is of non-valuational type.

Proof. There is a family of convex open sets Ci ( M , i ∈ I, such that

• for every i ∈ I, Ci is not definable inM and inf Ci = −∞;
• the structures N and (M, Ci : i ∈ I) have the same definable sets.

Without loss of generality we can assume that I is finite, in which case the
theorem follows easily by induction on |I| from Corollary 2.10(b).

Theorem 2.11 actually shows that for weakly o-minimal expansions of
ordered groups, the property of a structure having the strong cell decom-
position is preserved under expansions by families of unary non-valuational
predicates. Having in mind that non-valuational predicates are those which
determine non-valuational cuts, one can speak of valuational/non-valuational
cuts in an arbitrary weakly o-minimal structure with the strong cell decom-
position property, not necessarily expanding an ordered group. More pre-
cisely, if M = (M,≤, . . .) is a weakly o-minimal structure with the strong
cell decomposition property, then a cut 〈C,D〉 in (M,≤) could be called
non-valuational if the structure (M, C) has the strong cell decomposition
property. This gives us notions of being “close” and being “far” for the parts
of a cut 〈C,D〉 in (M,≤) and it would be interesting to further investi-
gate this topic, probably relating it to the canonical o-minimal extension of
a weakly o-minimal structure with the strong cell decomposition property
constructed in [We07].
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