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Abstract. We define and compare a selection of congruence properties of quasivari-
eties, including the relative congruence meet semi-distributivity, RSD(∧), and the weak ex-
tension property, WEP. We prove that if K ⊆ L ⊆ L′ are quasivarieties of finite signature,
and L′ is finitely generated while K |= WEP, then K is finitely axiomatizable relative to L.
We prove for any quasivariety K that K |= RSD(∧) iff K has pseudo-complemented congru-
ence lattices and K |= WEP. Applying these results and other results proved by M. Maróti
and R. McKenzie [Studia Logica 78 (2004)] we prove that a finitely generated quasivariety
L of finite signature is finitely axiomatizable provided that L satisfies RSD(∧), or that L
is relatively congruence modular and is included in a residually small congruence modular
variety. This yields as a corollary the full version of R. Willard’s theorem for quasivarieties
and partially proves a conjecture of D. Pigozzi. Finally, we provide a quasi-Maltsev type
characterization for RSD(∧) quasivarieties and supply an algorithm for recognizing when
the quasivariety generated by a finite set of finite algebras satisfies RSD(∧).

1. Introduction. For more information on the basic notions of general
algebra introduced below and used throughout this paper, we refer the reader
to [22]. By an algebra we shall mean a system of the form A = 〈A,FA

t

(t ∈ T )〉 where A is a non-void set, T is a set, and for t ∈ T , FA
t is a σ(t)-ary

operation over A for some non-negative integer σ(t). The function σ : T → ω
giving the arities of the operations is the signature of A. Such a signature σ
determines, of course, a first-order language Lσ with operation symbols but
no relation symbols. An algebra of signature σ is nothing other than a model
of the language Lσ. Algebras with the same signature are said to be similar.
A signature σ : T → ω is finite just in case T is a finite set.

We interpret the class-operators H,S,P in the inclusive sense, so that if
K is a class of similar algebras, then S(K) denotes the class of all algebras
isomorphic to a subalgebra of some algebra in K, H(K) denotes the class of
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all surjective homomorphic images of algebras in K, and P(K) denotes the
class of all algebras isomorphic to a Cartesian product of a system of algebras
from K. We use Pu(K) to denote the class of all algebras isomorphic to an
ultraproduct of a system of algebras from K, and Pr(K) to denote the class of
all algebras isomorphic to a reduced product of a system of algebras from K.

A quasivariety is a class K of similar algebras such that S(K) = Pr(K)
= K. By a classical result of A. I. Maltsev [16], a quasivariety is the same
thing as a class of similar algebras axiomatized by a set of quasi-equations
of the corresponding first order language. By quasi-equation we understand
a sentence of the form

(∀x̄)({s1(x̄) ≈ t1(x̄) ∧ · · · ∧ sn(x̄) ≈ tn(x̄)} → s(x̄) ≈ t(x̄))

where si, s, tj , t are terms. According to results of G. Grätzer and H. Lakser
[10], for a class K of similar algebras, SPPu(K) = SPr(K) is the smallest
quasivariety containing K; and K is a quasivariety iff S(K) = P(K) = Pu(K)
= K. Since P(K) contains a product of an empty system of algebras, a qua-
sivariety contains the one-element algebras of its signature.

A variety is a class K of algebras of the same signature such that H(K) =
S(K) = P(K) = K. According to a famous theorem of G. Birkhoff [4], a va-
riety is the same thing as a class of similar algebras axiomatized by a set of
equations of the corresponding first order language, where by equation we
mean a sentence of the form (∀x̄)(s(x̄) ≈ t(x̄)) for some terms s(x̄) and t(x̄).
Varieties are quasivarieties; in fact, they are precisely the quasivarieties K
that satisfy H(K) = K. The smallest variety containing a class K of similar
algebras is the class HSP(K).

A quasivariety K is said to be finitely generated if K = SPPu(M) for
some finite set M of finite algebras. In this case, of course, K = SP(M).
Likewise, a variety K is said to be finitely generated (i.e., as a variety) if
K = HSP(M) for some finite setM of finite algebras.

For a quasivariety K and A ∈ K we write ConA for the lattice of
congruences of A, and ConKA for the lattice of K-congruences of A, where
a K-congruence is any congruence θ such that A/θ ∈ K. Recall that the join
∨ in ConA and the join ∨K in ConKA are related by the equation

α ∨K β = α ∨ βK for {α, β} ⊆ ConKA

where for any θ ∈ ConA, θK is the smallest member of ConKA containing θ.

This paper is devoted to the study of a collection of sufficient conditions
for finite axiomatizability of a finitely generated variety or quasivariety. All
such conditions we encounter will be expressed as combinations of properties
of the lattice of congruences, or the lattice of relative congruences (or a com-
bination of the two) holding for all algebras in a quasivariety. We now define
the most central congruence properties we shall use. Recall the following
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lattice formulas:
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (distributive law),

x ≥ y → x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (modular law),
x ∧ y = x ∧ z → x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (meet semi-distributive

law).

A lattice L is distributive (respectively modular, or meet semi-distributive)
if the distributive law (respectively the modular law or the meet semi-
distributive law) holds for all elements x, y, z in L.

A quasivariety is said to satisfy CM (respectively, CD or SD(∧)) if and
only if all the lattices ConA with A ∈ K are modular lattices (respectively,
distributive lattices, or meet semi-distributive lattices). A quasivariety is said
to satisfy RCM (respectively, RCD or RSD(∧)) if and only if all the lattices
ConKA with A ∈ K are modular lattices (respectively, distributive lattices,
or meet semi-distributive lattices).

The serious study of the finite axiomatizability property in finitely gener-
ated varieties originated with Roger Lyndon in the 1950’s. A decade earlier,
Garrett Birkhoff had asked whether the equational theory of a finite al-
gebra of finite signature must be finitely axiomatizable. Lyndon proved in
[14] that the equational theory of every two-element algebra of finite sig-
nature is finitely axiomatizable and also provided in [15] the first example
of a finite algebra (a 7-element groupoid) the equational theory of which is
not finitely axiomatizable. In the half-century since these papers appeared,
many interesting and important results concerning the finite or non-finite
axiomatizability of finitely generated varieties have been established. (See
[17] for a brief account of the results obtained.) The following three results
have been regarded with respect to the range of their applicability as the
most distinguished positive results in this literature.

Baker’s Theorem (K. Baker [2]). Let K be a variety of finite signa-
ture. If K is congruence distributive and finitely generated, then K is finitely
axiomatizable.

McKenzie’s Theorem (R. McKenzie [19]). Let K be a variety of fi-
nite signature. If K is congruence modular, residually small, and finitely
generated, then K is finitely axiomatizable.

Willard’s Theorem (R. Willard [27]). Let K be a variety of finite
signature. If K is congruence meet semi-distributive and has a finite residual
bound, then K is finitely axiomatizable.

Once each of the above theorems had been proved, it prompted attempts
to find its valid extensions within finitely generated quasivarieties, or equiv-
alently speaking, within quasi-equational classes generated by finite sets of
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finite algebras (see for example W. J. Blok and D. Pigozzi [5], J. Czelakowski
and W. Dziobiak [6], W. Dziobiak [7], K. Kearnes and R. McKenzie [13],
M. Maróti and R. McKenzie [17], A. Nurakunov [23], [24], and D. Pigozzi
[25]). A quasi-equational class is a universal Horn class which contains a one-
element algebra.

We extend Willard’s theorem to quasivarieties. Our extension is based
on earlier work of M. Maróti and R. McKenzie [17]. It relies on the weak
extension property, which is introduced and developed in Section 2 below.

In [25], D. Pigozzi proved the following theorem: If K is a finitely gen-
erated and relatively congruence distributive quasivariety of finite signa-
ture, then K is finitely axiomatizable. D. Pigozzi’s theorem fully extended
K. Baker’s theorem to quasivarieties, and is itself extended by the new results
mentioned above. Having proved his theorem and looked for a common ex-
tension into quasivarieties of both his and R. McKenzie’s theorem, D. Pigozzi
made the following conjecture in the late 1980’s.

Pigozzi’s Conjecture. If K is a finitely generated and relatively con-
gruence modular quasivariety of finite signature, then K is finitely axioma-
tizable.

K. Kearnes and R. McKenzie [13] developed a commutator theory for
relative congruences in relatively congruence modular quasivarieties, with
the expectation that it can be used to prove D. Pigozzi’s conjecture; but the
truth of this conjecture remains an open question.

We prove that D. Pigozzi’s conjecture is true provided that K is addi-
tionally assumed to be included in a residually small congruence modular
variety.

In view of R. McKenzie’s negative solution to A. Tarski’s problem (see
R. McKenzie [20]) which asked if there is an algorithm to determine whether
the variety generated by a finite set of finite algebras of finite signature is
finitely axiomatizable, and the fact that the analogue of A. Tarski’s problem
for quasivarieties has not been solved yet, theorems like those of K. Baker,
R. McKenzie, D. Pigozzi, and R. Willard have been gaining an extra mean-
ing. All known theorems of this type provide sufficient conditions for a finitely
generated variety or quasivariety of finite signature to be finitely axiomati-
zable. All the known sufficient conditions have been shown to be algorith-
mically verifiable. Continuing this tradition, we offer here, in Section 6, an
algorithm for determining if a finite set of finite algebras generates a quasi-
variety satisfying RSD(∧).

2. More congruence properties, and relations amongst them.
Besides the congruence properties introduced in the introduction, three prop-
erties of a more technical nature will also play a major part in our discussions.
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Let K be any quasivariety. We say that K satisfies the extension property,
EP, if and only if for all A ∈ K the map θ 7→ θ

K is a lattice homomorphism
of ConA onto ConKA. We say that K satisfies the weak extension property,
WEP, if and only if for all A ∈ K and α, β ∈ ConA, if α ∧ β = 0A then
αK∧βK = 0A. We say that K satisfies the PCC, or has pseudo-complemented
congruences, if for all A ∈ K and α ∈ ConA, there is a largest congruence
β ∈ ConA satisfying α ∧ β = 0A (i.e., β is the pseudo-complement of α in
ConA).

Together with the six properties defined in the introduction, we now have
nine congruence properties to consider, as related below.

CM congruence modular
CD congruence distributive

SD(∧) congruence meet semi-distributive
RCM relatively congruence modular
RCD relatively congruence distributive

RSD(∧) relatively congruence meet semi-distributive
EP extension property

WEP weak extension property
PCC pseudo-complemented congruence lattices

Whenever P is any one of these properties, we shall write K |= P to denote
that K satisfies P.

Extending Willard’s theorem to quasivarieties M. Maróti and R. McKen-
zie [17] proved that if K is a finitely generated quasivariety of finite signa-
ture which satisfies both PCC and WEP, then K is finitely axiomatizable.
We shall prove that RSD(∧)⇔ PCC + WEP. Thus we shall obtain the full
version of Willard’s theorem for quasivarieties.

We also require two properties of a different character.
Let K be any quasivariety. A finite set of pairs of terms,

W = {(si(x, y, z), ti(x, y, z)) : 0 ≤ i < n},

is said to be a set of Willard terms for K if and only if the equations
si(x, y, x) ≈ ti(x, y, x) (0 ≤ i < n) are valid in K and

K |= (∀x, y)
[
x 6= y →

∨
i<n

(si(x, x, y) = ti(x, x, y)↔ si(x, y, y) 6= ti(x, y, y))
]
.

We write K |= W to denote that K has a set of Willard terms.
A finite set of pairs of terms

D = {(pi(x, y, z, u), qi(x, y, z, u)) : 0 ≤ i < n}
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is said to be a set of quasi-Day terms for K if and only if the equations

pi(x, y, y, x) ≈ qi(x, y, y, x) and pi(x, x, y, y) ≈ qi(x, x, y, y), 0 ≤ i < n,

are valid in K and

K |= (∀x, y, z)
[
x 6= z →

∨
i<n

pi(x, y, y, z) 6= qi(x, y, y, z)
]
.

Most of the facts stated in the next theorem can be found either in
K. Kearnes and R. McKenzie [13] or in M. Maróti and R. McKenzie [17].
We believe that Theorem 1(4) is new. The results in the corollary may be
partly new.

Theorem 1. For any quasivariety K the following hold.

(1) CD⇔ CM + SD(∧),
(2) RCD⇔ RCM + RSD(∧),
(3) PCC⇔W and SD(∧)⇒ PCC,
(4) RSD(∧)⇔ PCC + WEP⇔W + WEP,
(5) RCM⇒ EP⇒WEP,
(6) RCM⇔ K has quasi-Day terms and satisfies WEP.

Corollary 2. Let K ⊆ L be quasivarieties.

(i) If L is RCM then K is RCM iff K satisfies WEP.
(ii) If L is RSD(∧) then K is RSD(∧) iff K satisfies WEP.
(iii) If L is RCM and K is RSD(∧) then K is RCD.
(iv) If L is RSD(∧) and K is RCM then K is RCD.

We remark that a quasivariety K is CM iff the variety L = H(K) is CM
and that here, L |= CM iff L |= RCM. The analogous statements hold for
the properties CD and SD(∧). Consequently, each of the four assertions of
the corollary remains true when the hypothesis L |= RCM or L |= RSD(∧)
is replaced by K |= CM or, respectively, K |= SD(∧).

Proof of Theorem 1. (1) and (2): It is a well-known fact that any lattice
is distributive iff it is both modular and meet (or join) semi-distributive.

(3): The part PCC ⇔ W was proved in M. Maróti and R. McKenzie
[17] (see Theorem 2.3 of [17]). The part SD(∧) ⇒ PCC is an easy con-
sequence of the fact that every algebraic meet semi-distributive lattice is
pseudo-complemented.

(4): We prove RSD(∧)⇔ PCC+WEP and obtain RSD(∧)⇔W+WEP
as a consequence of (3).

Suppose that K |= PCC + WEP. Let A ∈ K, α, β, γ ∈ ConKA, and
α∧ β = α∧ γ = 0A. By PCC, α∧ (β ∨ γ) = 0A, which, as α ∈ ConKA and
WEP, gives α ∧ (β ∨K γ) = 0A. Thus K |= RSD(∧).

Next, we suppose that K satisfies RSD(∧) and we show that K has
Willard terms, which, by (3), will give K |= PCC. Let F = FK(3) be the free
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algebra in K freely generated by x, y, z. Let α = CgF(x, z), the congruence
generated by the pair (x, z); and let β = CgF(x, y) and γ = CgF(y, z). No-
tice that each of α, β, γ is the kernel of an endomorphism of F, and hence
{α, β, γ} ⊆ ConK F. Put

β0 = β,

γ0 = γ,

βn+1 = β ∨K (α ∧ γn),
γn+1 = γ ∨K (α ∧ βn).

This defines increasing sequences 〈βn : n ∈ ω〉, 〈γn : n ∈ ω〉 in ConK F.
Then β∞ =

∨
n βn and γ∞ =

∨
n γn are K-congruences. By join-continuity,

α∧β∞ = α∧γ∞. Now since K |= RSD(∧), we have α∧β∞ = α∧(β∞∨Kγ∞).
Thus

α ∧ (β ∨ γ) ≤ α ∧ (β∞ ∨ γ∞) ≤ α ∧ β∞,
showing that (x, z) ∈ β∞.

Now write

M = {(s(x, y, z), t(x, y, z)) ∈ F 2 : K |= s(x, y, x) ≈ t(x, y, x)}.
In fact, M = α. Suppose that A ∈ K, a, b ∈ A, and

A |= s(a, a, b) = t(a, a, b)↔ s(a, b, b) = t(a, b, b) for all (s, t) ∈M.

This means that if f0, f1 are the homomorphisms F→ A with

(f0(x), f0(y), f0(z)) = (a, a, b), (f1(x), f1(y), f1(z)) = (a, b, b),

and β′ = ker(f0), γ′ = ker(f1), then α ∧ β′ = α ∧ γ′. Notice that β′, γ′ ∈
ConK F and β ≤ β′, γ ≤ γ′. An easy calculation then shows inductively that

βn ≤ β′, γn ≤ γ′ for all n.

We conclude that (x, z) ∈ β′ (since (x, z) ∈ β∞). But this just means that
a = b (i.e., f0(x) = f0(z)).

We have shown that

K |= (∀x, z)
[
x 6= z →

∨
(s,t)∈M

(s(x, x, z) = (x, x, z)↔ s(x, z, z) 6= t(x, z, z))
]
.

With a logical compactness argument, we deduce that the displayed state-
ment remains true whenM is replaced by some finite subsetW ofM . Clearly,
W is a set of Willard terms for K.

This concludes our proof that RSD(∧)⇒W.
Finally, we prove that RSD(∧) ⇒ WEP. It will be a proof by contra-

diction. Suppose that K |= RSD(∧), and that A ∈ K, {θ, ψ} ⊆ ConA,
θ∧ψ = 0A, and θ

K ∧ψK > 0A. If θ∧ψ
K = 0A, replace θ by ψK, and replace

ψ by θ. Thus we can assume that θ ∧ ψ = 0A and θ ∧ ψK > 0A.
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Now let

B = {(x, y) ∈ A2 : there exist c, d ∈ A so that xθcψy and xψdθy},

that is, B = (θ ◦ ψ) ∩ (ψ ◦ θ). This is of course a subuniverse of A×A that
includes θ ∪ ψ, and we write B for the corresponding algebra. If (x, y) ∈ B
and c, d are as above, the elements c, d are unique. We have four surjective
homomorphisms B→ A:

π0(x, y) = x;
π1(x, y) = y;
ϕ(x, y) = c where xθcψy;
ϕ′(x, y) = d where xψdθy.

The kernels of these homomorphisms are, of course, K-congruences of B.
They are

00 = ker(π0);
01 = ker(π1);

θ0 ∧ ψ1 = ker(ϕ);
ψ0 ∧ θ1 = ker(ϕ′).

Thus

α = ker(ϕ) ∧ ker(π1) = θ0 ∧ 01,

β = ker(ϕ′) = ψ0 ∧ θ1,
γ = ker(π0) ∧ ker(ϕ) = 00 ∧ ψ1

are K-congruences of B.
Obviously (since θ ∧ ψ = 0A) we have α ∧ β = α ∧ γ = 0B. Since

K |= RSD(∧), it follows that α ∧ β ∨ γK = 0B. We can calculate β ∨ γ as

β ∨ γ = ψ0.

To see this, note first that β∪γ ⊆ ψ0. Next, suppose that ((x0, y0), (x1, y1)) ∈
ψ0. This means simply that (x0, x1) ∈ ψ. We can calculate:

(x0, y0)γ(x0, ϕ(x0, y0))β(x1, x0)γ(x1, x1)β(x1, ϕ(x1, y1))γ(x1, y1).

Next, note that from the isomorphism B/ψ0
∼= A/ψ, it follows that the

interval 1A/ψ in ConA is naturally isomorphic to the interval 1B/ψ0 in
ConB via the map τ 7→ τ0, where for all such τ , A/τ ∼= B/τ0. From this,
we deduce that (ψK)0 = ψ0

K. Now

α ∧ ψK0 = α ∧ β ∨ γK = 0B,
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since K |= RSD(∧). But on the other hand, we have some (x, y) ∈ θ ∧ ψK,
x 6= y. Then (x, y), (y, y) ∈ B and obviously,

((x, y), (y, y)) ∈ α ∧ ψK0 ,

which contradicts the displayed equations just above. This ends our proof
that RSD(∧)⇒WEP.

Our proof of (4) is now complete. Statement (5) is Theorem 1.1 in
K. Kearnes and R. McKenzie [13]. Theorem 4.1 in the same paper demon-
strates that RCM is equivalent to the conjunction of EP and the existence
of quasi-Day terms. But in the paragraph immediately following the conclu-
sion of their proof of Theorem 4.1, those authors point out that our stronger
Theorem 1(6) is true and show how to prove it.

Proof of Corollary 2. Assume that K ⊆ L are quasivarieties. It is clear
that if L satisfies PCC (equivalently, W), or has quasi-Day terms, then K
has the same property. Thus (i) and (ii) follow immediately from Theo-
rem 1(4), (6). Statements (iii) and (iv) then follow from the equivalence
RCD ⇔ RCM + RSD(∧). Since we did not prove Theorem 1(6), and the
proof given in K. Kearnes and R. McKenzie [13] is rather involved, we shall
now give a direct proof of the fact that if L is relatively congruence modu-
lar and K has the weak extension property, then K is relatively congruence
modular.

Assume that L has RCM and K has WEP. To see that K has RCM, let
A ∈ K and α, β, γ ∈ ConKA with α ≥ β. We must prove that α ∧ (β ∨K γ)
= β ∨K (α ∧ γ). By replacing β with β ∨K (α ∧ γ), we can assume that
α ∧ γ ≤ β. Next, replacing A by A/(α ∧ γ) (an algebra in K) and replacing
α by α/(α∧γ), β by β/(α∧γ), γ by γ/(α∧γ), we can assume that α∧γ = 0A.
Note that {α, β, γ} ⊆ ConLA and we do have α∧(β∨Lγ) = β∨L(α∧γ) = β.
Now α, β are in ConKA and if τ = β ∨L γ, then obviously τK = β ∨K γ.
Applying the WEP in the algebra A/β, it follows from α ∧ τ = β that
α ∧ τK = β—i.e., α ∧ (β ∨K γ) = β = β ∨K (α ∧ γ), as desired.

We recommend to the reader the proof, in K. Kearnes and R. McKenzie
[13] (Theorem 1.1), that RCM⇒WEP (and in fact implies EP). It is a nice
argument.

3. Quasi-Maltsev type characterization of RSD(∧). As in K. Kear-
nes and R. McKenzie [13], by a quasi-Maltsev condition we mean a condition
expressed as the disjunction of conditions each of which postulates the ex-
istence of a finite set of terms satisfying certain quasi-equations. In general,
any quasi-Maltsev condition alone cannot characterize RSD(∧). The rea-
son is that an RSD(∧) quasivariety may have a subquasivariety that is not
RSD(∧). However, RSD(∧) can be characterized by the conjunction of a
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quasi-Maltsev condition and the weak extension property, as shown by The-
orem 3 below. A similar characterization for RCM quasivarieties was given
in K. Kearnes and R. McKenzie [13]; see Theorem 1(6) in the present paper.

Let K be a quasivariety and F = FK(3) be the free algebra in K freely
generated by x, y, z. Let α = CgF(x, z), β = CgF(x, y), and γ = CgF(y, z).
In the proof of Theorem 1, we defined the following two sequences of con-
gruences.

β0 = β,

γ0 = γ,

βn = β ∨K (α ∧ γn−1),
γn = γ ∨K (α ∧ βn−1).

We will refer to these congruences again; see Theorem 3 and its proof
given below.

A tree is a finite ordered set (T,≤) having a smallest element, called the
root of T , and the property that every set of the form r↓ = {x ∈ T : x ≤ r}
is a chain in T . If t < r and r↓ = {r}∪ t↓, then r is called a child of t. A leaf
of T is a maximal element in (T,≤). For t ∈ T , we set h(t) = |t↓| − 1 and
CT (t) = {r ∈ T : r is a child of t}. We also set h(T ) = max {h(t) : t ∈ T}.
A tree is said to be non-trivial if h(T ) > 0.

Theorem 3. For any quasivariety K the following conditions are equiv-
alent :

(i) K is RSD(∧);
(ii) K satisfies WEP and (x, z) ∈ βn for some n ∈ ω \ {0};
(iii) K satisfies WEP and there exists a finite set ∆ = {(pt, qt) : t ∈ T}

⊆ F 2 where the index set T of ∆ has the structure of a non-trivial
tree such that , for every t ∈ T , the following equations and quasi-
equations are universally valid in K:
(1) If t is the root of T , then pt(x, y, z) ≈ x and qt(x, y, z) ≈ z.
(2) If t is not a leaf in T , then pt(x, y, x) ≈ qt(x, y, x) and∧

{pr(x, y, z)≈qr(x, y, z) : r ∈ CT (t)} → pt(x, y, z)≈qt(x, y, z).
(3) If 0 < h(t) < h(T ) and t is a leaf in T , then pt(x, x, y) ≈

qt(x, x, y) when h(t) is odd , and pt(x, y, y) ≈ qt(x, y, y) when
h(t) is even.

(4) If h(t) = h(T ), then either pt(x, x, y) ≈ qt(x, x, y), or pt(x, y, x)
≈ qt(x, y, x) and pt(x, y, y) ≈ qt(x, y, y) when h(T ) is odd , and
either pt(x, y, y) ≈ qt(x, y, y), or pt(x, y, x) ≈ qt(x, y, x) and
pt(x, x, y) ≈ qt(x, x, y) when h(T ) is even.

Proof. (i)⇒(ii): It follows from (i) that α∧ (β ∨ γ) ≤ β∞—see the proof
of Theorem 1. This gives (x, z) ∈ βn for some n ∈ ω \ {0}.
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(ii)⇒(iii): Assume that K satisfies WEP, n > 0, and (x, z) ∈ βn. The
idea of the proof of this implication is simple. We begin with the following
claim, which is a consequence of the definitions of βk and γk and a compact-
ness argument.

Claim 1. For k > 0 and 3-ary terms p and q, if (p, q) ∈ βk (or (p, q) ∈
γk, respectively) then there are finite sets A ⊆ β and B ⊆ α∩γk−1 (or A ⊆ γ
and B ⊆ α ∩ βk−1, respectively) such that K |=

∧
{r ≈ s : (r, s) ∈ A ∪B} →

p ≈ q.

Now for every odd integer i with 0 ≤ i < n, choose (using the claim)
a mapping σ 7→ (Ai(σ), Bi(σ)) defined on γn−i so that for σ = (p, q) ∈
γn−i, Ai(σ) is a finite subset of γ, Bi(σ) is a finite subset of α ∩ βn−i−1,
Ai(σ) ∩ α ∩ βn−i−1 = ∅, and

K |=
∧
{r ≈ s : (r, s) ∈ Ai(σ) ∪Bi(σ)} → p ≈ q.

By placing (x, x) in Bi(σ) \Ai(σ), we can assume that Bi(σ) 6= ∅. For every
even integer i with 0 ≤ i < n, choose a mapping σ 7→ (Ai(σ), Bi(σ)) defined
on βn−i so that for σ = (p, q) ∈ βn−i, Ai(σ) is a finite subset of β, Bi(σ) is
a finite non-empty subset of α ∩ γn−i−1, Ai(σ) ∩ α ∩ γn−i−1 = ∅, and

K |=
∧
{r ≈ s : (r, s) ∈ Ai(σ) ∪Bi(σ)} → p ≈ q.

The labeled tree T we shall use to satisfy (iii) is now determined. We con-
struct it as follows.

For the elements of T we take all finite sequences t = (σ0, . . . , σi) of
elements of F 2 satisfying: 0 ≤ i ≤ n; σ0 = (x, z); for 0 ≤ j < i, σj ∈ βn−j
if j is even, σj ∈ γn−j if j is odd, and σj ∈ α if 0 < j < i; for 0 ≤ j < i,
σj+1 ∈ Aj(σj)∪Bj(σj). (Note that these conditions imply that if 0 ≤ j < i−1
then σj+1 ∈ Bj(σj), but σi ∈ Ai−1(σi−1) is allowed when Ai−1(σi−1) 6= ∅.)

T is ordered by putting t ≤ t′ iff t is an initial segment of t′. This obviously
makes T into a rooted tree with root ⊥ = ((x, z)). For t = (σ0, . . . , σi) ∈ T
we put pt(x, y, z) = p and qt(x, y, z) = q where σi = (p, q). The tree T has
height n. We leave to the reader the straightforward proof that T with the
labels (pt, qt), t ∈ T , satisfies (iii).

(iii)⇒(i): Assume (iii). In particular, assume that K satisfies WEP and
that we have a non-trivial tree T with labels (pt, qt), t ∈ T , that satisfies
(1)–(4) of statement (iii). Since K |= WEP, in order to prove (i) it is enough,
by Theorem 1(4), to show that K has Willard terms.

Claim 2. W = {(pt, qt) : t ∈ T and K |= pt(x, y, x) ≈ qt(x, y, x)} is a
set of Willard terms for K.
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To prove this claim, let A ∈ K, {a, b} ⊆ A, and suppose that for all
(pt, qt) ∈W we have

pt(a, a, b) = qt(a, a, b)↔ pt(a, b, b) = qt(a, b, b).

We must show that a = b.
If n = h(T ), let I be the set of all i, 0 ≤ i ≤ n, such that: (I) if i

is odd and i = h(t), then pt(a, a, b) = qt(a, a, b); and (II) if i is even and
i = h(t), then pt(a, b, b) = pt(a, b, b). We show that I = {0, 1, . . . , n}, by
reverse induction on i, starting at i = n and working down to i = 0. As a
result we will find that 0 ∈ I, implying that, with ⊥ being the root of T ,
a = p⊥(a, b, b) = q⊥(a, b, b) = b, as desired.

For the base step of the induction, consider a vertex t of height n. If
n is odd, and pt(x, x, y) ≈ qt(x, x, y) is not a valid equation of K, then by
(4) of Theorem 3(iii), (pt, qt) ∈ W and pt(a, b, b) = qt(a, b, b). In this case,
pt(a, a, b) = qt(a, a, b) by our assumption about a, b. On the other hand,
if pt(x, x, y) ≈ qt(x, x, y) is an equation of K, then of course pt(a, a, b) =
qt(a, a, b). This shows that n ∈ I if n is odd. The argument for the case of
even n is analogous, and also uses (4) of Theorem 3(iii).

Now assume that 0 ≤ i < n and i + 1 ∈ I. We show that i ∈ I. So let
t be a vertex of T of height i. Let, say, i be even. First, assume that t is
not a leaf. Now for every child r of t in T , h(r) = i + 1 and so pr(a, a, b) =
qr(a, a, b) by the inductive assumption. Then, by (2) of Theorem 3(iii), we
have pt(a, a, b) = qt(a, a, b), and also (pt, qt) ∈ W . Thus it follows that
pt(a, b, b) = qt(a, b, b), as required. The case where i is odd and t is not a leaf
yields to a similar argument.

Finally, assume that t is a leaf of height i. Then by (3) of Theorem 3(iii),
we have pt(a, a, b) = qt(a, a, b) if i is odd, and if i is even, then pt(a, b, b) =
qt(a, b, b). This concludes our proof that i + 1 ∈ I implies i ∈ I; and that
concludes our proof of Theorem 3.

Corollary 4. A quasivariety K has Willard terms if and only if it
admits a labeled tree satisfying condition (iii) of Theorem 3. If T , with labels
(pt, qt), t ∈ T , is such a tree for K, then W = {(pt, qt) : t ∈ T and K |=
pt(x, y, x) ≈ qt(x, y, x)} is a set of Willard terms for K.

Proof. Claim 2 in the proof of Theorem 3 shows that if T is such a
tree for K then W is a set of Willard terms for K. Conversely, it is proved
in M. Maróti and R. McKenzie [17] that a quasivariety has Willard terms
iff it has pseudo-complemented congruence lattices, and consequently the
possession of Willard terms implies that (x, z) ∈ βn for some n > 0.

The tree condition (iii) in Theorem 3 is similar to the condition shown
by R. Willard [26] to be equivalent to congruence meet semi-distributivity
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for a variety, and from which he extracted the existence of what we have
called Willard terms.

4. Finite axiomatizability. Our purpose in this section is to prove a
very general result about finite axiomatizability (Theorem 6), and use it to
prove that every finitely generated quasivariety satisfying RSD(∧), and hav-
ing finite signature, is finitely axiomatizable (Theorem 7). Using Theorem 4,
we also partially prove D. Pigozzi’s conjecture (Theorem 8).

Let us recall from the introduction some notable finite axiomatizability
theorems. Suppose that K is a finitely generated quasivariety of finite sig-
nature. K. Baker [1], [2] proved that K is finitely axiomatizable provided
K satisfies CD + H(K) = K (i.e., K is a congruence distributive variety).
D. Pigozzi [25] proved more generally that K is finitely axiomatizable if K
satisfies RCD. R. Willard [26] extended K. Baker’s theorem in another direc-
tion: K is finitely axiomatizable if K satisfies SD(∧) + H(K) = K. M. Maróti
and R. McKenzie [17] obtained a somewhat complicated result (see their
Theorem 7.1) that extends both theorems of D. Pigozzi and R. Willard. Our
Theorem 7 below extends the theorems of D. Pigozzi and R. Willard, and
is a cleaner, more refined version of the result of M. Maróti and R. McKen-
zie.

Let K and L be locally finite quasivarieties of finite signature such that
K is properly included in L. A finite algebra A is said to be (K,L)-minimal
if A 6∈ K, A ∈ L, and every proper subalgebra of A belongs to K. For a
(K,L)-minimal algebra A, we let ΘA

K denote the smallest congruence on A
such that A/ΘA

K ∈ K.
Obviously, the relation of isomorphism partitions the family of all (K,L)-

minimal algebras. Let S be a selector set of that partition.
ForA ∈ S, let a 7→ xa be a fixed one-to-one assignment of individual vari-

ables to the elements of A. Let D(A) denote the collection of all equations of
the form f(xa1 , . . . , xan) = xf(a1,...,an), where f is an n-ary operation symbol
of the signature of A, and a1, . . . , an are elements of A. As the signature is
finite and A is finite, D(A) is finite. We set

ΣA =
{ ∧

D(A)→ xa ≈ xb : a 6= b and (a, b) ∈ ΘAK
}
.

For a set Γ of quasi-identities, we let ModL Γ denote the set of algebras
of L in which the quasi-identities of Γ are universally valid.

Proposition 5. K = ModL (
⋃
{ΣA : A ∈ S}).

Proof. ⊆: Let B ∈ K and A ∈ S. Let (a, b) ∈ ΘA
K be such that a 6= b.

Let xa 7→ v(xa) be an assignment of values in B of {xa : a ∈ A} under
which the equations of D(A) are satisfied. Notice that the map a 7→ v(xa),
denoted by ϕ, is a homomorphism from A to B. As B ∈ K, A/ker(ϕ) ∈ K.
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So ΘA
K ≤ ker(ϕ). This gives ϕ(a) = ϕ(b). Thus v(xa) = v(xb), proving that

B |=
∧
D(A)→ xa = xb, i.e. B ∈ ModL (

⋃
{ΣA : A ∈ S}).

⊇: Let B ∈ L be finite and B 6∈ K. Then there is A ∈ S that is
isomorphic to a subalgebra of B. As A 6|= ΣA, B 6|= ΣA. Thus B 6∈
ModL (

⋃
{ΣA : A ∈ S}).

Theorem 6. Suppose that K ⊆ L ⊆ L′ are quasivarieties of finite sig-
nature such that K satisfies WEP and L′ is finitely generated. Then K is
finitely axiomatizable relative to L.

Proof. Let n be an integer not less than the cardinality of any of the
generators of L′. Let m be the maximum size of an n-generated subalgebra
of any algebra in L′. We may assume that K 6= L. We claim that any finite
algebra in L \ K has a subalgebra of at most m elements that lies outside
of K. This will mean that the selector S as defined above is finite. This, in
turn, by Proposition 5, will complete the proof.

To see the claim, we assume that A is a finite algebra in L \ K. For
X,Y ⊆ ConA, we define X � Y iff for every α ∈ Y there exists β ∈ X
such that β ≤ α. Notice that � restricted to antichains in ConA is a partial
order.

LetX be an antichain in ConA whose intersection is 0A and such that for
each α ∈ X, the quotient algebra A/α has at most n elements. Notice that
such an X exists for A ∈ L since n bounds the cardinality of the generators
of L′. Now, among all antichains Y in ConA with X � Y and with the
intersection of Y equal to 0A, we choose one, say Z, that is �-maximal. It
follows from the choice of Z that each member of Z is a meet-irreducible
element of ConA. Since A is outside of K, we can choose γ in Z so that
A/γ 6∈ K. Let δ be the unique cover of γ in ConA. Since, by the choice, Z is
�-maximal, there is a pair (a, b) in A×A such that (a, b) ∈ δ∧

∧
(Z\{γ}) and

a 6= b. Choose a0, . . . , ak−1 in A to be a selector set for all the γ-equivalence
classes in A with a0 = a and a1 = b. (Note that 2 ≤ k since (a, b) 6∈ γ.) As
X � Z, it follows that k ≤ n.

Let B be the subalgebra of A generated by a0, . . . , ak−1. As k ≤ n, B has
at most m elements. Let γ′ and σ denote the restrictions of γ and

∧
(Z \{γ})

to the algebra B, respectively. Obviously, γ′∧σ = 0B. We now want to show
thatB 6∈ K. To this end, suppose otherwise thatB ∈ K. Then, by WEP of K,
there are K-congruences γ′K and σK on B that extend γ′ and σ, respectively,
and are such that γ′K ∧ σK = 0B. As a, b ∈ B and (a, b) ∈

∧
(Z \ {γ}), it

follows that (a, b) ∈ σ ≤ σK. This implies (a, b) 6∈ γ′K.
Since B is a subalgebra of A generated by a selector set for all the γ-

equivalence classes in A, it follows that B/γ′ is isomorphic to A/γ. Thus
γ′ has the unique cover in ConB to which (a, b) belongs; recall that a0 = a
and a1 = b. This implies that γ′K = γ′ for otherwise γ′K would be above this
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unique cover and as a consequence (a, b) would belong to γ′K. But A/γ 6∈ K
and so B/γ′ 6∈ K. Hence B/γ′K 6∈ K, a contradiction. Thus B 6∈ K.

We remark that in place of assuming K satisfies WEP in Theorem 6 it
would suffice to assume, if L′ is generated by algebras of at most n elements,
that for every n-generated algebra A ∈ K and for all α, β ∈ ConA, if
α ∧ β = 0A then αK ∧ βK = 0A. (An examination of the proof reveals that
this is all we used.)

In view of the fact that RSD(∧) ⇔ PCC + WEP for quasivarieties
(Theorem 1(4)), our next theorem is clearly identical with Corollary 6.4
in M. Maróti and R. McKenzie [17]. Those authors, however, did not know
this characterization of RSD(∧), and we wish to present a somewhat cleaner
proof of the result than they gave. Nevertheless, we shall have to use without
proof one of their results.

Theorem 7. Every finitely generated quasivariety of finite signature sat-
isfying RSD(∧) is finitely axiomatizable.

Proof. Let K be a finitely generated quasivariety of finite signature, sat-
isfying RSD(∧). By Theorem 1(4) above, K satisfies PCC and WEP. Now,
Corollary 5.4 in M. Maróti and R. McKenzie [17] and its proof establish that
K ⊆ L ⊆ L′ for a certain finitely axiomatizable quasivariety L and finitely
generated quasivariety L′. Then it follows from Theorem 6 that K is finitely
axiomatizable.

As RSD(∧) ⇔ PCC + WEP, one may ask whether Theorem 7 remains
true if RSD(∧) is replaced in it by PCC or by WEP. The answer is negative
in the first case (see W. Dziobiak [8], J. Ježek, M. Maróti and R. McKenzie
[12], and R. McKenzie [21]) but it is unknown to us in the second case.

Theorem 8. If K is a finitely generated quasivariety of finite signature
which is RCM and H(K) is CM and residually small , then K is finitely
axiomatizable.

Proof. By Theorem 1(6), K |= WEP. The result now follows from Theo-
rem 6, R. McKenzie’s theorem (see introduction), and a result of R. Freese
and R. McKenzie [9] which says that every finitely generated and residually
small CM variety of finite signature is of the form L = SP(M) for some
finite setM of finite algebras.

Corollary 9. LetM be a finite set of finite algebras of finite signature
from a CM variety. If SP(HS(M)) is RCM, then SP(HS(M)) is finitely
axiomatizable.

Proof. Let B ∈ HS(M) be subdirectly irreducible with monolith θ. Let
ψ be a congruence on B such that the commutator [θ, ψ] calculated in
the variety generated by M is equal to 0B. As SP(HS(M)) is RCM and
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0B = [θ, ψ] = [θ ∧ ψ,ψ], it follows from the note following Theorem 3.1
of K. Kearnes and R. McKenzie [13] that [ψ,ψ] = 0B. Thus any subdi-
rectly irreducible algebra B from HS(M) satisfies, for θ the monolith of B:
If ψ ∈ ConB and [θ, ψ] = 0B, then [ψ,ψ] = 0B. This, by a result of R. Freese
and R. McKenzie [9], gives that HSP(M) is residually small. Thus, by The-
orem 8, SP(HS(M)) is finitely axiomatizable.

In the context of Theorem 8, it is worthwhile to mention a result of
D. Hobby and R. McKenzie [11, Chapter 10] which says that if V is a lo-
cally finite variety which is residually finite and satisfies some non-trivial
congruence identity, then V is congruence modular.

5. Examples. This section contains four examples each of which pro-
vides a negative answer to some questions emerging naturally in the context
of our work.

Example 10. This is an example of a finitely generated quasivariety
K that satisfies RSD(∧) + ¬EP. We define a five-element algebra A and a
two-element algebra B = A/γ for a certain congruence γ of A and take
K = SP({A,B}). We put

A = 〈{0, a, b, c, 1},∧, 0̄, ā, b̄, c̄, 1̄, f0, f1〉
so that 〈{0, a, b, c, 1},∧〉 is a semilattice with least and largest elements 0, 1
and with a ∧ b = c, the five elements of A are denoted by constants in the
signature of A, and f0, f1 are unary operations defined by f0(b) = f0(1) = c
and f0(x) = 0 for x ∈ {0, a, c}, f1(a) = f1(1) = c and f1(x) = 0 for
x ∈ {0, b, c}. This algebra is subdirectly irreducible and its congruence lattice
is an eight-element lattice. Its least non-zero congruence is the equivalence
relation µ that has {0, c} as its only non-singleton equivalence class. Another
congruence is γ that has {0, a, b, c} and {1} as equivalence classes. We take
B = A/γ, and K = SP({A,B}).

For any two distinct elements e, e′ of A, and any f, f ′ ∈ A \ {1}, both
A and B satisfy the quasi-equation ē = ē′ → f̄ = f̄ ′. Hence the lattice of
K-congruences of A consists of 0A, γ, and 1A. Among the other congruences
of A are β0 with equivalence classes {0, c, a}, {b, 1} and β1 with equivalence
classes {0, c, b}, {a, 1}. We have β0∧β1 = µ while βK0 = 1A = β

K
1 and µK = γ.

Thus K does not have the EP.
Since members of K are expansions of semilattices, K does have the PCC,

even the SD(∧). To be able to conclude that K |= RSD(∧), we must show
that K |= WEP.

To see this, let C be any finite member of K. We may assume that C
is a subalgebra of AI0 × BI1 for finite, pairwise disjoint sets I0, I1 and not
isomorphic to a subalgebra of AI′0×BI′1 for any I ′0 ⊆ I0, I ′1 ⊆ I1 with I ′0 6= I0
or I ′1 6= I1.
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It will suffice to prove the following: Let 0C ≺ α be any atom in the
congruence lattice ofC and let β be the pseudo-complement of α—the largest
congruence disjoint from α; then β is a K-congruence of C. For that purpose,
we may choose p, q ∈ C so that (p, q) ∈ α, q < p (in the semilattice order),
and for all p′, q′ ∈ C with q′ ≤ p′ < p and (p′, q′) ∈ α we have p′ = q′.

Case 0: There is i0 ∈ I0 with p(i0) 6= q(i0). If p(i0) ∈ {a, b, 1}, then one
of the pairs (f0(p), f0(q)) = (p′, q′) or (f1(p), f1(q)) = (p′, q′) has p′ > q′.
Since in both cases, p′ < p, this is impossible. Thus p(i0) ∈ {0, c}, forcing
(p(i0), q(i0)) = (c, 0). Now (p ∧ c̄, q ∧ c̄) ∈ α, and it follows that q < p ≤ c̄.

Now let ηi0 denote the kernel of the projection of C onto A at the i0th
coordinate (the projection is onto since we have the constants in the signa-
ture), and let η′i0 denote the kernel of the projection of C into AI0\{i0}×BI1 .
By the minimality of our subdirect representation of C, there must be a pair
(r, s) ∈ η′i0 , r 6= s. We can assume that s < r. As above, we can also as-
sume that r ≤ c̄C. Thus (r(i0), s(i0)) = (c, 0). Now it is easy to verify that
p ≥ r ∧ p > s ∧ p ≥ r ∧ q. Thus (r ∧ p, s ∧ p) ∈ α. (By minimality of p,
then p = r ∧ p.) The pair (r ∧ p, s ∧ p) of functions, which differ only at
i0, must generate α; hence α ≤ η′i0 . This implies that α ∧ ηi0 = 0C , and so
β ≥ ηi0 . Now C/ηi0 ∼= A and so ηi0 has a unique cover µi0 ∈ ConC, i.e.
(x, y) ∈ µi0 iff (x, y) ∈ C2 and (x(i0), y(i0)) ∈ µ. Clearly, (r∧ p, s∧ p) ∈ µi0 ,
hence β 6≥ µi0 . So we conclude that β = ηi0 . But this implies that β is a
K-congruence of C, as we wanted to prove.

Finally, we consider

Case 1: If ηI0
is the kernel of the projection of C into AI0 and ηI1

is
the kernel of the projection of C into BI1 , we have α ≤ ηI0

. In this case,
α∧ηI1

= 0C , implying that β ≥ ηI1
. But since C/ηI1

is embeddable into BI1 ,
it is easy to see that every congruence of C containing ηI1

is a K-congruence.
Thus β is a K-congruence, also in Case 1.

Example 11. This is an example of a finitely generated quasivariety that
satisfies SD(∧) and not WEP, and hence PCC and not RSD(∧). We remark
that the examples of finitely generated quasivarieties of lattices that are not
finitely axiomatizable supplied by, for example, V. P. Belkin [3] satisfy PCC
and, as a consequence of our Theorems 1 and 7, cannot satisfy WEP. The
example we now present is, however, much simpler to demonstrate.

We use a four-element algebra A = 〈{0, a, b, 1},∧, 0̄, ā, b̄, 1̄〉. Here, 〈A,∧〉
is the four element meet-semilattice with two atoms a, b and the other op-
erations are the constants. This algebra has the congruence γ with classes
{0, a, b}, {1} and we put B = A/γ and K = SP({A,B}). A also has congru-
ences β0 with classes {0, a}, {1, b} and β1 with classes {0, b}, {1, a}. By an
obvious argument very similar to the one we used in the last example, one
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shows that β0
K = 1A = β1

K. However, β0 ∧ β1 = 0A, and this shows that K
fails to have WEP. This quasivariety does have SD(∧), due to the presence
of the semilattice operation.

Example 12. This is an example of a finitely generated quasivariety that
satisfies RCD + CM + ¬CD. We put K = SP(A) where A is a six-element
algebra which we now define:

A = 〈{0, 1, 2, a, b, c},m,∧, 0̄, 1̄, 2̄, ā, b̄, c̄, F0, Fa, Fb, Fc〉

has six constants, a ternary operation m, binary operation ∧, and four unary
operations Fr where r ∈ U = {0, a, b, c}. We define Fr so that Fr(r) = 2
and Fr(x) = 1 for all x ∈ A \ {r}. Let D = {1, 2} and let 〈U,+〉 and
〈D,+〉 be Boolean groups with identity elements 0, 1 respectively. We define
m(x, y, z) so that m(x0, x1, x2) = x0 +x1 +x2 if {x0, x1, x2} is a subset of U
or of D; and otherwise, if |{i : xi ∈ U}| = 1 and {p} = {x0, x1, x2} ∩U , or if
|{i : xi ∈ D}| = 1 and {p} = {x0, x1, x2}∩D, then we put m(x0, x1, x2) = p.
Thus m is fully defined as an operation on A. We define x ∧ y to be the
minimum element in {x, y} ∩ D if {x, y} ∩ D is non-empty, and otherwise
x ∧ y = 2.

Now m is a Maltsev operation, i.e., it satisfies the equations m(x, y, y) =
x = m(y, y, x) on A. Thus K satisfies CM. The equivalence relation µ with
one non-trivial block {1, 2} is a congruence of A, in fact, the smallest non-
zero congruence of A. Besides 0A, 1A and µ, this algebra has precisely four
further congruences; they are the equivalence relations µ∪ β where β is any
non-zero congruence on 〈U,+〉. The congruence lattice of 〈U,+〉 is in this way
embedded as an interval in ConA. This shows that K does not satisfy CD.

Finally, we must demonstrate that K |= RCD. It will suffice to show that
every finite algebra in K has a distributive lattice of K-relative congruences.
So let B be a finite algebra in K. We can assume that B ⊆ An where n is
a positive integer, and that for all 1 ≤ m < n, B is not embeddable into
Am. For 0 ≤ i < n let 0i be the kernel of the projection homomorphism
mapping of B to A at the ith coordinate. Because n has been chosen to be
minimal, the set P = {00, . . . , 0n−1} is an n-element subset of ConKB, and
moreover, the set C of all intersections of subsets of P is a 2n-element subset
of ConKB. Actually, if {φ} ∪ Γ ⊆ P then φ ≥

∧
Γ iff φ ∈ Γ . Our objective

is to prove that C = ConKB. If this is true, then it easily follows that
the map Γ 7→

∧
Γ is an isomorphism of the Boolean lattice of all subsets

of P onto the lattice ConKB. In this way, ConKB will be shown to be
distributive.

To accomplish this objective, suppose that θ is an arbitrary member of
ConKB. Set T equal to the set of all η ∈ P such that θ ≤ η, and put
θ′ =

∧
T . So θ ≤ θ′ and we have to prove that θ = θ′.



Finite axiomatizability for quasivarieties 217

Claim 1. Dn ⊆ B.

To prove this, choose any 0 ≤ i < n. Now since 0i 6≥
∧

(P \ {0i}),
there are f, g ∈ B with f(j) = g(j) exactly for j 6= i, 0 ≤ j < n. If
{f(i), g(i)}∩U 6= ∅, say f(i) = r ∈ U , then for f ′ = Fr(f) and g′ = Fr(g), we
have {f ′, g′} ⊆ B ∩Dn, (f ′(i), g′(i)) = (2, 1), and f ′(j) = g′(j) for all j 6= i.
Then put f ′′ = m(f ′, g′, 1̄) and notice that f ′′ ∈ Dn∩B is the function [1, 2]i
that takes value 2 at i and 1 elsewhere. On the other hand, if {f(i), g(i)} ⊆ D
then put f ′′ = m(f ∧ 2̄, g ∧ 2̄, 1̄), and again f ′′ = [1, 2]i ∈ Dn ∩ B. We
have shown that B contains all the functions [1, 2]i, 0 ≤ i < n. Now if
f, g ∈ Dn and f ∧ g = 1̄, then m(1̄, f, g) = h is f ∨ g—i.e., h(i) = 2
iff f(i) = 2 or g(i) = 2 for all 0 ≤ i < n. It should now be clear that
Dn ⊆ B.

Claim 2. If η = 0i ∈ P, then θ 6≤ η iff (1̄, [1, 2]i) ∈ θ and (2̄, [2, 1]i)
∈ θ.

Indeed, suppose that θ 6≤ 0i. Choose (f, g) ∈ θ with f(i) 6= g(i). Then
as above, either by replacing (f, g) by (Fr(f), Fr(g)) for some r ∈ U ∩
{f(i), g(i)}, or by replacing (f, g) by (f ∧ 2̄, g ∧ 2̄), we get (f ′, g′) ∈ θ ∩
(Dn ×Dn), f ′(i) 6= g′(i). Now {f ′ ∧ [1, 2]i, g′ ∧ [1, 2]i} = {1̄, [1, 2]i}; and so
we have (1̄, [1, 2]i) ∈ θ. Then also

((2̄, [2, 1]i) = (m(1̄, 2̄, 1̄),m(1̄, 2̄, [1, 2]i)) ∈ θ,
as required.

Claim 3. θ′ ∩ (Dn ×Dn) ⊆ θ.
To prove this, let

S = {0, . . . , n− 1} \ T = {i0, . . . , ik−1}, |S| = k.

Then (2̄, [2, 1]S) ∈ θ. This is clear if k = 0, for then [2, 1]S = 2̄. It is also
clear if k = 1. If k > 1 then

[2, 1]S = m(m(· · ·m([2, 1]i0 , 2̄, [2, 1]i1), . . . , ), 2̄, [2, 1]ik−1
)

≡ m(m(2̄, 2̄, 2̄), . . . , ), 2̄, 2̄) (mod θ)
= 2̄.

Now let (f, g) ∈ θ′, {f, g} ⊆ Dn. Since f and g agree on T , we have
f ∧ [2, 1]S = g ∧ [2, 1]S . Also, f = f ∧ 2̄ and g = g ∧ 2̄. From ([2, 1]S , 2̄) ∈ θ,
we conclude that (f, g) ∈ θ.

Finally, to finish the proof that θ = θ′, suppose that (f, g) ∈ θ′ \ θ. Since
θ ∈ ConKB by assumption, there is a homomorphism π : B → A with
π(f) 6= π(g) and θ ⊆ ker(π). Let r ∈ U be arbitrary. Now (Fr(f), Fr(g)) ∈
θ′ ∩ (Dn × Dn), hence by Claim 3, (Fr(f), Fr(g)) ∈ θ and so π(Fr(f))
= π(Fr(g)). This means that Fr(π(f)) = Fr(π(g)) for all r ∈ U ; and
that implies that {π(f), π(g)} ⊆ D since π(f) 6= π(g). Similarly, we have
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(f ∧ 2̄, g ∧ 2̄) ∈ θ and π(f) ∧ 2̄ = π(g) ∧ 2̄. Since {π(f), π(g)} ⊆ D, we
obtain

π(f) = π(f) ∧ 2̄ = π(g) ∧ 2̄ = π(g).

This contradiction completes our proof that θ = θ′.
Example 13. This is an example, due to R. Willard, of a finitely gen-

erated quasivariety K with RCM and such that H(K) is CM but is not
residually small. We define a finite algebra A with universe A := Z4×Z2 as
follows. First define λi : Z4 → Z2 for i < 2 by

x λ0(x) λ1(x)

0 0 0
1 0 1
2 1 0
3 1 1

Then define
fi(〈x, r〉) = 〈0, λi(x)〉, i = 0, 1,
f2(〈x, r〉) = 〈0, r〉,

〈x, r〉+ 〈y, s〉 = 〈x+ y, r + s〉,
〈x, r〉 · 〈y, s〉 = 〈2xy, rs〉.

Observe that 〈A; +, ·〉 is a ring (without identity) isomorphic to 2Z8×Z2.
Let A0 = {0} × Z2 ⊆ A and write 0 for 〈0, 0〉 and 1 for 〈0, 1〉. Then we can
write A0 = {0,1} = 2, which is convenient since A0 is closed under +, · and
with respect to these operations is a 2-element Boolean subring of 〈A; +, ·〉.
We define

A = 〈A; +, ·,0,1, fi (i < 3)〉
and K = SP(A).

Clearly, H(K) is congruence modular. We shall show that K has WEP
and H(K) is residually large. We first show that ConA is a 4-element chain
with congruences 0A < µ < θ < 1A where

µ = 0Z4 × 1Z2 , θ = γ × 1Z2 ,

and γ is {0, 2}2 ∪ {1, 3}2.
First check that µ is a congruence. Next observe that the presence of +

implies that 0A ≺ µ. Finally, the presence of f0, f1 guarantees that if a, b ∈ A
with a 6= b then CgA(a, b) ∩ µ 6= 0A, proving µ is the monolith of A. Now
A/µ is term-equivalent to the four-element ring 2Z8, whose congruences are
known, completing the picture of ConA.

Since the ring 2Z8 generates a residually large variety, so doesA/µ. Thus
H(K) is residually large.
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It remains to prove WEP. It will suffice to show that each finite B ∈ K
has WEP. Choose finite B ∈ K and represent it as B ≤ An with n minimum.
For each i < n let µ′i = (0A× · · · × 0A×µ× 0A× · · · × 0A)|B where the lone
copy of µ occurs in the ith coordinate. Similarly, let as usual 0i = (1A×· · ·×
1A× 0A× 1A× · · · × 1A)|B and 0′i = (0A× · · · × 0A× 1A× 0A× · · · × 0A)|B.
Then µ′i, 0i, 0

′
i ∈ ConB.

Put B0 = B ∩ (A0)n. Observe that fi(B) ⊆ B0 for i < 3, and that
〈B0; +, ·,0,1〉 is a Boolean subring of 2n. For each i < n let

ei = (0, . . . ,1, . . . ,0) ∈ 2n

with the single 1 occurring in the ith coordinate.

Claim 1. ei ∈ B0 for each i < n.

To prove the claim, fix i < n. By minimality of n we have a, b ∈ B
with [[a 6= b]] = {i}. There exists j < 3 such that fj(ai) 6= fj(bi), so by
replacing a, b with a′ := fj(a), b′ := fj(b) we may assume that a, b ∈ B0.
Then ei = a + b ∈ B as required. Since B0 is a Boolean subring of 2n, it
follows that B0 = 2n.

Claim 2. If i < n and c, d ∈ B and ci 6= di, then µ′i ≤ CgB(c, d).

As in the proof of Claim 1, we have a unary term operation f(x) such
that f(B) ⊆ B0 and {f(c)i, f(d)i} = {0,1}. The polynomial x 7→ x ·ei maps
{f(c), f(d)} to {0, ei}, proving (0, ei) ∈ CgB(c, d). Then for every a ∈ B,
(a, a+ ei) = (a+ 0, a+ ei) ∈ CgA(c, d), proving µ′i ≤ CgA(c, d).

Now to prove that B has WEP, we use Lemma 14 from the next section.
Let α be a minimal congruence of B and let β ∈ ConB be maximal with
respect to satisfying α∧β = 0B. Then by Claim 2, α = µ′i for some i < n and
β ≤ 0i. Since µ′i∧0i = 0B we have 0i ≤ β. Therefore β = 0i, so β ∈ ConK(B)
as required.

Notice that since every subalgebra B of A is subdirectly irreducible
with non-Abelian monolith CgB(0,1), it follows by Theorem 2.3 and 4.1
of M. Maróti and R. McKenzie [17] that K has Willard terms. Hence, by
Theorem 1(4), K is RSD(∧) and thus, by Theorem 7, K is finitely axioma-
tizable.

6. A characterization of finite F for which SP(F) |= RSD(∧). Let
F be any finite set of finite algebras of the same signature. According to
Theorem 4.1 in M. Maróti and R. McKenzie [17], SP(F) satisfies PCC if and
only if every minimal congruence of every algebra in S(F) is non-Abelian.
Our characterization of those F for which SP(F) |= RSD(∧), equivalently,
SP(F) |= PCC + WEP, is a little more complicated. If a quasivariety K
satisfies PCC then there are several ways to characterize WEP for K. We
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use αc to denote the pseudo-complement of a congruence α on some algebra
in K. Supposing that K |= PCC, these statements are equivalent to WEP
for K:
• For A ∈ K and α, β ∈ ConA with α ∧ β = 0A, αK ∧ β

K = 0A.
• For A ∈ K and α, β ∈ ConA with α ∧ β = 0A, α ∧ β

K = 0A.
• For A ∈ K and α ∈ ConA, αc ∈ ConKA.

If K is locally finite but does not necessarily satisfy PCC, there is another
way to characterize WEP.

Lemma 14. Let K be a locally finite quasivariety.

(1) K satisfies WEP iff for every finite A ∈ K and atom α ∈ ConA, all
maximal members of the set {β ∈ ConA : β 6≥ α} belong to ConKA.

(2) If K satisfies PCC then K satisfies WEP iff for every finite A ∈
K and atom α ∈ ConA, the pseudo-complement of α belongs to
ConKA.

Proof. Suppose that α is an atom in ConA and β 6≥ α while for every
congruence γ > β, we have γ ≥ α. Then β is strictly meet irreducible
and its unique cover is β ∨ α. If K has the weak extension property, then
β
K ∧ αK = 0A, implying that βK = β, so β ∈ ConKA. This shows the

necessity of the condition in (1). To see that this condition is also sufficient,
suppose that K does not have the weak extension property. Then in fact
there is some finite A ∈ K and congruences α, β such that α ∧ β = 0A and
α∧ βK > 0A. Let α0 be any atom (minimal congruence) below α∧ βK. Now
α0∧β = 0A. Let β′ be any maximal member of the set of congruences τ with
α0 6≤ τ and β ≤ τ . We have to see that β′ 6∈ ConKA. But if β′ ∈ ConKA,
then βK ≤ β′, implying that βK 6≥ α0, which is not the case. This completes
our argument for (1).

Now assume that K satisfies PCC. Then if A ∈ K and α is an atom
in ConA, there is a unique maximal member of the set of congruences not
dominating α, namely αc. Thus (2) can be seen as a specialization of (1) to
this case.

If K is any quasivariety and if α is an atom in the congruence lattice of an
algebra A ∈ K, and if the pseudo-complement αc of α exists, then A/αc is
a subdirectly irreducible algebra. Unless this subdirectly irreducible algebra
belongs to K, the quasivariety K cannot have WEP. These observations
imply, for instance, that if K is locally finite and satisfies RSD(∧) then it is
generated by its finite subdirectly irreducible members.

Recall that when α is a non-Abelian atom in the congruence lattice of a
finite algebra, the pseudo-complement of α does exist. (See D. Hobby and
R. McKenzie [11].)
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Lemma 15. Assume that K is a quasivariety , K |= PCC, {A0, . . . ,Ak}
is a finite collection of finite algebras in K, and A ≤

∏
iAi is a subdirect

product. Let α be an atom in ConA and β = αc. Choose i, 0 ≤ i ≤ k, such
that α 6≤ 0i. Then

(i) 0i ≤ β;
(ii) if |Ai| ≤ n and the cardinality of the free algebra on n generators

in K is m, then there are B0, . . . ,Bm−1 ∈ S({A0, . . . ,Ak}) with
B0 = Ai, and there is a subdirect product B ≤

∏
j Bj , and an atom

α′ in ConB, such that for β′ = α′c, we have β′ ≥ 00 and A/β ∼=
B/β′ ∈ H(B0) = H(Ai).

Proof. Clearly, since α 6≤ 0i we have α ∧ 0i = 0A, implying that 0i ≤
αc = β. Choose a subset {a0, . . . , an−1} ⊆ A which intersects all 0i-classes
and such that a0 6= a1 and (a0, a1) ∈ α. Let B be the subalgebra of A
generated by {a0, . . . , an−1}. Thus |B| ≤ m. Note that (a0, a1) 6∈ 0i, since
otherwise α = CgB(a0, a1) ≤ 0i. It is then easy to see that there are j0 =
i, j1, . . . , jm−1 ∈ {0, . . . , k} such that (

∧
0≤r<m 0jr)|B = 0B. Let β′ = β|B

and α′′ = α|B. Clearly, α′′ ∧ β′ = 0B, α′′ > 0B, and since B projects onto
Ai = Aj0 , every congruence strictly larger than β′ contains α′′. Thus β′ is
the pseudo-complement of α′′ in ConB. Let α′ be any atom of ConB lying
below α′′. Then β′ = α′c in ConB. Now let Br ⊆ Ajr be the projection of B
at the jr coordinate. Thus B0 = Ai. Replacing B by the subdirect product of
B0, . . . ,Bm−1 canonically isomorphic to it, and β′, α′ by the corresponding
congruences, we have the desired conclusions.

Theorem 16. Suppose that K = SP(F) where F is a finite collection of
finite algebras and S(F) = F . Let n = max(|A| : A ∈ F) and let f be the
cardinality of the free algebra on n generators in K. Then K |= RSD(∧) iff
the following are true.

(i) Every atom in the congruence lattice of any member of F is non-
Abelian.

(ii) Let A ≤
∏

0≤i<f Ai be a subdirect product with {A0, . . . ,Af−1} ⊆ F .
Let α be any atom in ConA and β = αc. Then A/β is isomorphic
to a member of F .

Proof. The necessity of (i) follows from M. Maróti and R. McKenzie [17,
Theorem 4.1]. To see that (ii) is necessary, observe that by Lemma 14, A/β
must belong to K; but it is a subdirectly irreducible algebra, and therefore
must actually be isomorphic to a subalgebra of some member of F .

Now suppose that (i) and (ii) hold. Then K |= PCC. To establish that
K |= WEP, using Lemma 14(2), let A ≤

∏
0≤i≤kAi be a subdirect product,

with k a non-negative integer and Ai ∈ F . Let α be an atom in ConA



222 W. Dziobiak et al.

and β = αc. Now it follows from Lemma 15, in conjunction with (ii), that
A/β ∈ K.

It is obvious that the above theorem supplies an algorithm to effectively
recognize whether SP(F) is RSD(∧). It is not obvious if there may be some
algorithm to solve this problem which lies low in the complexity hierarchy.

To conclude, we present three related problems that seem to us very
interesting and difficult.

Problem 17. Suppose that K is a finitely generated quasivariety satis-
fying CM + RCM. Is it finitely axiomatizable?

Problem 18. Suppose that K is a finitely generated quasivariety satis-
fying RCM. Is it finitely axiomatizable?

Problem 19. Suppose that K is a finitely generated quasivariety satis-
fying WEP. Is it finitely axiomatizable?
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