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On nonmeasurable selectors of countable group actions

by

Piotr Zakrzewski (Warszawa)

Abstract. Given a set X, a countable group H acting on it and a σ-finite H-invariant
measure m on X, we study conditions which imply that each selector of H-orbits is
nonmeasurable with respect to any H-invariant extension of m.

1. Introduction. Let H be a group of permutations of a set X. An
H-orbit is the set Hx = {h(x) : h ∈ H}. A complete section for H is a
subset of X that meets every H-orbit. A selector of H-orbits (sometimes
also called a Vitali set of H, see [13]) is a subset of X that meets every
H-orbit in exactly one point. A σ-algebra A of subsets of X is H-invariant
if h[A] ∈ A for every A ∈ A and h ∈ H; then we also say that H is a group of
measurable transformations of X. By a measure on X we mean a σ-additive,
nonzero measure m : A−→ [0,∞] defined on a σ-algebra of subsets of X. We
say that m is H-invariant if A is H-invariant and m(h[A]) = m(A) for every
A ∈ A and h ∈ H.

Recall that every Vitali set of the group Q of rational translations of R,
the set of reals, is nonmeasurable with respect to any Q-invariant extension
of the Lebesgue measure on R. This situation is to some extent typical.
Indeed, Solecki [14] proved that if a σ-finite measure m is invariant with
respect to an uncountable group G of permutations of X and, moreover, the
action of G is m-free (i.e., m∗({x ∈ X : g(x) = x}) = 0 for any g ∈ G\{idX},
where m∗ stands for the outer measure of m), then there exists a countable
subgroup H of G such that each Vitali set of H is nonmeasurable with
respect to any H-invariant extension of m.

Throughout the paper we always assume that m : A−→ [0,∞] is a σ-finite
measure on X, invariant with respect to a countable group H of measur-
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able transformations of X. Following [5], the quadruple 〈X,A, H,m〉 will
sometimes be referred to as a dynamical system.

In principle, there are two methods of proving that selectors of H-orbits
are nonmeasurable:

1. The Vitali method. The original Vitali [16] method was further elabo-
rated by Solecki [13], [14] and, in particular, used by him in the proof of the
theorem quoted above. Let us say that the measure m (more precisely: the
dynamical system 〈X,A, H,m〉) satisfies the Vitali condition (V) if there
exists a complete section A ∈ A for H such that

0 < m(A) <∞ and m∗({x : |Hx ∩A| < ω}) = 0.

Note that if H = {hn : n ∈ N} with hn 6= hm for n 6= m, then for every
x ∈ X, if Hx∩A is infinite, then x ∈

⋂∞
m=0

⋃
n>m h−1

n [A], and the converse
is also true provided that hn(x) 6= hm(x) for n 6= m. It follows that if the
action of H is m-free then in the terminology of [13] condition (V) means
that X is infinitely covered by H, up to a subset of outer measure zero. The
following fact was proved in [13, Lemma 3.1] under the assumption that the
action of H is m-free. A proof not using this assumption will be given at
the beginning of Section 2.

Proposition 1.1. Let H be a countable group of permutations of a
set X and let m : A−→ [0,∞] be a σ-finite H-invariant measure on X. If m
satisfies the Vitali condition, then every selector of H-orbits is nonmeasur-
able with respect to any H-invariant extension of m.

More applications of condition (V) may be found in [13] and [14].

2. The Minkowski method . This is a method invented by Minkowski [11]
for another purpose and elaborated by Kharazishvili and Kirtadze in their
recent paper [8] in order to demonstrate its role in existence proofs of non-
measurable sets for invariant measures. Let us say that the measure m (more
precisely: the dynamical system 〈X,A, H,m〉) satisfies the Minkowski con-
dition (M) if for every ε > 0 there exists a complete section A ∈ A for H
such that m(A) < ε. In the terminology of [8], condition (M) means that the
measure m is weakly metrically transitive, and in the terminology of [5], this
is equivalent to the statement that the dynamical system 〈X,A, H,m〉 is
continuous. Examples of measures satisfying (M) include the Haar measure
on an uncountable locally compact Polish group X, where H is a countable
nondiscrete subgroup of X acting on it by (say) left shifts (see [8, The-
orem 3]), and the n-dimensional Lebesgue measure on X = Rn, where H is
a countable, nondiscrete group of isometries of Rn (see [8, Theorem 4]).

The following fact was proved in [8, Theorem 2], again under the ad-
ditional assumption that the action of H is m-free. A proof avoiding this
assumption will also be given at the beginning of Section 2.
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Proposition 1.2. Let H be a countable group of permutations of a
set X and let m : A−→ [0,∞] be a σ-finite H-invariant measure on X.
If m satisfies the Minkowski condition, then every selector of H-orbits is
nonmeasurable with respect to any H-invariant extension of m.

The aim of this paper is to compare the strength of conditions (V) and
(M) and to evaluate their role in proving that all selectors of H-orbits are
nonmeasurable with respect to any H-invariant extension of m. We observe
that (M) always implies (V) (Theorem 2.2) (evidently, in general, not vice
versa). On the other hand, if H is a countable group of Borel automorphisms
of a Polish space X and m is an H-invariant σ-finite Borel measure on X
(i.e., m is defined on the σ-algebra B(X) of Borel subsets of X), then the
two conditions are equivalent (Theorem 3.1) and their local instances are
equivalent to the statement that every selector of H-orbits is nonmeasurable
with respect to everyH-invariant extension ofm (Theorem 3.2). We also give
an example showing that the latter is not true in general (Example 4.1) but
for reasons that have not much to do with the group H under consideration.
Indeed, under a certain condition imposed on the measure space 〈X,A,m〉
we prove that a local instance of condition (V) is in fact necessary even for
the existence of a selector of H-orbits, nonmeasurable with respect to every
H-invariant extension of m (Theorem 4.4); the latter is also true if the action
ofH ism-free (Theorem 4.6). The results just quoted are consequences of the
main technical result of the paper (Theorem 4.3) giving sufficient conditions
for the existence of an H-invariant extension of m for which a given selector
of H-orbits is measurable.

Our main technical notion is countable equidecomposability. All facts that
we use concerning this notion may be retrieved from a well-forgotten paper
of Kawada [6] (see also [2], [5] and [19]).

We use standard set-theoretical notation. In particular, the cardinality
of a set A is denoted by |A|. The first infinite cardinal is the first infinite
ordinal ω and we identify it with the set of natural numbers; thus |A| <
ω (respectively: |A| = ω) means that A is finite (respectively: countable
infinite) and n < ω means that n is a natural number.

2. (M) versus (V) for general actions. Recall that m : A−→ [0,∞] is
a σ-finite measure on a set X and m is invariant with respect to a countable
group H of measurable transformations of X.

We say that sets A,B ∈ A are countably H-equidecomposable in A, in
symbols A∼∞B in A, if there is a partition of A into countably many sets
An ∈ A, n < ω, and elements hn ∈ H such that the sets hn[An] form a
partition of B. If A and H are clear from the context we simply say that A
and B are countably equidecomposable and write A∼∞B.
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We say that sets A,B ∈ A are almost countably equidecomposable in A,
and write A

m∼∞ B in A, if there are E1, E2 ∈ A such that m(E1) =
m(E2) = 0 and A \ E1 ∼∞B \ E2 in A. Clearly, if A,B ∈ A and A

m∼∞ B,

then m(A) = m(B).
A set C ⊆ X is H-invariant if h[C] = C for every h ∈ H; the smallest

H-invariant set containing A ⊆ X is A∗ =
⋃

h∈H h[A].
We call sets A,B ∈ A almost equal and write A m= B if m(A4B) = 0. An

almost complete section for H is a set A ⊆ X such that A∗ m= X; likewise, S
is an almost selector of H-orbits if S∗ m= X and S meets every H-orbit in at
most one point. Note that A m= B (respectively A

m∼∞ B in A) if and only
if there is an H-invariant set C ∈ A such that C m= X and A ∩ C = B ∩ C
(respectively A ∩ C ∼∞B ∩ C in A).

Clearly, condition (V) states the existence of an almost complete section
A ∈ A for H, 0 < m(A) <∞, having infinite intersection with every H-orbit
it meets.

The following folklore-like fact is a special case of the comparability
theorem (see e.g. [6] or [5]).

Lemma 2.1 (The comparability lemma). If A,B ∈ A are almost com-
plete sections for H, then there is an H-invariant set Z ∈ A such that A∩Z
is almost countably equidecomposable in A with a subset of B and B \Z is
almost countably equidecomposable in A with a subset of A. In particular , if
S ∈ A is an almost selector of H-orbits and A ∈ A is an almost complete
section for H-orbits, then S is almost countably equidecomposable in A with
a subset of A.

Proofs of Propositions 1.1 and 1.2 are now almost immediate.

Proof of Proposition 1.1. Let S be an arbitrary selector of H-orbits and
let A ∈ A be an almost complete section for H witnessing condition (V).
Suppose that m′ : A′−→ [0,∞] is an H-invariant extension of m and S ∈ A′.
By the comparability lemma, S is almost countably equidecomposable in
A′ with a subset of A; moreover, an easy induction shows that there is an
infinite sequence 〈Sn : n < ω〉 of pairwise disjoint almost selectors of H-
orbits such that Sn ⊆ A and Sn

m∼∞ S for each n < ω. This easily implies
that m′(S) = 0, a contradiction.

Proof of Proposition 1.2. Let m′ : A′−→ [0,∞] be an H-invariant exten-
sion of m. Let S be a selector of H-orbits and suppose that S ∈ A′. Take an
arbitrary ε > 0 and let A ∈ A be a complete section for H with m(A) < ε.
By the comparability lemma, S is almost countably equidecomposable in
A′ with a subset of A. Hence m′(S) < ε. But due to the arbitrary choice of
ε > 0 this implies that m′(S) = 0, a contradiction.
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Now we are ready to state the main result of this section.

Theorem 2.2. Let H be a countable group of permutations of a set
X and let m : A−→ [0,∞] be a σ-finite H-invariant measure on X. If m
satisfies the Minkowski condition then it satisfies the Vitali condition as well.

Proof. Assume that m satisfies condition (M). Then it follows from a
lemma of Kawada (see [6, Lemma 19] or [5, Corollary V.3]) that every almost
complete section for H can be partitioned into two disjoint almost complete
sections for H.

Using this, inductively construct a sequence 〈An : n < ω〉 of pairwise
disjoint almost complete sections for H keeping the following conditions
satisfied for every n < ω:

• An ∈ A and m(An) < 1/2n+1,
• X \

⋃
k<nAk is a complete section for H.

Finally, A =
⋃

n<ω An is an almost complete section for H witnessing con-
dition (V).

It is obvious that the implication from the theorem above cannot in
general be reversed. A trivial example is provided by an arbitrary infinite
set X together with a countable group H of permutations of X with infinite
H-orbits, the σ-algebraA = {∅, X} and the canonical two-valued probability
measure m defined on A.

3. (M) versus (V) for Borel actions. Natural examples of measures
satisfying condition (M) happen to be of the form: a countable group H of
Borel automorphisms of an uncountable Polish (i.e., separable, completely
metrizable) space X and an H-invariant σ-finite Borel measure m on X.
Recall that they include the Haar measure on an uncountable locally com-
pact Polish group X (where H is a countable nondiscrete subgroup of X)
and the n-dimensional Lebesgue measure on Rn (where H is a countable,
nondiscrete group of isometries of Rn). Moreover, Kharazishvili and Kir-
tadze proved (see [8, Theorems 3 and 4]) that in these cases condition (M)
is equivalent to the statement that every selector of H-orbits is nonmea-
surable with respect to any H-invariant extension of m. The results of this
section generalize the latter to the case of arbitrary Borel measures on Pol-
ish spaces and also show that in this situation conditions (M) and (V) are
equivalent.

Recall that the partition into H-orbits defines an equivalence relation EH

on X called the orbit equivalence relation. If B ⊆ X, then EH |B denotes the
restriction of EH to B, i.e., the equivalence relation on B whose equivalence
classes are exactly the nonempty intersections of H-orbits with B.
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If E is an equivalence relation on a set B ⊆ X, we say that a subset of
B is:

• a complete section for E if it meets every E-equivalence class,
• a selector for E if it meets every E-equivalence class in exactly one

point,
• a partial selector for E if it meets every E-equivalence class in at most

one point.

Note that if B = X and E = EH , then the notions of a complete section
and a selector for EH coincide with those for H.

Theorem 3.1. Let H be a countable group of Borel automorphisms of
an uncountable Polish space X and let m be an H-invariant σ-finite Borel
measure on X. Then the following conditions are equivalent :

(1) m satisfies the Minkowski condition,
(2) m satisfies the Vitali condition,
(3) m vanishes on every partial Borel selector for EH .

Proof. By Theorem 2.2, (1) implies (2). To see that (2) implies (3), argue
as in the proof of Proposition 1.1.

So assume now that m vanishes on every partial Borel selector for EH .
Since m is σ-finite, X is a disjoint union of countably many sets of the form
B∗ where B is a Borel set with 0 < m(B) < ∞. Then the union of small
enough complete sections for equivalence relations EH |B will be a complete
section for H we are looking for. Thus, with no loss of generality, we simply
assume that X = B∗ for a fixed B ∈ B(X) with 0 < m(B) < ∞. Let
E = EH |B and ε > 0.

Let C = {x ∈ B : |Hx ∩ B| < ω}. Since C ∈ B(X) and E|C is a Borel
equivalence relation with finite equivalence classes, there is a Borel selector
S ⊆ C for E|C (see [7, Theorem 12.16]). Then S is a partial selector for
EH , so m(S) = 0, and since C ⊆

⋃
h∈H h[S], we have m(C) = 0 as well.

Let D = B \ C. Then E|D is a Borel equivalence relation on D with
countable infinite equivalence classes, and a basic fact about such relations
says (see [3, Lemma 4.5.3]) that there is a sequence D = A0 ⊇ A1 ⊇ · · ·
of Borel complete sections for E|D such that

⋂
n<ω An = ∅. Since m(D) =

m(B) < ∞ it follows that there is n0 for which m(An0) < ε. Then A =
An0 ∪ S is a complete section for H with m(A) < ε. This completes the
proof of the implication (3)⇒(1).

As a corollary we show that local instances of conditions (V) and (M) are
in fact also necessary for the nonmeasurability of every selector of H-orbits
with respect to all H-invariant extensions of the H-invariant Borel measure
m under consideration.
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Theorem 3.2. Let H be a countable group of Borel automorphisms of
an uncountable Polish space X and let m be an H-invariant σ-finite Borel
measure on X. Then the following conditions are equivalent :

(1) there is B ∈ B(X) such that 0 < m(B) < ∞ and for every ε >
0 there exists a complete section A ∈ B(X) for EH |B such that
m(A) < ε,

(2) there is B ∈ B(X) such that 0 < m(B) <∞ and |Hx ∩B| = ω for
every x ∈ B,

(3) there is B ∈ B(X) such that 0 < m(B) < ∞ and m vanishes on
every partial Borel selector for EH |B,

(4) every selector of H-orbits is nonmeasurable with respect to any H-
invariant extension of m,

(5) every selector of H-orbits is nonmeasurable with respect to the mea-
sure completion m of m,

(6) there is no Borel almost selector of H-orbits.

Proof. The equivalence of the first three conditions is just a relativization
of Theorem 3.1. The fact that any of the first two of them implies (4) follows
from Propositions 1.2 and 1.1. The implications (4)⇒(5)⇒(6) are obvious.
Finally, if every Borel subset B of positive finite measure contains a partial
Borel selector for EH |B of positive measure, then it is easy to construct
a Borel almost selector of H-orbits. This shows that ¬(3) implies ¬(6),
completing the proof.

Remark 3.3. Let H be a countable group of Borel automorphisms of
an uncountable Polish space X. There exists an H-invariant σ-finite Borel
measure m on X with the properties from Theorem 3.2 if and only if there
exists a Borel subset B of X satisfying the following conditions:

• |Hx ∩B| = ω for every x ∈ B,
• B is incompressible, i.e., there is no Borel set A ⊆ B with B∼∞A in

B(X) and such that B \A is a complete section for EH |B.

Proof. First assume that m is an H-invariant σ-finite Borel measure on
X satisfying condition (2) of Theorem 3.2. Take B ∈ B(X) with 0 < m(B) <
∞ and |Hx ∩ B| = ω for every x ∈ B. Clearly, B is incompressible. This
shows the necessity of the conditions above. To prove their sufficiency, fix
an incompressible set B ∈ B(X) with |Hx ∩B| = ω for every x ∈ B. Since
B is incompressible, by Nadkarni’s theorem (see [12] and [3, Theorem 4.3.1]
for a proof in the general case), there exists a probability Borel measure µ
on B which is H-invariant in the following sense: whenever A1, A2 ∈ B(B)
and A1 ∼∞A2 in B(X), then µ(A1) = µ(A2). Now it is easy to extend µ
to a σ-finite H-invariant Borel measure m on X (see e.g. [18, Proposition
2.2]); in particular, 0 < m(B) = µ(B) <∞.
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4. The necessity of a local instance of (V) for the existence
of nonmeasurable selectors. It is obvious that in general, by contrast
to the Borel case discussed in the previous section, no local instance of
condition (M) follows from the statement that every selector of H-orbits is
nonmeasurable with respect to any H-invariant extension of m (see the last
paragraph of Section 2). We start this section with an example in which the
latter is still true but all H-orbits are finite (in particular, no local instance
of condition (V) is satisfied).

Recall that Y ⊆ R is a universally measure zero set if it carries no finite
nonzero Borel measure vanishing on singletons (see e.g. [10]).

Example 4.1. There exist a set X and a probability measure m :A−→[0,1]
invariant with respect to a countable group H of permutations of X and
having the following properties:

• every selector of H-orbits is nonmeasurable with respect to any H-
invariant extension of m,
• |Hx| = 2 for every x ∈ X.

Proof. Let Y ⊆ R be an uncountable universally measure zero set. Let
U = {Un : n < ω} be a countable basis for the topology of Y inherited
from R. Let X = {0, 1} × Y and for each n let hn be the permutation of X
defined as follows:

hn(i, x) =
{ 〈i, x〉 if x ∈ Un,
〈1− i, x〉 if x ∈ Y \ Un.

Let H be the group of permutations of X generated by {hn : n < ω}. Finally,
let A be the σ-algebra consisting of countable and co-countable subsets of X
and m : A−→{0, 1} be the canonical two-valued probability measure defined
as follows:

m(A) =
{

0 if |A| ≤ ω,
1 if |X \A| ≤ ω.

Clearly, m is H-invariant and |Hx| = 2 for each x ∈ X.
Let m′ : A′−→ [0, 1] be an H-invariant extension of m and suppose that

S ∈ A′ for a certain selector S of H-orbits. Note that

({0, 1} × Un) ∩ S = hn[S] ∩ S ∈ A′ for each n < ω.

It follows that if we define

µ(A) = m′(({0, 1} ×A) ∩ S) whenever ({0, 1} ×A) ∩ S ∈ A′,

then µ|B(Y ) is a finite (µ(Y ) = m′(S) = 1/2) nonzero Borel measure on Y
which vanishes on singletons. This contradicts the choice of Y .
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The nonmeasurability of selectors ofH-orbits in the example above stems
from the fact that the measure under consideration cannot be extended to
a certain countable collection of subsets of X. Our subsequent results show
that for measures without this property condition (V) becomes relevant
again.

We say that a set A ∈ A with m(A) > 0 is an H-atom if it is minimal
among the sets B ∈ A with B∗

m= A∗ in the sense that for any B ∈ A the
conditions B∗ m= A∗ and B ⊆ A imply m(A \ B) = 0 (see [5] and [6]). Fol-

lowing [5] we say that the dynamical system 〈X,A, H,m〉 is discrete if there
exists an H-atom which is an almost complete section for H. We need the
following well-known fact (see e.g. [5, Theorem III.2 and Proposition VII.1]).

Proposition 4.2. Assume that no B ∈ A with 0 < m(B) < ∞ has
the property that for every ε > 0 there exists a complete section A ∈ A for
EH |B with m(A) < ε. Then the dynamical system 〈X,A, H,m〉 is discrete.
Moreover , if A ∈ A is an H-atom with A∗

m= X, then there is a partition

of X into H-invariant parts Xn ∈ A, n ≤ ω, such that if m(Xn) > 0 then
Xn

m=
⋃

i<nAn,i where An,0 = A ∩Xn and {An,i : i < n} is a family of n

pairwise disjoint H-atoms with An,i ∼∞ An,0 for each i < n.

Now we are ready to prove the main technical result of this paper.

Theorem 4.3. Let H be a countable group of permutations of a set X
and let m : A−→ [0,∞] be a σ-finite H-invariant measure on X such that
m∗({x ∈ X : |Hx∩B| = ω}) = 0 for every B ∈ A with 0 < m(B) <∞. Let
S be a selector of H-orbits. If there exists an extension of m for which all
sets h[S], h ∈ H, are measurable, then there exists an H-invariant extension
of m for which S is measurable.

Proof. Let A′ be the σ-algebra of subsets of X generated by A∪ {h[S] :
h ∈ H}. Since the set of generators of A′ is H-invariant, so is A′. Let
µ : A′−→ [0,∞] be an arbitrary extension of m. With the help of µ we are
going to find an H-invariant extension m′ : A′−→ [0,∞] of m.

By a relativization of Theorem 2.2 and Proposition 4.2, the dynamical
system 〈X,A, H,m〉 is discrete. Let A ∈ A, {Xn : n ≤ ω}, and {An,i : i < n}
have the properties stated in Proposition 4.2.

It suffices to find for every n ≤ ω an extension of m|(A ∩ P(An,0)) to
a measure m′n,0 defined on A′ ∩ P(An,0) and H-invariant in the following
sense: whenever B1, B2 ∈ A′∩P(An,0) and B1∼∞B2 in A′, then m′n,0(B1) =
m′n,0(B2). Indeed, suppose that we already have extensions m′n,0. For each
pair n ≤ ω and i < n let gn,i be a fixed bijection between An,0 and An,i

which witnesses that An,0 ∼∞ An,i in A (more precisely, gn,i|Ck = hk|Ck for
k < ω, where {Ck : k < ω} and {Dk : k < ω} are some fixed partitions of
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An,0 and An,i, respectively, into pieces from A, with Dk = hk[Ck] for each
k < ω and some fixed hk ∈ H). Then the measure m′ defined by

m′(A) =
∑
n≤ω

∑
i<n

m′n,0(gn,i
−1[A ∩An,i]) for A ∈ A′

is easily seen to be an H-invariant extension of m.
Thus, with no loss of generality we assume that A = An,0 for a fixed

n ≤ ω. For each k ≤ ω let Ak = {x ∈ A : |Hx ∩ A| = k}; clearly, A =⋃
k≤ω Ak and the sets Ak form a partition of A. We claim that Ak ∈ A′ or

even more: {x ∈ A : |Hx ∩ B| = k} ∈ A′ for every B ⊆ A, B ∈ A′ and
k ≤ ω. For if, moreover, B 6= ∅, then S ∩B∗ is countably equidecomposable
in A′ with a subset T of B (see [17, Lemma 1.1]). Hence T ∈ A′ is a partial
selector for EH |B such that T ⊆ B and it follows that for every k < ω we
have

{x ∈ A : |Hx ∩B| ≥ k + 1} = {x ∈ A : |Hx ∩ (B \ T )| ≥ k}.

The statement that {x ∈ A : |Hx ∩ B| ≥ k} ∈ A′ for every B ∈ A′ and
k < ω can now be proved by induction, and then the rest easily follows.

Define the measure m′n,0 by putting, for B ⊆ A, B ∈ A′,

m′n,0(B) =
∞∑

k=1

k∑
j=1

j

k
µ({x ∈ A : |Hx ∩ (B ∩Ak)| = j}).

Note that m′n,0 is H-invariant in the sense described above. Indeed, assume
that B1, B2 ∈ A′ ∩ P(A) and B1 ∼∞ B2 in A′. Then B2 = g[B1] for a
certain bijection g : B1 → B2 with g(x) ∈ Hx for each x ∈ B1. Hence
if |Hx ∩ (B1 ∩ Ak)| = j, then |Hx ∩ (B2 ∩ Ak)| = |Hx ∩ (g[B1] ∩ Ak)| =
|g[Hx ∩B1 ∩Ak]| = j for every k < ω and j ≤ k.

To complete the proof, it is enough to check that m′n,0 extends
m|(A ∩ P(A)). So let B ⊆ A, B ∈ A. Since m is σ-finite it is enough
to prove that m′n,0(B) = m(B) under the assumption that m(B) <∞. But
then m∗({x ∈ B : |Hx∩B| = ω}) = 0. At the same time B m= B∗∩A, since A
is an H-atom. Consequently, there are disjoint H-invariant sets C1, C2 ∈ A
such that B ⊆ C1∪C2, m(C1) = 0, B∩C2 = A∩C2 and |Hx∩(A∩C2)| < ω
for every x ∈ A ∩ C2. It follows that it suffices to prove that if C ∈ A is
H-invariant, then:

(1) if m(C) = 0, then m′n,0(A ∩ C) = 0,
(2) if |Hx ∩ (A ∩ C)| < ω for every x ∈ A ∩ C, then m′n,0(A ∩ C) =

m(A ∩ C).

To prove (1), note that µ(A ∩ C) = m(A ∩ C) = 0.
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To prove (2), note that since C is H-invariant, |Hx ∩ (C ∩ Ak)| = k
whenever Hx ∩ (C ∩Ak) 6= ∅. It follows that

m′n,0(A ∩ C) =
∞∑

k=1

µ(Ak ∩ C) = µ
( ∞⋃

k=1

Ak ∩ C
)

= µ(A ∩ C) = m(A ∩ C).

The following two results are immediate corollaries of Theorem 4.3.

Theorem 4.4. Let A be a σ-algebra of subsets of a set X and let
H be a countable group of measurable transformations of X such that
{x ∈ X : |Hx ∩ B| = ω} ∈ A for every B ∈ A with 0 < m(B) < ∞.
Let m : A−→ [0,∞] be a σ-finite H-invariant measure on X which can be
extended to any countable collection of subsets of X. Then the following are
equivalent :

(1) there is B ∈ A such that 0 < m(B) < ∞ and |Hx ∩ B| = ω for
every x ∈ B,

(2) every selector of H-orbits is nonmeasurable with respect to any H-
invariant extension of m,

(3) there exists a selector of H-orbits nonmeasurable with respect to any
H-invariant extension of m.

Theorem 4.5. Let H be a countable group of permutations of a set X
such that all H-orbits are finite. Let m : A−→ [0,∞] be a σ-finite H-invariant
measure on X which can be extended to any countable collection of subsets
of X. Then for every selector of H-orbits there exists an H-invariant ex-
tension of m for which S is measurable.

Recall that the action of H is m-free if m∗({x ∈ X : h(x) = x}) = 0
for any h ∈ H \ {idX}. Under this assumption we get the equivalences from
Theorem 4.4 without any additional hypotheses.

Theorem 4.6. Let m : A−→ [0,∞] be a σ-finite measure on X invariant
under a countable group H of measurable transformations of X such that
the action of H on X is m-free. Then the following are equivalent :

(1) there is B ∈ A such that 0 < m(B) < ∞ and |Hx ∩ B| = ω for
every x ∈ B,

(2) every selector of H-orbits is nonmeasurable with respect to any H-
invariant extension of m,

(3) there exists a selector of H-orbits nonmeasurable with respect to any
H-invariant extension of m.

Proof. To see that (1) implies (2), argue as in the proof of Proposi-
tion 1.1. Then the only nontrivial implication left is (3)⇒(1) or, equivalently,
¬(1)⇒¬(3). So assume that there is no B ∈ A with 0 < m(B) <∞ and such
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that |Hx ∩ B| = ω for every x ∈ B. Let S be a selector of H-orbits. With
no loss of generality assume that the measure m is complete. In particular,
{x ∈ X : h(x) = x} ∈ A for each h ∈ H.

In order to prove the existence of an H-invariant extension of m for
which S is measurable, it suffices to check the hypotheses of Theorem 4.3.

To prove that m({x ∈ X : |Hx ∩ B| = ω}) = 0 for every B ∈ A with
0 < m(B) <∞, note that for each B ∈ A and x ∈ X,

|Hx ∩B| < ω

⇔ ∃F ⊆H (|F | < ω ∧ ∀h ∈ H (h(x)∈B ⇒ ∃f ∈F h(x) = f(x))).

This implies that {x ∈ X : |Hx ∩ B| < ω} ∈ A. Since, moreover, for every
B ∈ A with 0 < m(B) < ∞ there is x ∈ B with |Hx ∩ B| < ω, the claim
follows.

Finally, to prove that there exists an extension of m for which all sets
h[S], h ∈ H, are measurable, note that there is an H-invariant set Z ∈ A
such that m(Z) = 0 and the sets h[Z] \ Z form a partition of X \ Z. But,
by a theorem of Bierlein (see [4] or [1]), one can always extend a measure
so that all members of a given countable partition of a measurable set are
in the domain of the extension.

Finally, the following result shows that in general we cannot strengthen
Theorem 4.4 by removing the additional measurability condition from its
hypotheses.

Example 4.7. Assume that there is no universally measure zero set of
cardinality continuum (by a theorem of Miller [9], this assumption is consis-
tent with the usual axioms of set theory). There exist a set X and a proba-
bility measure m : A−→ [0, 1] invariant with respect to a countable group H
of permutations of X and having the following properties:

(1) m can be extended to any countable collection of subsets of X,
(2) m∗({x ∈ X : |Hx| < ω}) = 1,
(3) every selector of H-orbits is nonmeasurable with respect to any H-

invariant extension of m.

Proof. Let X1 = {0, 1} × Y where Y ⊆ R is an uncountable universally
measure zero set. Let H1 be the group of permutations of Y1 constructed in
Example 4.1.

Let X2 be an arbitrary set of cardinality continuum disjoint from X1.
Let H2 be a countable group of permutations of X2 with infinite H2-orbits.

Let X = X1 ∪ X2, A be the σ-algebra consisting of countable and co-
countable subsets of X and m : A−→{0, 1} be the canonical two-valued
probability measure on A (see Example 4.1).
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Finally, let H consist of permutations h of X such that h|X1 ∈ H1 and
h|X2 ∈ H2.

Clearly, m is an H-invariant probability measure on X.
To prove property (1), let {An : n < ω} be a collection of subsets of X.

Since there is no universally measure zero set of cardinality continuum,
there is a probability measure m2 defined on a σ-algebra A2 of subsets of
X2 containing all sets of the form An ∩X2 and such that all singletons have
measure m2 zero. Then the measure µ on X defined by

µ(A) = m2(A ∩X2) whenever A ∩X2 ∈ A2

extends m and measures all the An’s.
Property (2) is obvious, since {x ∈ X : |Hx| < ω} = X1.
To prove property (3), let m′ : A′−→ [0, 1] be an H-invariant extension

of m. Since any H-invariant measure can always be extended in an invariant
way by a single H-invariant set (this is essentially due to Szpirlajn [15]; see
also [19, Section 3]), with no loss of generality assume that X1, X2 ∈ A′.
Then there is i ∈ {0, 1} such that m′(Xi) > 0 and S ∩Xi is a measurable
selector of Hi-orbits. To reach a contradiction argue either as in Example 4.1
(if i = 1) or as in Proposition 1.1 (if i = 2).
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