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The ping-pong game, geometric entropy and expansiveness
for group actions on Peano continua having free dendrites

by

Enhui Shi and Suhua Wang (Suzhou)

Abstract. It is shown that each expansive group action on a Peano continuum having
a free dendrite must have a ping-pong game, and has positive geometric entropy when the
acting group is finitely generated. As a corollary, it is shown that each Peano continuum
having a free dendrite admits no expansive nilpotent group actions.

1. Introduction and preliminaries. Let X be a topological space and
let G be a topological group. Recall that a continuous map φ : G×X → X
is called an action of G on X if the following two conditions are satisfied:

(1) φ(e, x) = x for all x ∈ X, where e is the identity of G.
(2) φ(g1g2, x) = φ(g1, φ(g2, x)) for all g1, g2 ∈ G, and all x ∈ X.

Such an action is denoted by the triple (X,G, φ). For convenience, we always
use gx or g(x) to denote φ(g, x). Obviously, for each g ∈ G, the map g :
X → X, x 7→ gx, is a homeomorphism on X.

Throughout the paper, we assume that G has the discrete topology.
The orbit of x ∈ X is the set Gx = {gx : g ∈ G}. For a subset A ⊆ X,

set GA =
⋃
x∈AGx. A nonempty subset A ⊆ X is said to be G-invariant if

GA = A. If A is G-invariant, then G|A denotes the action of G restricted
to A.

Now, let G be a discrete group acting on a topological space X. We are
interested in the following question: what are the relations between

� the topology of X,
� the algebraic structure of G, and
� the dynamics of the action?

Before the statement of the main results, let us recall some definitions.
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Continuum. A continuum is a connected, compact metric space. A con-
tinuum X is said to be a Peano continuum if it is locally connected. A den-
drite is a Peano continuum having no simple closed curve. A dendrite D in
a metric space X is free if there exists a connected open subset U of X such
that U = D. One may consult [13] for the details of these notions.

Group. The following definitions are taken from [5]. Suppose that G
is a group and a, b ∈ G. Recall that the commutator [a, b] is defined by
[a, b] = a−1b−1ab. For any two subsets A and B of G, define [A,B] to be
the subgroup generated by the set {[a, b] : a ∈ A, b ∈ B}. Let G0 = G
and Gi+1 = [Gi, G] for i = 0, 1, 2, . . . . This yields a sequence of normal
subgroups of G : G0 = GBG1 BG2 B · · · . If Gn = e for some n, then G is
called nilpotent. It is well known that each subgroup of a nilpotent group is
nilpotent and nilpotent groups have no free subsemigroups.

Dynamics. Let X be a compact metric space with metric d and let
φ : G×X → X be a group action. If there is a constant c > 0 such that for
any distinct points x, y ∈ X, there is some g ∈ G such that d(g(x), g(y)) > c,
then φ is said to be expansive, and c is said to be an expansive constant for φ.
A homeomorphism f of X is called expansive if the cyclic group generated
by f is expansive, that is, there exists c > 0 such that for any x, y ∈ X with
x 6= y, there is an n ∈ Z with d(fn(x), fn(y)) > c.

Consider a finitely generated group G. Choose a symmetric generating
set S = {σ0, σ1, . . . , σk} for G, where σ0 is the identity. The symmetry
means here that for each 1 ≤ i ≤ k, σ−1

i = σl for some 1 ≤ l ≤ k. An
element g ∈ G has word length ‖g‖ ≤ N if there exist indices i1, . . . , iN
such that g = σi1 · · ·σiN . The definition of geometric entropy of a group
action φ : G ×X → X is given by Ghys, Langevin and Walczak [2]. Given
ε > 0 and an integer N > 0, we say that x, y ∈ X are (N, ε)-separated
if there exists g ∈ G with ‖g‖ ≤ N and d(gx, gy) > ε. A finite subset
{x1, . . . , xν} ⊂ X is said to be (N, ε)-separated if for any k 6= l, the points
xk, xl are (N, ε)-separated. Let S(φ, ε,N) denote the maximum cardinality
of an (N, ε)-separated subset of X. Now define

(1.1) h(φ, ε) = lim sup
N→∞

logS(φ, ε,N)
N

≥ 0.

The geometric entropy of φ is the limit h(φ) = limε→0 h(φ, ε) ≥ 0.
We next introduce a dynamical concept which is called a ping-pong

game. This concept goes back to the work of Blaschke, Klein, Schottky and
Poincaré (see [3]). Let G be a group acting on the compact metric space X
and let J, J1, J2 be closed subsets of X such that J1, J2 ⊂ J and J1∩J2 = ∅.
If g1, g2 ∈ G satisfy g1J ⊂ J1, g2J ⊂ J2, then the pair of maps {g1 : J → J1,
g2 : J → J2} is called a ping-pong game for the action.
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Expansiveness, ping-pong game and positive geometric entropy can each
be viewed as a complicated dynamical property.

In this paper, we show the following:

Theorem 1.1. Each expansive group action on a Peano continuum con-
taining a free dendrite must have a ping-pong game, and has positive geo-
metric entropy when the acting group is finitely generated.

Corollary 1.2. No Peano continuum having a free dendrite admits an
expansive nilpotent group action.

Remark 1.3. The above results have been proved by S. Hurder when
the space is the circle S1 (see [4]), which answers the question whether S1

admits an expansive nilpotent group action proposed by T. Ward in 1999
(see [10]).

Remark 1.4. Whether a continuum admits an expansive homeomor-
phism is an interesting problem in topological dynamics and continuum
theory. One may consult [1, 6–9, 12, 14, 16] for developments in this area.
Recently some authors are interested in the existence of expansive group
actions on continua, and some results have been obtained (see [11, 15]).

2. Peano continua containing free dendrites. In this section, we
will give some topological properties of Peano continua which will be used
in the proof of the main theorem.

First let us recall some notions. Let Y be a subset of X. The symbols
Y , Int(Y ), and ∂X(Y ) stand for the closure, interior, and boundary of Y in
X respectively. A cut point of a connected space X is a point p ∈ X such
that X − {p} is not connected. The set of cut points of X will be denoted
by Cut(X). An endpoint of a space X is a point of X that has arbitrarily
small neighborhoods in X with one-point boundaries. The symbol End(X)
denotes the set of all endpoints of X.

Let D be a dendrite, and A be an arc in D. Write Å = A − End(A).
Then D(A) = A ∪

⋃
{Y : Y is a component of D − A, and Y ∩ Å 6= ∅} is

called the subdendrite of D strung by A.
Lemmas 2.1, 2.3 and 2.4 have been proved in [11]. For completeness

and for the convenience of the reader, we include the proofs of the last two
lemmas; the first one is clear.

Lemma 2.1 ([11]). Let D be a dendrite, A an arc in D, and D1 = D(A)
the subdendrite of D strung by A.

(1) If A′ is a subarc of A, then D1(A′) = D(A′).
(2) If A′ and A′′ are subarcs of A and A′ ∩ A′′ = ∅, then D(A′) ∩

D(A′′) = ∅.
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Definition 2.2 ([11]). A free dendrite D in a metric space X is then
said to be strongly free if there is an arc A ⊂ D such that ∂X(D) = End(A) ⊂
End(D). The arc A is then said to be the trunk of D.

For any y ∈ Y ⊂ X and any ε > 0, write B(y, ε) = {x ∈ X : d(x, y) < ε}
and B(Y, ε) = {x ∈ X : d(x, Y ) < ε}.
Lemma 2.3 ([11]). A metric space X contains a strongly free dendrite

if and only if it contains a free dendrite.

Proof. We need only prove the sufficiency. Let U be a connected open set
in X such that U is a dendrite. Take an arc D in X and an ε > 0 such that
B(D, ε) ⊂ U . Since U −D has only finitely many components of diameter
> ε, there exists an arc A ⊂ D − End(D) such that the closure of each
component of U −D which has diameter > ε is disjoint from A− End(A).
Let D1 = U(A) be the subdendrite of U strung by A. Then D1 ⊂ B(A, ε) ⊂
B(D, ε) ⊂ U , and ∂U (D1) = End(A) ⊂ End(D1). HenceD1−End(A) is open
in U (in the relative topology of U), and thus D1−End(A) is open in U (in
the relative topology of U). Since U is an open subset of X, D1 − End(A)
is open in X. Thus ∂X(D1) ⊂ End(A) = ∂U (D1) ⊂ ∂X(D1), and so D1 is a
strongly free dendrite in X.

Lemma 2.4 ([11]). Suppose D is a strongly free dendrite in the metric
space X with A being its trunk , and A′ is a subarc of A. Then D(A′) is a
strongly free dendrite in X with A′ being its trunk.

Proof. Obviously D(A′) − End(A′) is an open subset of D. So it is an
open subset of the space D − ∂X(D), and of the space X. This implies
∂X(D(A′)) ⊂ End(A′). On the other hand, whether End(A′) ∩ End(A) = ∅
or not, we always have End(A′) ⊂ ∂X(D(A′)), which implies ∂X(D(A′)) =
End(A′) ⊂ End(D(A′)). Thus D(A′) is a strongly free dendrite in X with
trunk A′.

Lemma 2.5. Suppose D1 and D2 are two strongly free dendrites in the
metric space X with A1 and A2 being their respective trunks. If there is an
arc A ⊆ A1 ∩A2, then D1(A) = D2(A).

Proof. First we show that D1(A) ⊆ D2(A). Let C be a component of
D1(A) − A and C ∩ Å = {x}. Since D2(A) − End(A) is a component of
X−End(A) and C ∩ (D2(A)−End(A)) 6= ∅, we have C ⊆ D2(A)−End(A).
By the arbitrariness of C, D1(A)−A ⊆ D2(A). Thus D1(A) ⊆ D2(A).

Similarly, it can be shown that D2(A) ⊆ D1(A).

The following lemma is obvious.

Lemma 2.6. Let D be a strongly free dendrite in X with trunk A, and
let h : X → X be a homeomorphism. Then h(D) is a strongly free dendrite
in X with the arc h(A) being its trunk.
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Let X be a compact metric space and let D be a strongly free dendrite
in X with trunk A. Define D̊ = D − ∂X(D) = D − End(A). Obviously D̊ is
an open subset in X.

Lemma 2.7. Let X be a Peano continuum, and let D1, . . . , Dn be n
strongly free dendrites in X. If

⋃n
i=1 D̊i is a connected open subset of X,

then the boundary of
⋃n
i=1 D̊i in X has at most two points.

Proof. Without loss of generality, we may suppose that (
⋃k
i=1 D̊i) ∩

D̊k+1 6= ∅ for each k ∈ {1, . . . , n − 1}. Let Ai be the trunk of Di for
each i ∈ {1, . . . , n}. Now we argue by induction. Clearly ∂X(D̊1) has only
two points. Assume that ∂X(

⋃k
i=1 D̊i) has at most two points for some

1 ≤ k < n. We will show that ∂X(
⋃k+1
i=1 D̊i) has at most two points. Set

V =
⋃k
i=1 D̊i. Since both V and D̊k+1 are open subsets of X, we have

∂X(V ∪ D̊k+1) ⊆ ∂X(V ) ∪ ∂X(D̊k+1). Thus ∂X(V ∪ D̊k+1) has at most four
points. There are three cases:

Case 1: ∂X(V ) ∩ D̊k+1 = ∅. Then D̊k+1 ⊆ X − ∂X(V ). Since V is a
component of X − ∂X(V ) and D̊k+1 ∩ V 6= ∅, we have D̊k+1 ⊆ V . Thus
∂X(V ∪ D̊k+1) = ∂X(V ).

Case 2: ∂X(D̊k+1)∩V = ∅. Similarly to Case 1, we have V ⊆ D̊k+1. So
∂X(V ∪ D̊k+1) = ∂X(D̊k+1) = End(Ak+1).

Case 3: ∂X(V ) ∩ D̊k+1 6= ∅ and ∂X(D̊k+1) ∩ V 6= ∅. Since no point of
D̊k+1 or V can be in ∂X(V ∪ D̊k+1), ∂X(V ∪ D̊k+1) has at most two points.

In any case, ∂X(
⋃k+1
i=1 D̊i) has at most two points. Thus the boundary of⋃n

i=1 D̊i in X has at most two points by this inductive process.

The following lemma is well known (see [13, 8.30]).

Lemma 2.8. Let X be a Peano continuum. Then for any ε > 0, there is
a δ = δ(ε) ∈ (0, ε/2] such that , for any x, y ∈ X with 0 < d(x, y) ≤ δ, there
always exists an arc A in X with endpoints x and y and diam(A) < ε.

Let A be an arc, and let ≺ be an ordering in A. If there is a homeomor-
phism h : A → I (= [0, 1]) such that, for any x, y ∈ A, x ≺ y if and only if
h(x) < h(y), then ≺ is called a natural ordering. Suppose that y0, y1, . . . , ym
are points in A, m ≥ 2, and End(A) = {y0, ym}. If y0 ≺ y1 ≺ · · · ≺ ym in a
natural ordering ≺ in A, and d(yk, y0) = kd(ym, y0)/m for all k = 1, . . . ,m,
then the sequence (y1, . . . , ym−1) is said to be a set of pseudo m-section
points of A from y0 to ym.

Let A be an arc. For any two different points u and v in A, [u, v]A
denotes the subarc of A with endpoints u and v. Write [u, v)A = (v, u]A =
[u, v]A − {v}, (u, v)A = [u, v)A − {u}, and [u, u]A = {u}.
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Lemma 2.9. Let {Dn : n = 1, 2, . . .} be a sequence of strongly free den-
drites in a Peano continuum X. Suppose that

⋃∞
n=1 D̊n is connected and

contains no simple closed curve. If {Ai : i = 1, 2, . . .} is a sequence of pair-
wise disjoint closed arcs in

⋃∞
n=1 D̊n, then limi→∞ diam(Ai) = 0.

Proof. Since
⋃∞
n=1 D̊n is connected, by relabeling theDn we may suppose

that D̊k+1 ∩
⋃k
n=1 D̊n 6= ∅ for each k ∈ N.

Assume to the contrary that there exist a constant c > 0 and in-
finitely many Ai such that diam(Ai) ≥ c. We can suppose that each Ai has
diam(Ai) = d(ai, bi) = c, where ai and bi are the endpoints of Ai. For each i,
let yi0 = ai, yi5 = bi and let (yi1, . . . , yi4) be a set of pseudo 5-section points
of Ai from yi0 to yi5. Then diam([yik, yik+1]Ai) ≥ c/5 for each k = 0, 1, . . . , 4.
Let ε = c/10, and let δ = δ(ε) ∈ (0, ε/2] be as in Lemma 2.8.

As X is compact, there are integers q > p > 0 such that max{d(ypk, yqk) :
k = 0, 1, 2, 3, 4, 5} < δ. By Lemma 2.8, there is an arc Lk from ypk to yqk such
that diam(Lk) < c/10 for each k ∈ {0, . . . , 5}. It is easy to see that {Lk : k =
0, . . . , 5} are pairwise disjoint. (If there is some x ∈ Lk∩Lj , then d(ypk, ypj) ≤
d(ypk, x) + d(x, ypj) ≤ diam(Lk) + diam(Lj) < c/5, a contradiction.) Since
the compact set Ap ∪ Aq is covered by the family of open sets {D̊n : n =
1, 2, . . .}, there exists an N such that Ap ∪ Aq ⊂

⋃N
n=1 D̊n. By Lemma 2.7,

the boundary of
⋃N
n=1 D̊n in X has at most two points. So, at most two

arcs among {Lk : k = 0, . . . , 5} contain points in ∂X(
⋃N
n=1 D̊n). Thus there

are distinct arcs Ll and Lm such that (Ll ∪ Lm) ∩ ∂X(
⋃N
n=1 D̊n) = ∅. Then

Ll, Lm ⊂
⋃N
n=1 D̊n. Let vl ∈ Ll ∩Ap be such that [yql, vl]Ll

∩Ap = {vl}, and
vm ∈ Lm ∩Ap be such that [yqm, vm]Lm ∩Ap = {vm}. Since both [yql, vl]Ll

∪
[vl, vm]Ap∪[vm, yqm]Lm and [yql, yqm]Aq are arcs from yql to yqm, and

⋃N
n=1 D̊n

has no simple closed curve, we have [yql, vl]Ll
∪ [vl, vm]Ap ∪ [vm, yqm]Lm =

[yql, yqm]Aq . Thus [vl, vm]Ap ⊂ [yql, yqm]Aq , contrary to Ap ∩Aq = ∅.
Lemma 2.10 ([13, 8.26]). Any connected open subset of a Peano contin-

uum is arcwise connected.

If X is a topological space and A,B,C ⊂ X, then we say that C separates
A and B in X provided that X−C = P ∪Q with A ⊂ P and B ⊂ Q, where
P and Q are disjoint nonempty open subsets of X − C. If x, y, z ∈ X, we
usually say that z separates x and y in X instead of saying that {z} separates
{x} and {y} in X.

Lemma 2.11. Let X be a Peano continuum. Suppose U is a connected
open subset of X and contains no simple closed curve. Then any two points
of U are separated in U by a third point of U .

Proof. Let p, q ∈ U and p 6= q. By Lemma 2.10, U is arcwise connected.
So there is an arc A in U from p to q. Let r ∈ A− {p, q}, and let V be the
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component of p in U − {r}. Assume that p and q cannot be separated in U
by r. Then q ∈ V . Since X is locally connected, the component V is open in
U −{r}. Thus V is open in X. By Lemma 2.10 there is an arc B in V from
p to q. Clearly, A ∩ B is not connected, so A ∪ B contains a simple closed
curve. This contradicts the assumption that U contains no simple closed
curve. Thus p and q are separated in U by r.

Proposition 2.12. Let {Dn : n = 1, 2, . . .} be a sequence of strongly
free dendrites in a Peano continuum X. Suppose that

⋃∞
n=1 D̊n is connected

and has no simple closed curve. Then for any constant c > 0, there exists a
finite set {x1, . . . , xm} ⊂

⋃∞
n=1 D̊n such that each component of (

⋃∞
n=1 D̊n)−

{x1, . . . , xm} has diameter ≤ c.
Proof. Assume to the contrary that for any finite set S ⊂

⋃∞
n=1 D̊n,

there exists a component of (
⋃∞
n=1 D̊n) − S with diameter > c. Write E =⋃∞

n=1 D̊n. By Lemma 2.11, we can choose x1 ∈ E such that E − {x1} has
at least two components. Then there is a component U1 of E − {x1} with
diam(U1) > c. Take an arc L1 ⊂ U1 such that diam(L1) = c. Choose x2, x3 ∈
L̊1 with diam([x2, x3]L1) = c/4. By the proof of Lemma 2.11, it is easy to
see that x2, x3 ∈ Cut(U1). In E − {x1, x2, x3}, there is also a component
U2 with diam(U2) > c. Take an arc L2 in U2 such that diam(L2) = c. If
L2 ∩ [x2, x3]L1 = ∅, then we choose arbitrarily a subarc [x4, x5]L2 ⊂ L̊2 with
diam([x4, x5]L2) = c/4. Otherwise, L2 ∩ [x2, x3]L1 6= ∅. Since there is no
simple closed curve in E, the intersection A = L2∩ [x2, x3]L1 must be an arc
with diameter ≤ c/4. Thus L2−A has a subarc with diameter > c/4. Select
x4, x5 ∈ Int(L2−A) such that [x4, x5]L2 ⊂ L2−A and diam([x4, x5]L2) = c/4.

Suppose that {x1, . . . , x2k+1} and {L1, . . . , Lk} have been chosen such
that

(1) for each i = 1, . . . , k, Li is an arc in E−{x1, . . . , x2i−1} and x2i, x2i+1

∈ L̊i;
(2) for each i = 1, . . . , k, diam([x2i, x2i+1]Li) = c/4;
(3) for each i, j = 1, . . . , k with i 6= j, [x2i, x2i+1]Li ∩ [x2j , x2j+1]Lj = ∅;
(4) for each i, j = 1, . . . , k with i 6= j, (x2i, x2i+1)Li and (x2j , x2j+1)Lj

lie in different components of E − {x1, . . . , x2k+1}.
For k + 1, there is also a component Uk+1 in E − {x1, . . . , x2k+1} with
diam(Uk+1) > c by assumption. Take an arc Lk+1 ⊂ Uk+1 with diam(Lk+1)
= c. If Lk+1 ∩ [x2i, x2i+1]Li = ∅ for all i ∈ {1, . . . , k}, then we choose any
subarc [x2k+2, x2k+3]Lk+1

⊂ L̊k+1 with diam([x2k+2, x2k+3]Lk+1
) = c/4. Oth-

erwise, according to (4), there is only one arc [x2i, x2i+1]Li which has a
nonempty intersection with Lk+1. Since there is no simple closed curve
in E, the intersection A = Lk+1 ∩ [x2i, x2i+1]Li must be an arc with di-
ameter ≤ c/4. Thus Lk+1 − A has a subarc with diameter > c/4. Select
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x2k+2, x2k+3 ∈ Int(Lk+1 − A) such that [x2k+2, x2k+3]Lk+1
⊂ Lk+1 − A and

diam([x2k+2, x2k+3]Lk+1
) = c/4.

Inductively, we obtain a sequence {[x2i, x2i+1]Li}∞i=1 of pairwise disjoint
arcs in E with diam([x2i, x2i+1]Li) = c/4. This contradicts Lemma 2.9.

Lemma 2.13. Let {Dn : n = 1, 2, . . .} be a sequence of strongly free
dendrites in a Peano continuum X. Suppose

⋃∞
n=1 D̊n = U1 ∪ U2 ∪ · · · ,

where {Ui : i = 1, 2, . . .} is a sequence of pairwise disjoint connected open
sets. Then limi→∞ diam(Ui) = 0.

Proof. Assume that there exist a constant c > 0 and infinitely many
Ui such that diam(Ui) > c. We may suppose that diam(Ui) > c for each
i = 1, 2, . . . . Choose an arc Ai ⊂ Ui such that diam(Ai) = d(ai, bi) = c,
where ai and bi are the endpoints of Ai. For each i = 1, 2, . . . , let yi0 = ai,
yi5 = bi and let (yi1, . . . , yi4) be a set of pseudo 5-section points of Ai from
yi0 to yi5. Then diam([yik, yik+1]) ≥ c/5 for each k = 0, 1, . . . , 4. Let ε = c/10
and let δ = δ(ε) ∈ (0, ε/2] be as in Lemma 2.8.

As X is compact, there are n > m > 0 such that max{d(ymk, ynk) : k =
0, . . . , 5} ≤ δ. By Lemma 2.8, there exists an arc Lk from ymk to ynk with
diam(Lk) < ε = c/10 for each k = 0, . . . , 5. Clearly {Lk : k = 0, . . . , 5} are
pairwise disjoint.

By the compactness of Am, there exist integers m1, . . . ,mN such that
Am ⊂

⋃N
j=1 D̊mj ⊆ Um and

⋃N
j=1 D̊mj is connected. By Lemma 2.7,

∂X(
⋃N
j=1 D̊mj ) has at most two points. Hence, there is some Lk such that

Lk ∩ ∂X(
⋃N
j=1 D̊mj ) = ∅. Thus Lk ⊂

⋃N
j=1 D̊mj ⊆ Um. So ynk ∈ Um. This is

a contradiction.

Proposition 2.14. Let {Dn : n = 1, 2, . . .} be a sequence of strongly free
dendrites in a Peano continuum X. If

⋃∞
n=1 D̊n contains no simple closed

curve, then for any constant c > 0, there exists a finite set {x1, . . . , xm} ⊂⋃∞
n=1 D̊n such that each component of (

⋃∞
n=1 D̊n)− {x1, . . . , xm} has diam-

eter ≤ c.

Proof. Write
⋃∞
n=1 D̊n = U1 ∪ U2 ∪ · · · , where {Ui}∞i=1 are pairwise dis-

joint open connected subsets. (If
⋃∞
n=1 D̊n has only finitely many compo-

nents, that is,
⋃∞
n=1 D̊n = U1 ∪ · · · ∪ UM , then let Ui = ∅ for i > M .

Thus we can still write
⋃∞
n=1 D̊n = U1 ∪ U2 ∪ · · · .) Because of Lemma

2.13, diam(Ui) → 0 as i → ∞. Then for any c > 0 there exists an N
such that diam(Ui) ≤ c for i > N . For each i ≤ N , since Ui is the union
of some D̊ns, there is a finite set Fi ⊂ Ui such that each component of
Ui − Fi has diameter ≤ c by Proposition 2.12. Thus each component of
(
⋃∞
n=1 D̊n) − (

⋃N
i=1 Fi) has diameter ≤ c. Taking {x1, . . . , xm} =

⋃N
i=1 Fi

completes the proof.
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Corollary 2.15. Let X be a Peano continuum, and D a strongly free
dendrite in X. Suppose that G is a countable group acting on X. If

⋃
g∈G gD̊

has no simple closed curve, then for any constant c > 0, there exists a finite
set {x1, . . . , xm} such that each component of (

⋃
g∈G gD̊)−{x1, . . . , xm} has

diameter ≤ c.

Proof. From the definition of strongly free dendrite and Lemma 2.6, it is
easy to see that gD is also a strongly free dendrite and ˚(gD) = gD̊ for each
g ∈ G. Hence, the conclusion follows immediately from Proposition 2.14.

Remark. In fact, Corollary 2.15 holds for any subset of
⋃
g∈G gD̊. Let

W ⊆
⋃
g∈G gD̊, and {x1, . . . , xm} ⊂

⋃
g∈G gD̊. If each component of

(
⋃
g∈G gD̊)− {x1, . . . , xm} has diameter ≤ c, we can take the finite set F =

W ∩ {x1, . . . , xm}. Obviously, each component of W − F has diameter ≤ c.

The action of G on X is said to be topologically transitive if for any
nonempty open subsets U and V of X, there is a g ∈ G such that gU∩V 6= ∅.
For brevity, we will then simply say that G is topologically transitive.

We say x ∈ X is a transitive point of G provided that Gx = X. For
a compact metric space X, it is well known that if G is countable and
topologically transitive, then there exists a transitive point of G.

Proposition 2.16. Let X be a Peano continuum containing free den-
drites, and D a strongly free dendrite in X. Suppose that G is a countable
group acting on X expansively. If

⋃
g∈G gD̊ contains no simple closed curve,

then there is a G-invariant open set W on which G|W is topologically tran-
sitive.

Proof. Let c0 > 0 be an expansive constant for the G-action. Set U =⋃
g∈G gD̊. Then U is a G-invariant open set. By Corollary 2.15, there is a

finite set {x1, . . . , xm} ⊂ U such that each component of U − {x1, . . . , xm}
has diameter ≤ c0.

Claim. There exists an xi ∈ {x1, . . . , xm} with Int(Gxi) 6= ∅.

Proof of the claim. Assume that Int(Gxi) = ∅ for each i ∈ {1, . . . ,m}.
Since U is a nonempty open set, so is V := U −

⋃m
i=1Gxi by the Baire

Category Theorem. Thus we can take distinct points x and y in some com-
ponent of V . Since V is G-invariant, for any g ∈ G, gx and gy are still in
the same component of V . As V ⊂ U − {x1, . . . , xm}, each component of V
has diameter ≤ c0. Hence d(gx, gy) ≤ c0 for any g ∈ G, which contradicts
the fact that G acts on X expansively. Thus the claim holds.

Without loss of generality, we suppose Int(Gx1) 6= ∅. Let W = U ∩
Int(Gx1). Obviously, W is a G-invariant open set. To prove that G|W is
topologically transitive, let A and B be nonempty open subsets of W . Since
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A,B ⊆ Int(Gx1), there are g1, g2 ∈ G such that g1x1 ∈ A and g2x1 ∈ B.
So g2g−1

1 (g1x1) ∈ B, that is, g2g−1
1 A ∩ B 6= ∅. Hence G|W is topologically

transitive.

Proposition 2.17. Under the assumption of Proposition 2.16, let W be
a G-invariant open set in

⋃
g∈G gD̊ such that G|W is topologically transitive.

Then there is an arc A in W such that each point in A is a transitive point
of G|W .

Proof. Assume that on any arc in W , there exists a nontransitive point
of G|W . Then we have

Claim. For any constant c > 0, there is a finite subset B ⊆W consisting
of nontransitive points of G|W such that each component of W − B has
diameter ≤ c.

Proof of the claim. As in Proposition 2.16, we set U =
⋃
g∈G gD̊. By

Corollary 2.15 and the remark following it, there is a finite set {x1, . . . , xM}
⊆ W such that each component of W − {x1, . . . , xM} has diameter ≤ c. If
xi is a nontransitive point of G|W , then take B = {x1, . . . , xM}. Otherwise,
we will modify the set {x1, . . . , xM}. By renumbering the xi, we may sup-
pose that x1, . . . , xm−1 are nontransitive points of G|W and xm, . . . , xM are
transitive points of G|W , for some 1 ≤ m ≤ M . Then we first modify the
point xm.

Let P be family of components P of W − {x1, . . . , xM} such that xm ∈
∂X(P ). Write P = {P1, P2, . . .} (if P has only finitely many elements, then
set Pn = ∅ for n > N , for some N ∈ N). Then diam(Pn) → 0 as n → 0.
(Otherwise, for a constant ε > 0, there is a subsequence {Pnk

}∞k=1 such that
each diam(Pnk

) > ε. Since Pnk
is arcwise connected, there is an arc Lnk

with
diam(Lnk

) = ε. This contradicts Lemma 2.9.) Thus there exists an integer
N > 0 such that diam(Pn) < c/4 for each n > N . Let P ′n = Pn ∪ {xm}
for each n ∈ N. Then for any distinct x, y ∈

⋃∞
n=N+1 P

′
n, we have d(x, y) ≤

d(x, xm) + d(xm, y) < c/2. Thus diam(
⋃∞
n=N+1 P

′
n) ≤ c/2.

For each n ∈ {1, . . . , N}, let Ln be an arc in P ′n with xm being one of its
endpoints and diam(Ln) < c/4. By assumption there exists a nontransitive
point yn ∈ L̊n of G|W such that the component of P ′n − {yn} which con-
tains xm has diameter ≤ c/2. In fact, for each x ∈ Pn there is a unique arc
Ax = [x, ax] contained in Pn such that Ax ∩ Ln = {ax}. Choose a nontran-
sitive point w1 ∈ L̊n such that diam([xm, w1]Ln) ≤ c/6. If the component
of P ′n − {w1} which contains xm has diameter ≤ c/2, then let yn = w1.
Otherwise, there must be a point z1 ∈ Pn and an arc Az1 = [z1, az1 ] such
that diam(Az1) > c/6 and Az1 ∩ (xm, w1)Ln = {az1}. Then choose a non-
transitive point w2 ∈ (xm, az1)Ln . If the component of P ′n − {w2} which
contains xm has diameter ≤ c/2, then let yn = w2. Otherwise, there is a
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z2 with diam(Az2) > c/6. Continuing this process, we get at last a wk such
that the component of P ′n − {wk} which contains xm has diameter ≤ c/2,
and then we let yn = wk. (If such a wk does not exist, then we will ob-
tain a sequence {Azi}∞i=1 of pairwise disjoint arcs with diam(Azi) > c/6,
contradicting Lemma 2.9.)

Thus for each P ′n, n = 1, . . . , N , we get a nontransitive point yn. Since
each component of P ′n−{yn} which does not contain xm is contained in Pn,
its diameter is at most c. Let Cn denote the component of P ′n − {yn} which
contains xm. Since xm ∈ Cn and xm ∈

⋃∞
n=N+1 P

′
n, the set (

⋃N
n=1Cn) ∪

(
⋃∞
n=N+1 P

′
n) is connected and it is easy to see that its diameter is at

most c. Thus using {y1, . . . , yN} instead of xm, we obtain a new finite set
B′ = {x1, . . . , xm−1, y1, . . . , yN , xm+1, . . . , xM} such that each component
of W −B′ has diameter ≤ c.

Similarly, we can modify xm+1, . . . , xM by using nontransitive points.
Finally, we obtain a finite set B we need. Thus the claim is proved.

Let c0 be an expansive constant for the G-action. From the claim, we get
a finite set {x1, . . . , xn} of nontransitive points such that each component
of W − {x1, . . . , xn} has diameter ≤ c0. For each xi, Int(Gxi) = ∅ since xi
is a nontransitive point of G|W . Thus V = W −

⋃n
i=1Gxi is a nonempty

G-invariant open set. Obviously, each component of V has diameter ≤ c0.
This contradicts the fact that G acts on X expansively with expansive con-
stant c0.

Proposition 2.18. Let X be a Peano continuum, and D1, . . . , Dn a
finite sequence of strongly free dendrites in X. If

⋃n
i=1 D̊i contains a simple

closed curve, then X =
⋃n
i=1 D̊i. Moveover , there is only one simple closed

curve contained in X.

Proof. Let S be a simple closed curve contained in
⋃n
i=1 D̊i. We may

suppose that the union of any n−1 of D̊1, . . . , D̊n contains no simple closed
curve (otherwise we need only work with a subfamily of {D1, . . . , Dn}). Thus
S ∩ D̊i 6= ∅. By relabeling, we may suppose that

⋃n−1
i=1 D̊i is connected and

set U =
⋃n−1
i=1 D̊i. Let ∂X(D̊n) = {p, q}. By Lemma 2.7 the boundary of U

has at most two points.
First, it is easy to see that ∂X(U) 6= ∅: otherwise, U is a clopen set

in X, so X = U by the connectedness of X. Then S ⊆
⋃n
i=1 D̊i ⊆ U , which

contradicts the fact that U contains no simple closed curve.
Now we discuss two cases.

Case 1: ∂X(U) = {a}, that is, ∂X(U) has only one point. We claim
that ∂X(U) ∩ S 6= ∅ and ∂X(D̊n) ∩ S 6= ∅. Indeed, if ∂X(U) ∩ S = ∅, then
S ⊂ X − ∂X(U). Since U is a component of X − ∂X(U) and S ∩ U 6= ∅, we
find that S ⊂ U , which contradicts the fact that U contains no simple closed
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curve. Hence ∂X(U)∩S 6= ∅. Similarly, it can be shown that ∂X(D̊n)∩S 6= ∅.
Thus a ∈ S. We can suppose p ∈ S. If q /∈ S, then S − {p} = S − {p, q} ⊂
X − {p, q}. Since D̊n is a component of X − {p, q} and (S − {p})∩ D̊n 6= ∅,
we have S − {p} ⊂ D̊n. Thus S ⊂ Dn, a contradiction. Hence q ∈ S. It
follows that ∂X(

⋃n
i=1 D̊i) ⊆ ∂X(U) ∪ ∂X(D̊n) ⊆ S ⊆

⋃n
i=1 D̊i. This means⋃n

i=1 D̊i is a clopen set in X. Hence X =
⋃n
i=1 D̊i.

Case 2: ∂X(U) = {a, b}, that is, ∂X(U) has two points. As in Case 1,
we have ∂X(U)∩S 6= ∅ and ∂X(D̊n)∩S 6= ∅. We can suppose that a, p ∈ S.
Now we show that b, q ∈ S. First, we have q ∈ S as in Case 1. Assume to
the contrary that b /∈ S. As ∂X(U) ⊆

⋃n−1
i=1 ∂X(D̊i), there is some D̊j such

that b ∈ ∂X(D̊j). Let ∂X(D̊j) = {b, c}. Since b /∈ S, S−∂X(D̊j) = S−{c} is
connected. As (S−∂X(D̊j))∩D̊j 6= ∅ and D̊j is a component of X−∂X(D̊j),
we have S − ∂X(D̊j) ⊆ D̊j . So S ⊆ Dj , which is a contradiction. Hence
b ∈ S. Thus ∂X(

⋃n
i=1 D̊i) ⊆ ∂X(U) ∪ ∂X(D̊n) ⊆ S ⊆

⋃n
i=1 D̊i. So

⋃n
i=1 D̊i is

a clopen set. Then X =
⋃n
i=1 D̊i.

Next we show that X contains only one simple closed curve. Assume to
the contrary that S′ is a simple closed curve in X =

⋃n
i=1 D̊i and S′ 6= S. As

above, we have ∂X(U) ∪ ∂X(D̊n) ⊂ S′. So S ∩ S′ 6= ∅. Thus there exist arcs
L ⊂ S and L′ ⊂ S′ such that L̊∩S′ = ∅, L̊′ ∩S = ∅ and End(L) = End(L′).
Since ∂X(U) ∪ ∂X(D̊n) ⊂ S′ ∩ S, we see that L̊ ∩ (∂X(U) ∪ ∂X(D̊n)) =
L̊′ ∩ (∂X(U) ∪ ∂X(D̊n)) = ∅.

Let E = End(L) = End(L′). Since X =
⋃n
i=1 D̊n = U ∪ D̊n, there are

two cases:

Case a: E ⊆ U . Thus L ∩ ∂X(U) = (L̊ ∪ E) ∩ ∂X(U) = ∅ and L ∩ U
6= ∅. Since U is a component of X − ∂X(U), we have L ⊂ U . Similarly
L′ ⊂ U . Then L ∪ L′ is a simple closed curve in U , which is a contradic-
tion.

Case b: E * U . Then E ∩ D̊n 6= ∅. Let x ∈ E ∩ D̊n. Since E is the
endpoint set of L, L̊ ∪ {x} is connected. Note that L̊ ∩ ∂X(D̊n) = ∅ and
x /∈ ∂X(D̊n), so L̊∪{x} ⊂ X − ∂X(D̊n). Since (L̊∪{x})∩ D̊n 6= ∅ and D̊n is
a component of X − ∂X(D̊n), L̊∪ {x} ⊂ D̊n. Similarly, it can also be shown
that L̊′ ∪ {x} ⊂ D̊n. Thus L ⊂ Dn and L′ ⊂ Dn. Hence L ∪ L′ is a simple
closed curve in Dn, which is a contradiction.

So the assumption is false, i.e., S′ = S.

Let X be a compact metric space with metric d. By the hyperspace of X,
we mean 2X = {A | A is a nonempty closed subset of X} with the Hausdorff
metric dH, i.e., dH(A,B) = inf{ε > 0 | B(A, ε) ⊇ B and B(B, ε) ⊇ A}. It is
well known that (2X , dH) is a compact metric space.
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Lemma 2.19. Let X be a Peano continuum. Fix an ε > 0, and let
δ = δ(ε) be as in Lemma 2.8. Suppose D is a strongly free dendrite in
X with an arc A being its trunk , End(A) = {y0, y7} and (y1, . . . , y6) is
a set of pseudo 7-section points of A from y0 to y7. Also, suppose that
J is an arc in X, End(J) = {w0, w7}, (w1, . . . , w6) is a set of pseudo
7-section points of J from w0 to w7, and d(w0, w7) = d(y0, y7) = 7ε.
If d(wi, yi) < δ for i = 2, 3, 4, 5, and dH([w2, w5]J , [y2, y5]A) < δ, then
[w3, w4]J ⊂ (y2, y5)A.

Proof. For i = 2, 3, 4, 5, by Lemma 2.8 there exists an arc Li in X such
that End(Li) = {wi, yi} and diam(Li) < ε. As d(yi, {y1, yi−1, yi+1, y6}) ≥ ε,
Li ∩ {y1, yi−1, yi+1, y6} = ∅. It follows that Li ⊂ D, and there exists a point
vi ∈ Li ∩ (yi−1, yi+1)A such that [wi, vi]Li ∩A = {vi}.

Since dH([w2, w5]J , [y2, y5]A) < δ, for each w ∈ [w2, w5]J there exist a
point y ∈ [y2, y5]A and an arc L such that d(w, y) < δ, End(L) = {w, y} and
diam(L) < ε. Just as above, we see that w ∈ L ⊂ D. By the arbitrariness
of w, we deduce that [w2, w5]J is an arc in D.

But [w2, v2]L2 ∪ [v2, v5]A ∪ [v5, w5]L5 is also an arc in D with endpoints
w2 and w5, hence

[w2, w5]J = [w2, v2]L2 ∪ [v2, v5]A ∪ [v5, w5]L5 .

As d(w3, w2) ≥ ε and diam(L2) < ε, we have w3 /∈ L2. Similarly, w4 /∈ L5.
Therefore {w3, w4} ⊂ [v2, v5]A ⊂ (y1, y6)A. Noting that d(y3, {y2, y4}) ≥ ε,
End(L3) = {w3, y3} and diam(L3) < ε, we have w3 ∈ (y2, y4)A. Sim-
ilarly, w4 ∈ (y3, y5)A. Hence, [w3, w4]J ⊂ (y2, y5)A. This completes the
proof.

Lemma 2.20. Suppose D is a strongly free dendrite in X with trunk A.
If L is an arc in D, then there exists a subarc L′ ⊂ L such that D(L′) is a
strongly free dendrite in X.

Proof. Choose any subarc [α, β]L ⊂ L̊. Then D([α, β]L) is the subden-
drite of D strung by [α, β]L. Obviously, D([α, β]L) ⊂ D is a free dendrite in
X. Observe that {α, β} ⊆ ∂X(D([α, β]L)) ⊆ ∂X(D) ∪ {α, β}. Let ∂X(D) =
End(A) = {a, b}. If ∂X(D([α, β]L)) ∩ ∂X(D) = ∅, then ∂X(D([α, β]L)) =
{α, β}. Thus if we let L′ = [α, β]L, then D(L′) is strongly free in X.
Otherwise, without loss of generality, suppose a ∈ ∂X(D([α, β]L)). Since
[α, β]L ⊂ L̊ ⊂ D̊ and a ∈ ∂X(D), it follows that a ∈ D([α, β]L) − [α, β]L.
Suppose C is the component of D([α, β]L) − [α, β]L which contains a, and
C ∩ [α, β]L = {x}. Then a /∈ D([x, β]L). Hence a /∈ ∂X(D([x, β]L)). If
b /∈ ∂X(D([x, β]L)), then let L′ = [x, β]L; clearly, ∂X(D(L′)) = {x, β}.
So D(L′) is strongly free in X. If b ∈ ∂X(D([x, β]L)), then similarly we
can take a subarc L′ = [y, β]L ⊂ [x, β]L ⊂ L such that b /∈ D(L′). Then
∂X(D(L′)) = {y, β}. Therefore D(L′) is strongly free in X.
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3. Main theorem. To prove the main theorem of this paper, we use
the following two lemmas which have been proved in [4]. For convenience of
the reader, we prove them again here.

Let G be a group and let φ : G×X → X be a group action.

Lemma 3.1 ([4]). If {g1 : J → J1, g2 : J → J2} is a ping-pong game
for φ, then {g1, g2} generates a free subsemigroup of G.

Proof. A word g in the semigroup generated by {g1, g2} has the form
g = gi1 · · · gil with ij = 1, 2. Since gJ ⊂ gi1J ⊂ Ji1 6= J , g is not the identity.
Hence, {g1, g2} generates a free subsemigroup of G.

Lemma 3.2 ([4]). If {g1 : J → J1, g2 : J → J2} is a ping-pong game for
φ, then h(φ) > 0.

Proof. Without loss of generality, we can suppose that the symmetric
generating set S = {σ0, . . . , σk} for G contains g1, g−1

1 , g2, g
−1
2 . Let ε > 0 be

the distance between J1 and J2. Choose any x ∈ J and set Sn = {gi1 · · · ginx :
ij = 1, 2}. The set Sn has 2n elements. Given any distinct points y =
gi1 · · · ginx and z = gj1 · · · gjnx, there exists a least 1 ≤ l ≤ n such that
il 6= jl and gi1 · · · gil−1

= gj1 · · · gjl−1
. Let g = gi1 · · · gil−1

. Then g−1y =
gil · · · ginx ∈ Jil and g−1z = gjl · · · gjn ∈ Jjl . Thus d(g−1y, g−1z) > ε. It
follows that S(φ, ε,N) ≥ 2N and h(φ) ≥ log 2.

Proof of Theorem 1.1. We can suppose G is countable (see the remark
below). Let c0 be an expansive constant for G-action and c = c0/7. Since X
is a Peano continuum containing a free dendrite, by Lemma 2.3 there exists
a strongly free dendrite D in X. For each g ∈ G, gD is also a strongly free
dendrite and ˚(gD) = gD̊ by Lemma 2.6. Let U =

⋃
g∈G gD̊. We argue in

two cases.

Case 1: U contains a simple closed curve S. Since S is compact, there
is a finite subfamily {giD̊ : i = 1, . . . , n} of {gD̊ : g ∈ G} covering S. By
Proposition 2.18, X =

⋃n
i=1 giD̊ and S is the only simple closed curve in X.

Then S is G-invariant, that is, GS = S. Since an expansive group action on
a simple closed curve must have a ping-pong game (see Propositions 2.10
and 3.1 in [4]), we see that S admits a ping-pong game for the G-action,
and hence so does X.

Case 2: U contains no simple closed curve. By Proposition 2.16, there
is a G-invariant open set W ⊆ U such that G|W is topologically transitive.
By Proposition 2.17, we can find an arc A′ ⊂ W all of whose points are
transitive points of G|W . Choose a subarc A′′ ⊂ A′ such that A′′ ⊆ gD̊ for
some g ∈ G. Since gD̊ is a strongly free dendrite, from Lemma 2.20, there is
a subarc A ⊂ A′′ such that A is the trunk of a strongly free dendrite. Write
D0 = D(A).
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Since U is arcwise connected and contains no simple closed curve, for
any x and y in U , we denote the unique arc in U from x to y by [x, y] and
set (x, y) = [x, y]− {x, y}.

Write A = [a, b]. Since G acts on X expansively, there exists g1 ∈ G such
that d(g1(a), g1(b)) > c0. Clearly g1(D0) is a strongly free dendrite with
[g1(a), g1(b)] being its trunk. Write D1 = g1(D0). Select two points y10, y17 ∈
[g1(a), g1(b)] with d(y10, y17) = c0 = 7c. Let (y11, . . . , y16) be a set of pseudo
7-section points of [y10, y17] from y10 to y17. Then d(y13, y14) ≥ c. Corollary
2.15 yields a subarc L1 = [p1, q1] ⊂ (y13, y14) such that diam(D1(L1)) < 1.

Suppose that for each i ≤ n−1, gi, Di, yi0, . . . , yi7, pi, qi and Li have been
chosen. For i = n, there exists gn ∈ G such that d(gn(pn−1), gn(qn−1)) > 7c.
Define Dn = gn(Dn−1). Obviously, [gn(pn−1), gn(qn−1)] is a subarc of the
trunk of Dn. Choose yn0, yn7 ∈ [gn(pn−1), gn(qn−1)] with d(yn0, yn7) = 7c.
Let (yn1, . . . , yn6) be a set of pseudo 7-section points of [yn0, yn7] from yn0

to yn7. Then d(yn3, yn4) ≥ c. Take a subarc Ln = [pn, qn] ⊂ (yn3, yn4) such
that diam(Dn(Ln)) < 1/n. By this inductive process, we get a sequence
{gn, Dn, yn0, . . . , yn7, pn, qn, Ln : n = 1, 2, . . .} such that, for each n:

(1) d(gn(pn−1), gn(qn−1)) > 7c and Dn = gn(Dn−1);
(2) [yn0, yn7] ⊂ [gn(pn−1), gn(qn−1)] and d(yn0, yn7) = 7c;
(3) (yn1, . . . , yn6) is a set of pseudo 7-section points of [yn0, yn7] from yn0

to yn7 and d(yn3, yn4) ≥ c;
(4) Ln = [pn, qn] ⊂ (yn3, yn4) with diam(Dn(Ln)) < 1/n.

Let δ = δ(c) ∈ (0, c/2] be as in Lemma 2.8. Since both 2X and X
are compact, there are subsequences {Dni([pni , qni ])}∞i=1 and {[yni2, yni5]}∞i=1

such that Dni([pni , qni ]) → x∗ as i→∞ and for any i, j ∈ N,

dH([yni2, yni5], [ynj2, ynj5]) < δ,(3.1)
max

k∈{2,...,5}
{d(ynik, ynjk)} < δ.(3.2)

By Lemma 2.19, for each i, j ∈ N, we have [yni3, yni4] ⊂ [ynj2, ynj5]. Now
fix a j ∈ N. For each i ∈ N, since [pni , qni ] ⊂ (yni3, yni4) ⊂ [ynj2, ynj5] and
[pni , qni ]→ x∗ as i→∞, we have x∗ ∈ [ynj2, ynj5]. Note that each point in
A is a transitive point of G|W and x∗ ∈ [ynj2, ynj5] ⊂ gnj · · · g1(A), so x∗ is
a transitive point of G|W .

Since d(ynj3, ynj4) ≥ c, no matter where x∗ is in [ynj2, ynj5], we can al-
ways choose a subarc [α, β] ⊂ (ynj3, ynj4) such that diam([α, β]) < c/3 and
x∗ /∈ [α, β]. By Lemma 2.4, Dnj ([α, β]) is a strongly free dendrite. Since
x∗ is a transitive point of G|W , there exists g∗ ∈ G such that g∗x∗ ∈
Dnj ([α, β]). By the continuity of g∗, we can choose a neighborhood U∗
of x∗ such that g∗(U∗) ⊂ Dnj ([α, β]) and U∗ ∩ Dnj ([α, β]) = ∅. Since
Dni([pni , qni ]) → x∗ as ni → ∞, there exists some Dnm([pnm , qnm ]) ⊂ U∗.
Therefore g∗(Dnm([pnm , qnm ])) ⊂ Dnj ([α, β]). On the other hand, let h =
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(gnm+1 · · · gnm+1)−1. Then we have

(3.3) h(Dnm+1([ynm+10, ynm+17])) ⊂ Dnm([pnm , qnm ])

and

(3.4) g∗h(Dnm+1([ynm+10, ynm+17])) ⊂ Dnj ([α, β]).

Next we show that both Dnm([pnm , qnm ]) and Dnj ([α, β]) are contained
in the closed set Dnm+1([ynm+10, ynm+17]). Since [pnm , qnm ] ⊂ (ynm3, ynm4)
⊂ [ynm+12, ynm+15], by Lemma 2.5 we have

Dnm([pnm , qnm ]) = Dnm+1([pnm , qnm ]) ⊂ Dnm+1([ynm+10, ynm+17]).

Similarly, since [α, β] ⊂ (ynj3, ynj4) ⊂ [ynm+12, ynm+15], we have

Dnj ([α, β]) = Dnm+1([α, β]) ⊂ Dnm+1([ynm+10, ynm+17]).

Let

J = Dnm+1([ynm+10, ynm+17]), J1 = Dnm([pnm , qnm ]), J2 = Dnj ([α, β]).

Then {h : J → J1, g∗h : J → J2} is a ping-pong game for the G-action.
Moreover, by Lemma 3.2 the G-action has positive geometric entropy.

Since a nilpotent group cannot contain a free subsemigroup, Corollary
1.2 is obvious from Theorem 1.1 and Lemma 3.1.

Remark. If G acts on a compact metric space X expansively, then
there exists a countable subgroup H of G such that the induced action of
H on X is expansive. In fact, by the expansiveness of the G-action, for each
(x, y) ∈ X×X, x 6= y, there is a g ∈ G such that d(gx, gy) > c, where c is the
expansive constant for the G-action. Thus by the continuity of g, there is an
open neighborhood U(x,y) of (x, y) in X ×X such that d(gU(x,y), ∆X) > c,
where ∆X is the diagonal of X × X. Thus by the Lindelöf property of
X×X−∆X , there are countable families {gi ∈ G : i = 1, 2, . . .} and {U(xi,yi) :
i = 1, 2, . . .} which covers X×X−∆X such that d(giU(xi,yi), ∆X) > c. Thus
the countable group H generated by {gi : i = 1, 2, . . .} is expansive.
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