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Ideal limits of sequences of continuous functions
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Abstract. We prove that for every Borel ideal, the ideal limits of sequences of con-
tinuous functions on a Polish space are of Baire class one if and only if the ideal does not
contain a copy of Fin× Fin. In particular, this is true for Fσδ ideals. In the proof we use
Borel determinacy for a game introduced by C. Laflamme.

1. Introduction. A family of sets J ⊂ P (ω) is an ideal if it is closed
under taking finite unions and subsets. Throughout this paper we assume
that [ω]<ω ⊂ J , ω 6∈ J , and we write Fin = [ω]<ω. In a metric space 〈X, %〉
a sequence {xn}n<ω is J-convergent to x if (∀ε > 0) {n : %(xn, x) ≥ ε} ∈ J ;
we write J-limxn = x. For functions f, fn : X → Y, where Y is a metric
space, define J-lim fn = f iff J-lim fn(x) = f(x) for each x ∈ X. J-limF
will denote the set of all J-limits of sequences of functions from F . For every
topological space X let C(X) be the family of all continuous real-valued
functions, and let Bα(X) be the family of all real-valued functions on X
of Baire class α < ω1. An ideal J is called a P-ideal if for each family
{An : n ∈ ω} ⊂ J there is A ∈ J with An ⊂∗ A (i.e. |A \ An| < ω) for
each n. Let J∗ = {A : ω \A ∈ J}.

It is known that J-limits can be very irregular.

Fact 1 (folklore). Let J be a maximal ideal. Let fn : P (ω)→ R be such
that fn(A) = 1 if n ∈ A and fn(A) = 0 if n 6∈ A. Then fn is continuous
for every n, and J-lim fn = χJ∗ , so the limit is nonmeasurable and without
Baire property.

In [Ka] Katětov proved that for each α < ω1 there is a Borel ideal Nα

such that Nα-limC(X) = Bα(X). In particular, N 2 = Fin × Fin = {A ⊂
ω × ω : ∀∞n ({k : (n, k) ∈ A} is finite)}. From Proposition 3.6 of [DM] it
follows that if the ideal J is of Borel additive or multiplicative class α then
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J-limC(R) ⊂ Bα(R). In [KSW] the authors proved that for Jd, the ideal
of sets of density 0 (and some of its generalizations), Jd-limC(X) = B1(X)
for every complete metric space X. In this paper we prove that for a Polish
space X and a Borel ideal J , J-limC(X) = B1(X) iff J does not contain an
isomorphic copy of Fin× Fin iff J and J∗ can be separated by an Fσ-set.

Our investigation is closely related to the separability of J and J∗ by
Fσ-sets. So the next section is devoted to this subject.

2. A Laflamme game and Fσ-separation. For an ideal J on the
integers define an infinite game G(J) as follows: player I in the nth move
plays an element Cn of the ideal, and then player II plays a finite set Fn of
integers with Fn ∩Cn = ∅. Player I wins when

⋃
n Fn ∈ J . Otherwise player

II wins. This game was investigated by C. Laflamme [La], who denoted it by
G(J∗, [ω]<ω, (J∗)+). An ideal J contains an ideal isomorphic to Fin× Fin if
there is a bijection h : ω × ω → ω such that for each A ∈ Fin× Fin we have
h[A] ∈ J.

Lemma 2 (essentially Laflamme [La]). Player I has a winning strategy
in G(J) iff J contains an ideal isomorphic to Fin× Fin.

Proof. From [La] we know that player I has a winning strategy iff J∗ is
not a weak P-filter, i.e. if there is a decreasing sequence {Bn : n ∈ ω} ⊂ J∗

such that A ∈ J whenever A ⊂∗ Bn for each n, or equivalently, if there is a
sequence {An : n ∈ ω} of pairwise disjoint elements of the ideal such that
if A has finite intersection with each An, then A ∈ J . We may assume that
all An are infinite and

⋃
nAn = ω, so J contains an ideal isomorphic to

Fin× Fin.

A set Z ⊂ [ω]<ω is called J∗-universal if it contains a subset of each
element of J∗. We say that J∗ is ω-diagonalized by J∗-universal sets if there
are J∗-universal sets {Zn}n such that for all Y ∈ J∗ there is an n ∈ ω such
that x ∩ Y 6= ∅ for all but finitely many x ∈ Zn. Laflamme [La] proved that
player II has a winning strategy iff J∗ is ω-diagonalized by J∗-universal sets.

Now we will characterize Borel ideals J such that J and J∗ can be sep-
arated by an Fσ-set, i.e. there is an Fσ-set F ⊂ P (ω) with J∗ ⊂ F and
J ∩ F = ∅. Solecki [So2] proved that if J is an Fσδ-ideal then J and J∗ can
be separated by an Fσ-set, and if J = Fin × Fin then J and J∗ cannot be
separated by an Fσ-set.

Proposition 3. If J is a Borel ideal , then G(J) is a determined game,
i.e. one of the players has a winning strategy.

Proof. Let A = P (ω), and define a pruned tree

T = {(a0, a1, . . . , an) ∈ A<ω : a2i ∈ J & a2i+1 ∈ [ω]<ω & a2i ∩ a2i+1 = ∅}.
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Let F : [T ] → P (ω) with F ((a0, a1, . . .)) =
⋃
i a2i+1. Then G(J) can be

denoted by G(T, F−1(J)) according to the terminology of [Ke]. The domain
of F , [T ], is a subspace of Aω with the product topology with the discrete
topology on A, and the codomain of F is taken with the standard Cantor
topology. Then F is Borel measurable, because the set F−1[{Z : k ∈ Z}] =
{(a0, a1, . . .) : k ∈

⋃
i a2i+1} =

⋃
i{(a0, a1, . . .) : k ∈ a2i+1} is open in Aω.

Since J is Borel, it follows from Martin’s theorem on Borel determinacy (see
[Ke]) that G(T, F−1(J)) is determined.

Theorem 4. Assume that J is a Borel ideal. Then J and J∗ can be
separated by an Fσ-set iff J does not contain an isomorphic copy of Fin×Fin.

Proof. First assume that II has a winning strategy in G(J). Let {Zkn :
k ∈ ω}n∈ω be J∗-universal sets ω-diagonalizing J∗. Let F = {A ⊂ ω :
(∃n)∀∞k Zkn ∩ A 6= ∅}. If Z = {a1, . . . , al} then {A : Z ∩ A 6= ∅} =
{A : a1 ∈ A ∨ · · · ∨ al ∈ A} is clopen, so F is Fσ such that J∗ ⊂ F
and J ∩ F = ∅.

If J contains an isomorphic copy of Fin × Fin then, by the result of
Solecki, J and J∗ cannot be separated by an Fσ-set. If J does not contain
an isomorphic copy of Fin× Fin then I does not have a winning strategy in
G(J), so II has a winning strategy, thus J and J∗ can be separated by an
Fσ-set.

3. Ideal convergence. The main result of this section is the following
theorem.

Theorem 5. Let X be an uncountable Polish space, and let J be a Borel
ideal. Then the following are equivalent :

(1) J-limC(X) = B1(X).
(2) J does not contain an isomorphic copy of Fin× Fin.
(3) J and J∗ can be separated by an Fσ-set.

Lemma 6 (well known). Let X be a complete metric space. Assume that
f : X → R has no point of continuity. Then there are reals α, β with
α < β and an open nonempty set U such that A = f−1[(−∞, α)] ∩ U and
B = f−1[(β,∞)] ∩ U are dense in U .

Proof. Let {(an, bn) : n ∈ ω} be an open basis for R. Then X =⋃
n(f−1[(an, bn)] \ Int(f−1[(an, bn)])). So there are n and a nonempty open

set W such that f−1[(an, bn)] \ Int(f−1[(an, bn)]) is nowhere meager in W .
So {x ∈W : f(x) ≥ bn} or {x ∈W : f(x) ≤ an}, say the former, is dense in
a nonempty open set V ⊂ W . Let Wk = {x ∈ V : f(x) < bn − 1/k}. There
are k and a nonempty open set U ⊂ V such that Wk is nowhere meager
in U . Then let α = bn − 1/k, and let β be any number with α < β < bn.
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Lemma 7. Let X be a complete metric space. Assume that player II
has a winning strategy in G(J). If f ∈ J-limC(X), then f has a point of
continuity.

Proof. Assume that player II has a winning strategy S : J<ω → [ω]<ω,
and f ∈ J-limC(X) does not have a point of continuity. Then there are reals
α, β with α < β and an open nonempty set U such thatA = f−1[(−∞, α)]∩U
and B = f−1[(β,∞)] ∩ U are dense in U .

Let x0 ∈ A, and let I0 ⊂ U be a closed ball with x0 ∈ Int(I0). Since
J-lim fn(x0) = f(x0) < α, the set C0 = {n : fn(x0) ≥ α} belongs to J.
Let K0 = S(〈C0〉). There is a closed ball I1 of radius smaller than 1 and
x0 ∈ Int(I1) ⊂ I1 ⊂ Int({x ∈ I0 : (∀i ∈ K0) fi(x) < α}.

For k even, let xk ∈ Ik ∩ A. So J-lim fn(xk) < α, and we define Ck =
{n : fn(xk) ≥ α} ∈ J and Kk = S(C0, C2, . . . , Ck). There is a closed ball
Ik+1 such that xk ∈ Int(Ik+1) ⊂ Ik+1 ⊂ Int{x ∈ Ik : (∀i ∈ Kk) fi(x) < α},
and the radius of Ik+1 is less than 1/(k + 1).

For k odd, let xk ∈ Ik ∩ B. So J-lim fn(xk) > β, and define Ck = {n :
fn(xk) ≤ β} ∈ J and Kk = S(C1, C3, . . . , Ck). There is a closed ball Ik+1

such that xk ∈ Int(Ik+1) ⊂ Ik+1 ⊂ Int{x ∈ Ik : (∀i ∈ Kk) fi(x) > β}, and
the radius of Ik+1 is less than 1/(k + 1).

Then let x ∈
⋂
k Ik. We have

{n : fn(x) < α} ⊃ C =
⋃
k

S(C0, C2, . . . , C2k) 6∈ J,

{n : fn(x) > β} ⊃ C ′ =
⋃
k

S(C1, C3, . . . , C2k+1) 6∈ J.

So J-lim fn(x) does not exist.

Proposition 8. Let X be a complete metric space. Assume that player
II has a winning strategy in G(J). Then J-limC(X) = B1(X).

Proof. Our previous theorem implies that the restriction of any f ∈ J-
limC(X) to each nonempty perfect set has a point of continuity, so by Baire’s
theorem (see [Ku]), it is of Baire class one.

Proof of Theorem 5. We know that (2) and (3) are equivalent. Proposi-
tion 3 implies that one of the players has a winning strategy.

If J contains an ideal isomorphic to Fin×Fin, then B2(X) ⊂ J-limC(X)
(see [Ka]). So J-limC(X) 6= B1(X) since X is an uncountable Polish space.

If J does not contain an ideal isomorphic to Fin×Fin then, by Lemma 2,
I does not have a winning strategy, so II has one. Then, by Proposition 8,
J-limC(X) = B1(X).

Observe that the implications (2)→(1) and (3)→(1) hold for any complete
metric space, not necessarily uncountable Polish.
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Remark. As a consequence, we see that J-limC(X) = B1(X) for every
Fσδ-ideal J and complete metric space X. In particular, this is true for ana-
lytic P-ideals (see [So1]), Fσ-ideals (see [Maz]), and for the ideal NWD(Q) =
{A ⊂ Q : A is nowhere dense in Q}. However, for these three types of ideals
we do not need to go through Martin’s theorem on Borel determinacy. It is
possible to construct simple strategies for player II using some characteriza-
tions of these types of ideals.

Recall that if J is a maximal ideal then J-limits may be irregular (see
Fact 1 above). However, if we assume additionally that a given J-limit is
Borel, then it will be automatically of Baire class one for some maximal
ideals. The proof of the following theorem is essentially included in [JR].

Proposition 9. Assume the Continuum Hypothesis. There is a maxi-
mal P-ideal J (i.e. J∗ is a P-point) such that for any sequence 〈fn : R→ R :
n ∈ ω〉 of continuous functions, if J-lim fn is Borel measurable, then there
is an A ∈ J∗ with J-lim fn = limn∈A fn (and so J-lim fn is of Baire class
one).

Proof. Let {〈〈fn α : n ∈ ω〉, gα〉 : α < 2ω} be a well ordering of all
pairs 〈〈fn : n ∈ ω〉, g〉, where 〈fn : n ∈ ω〉 is a sequence of continuous
real functions on the real line and g is a Borel measurable function. Let
P (ω) = {Aα : α < 2ω}. Define a transfinite sequence {Xα : α < 2ω} ⊂ [ω]ω

decreasing with respect to ⊂∗. On limit stages λ we choose Xλ such that
Xλ ⊂∗ Xα for α < λ. On a successor stage, first let X ′α+1 ⊂ Xα be an
infinite set such that X ′α+1 ⊂ Aα or X ′α+1 ⊂ ω \ Aα. If, for each x ∈ R,
〈fαn (x)〉n∈X′α+1

converges to gα(x), then let Xα+1 = X ′α+1. If there exists
an x ∈ R such that 〈fα(x)〉n∈X′α+1

does not converge to gα(x), then let
Xα+1 ⊂ X ′α+1 be such that (∃ε > 0)(∀n ∈ Xα+1) |fαn (x)− gα(x)| > ε.

Then F = {Y : (∃α) Y ⊃∗ Xα} is a P-point and F ∗ has the required
properties.

Observe that in the case above J-limC(R) cannot be equal to B1(R),
because some J-limits are nonmeasurable. Moreover, we have actually proved
that, instead of assuming that J-lim fn is Borel measurable, we can assume
that J-lim fn ∈ F for a given family F of functions of size continuum.

The following result was suggested by A. Louveau.

Proposition 10. Assume that J-limC(X) = B1(X) for any Polish
space X. Then J-limBα(X) = Bα+1(X) for any Polish space X.

Proof. Assume that {fn : n ∈ ω} ⊂ Bα(X) and f = J-lim fn. Let
{(Vk,Wk) : k ∈ ω} be the family of all pairs of open basic sets in R with
cl(Vk) ⊂ Wk. Then f−1

n [cl(Vk)] ∈ Π0
α(X) and f−1

n [Wk]c ∈ Π0
α(X), and they

are disjoint for each k, n ∈ ω. By a separation result (see [Ke, Theorem
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22.16]), there is a family E = {Ukn : k, n ∈ ω} ⊂ ∆0
α(X) with f−1

n [cl(Vk)] ⊂
Ukn ⊂ f−1

n [Wk]. Observe that f−1(U) =
⋃
{W : W ∈ E &W ⊂ f−1(U)}.

By a theorem of Kuratowski (see [Ke, Theorem 22.18]), there is a Polish
topology τ ′ ⊂ Σ0

α(X, τ) such that E ⊂ ∆0
1(X, τ ′). So {fn}n ⊂ C(X, τ ′),

and thus by the assumption we have J-limC(X, τ ′) = B1(x, τ ′). Now, since
f ∈ B1(X, τ ′), we have f−1[U ] ∈ Σ0

2(X, τ ′) ⊂ (Π0
α(X, τ))σ ⊂ Σ0

α+1(X, τ). So
f ∈ Bα+1(X, τ).

In [KSW] the authors observed that for the ideal Jd of sets of density zero,
Jd-limC(X) = B1(X) for any space. This is based on the observation that for
any bounded sequence {xn}n of reals, if Jd-limxn = x then (

∑n
i=1 xi)/n→ x.

We generalize this result to nonpathological ideals (see [Far]).
A map Φ : P (ω)→ [0,∞] is a submeasure on ω if Φ(∅) = 0 and Φ(A) ≤

Φ(A ∪ B) ≤ Φ(A) + Φ(B) for all A,B ⊂ ω. It is lower semicontinuous if
for all A ⊂ ω we have Φ(A) = limn Φ(A ∩ n). For any lower semicontinuous
submeasure on ω, let ‖ · ‖Φ : P (ω) → [0,∞] be the submeasure defined by
‖A‖Φ = limn Φ(A \ n). Let Exh(Φ) = {A ⊂ ω : ‖A‖Φ = 0}. It is clear
that Exh(Φ) is an ideal (not necessarily proper in general) for an arbitrary
submeasure Φ.

A submeasure Φ is nonpathological if

Φ(A) = sup{µ(A) : µ ≤ Φ, µ is a measure}

for each A.

Lemma 11. Assume that J = Exh(Φ) for some nonpathological lower
semicontinuous submeasure Φ. Then there is a sequence {〈ak1, . . . , aknk〉 :
k ∈ ω}, where all aki are nonnegative real numbers, such that for any bounded
sequence {xn}n of reals with J-limxn = x we have∑nk

i=1 a
k
i xi∑nk

i=1 a
k
i

→ x.

Proof. There is a γ > 0 such that ‖ω‖Φ > γ. For each k we have Φ(ω \k)
> γ, so there is nk > k with Φ([k, nk]) > γ. Since Φ is nonpathological, there
is a measure µk ≤ Φ such that µk([k, nk]) > γ. Define

aki =
{

0, i < k,
µk({i}), k ≤ i ≤ nk.

Assume that J-limxn = x and |xn| < K for each n. Let ε > 0. Then there is
A ∈ J such that {xn}n6∈A → x. There is N such that Φ(A \ k) < (εγ)/(2K)
for each k > N . There is M such that for each i > M and i 6∈ A we have
|x− xi| < ε/2. Let k > max(N,M). Then
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i=1 a

k
i xi∑nk

i=1 a
k
i

∣∣∣∣ ≤ ∑nk
i=1 a

k
i |x− xi|∑nk
i=1 a

k
i

≤
∑nk

i=1, i 6∈A a
k
i |x− xi|∑nk

i=1 a
k
i

+

∑nk
i=1, i∈A a

k
i |x− xi|∑nk

i=1 a
k
i

≤
∑nk

i=1, i 6∈A a
k
i (ε/2)∑nk

i=1 a
k
i

+

∑nk
i=1, i∈A a

k
iK∑nk

i=1 a
k
i

≤ ε/2 +
µk([k, nk] ∩A)K

µk([k, nk])
≤ ε/2 +

Φ(A \ k)K
γ

≤ ε.

Corollary 12. Assume that J = Exh(Φ) for some nonpathological
lower semicontinuous submeasure Φ. Then J-limC(X) = B1(X) for any
topological space X.

Proof. Let {fn : X → R : n ∈ ω} be a sequence of continuous functions
with J-lim fn = f . Assume that fn[X] ⊂ (0, 1) for each n and that f [X] ⊂
(0, 1). Then the functions

gk : X → (0, 1), gk(x) =
∑nk

i=1 a
k
i fi(x)∑nk

i=1 a
k
i

,

are continuous, and limk→∞ gk(x) = f(x) for each x.
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