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Abstract. We consider a triple 〈E0, E1, E2〉 of equivalence relations on R2 and in-
vestigate the possibility of decomposing the plane into three sets R2 = S0 ∪ S1 ∪ S2 in
such a way that each Si intersects each Ei-class in finitely many points. Many results in
the literature, starting with a famous theorem of Sierpiński, show that for certain triples
the existence of such a decomposition is equivalent to the continuum hypothesis. We give
a characterization in ZFC of the triples for which the decomposition exists. As an appli-
cation we show that the plane can be covered by three sprays regardless of the size of the
continuum, thus answering a question of J. H. Schmerl.

1. Introduction. In 1919, Sierpiński [7] proved that the continuum
hypothesis (CH) is equivalent to the existence of a subset S of the plane
such that each horizontal line intersects S in countably many points and
each vertical line intersects S in co-countably many points. Later in [8] he
proved that CH is equivalent to the statement that the three-dimensional
euclidean space can be decomposed into three sets Si (i ∈ 3) in such a
way that each line parallel to the xi axis intersects Si in finitely many
points. After that, many mathematicians (see for example [1–6, 9, 10]) have
found generalizations of these theorems in different directions. In [2] Erdős
asked the following question which he attributed to Sierpiński: does there
exist a set of three directions di (i = 1, 2, 3) in the plane, together with a
decomposition of the plane into three corresponding sets Si, such that every
line in direction di intersects Si in a finite set? A few years later Davies [1]
showed that this is equivalent to CH and that it is irrelevant which directions
you choose as long as they are different. More recently Komjáth [4] proved
a similar equivalence where instead of three directions and lines in those
directions one has three points and lines that pass through those points.
Finally, in [6], Schmerl asks if the same equivalence holds when we consider
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three points and circles centered at those points. He remarks that CH does
imply that there is such a decomposition but the question remains whether
CH is indeed necessary in this case.

We find Schmerl’s question very interesting because, as far as we know,
all results related to Sierpiński’s theorem deal essentially with linear objects
in some euclidean space. However, the combinatorics of the problem is pretty
much the same (whether it concerns lines or circles), at least at first sight.
To state some context let us fix three equivalence relations Ei, i ∈ 3, on the
plane with the property that for any x ∈ R2 and for i, j ∈ 3 with i 6= j
the set [x]i ∩ [y]j is finite (where [x]i denotes the equivalence class of x
mod Ei). We shall say that a decomposition of the plane R2 =

⋃
i∈3 Fi is

〈E0, E1, E2〉-acceptable if [x]i ∩ Fi is finite for every x ∈ R2 and every i ∈ 3.
In Davies’ theorem, Ei is the equivalence relation whose classes are precisely
the lines with direction di, and he proves that the existence of an acceptable
decomposition is equivalent to CH. In Komjáth’s theorem the equivalence
classes mod Ei are the lines that pass through a fixed point pi, and again he
proves that CH is equivalent to the existence of an acceptable decomposition
of the plane. Finally, in Schmerl’s question each Ei is the relation “being at
the same distance from pi” for some fixed centers pi (i ∈ 3). Intuitively, one
should expect the same kind of theorem, but surprisingly only one of the
implications is (trivially) true, namely that CH implies the existence of an
acceptable decomposition.

Our main goal in this note is to characterize the triples for which there
is an acceptable decomposition of the plane. Then we will use that char-
acterization to explain the role of CH in the theorems of Davies, Komjáth
and Sierpiński. Finally, in the last section we show how one can use that
characterization to get in ZFC an acceptable decomposition of the plane for
a specific triple, thus answering Schmerl’s question.

2. Notation and terminology. We think of c = |R| as an initial
ordinal. Let T =

⋃
n∈ω cn be the set of finite sequences of ordinals in c. We

have two natural orders on T , the (partial) tree order⊆ and the lexicographic
order ≤. In both orders we have the same minimum element Λ, the empty
sequence. Given any σ ∈ T and α ∈ c we write σaα = σ ∪ {〈|σ|, α〉}. For
σ ∈ T \ {Λ} we write σ + 1 for the successor of σ in the lexicographic order
of c|σ|; that is,

σ + 1 = (σ�(|σ| − 1))a(σ(|σ| − 1) + 1).

We shall write σ ∧ τ for the infimum in the tree order of σ and τ ; thus for
σ 6= τ we have

σ ∧ τ = σ�|σ ∧ τ | = τ�|σ ∧ τ | and σ(|σ ∧ τ |) 6= τ(|σ ∧ τ |).
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Whenever we say that M is an elementary submodel of the universe
(and write M ≺ V ) we really mean that (M,∈) is an elementary submodel
of (H(θ),∈), where H(θ) is the set of all sets of hereditary cardinality less
than θ and θ = (2c)+. All the objects that we will consider (essentially points
in R2, subsets of R2 and the collection of all subsets of R2) are in H(θ) and
all the statements φ for which we shall use elementarity will be bounded so
that in fact M |= φ if and only if φ is true in the universe.

As mentioned in the introduction, we will consider triples 〈E0, E1, E2〉
of equivalence relations on R2. For x ∈ R2, the equivalence class of x
mod Ei will be denoted by [x]i. All triples will have the property that
[x]i ∩ [x]j is finite whenever i 6= j. We say that a decomposition R2 =⋃
i∈3 Fi is 〈E0, E1, E2〉-acceptable (or that the decomposition is acceptable

for 〈E0, E1, E2〉) if for every x ∈ R2 and i ∈ 3, the set [x]i ∩ Fi is finite.

3. Twisted triples. We wish to characterize the triples 〈E0, E1, E2〉
for which there exists an acceptable decomposition of the plane. Our main
notion is the following:

Definition 3.1. We say that the triple 〈E0, E1, E2〉 is twisted if for
every a ∈ R2, for all M,N ≺ V such that 〈E0, E1, E2〉 ∈M ∩N and N ∈M
and whenever {i, j, k} = 3, we have

|{x ∈ [a]k : [x]i ∈ (M \N), [x]j ∈ (N \M)}| < ℵ0.

Our goal is to show that twisted triples are exactly the ones that admit
acceptable decompositions. But first we need a coherent way to cover the
plane with countable elementary submodels of the universe.

We fix MΛ ≺ V such that R2 ∪ {E0, E1, E2} ⊆ MΛ and |MΛ| = c. Now
we can find inductively (on the length of σ ∈ T ) models Mσ ≺ V such that:

(i) the sequence 〈Mσaα : α ∈ cof(|Mσ|)〉 is a continuous (increasing)
elementary chain,

(ii) Mσ ⊆
⋃
{Mσaα : α ∈ cof(|Mσ|)},

(iii) {E0, E1, E2} ∪ {Mτ : τ + 1 ⊆ σ} ⊆Mσa0,
(iv) |Mτ | > |Mσ| whenever τ ⊂ σ and Mτ is uncountable.

We actually do not need to define Mσaα if Mσ is countable or if α ≥
cof(|Mσ|). On the other hand, note that conditions (ii) and (iv) imply that
rk(x) is well defined as follows:

Definition 3.2. For x ∈ MΛ we define rk(x) (the rank of x) as the
minimum σ ∈ T (in the lexicographic order) such that Mσ is countable and
x ∈Mτ for all τ ⊆ σ.

It is easy to see (using the continuity of the chains) that rk(x) is always a
finite sequence of ordinals which are either successor ordinals or 0. Moreover,
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if σx = rk(x), σy = rk(y), σx < σy and n = |σx∧σy|, then σy(n) is a successor
ordinal, say α+ 1, and we define

∆(x, y) = (σx ∧ σy)aα.

The reason for this definition is that M∆(x,y) is in some sense the first
model that witnesses the fact that rk(x) and rk(y) are different. Note that
∆(x, y)+1 ⊆ rk(y) and that conditions (i) and (iii) imply that M∆(x,y) ∈Mσ

whenever σ is a proper extension of ∆(x, y) + 1.

Observation 3.3. Given x ∈ R2 and σ ∈ T note that if x ∈Mσ then by
elementarity {[x]0, [x]1, [x]2} ⊆Mσ, so that rk([x]i) ≤ rk(x) for all i ∈ 3; on
the other hand, if x /∈ Mσ then by elementarity |{[x]0, [x]1, [x]2} ∩Mσ| ≤ 1
since [x]i ∩ [x]j is finite for i 6= j.

This simple fact will help us prove the following:

Lemma 3.4. If 〈E0, E1, E2〉 is twisted then for each x ∈ R2 there is an
i ∈ 3 such that rk([x]i) = rk(x).

Proof. First note that if i 6= j and rk([x]i) = rk([x]j) then necessarily
rk(x) = rk([x]i), so we may assume without loss of generality that

rk([x]0) < rk([x]1) < rk([x]2);

we shall prove that in that case rk(x) = rk([x]2).
By Observation 3.3 we easily see that ∆([x]0, [x]2) = ∆([x]0, x) and

∆([x]1, [x]2) = ∆([x]1, x), and from these we get

∆([x]0, [x]2) + 1 ⊆ rk([x]2) ∧ rk(x),
∆([x]1, [x]2) + 1 ⊆ rk([x]2) ∧ rk(x).

Again by Observation 3.3 we have ∆([x]0, [x]2)+1 ⊂ ∆([x]1, [x]2) and hence
M∆([x]0,[x]2) ∈M∆([x]1,[x]2). We also have [x]0 ∈M∆([x]0,[x]2)\M∆([x]1,[x]2) and
[x]1 ∈M∆([x]1,[x]2) \M∆([x]0,[x]2). But this means that, if σ is a proper exten-
sion of rk([x]2) ∧ rk(x), then M∆([x]0,[x]2),M∆([x]1,[x]2) ∈ Mσ, and therefore
x ∈Mσ if and only if [x]2 ∈Mσ. Here we have used the fact that 〈E0, E1, E2〉
is twisted and therefore x belongs to a finite set definable in terms of [x]2,
M∆([x]0,[x]2) and M∆([x]1,[x]2). This shows that rk(x) = rk([x]2).

Lemma 3.5. If 〈E0, E1, E2〉 is twisted then for every a ∈ R2, whenever
{i, j, k} = 3, the set

X = {x ∈ [a]k : rk([x]i) < rk([x]j) < rk([x]k) = rk(x)}

is finite.

Proof. As we noticed in the proof of the previous lemma, x ∈ X implies
that [x]i ∈ M∆([x]i,[x]k) \M∆([x]j ,[x]k), [x]j ∈ M∆([x]j ,[x]k) \M∆([x]i,[x]k) and



Decompositions of the plane 69

M∆([x]i,[x]k) ∈M∆([x]j ,[x]k). Thus it is clear that

X ⊆
⋃

σ+1⊆rk([a]k)
τ+1⊆rk([a]k)

{x ∈ [a]k : [x]i ∈ (Mσ \Mτ ), [x]j ∈ (Mτ \Mσ)},

and since 〈E0, E1, E2〉 is twisted, the latter is a finite union of finite sets.

Now we need a way to order in type ω all the elements of MΛ of the
same rank. This is easily done by fixing an injective enumeration

Mσ = {tσn : n ∈ ω}
for each σ for which Mσ is countable, and defining:

Definition 3.6. For x ∈ MΛ we define deg(x) (the degree of x) as the
unique n ∈ ω for which x = t

rk(x)
n .

The following is true for any triple 〈E0, E1, E2〉, twisted or not.

Lemma 3.7. For every a ∈ R2 and for all i, k ∈ 3 with i 6= k, the set

X = {x ∈ [a]k : rk([x]i) = rk([x]k) and deg([x]i) < deg([x]k)}
is finite.

Proof. Let σ = rk([a]k) and n = deg([a]k). Note that if x ∈ X then there
is an m < n (namely, m = deg([x]i)) such that x ∈ tσm ∩ tσn and tσm ∩ tσn is
finite. Hence X is contained in a finite union of finite sets.

Finally, we are ready to prove the main result of this section.

Theorem 3.8. The following are equivalent :

(1) The triple 〈E0, E1, E2〉 is twisted.
(2) There is an 〈E0, E1, E2〉-acceptable decomposition of R2.

Proof. Suppose first that the triple 〈E0, E1, E2〉 is twisted and for each
k ∈ 3 define Fk as the set of all x ∈ R2 such that:

(i) rk(x) = rk([x]k),
(ii) for all i ∈ 3 \ {k}, if rk([x]i) = rk([x]k) then deg([x]i) < deg([x]k).

Given x ∈ R2 we know by Lemma 3.4 that I := {i ∈ 3 : rk(x) = rk([x]i)}
in not empty. If we let k ∈ I be such that deg([x]i) ≤ deg([x]k) for all
i ∈ I, then it is immediate from the construction that x ∈ Fk. Hence R2 =
F0 ∪ F1 ∪ F2.

On the other hand, using Lemmas 3.5 and 3.7 we see that for any a ∈ R2

and k ∈ 3 the set [a]k ∩ Fk is finite, so that the decomposition R2 = F0 ∪
F1 ∪ F2 is indeed 〈E0, E1, E2〉-acceptable.

Now suppose (2) holds and 〈E0, E1, E2〉 is not twisted. This means that
there are M,N ≺ V with 〈E0, E1, E2〉 ∈ M ∩N and N ∈ M such that for
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some a ∈ R2 and some {i, j, k} = 3 the set

X = {x ∈ [a]k : [x]i ∈ (M \N), [x]j ∈ (N \M)}
is infinite. On the other hand, using elementarity and the fact that N ∈M ,
we can find F0, F1, F2 ∈M ∩N such that R2 = F0 ∪F1 ∪F2 is 〈E0, E1, E2〉-
acceptable. Now for each x ∈ X we have x /∈ M because [x]j /∈ M and
therefore x /∈ Fi, since otherwise x would be in a finite set definable from Fi
and [x]i which are both in M . Similarly, x /∈ N and hence x /∈ Fj . But then
X ⊆ Fk, which contradicts the fact that [a]k ∩ Fk is finite.

4. The role of CH. In principle, the fact that a given triple is twisted
(or untwisted) should depend only on the geometry of the triple. However,
the presence of CH trivializes things as we now show.

Theorem 4.1. Under CH every triple 〈E0, E1, E2〉 is (trivially) twisted.

Proof. Let a ∈ R2, let M,N ≺ V be such that 〈E0, E1, E2〉 ∈ M ∩ N
and N ∈ M , and let {i, j, k} = 3. It is well known that either N ∩ ω1 is
countable or ω1 ⊆ N . Under CH this implies that either R2∩N is countable
or R2 ⊆ N . If R2 ∩N is countable then since N ∈M we have R2 ∩N ⊆M ,
so there is no x ∈ R2 for which [x]j ∈ N \M . On the other hand, if R2 ⊆ N
then there is no x ∈ R2 for which [x]i ∈M \N . In either case the set

{x ∈ [a]k : [x]i ∈M \N, [x]j ∈ N \M}
is empty, and hence 〈E0, E1, E2〉 is twisted.

As an immediate consequence of Theorems 3.8 and 4.1 we get the fol-
lowing result which is already known (for instance, it is a special case of
Theorem 2 in [3], for θ = 1 and (r, s) = (2, 1)):

Corollary 4.2. Under CH every triple 〈E0, E1, E2〉 admits an accept-
able decomposition.

Under ¬CH the situation is quite different. Say we want to show that a
certain triple is not twisted. Now we can just take M,N ≺ V with |M | = ℵ0

and |R2 ∩ N | = ℵ1 < c and it is usually the case that there is x ∈ R2 for
which, say, [x]0 ∈ M \ N and [x]1 ∈ N \M . Of course, there may still be
cases where this does not happen (e.g. if all the classes are finite) and again
the triple will be twisted for trivial reasons. But for the triples we have
mentioned (the ones associated with Davies’, Komjáth’s and Sierpiński’s
theorems and the triple associated with Schmerl’s question) we are in that
situation.

The question now is whether you can “move” the point x in such a way
that [x]2 remains constant while [x]0 and [x]1 change in a “definable way”
(not depending on [x]2) so that they do not get out of M and N respectively.
In Sierpiński’s theorem (here we are working in R3 instead of R2 but that
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does not make any difference) this task is trivial because here [x]i is just the
line that passes through x and is parallel to the ei axis, so we can just add
any rational number to the third coordinate of x and we are done. Similarly,
in Davies’s theorem, [x]i is the line in direction di that passes through x;
now we just need to move x in direction d2 by a rational amount. The task
is not as immediate in Komjáth’s theorem and it requires a rather clever
trigonometric argument.

We illustrate in more detail these ideas with the following result which is
half of the answer to Schmerl’s question. According to Schmerl [6], a subset
S ⊆ R2 is a spray around c ∈ R2 if the intersection of S with any circle
centered at c is finite.

Theorem 4.3. Let ci for i ∈ 3 be three distinct points on R2 that lie on
the same line. Then the following are equivalent :

(1) CH.
(2) R2 can be covered by three sprays around the points ci (i ∈ 3).

Proof. We define Ei as the set of all (x, y) ∈ R2×R2 such that ‖x−ci‖ =
‖y − ci‖. Now (1) implies (2) by Corollary 4.2. Assume then that c > ℵ1.
We are done if we can prove that 〈E0, E1, E2〉 is not twisted.

For i ∈ 2 fix rational intervals Ii ⊆ R such that whenever Ci is a circle
centered at ci with radius ri ∈ Ii then C0 ∩ C1 6= ∅.

Now let M,N ≺ V with |M | = ℵ0 and |R ∩ N | = ℵ1 < c be such that
{c0, c1, c2} ⊆ M ∩N and N ∈ M . Since R \N 6= ∅ and N ∈ M we deduce
by elementarity that there is an r0 ∈ I0 ∩ (M \ N). On the other hand,
|I1 ∩ N | = ℵ1 > |M | so there is an r1 ∈ I1 ∩ (N \M). Let x ∈ R2 be such
that ‖x− ci‖ = ri for i ∈ 2. Then

(t− 1)‖x− c2‖2 = tr20 − r21 + t(‖c2‖2 − ‖c0‖2) + ‖c1‖2 − ‖c2‖2

where t is the unique real number for which c1 − c2 = t(c0 − c2). What
is important is that t ∈ M ∩ N , so that for every large enough n ∈ ω we
have r0,n :=

√
r20 + 1/n ∈ I0 ∩ (M \N), r1,n :=

√
r21 + t/n ∈ I1 ∩ (N \M)

and any point xn ∈ R2 for which ‖xn − ci‖ = ri,n for i ∈ 2 (which exists
by the definition of I0 and I1) will satisfy ‖xn − c2‖ = ‖x − c2‖. Therefore
〈E0, E1, E2〉 is not twisted.

5. The plane can be covered by three sprays. The goal of this
section is to show (in ZFC) that if c0, c1, c2 ∈ R2 are the vertices of an equi-
lateral triangle, then the plane can be covered by three sprays S0, S1 and
S2 around c0, c1 and c2 respectively. We suspect that the same remains true
for any triangle (as long as the ci’s do not lie on the same line) and we have
checked a couple of examples, but we have not found a reasonable way to
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prove it simultaneously because in one step of the proof we require a com-
puter algebra system to check for the irreducibility of a certain polynomial.

We may assume without loss of generality (applying first a circle pre-
serving transformation if necessary) that c0 = (−1, 0), c1 = (1, 0) and
c2 = (0,

√
3). Suppose that three circles C0, C1 and C2 centered at c0,

c1 and c2 respectively have a point in common. If we use α0, α1 and α2 for
the squares of their radii we obtain the relation

α2
0 + α2

1 + α2
2 − α0α1 − α0α2 − α1α2 − 4α0 − 4α1 − 4α2 + 16 = 0.

Now suppose that C ′0 and C ′1 are also circles centered at c0 and c1 respec-
tively, have radii β0 and β1, and C ′0, C ′1 and C2 also have a point in common.
Then we have a similar equation (involving β0, β1 and α2) and we can elim-
inate α2 to get a relation of the form

p(α0, β0, α1, β1) = 0

where p = p(X,Y, Z,W ) is a polynomial of degree 4. We want to think
of X,Y as variables and regard Z,W as parameters. It is not worth it to
write down here what p exactly is; instead we state without proof the facts
about p that we will be needing. First of all one can use a computer algebra
system (e.g. MAPLE) to check that p(X,Y, 1, 2) is absolutely irreducible as
a polynomial in two variables. On the other hand, one can prove that for
any such polynomial, the set of (z, w) ∈ R2 for which p(X,Y, z, w) is not
absolutely irreducible is either the whole R2 or is contained in a curve. Since
we already know that the former is not the case, we obtain the following:

Lemma 5.1. If A ⊆ R is infinite then there exist z, w ∈ A such that
p(X,Y, z, w) is absolutely irreducible as a polynomial in X,Y .

Now suppose that we have two pairs of parameters (z, w) and (z′, w′)
such that both p(X,Y, z, w) and p(X,Y, z′, w′) are irreducible. If (z, w) 6=
(z′, w′) we can check by simple inspection that these two polynomials are
not constant multiples of each other. This implies the following:

Lemma 5.2. Suppose that z, z′, w, w′ ∈ R, (z, w) 6= (z′, w′) and that both
p(X,Y, z, w) and p(X,Y, z′, w′) are absolutely irreducible. Then the system

p(X,Y, z, w) = 0,
p(X,Y, z′, w′) = 0

has finitely many solutions.

We are ready to prove that 〈E0, E1, E2〉 is twisted, where for each i ∈ 3,
Ei is the equivalence relation in R2 whose classes are circles centered at ci.
If x ∈ R2 and i ∈ 3 we define ri(x) := ‖x − ci‖2. Fix M,N ≺ V with
〈E0, E1, E2〉 ∈ M ∩N and N ∈ M . Since the triangle c0c1c2 is equilateral,
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it is enough to prove that

B(a) := {x ∈ [a]2 : [x]0 ∈ (M \N), [x]1 ∈ (N \M)}
is finite for any a ∈ R2. Suppose for contradiction that there is a ∈ R2 for
which B(a) is infinite. Then A := {r1(x) : x ∈ B(a)} is an infinite subset of
R and therefore by Lemma 5.1 there are α1, β1 ∈ A such that p(X,Y, α1, β1)
is absolutely irreducible. By the definition of A there are x, x′ ∈ [a]2 such
that α1 = r1(x) and β1 = r1(x′), and we let α0 = r0(x) and β0 = r0(x′).
Now let G be the set of all (α, β) ∈ R× R such that:

(i) α, β ∈ N ,
(ii) there are z, z′ ∈ R2 such that r0(z) = α0, r0(z′) = β0, r1(z) = α,

r1(z′) = β and r2(z) = r2(z′),
(iii) the polynomial p(X,Y, α, β) is absolutely irreducible.

Note that G ∈M since it is definable in terms of N , α0 and β0 which are
all in M . Also note that (α1, β1) ∈ G so that G 6= ∅. By elementarity there
is (α′1, β

′
1) ∈ G ∩M and since (α1, β1) /∈ M we have (α1, β1) 6= (α′1, β

′
1).

Finally, by Lemma 5.2 we deduce that the system

p(X,Y, α1, β1) = 0,
p(X,Y, α′1, β

′
1) = 0

has finitely many solutions. But this system is definable in N and therefore
(α0, β0), being one of its solutions, must belong to N , a contradiction. Hence
〈E0, E1, E2〉 is twisted.

Using Theorem 3.8 we have just proved the following (no assumptions
on the size of the continuum):

Theorem 5.3. If c0, c1, c2 ∈ R2 are the vertices of an equilateral tri-
angle, then the plane can be covered by three sprays S0, S1 and S2 around
c0, c1 and c2 respectively.
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