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All CAT(0) boundaries of a group
of the form H ×K are CE equivalent

by

Christopher Mooney (Ann Arbor, MI)

Abstract. M. Bestvina has shown that for any given torsion-free CAT(0) group G,
all of its boundaries are shape equivalent. He then posed the question of whether they
satisfy the stronger condition of being cell-like equivalent. In this article we prove that the
answer is “Yes” in the situation where the group in question splits as a direct product with
infinite factors. We accomplish this by proving an interesting theorem in shape theory.

1. Introduction. The CAT(0) condition is a geometric notion of non-
positive curvature, similar to the definition of Gromov δ-hyperbolicity. A
geodesic space X is called CAT(0) if it has the property that geodesic tri-
angles in X are “no fatter” than geodesic triangles in euclidean space (see
[6, Section II.1] for a precise definition). The visual or ideal boundary of X,
denoted ∂X, is the collection of geodesic rays emanating from a chosen
basepoint. It is well-known that ∂X is well-defined and independent of the
choice of basepoint. Furthermore, when given the cone topology, X ∪ ∂X is
a Z-set compactification for X. A group G is called CAT(0) if it acts geo-
metrically (i.e. properly discontinuously and cocompactly by isometries) on
some CAT(0) space X. In this setup, we call X a CAT(0) G-space and ∂X
a CAT(0) boundary of G. We say that a CAT(0) group G is rigid if it has
only one topologically distinct boundary.

It is well-known that if G is negatively curved (acts geometrically on a
Gromov δ-hyperbolic space) or if G is free abelian then G is rigid. Apart
from this, little is known concerning rigidity of groups. P. L. Bowers and
K. Ruane showed that if G splits as the product of a negatively curved
group with a free abelian group, then G is rigid [5]. Ruane proved later
in [25] that if G splits as a product of two negatively curved groups, then
G is rigid. T. Hosaka has extended this work to show that in fact it suffices
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to know that G splits as a product of rigid groups [17]. Another condition
which guarantees rigidity is knowing that G acts on a CAT(0) space with
isolated flats, which was proven by C. Hruska in [18].

Not all CAT(0) groups are rigid, however: C. Croke and B. Kleiner con-
structed in [10] an example of a non-rigid CAT(0) group G. Specifically,
they showed that G acts on two different CAT(0) spaces whose boundaries
admit no homeomorphism. J. Wilson proved in [30] that this same group
has uncountably many boundaries. Furthermore, it is shown in [22] that the
knot group G of any connected sum of two non-trivial torus knots has un-
countably many CAT(0) boundaries. For a collection of non-rigid CAT(0)
groups with boundaries of higher dimension, see [21].

On the other end of the spectrum, it has been observed by M. Bestvina
in [3] (1) and R. Geoghegan in [14] that for a given CAT(0) group, all
of its boundaries are shape equivalent. A proof has also been written up
by P. Ontaneda in [24]. Bestvina asks in [3] (also in [2]) if all boundaries
of a given CAT(0) group also satisfy the stronger condition of being cell-
like equivalent. Bestvina’s question has been answered in part by R. Ancel,
C. Guilbault, and J. Wilson, who showed in [1] that all the currently known
boundaries of Croke and Kleiner’s original group have this property; they
are all cell-like equivalent to the Hawaiian earring.

In this article, we give further evidence in favor of Bestvina’s conjecture
by proving the following theorem.

Theorem 1. Let G be a CAT(0) group which splits as a product H×K
where H and K are infinite. Then all CAT(0) boundaries of G are cell-like
equivalent through finite-dimensional compacta.

Contrasting this with Hosaka’s result, no assumption needs to be made
about the factor groups.

In order to prove Theorem 1, we first prove an interesting result in shape
theory. In [16], Hastings proves that if two spaces are shape equivalent, then
their suspensions are cell-like equivalent. The proof of the next theorem was
inspired by a geometric proof of Hastings’ theorem shown to the author by
Craig Guilbault.

Theorem 2. Joins of shape equivalent compacta are cell-like equivalent.

That is, if X
SH' X ′ and Y

SH' Y ′, then

X ∗ Y CE' X ′ ∗ Y ′

Furthermore, if these four compacta are finite-dimensional , then the cell-like
equivalence can be realized through finite dimensions.

(1) Bestvina’s proof uses the hypothesis that the group in question is torsion-free.
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Here ∗ denotes the join operation,
SH' denotes shape equivalence, and

CE' denotes cell-like equivalence. For us, the term “compactum” means a
compact metric space.

2. Equivalence of compacta

2.1. Shape equivalence. Shape theory was invented by K. Borsuk in the
1960’s as a way to study spaces with bad local properties. The formal defi-
nition of shape equivalence is rather technical. We refer the reader to Bor-
suk’s book [4] for details (Mardešić and Segal also give a nice treatment of
the subject in [20]). Roughly speaking, two compacta X and Y are shape
equivalent if whenever they are embedded in the Hilbert cube Q (or some
other ANR), their neighborhood systems are homotopy equivalent in a sense

that can be made precise with inverse sequences. We write X
SH' Y to de-

note that X and Y are shape equivalent. It is a standard fact that spaces
which are homotopy equivalent are also shape equivalent (see, for example,
[20, Chapter I, Section 4.1]).

In [9, Section VI], Chapman gives a characterization of shape equivalence
by proving the Complement Theorem:

Theorem. Two compacta X and Y are shape equivalent iff whenever
X and Y are imbedded as Z-sets in the Hilbert cube Q, then Q − X is
homeomorphic to Q− Y .

A subspace Z of a space X is called a Z-set in X if there is a homotopy
Ht : X → X such that H0 = idX but Ht(X) ⊂ X − Z for all t > 0.
Embedding a compactum X as a Z-set in Q is easy: one simply embeds
X in

{0} ×
∞∏
i=2

[0, 1] ⊂
∞∏
i=1

[0, 1] = Q.

Similarly, finite-dimensional compacta can be embedded in finite-dimensio-
nal cubes, by [23, Chap. 7, Theorem 9.6].

2.2. Cell-like equivalence. A cell-like compactum is a compact metric
space which is shape equivalent to a point. In particular, contractible com-
pacta are cell-like. A cell-like map is a proper surjective map X → Y such
that every fiber is a cell-like compactum.

We say that two compacta X and Y are cell-like equivalent and write

X
CE' Y if there is a zig-zag of compacta and cell-like maps

K1 K3 Kn

↙ ↘ ↙ ↘ . . . ↙ ↘
X K2 Y.
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If all compacta in this zig-zag are finite-dimensional, then we say that X

and Y are cell-like equivalent through finite dimensions, and write X
CEf

' Y .

2.3. The finite-dimensional category. If we restrict ourselves to the cat-
egory of finite-dimensional compacta, then it is known that cell-like equiv-
alence (that is, cell-like equivalence through finite dimensions) is strictly
stronger than shape equivalence and strictly weaker than homotopy equiva-

lence (denoted
HE' ). Specifically, we have the following for finite-dimensional

compacta X and Y .

Facts 2.1.

(1) X
HE' Y ⇒ X

CEf

' Y (proven by S. Ferry in [12, Theorem 2]).

(2) X
CEf

' Y ; X
HE' Y .

(3) X
CEf

' Y ⇒ X
SH' Y (proven by R. B. Sher in [26]).

(4) X
SH' Y ; X

CE' Y (S. Ferry gave a 1-dimensional counterexample
in [13]).

A couple of notes about these facts: First of all, the theorem quoted in (1)
does not explicitly mention the finite-dimensional case. However, a careful
analysis of the intermediate space Z constructed in [12] reveals that it does
indeed have finite dimension if X and Y are finite-dimensional (2). The
second fact is a standard example; take X to be the topologist’s sine curve
and Y to be a point p. The map X → Y is cell-like, because X has the
shape of a point, but X is certainly not contractible.

It is also important to observe that (3) does not hold if we leave the finite-
dimensional category, as exhibited by J. Taylor in [28]. However, E. Swenson
has shown in [27] that all boundaries of a CAT(0) space admitting a geo-
metric group action are finite-dimensional. This is why Theorem 1 is stated
in the finite-dimensional category.

There is one more proposition which we will need for the finite-dimensio-
nal version of Theorem 2. This proposition requires the finite-dimensional
Complement Theorem of Chapman [8]:

Theorem. Let X and Y be compacta with dimension ≤ m. Then for
any integer n ≥ 2m+ 2 there exist copies X ′, Y ′ ⊂ Rn (of X and Y respec-

tively) such that if X
SH' Y , then Rn −X ′ ≈ Rn − Y ′.

Proposition 2.2. Let X,Y be finite-dimensional shape equivalent com-
pacta. Then there is an n large enough and embeddings X ′ and Y ′ of X
and Y respectively into the closed n-ball Bn such that Bn −X ′ is homeo-
morphic to Bn − Y ′.

(2) The author found formula (B) from [19, Section III.2] helpful in this analysis.
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Proof. Let n ≥ 2 max{dimX,dimY }+2. By Chapman’s finite-dimensio-
nal Complement Theorem, there exist embeddings X ′ and Y ′ of X and Y
in Rn so that Rn − X ′ is homeomorphic to Rn − Y ′. By adding a point
at infinity to Rn, this homeomorphism extends to a homeomorphism h :
Sn−X ′ → Sn−Y ′. Let D,D0 ⊂ Sn−X ′ be closed n-balls with D0 ⊂ intD.
Choose D0 to be tame so that the boundary of h(D0) is bicollared. We
take B = Sn − intD0 and B′ = Sn − h(intD0). It is a consequence of the
Generalized Schoenflies Theorem (proven by M. Brown in [7]) that B′ is an
n-ball. So we have n-balls B and B′ and embeddings X ′ ⊂ B and Y ′ ⊂ B′

such that the restriction of h to B−X ′ is a homeomorphism onto B′−Y ′.

As a brief comment on the statement of Chapman’s finite-dimensional
Complement Thoerem, we observe that work has been done by Venema,
Geoghegan, and Summerhill to improve the dimension n of the ambient
space (see [29] and [15]).

3. Proofs of Theorems 1 and 2. Theorem 2 follows from this next
proposition together with an easy transitivity argument.

Proposition 3.1. Let X, Y , and Z be compacta such that X
SH' Y .

Then
X ∗ Z CE' Y ∗ Z.

Furthermore, if these compacta are finite-dimensional , then the cell-like
equivalence may be obtained through finite dimensions.

Proof. We will begin by proving the proposition without the finite-
dimensional hypothesis. The proof of the finite-dimensional case is obtained
by a similar argument in which Q is replaced with a finite-dimensional cube.

Embed X in Q as a Z-set. For some fixed z0 ∈ Z, we define the space

K3 = (Q−X)× (Z − z0).

We will use the symbol “≈” to mean that two spaces are homeomorphic.
By Chapman’s Complement Theorem, we have

K3 ≈ (Q− Y )× (Z − z0).

Therefore it suffices to prove thatX∗Z CE' K?
3 , where the ? denotes one-point

compactification.
Our cell-like equivalence zigzag between X ∗ Z and K?

3 will have two
intermediate spaces and three cell-like maps:

X ∗ Z K2
φ1

↘
φ2

↙
φ3

↘
K1 K?

3
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(see Figure 2) (3). The first intermediate space is the quotient space

K1 = X ∗ Z/X ∗ z0.
The other is the union of Q × Z with a cone Γ on the complement of K3

(see Figure 1):
K2 = Γ ∪Q× Z = p ∗ (Q× Z −K3) ∪Q× Z,

where p denotes the cone point of Γ . Note that K?
3 ≈ K2/Γ . It is easy to see

that K2 is metrizable. The other spaces, K1 and K?
3 , are metrizable because

they arise from finite decompositions of metrizable spaces into closed sets.
In other words, each may be realized as the quotient space obtained when
finitely many disjoint closed subsets of a metric space are identified to points
(see [11]). The maps φ1 and φ3 are both quotient maps whose fibers are either
points or cones. So these are cell-like maps.

Fig. 1. K2

We now realize φ2 as a quotient map. Consider the following collection
of subspaces of K2:

S =
{
Q× z | z 6= z0

}
∪
{
p ∗ (Q× z0)

}
and let φ2 be the quotient map onto the decomposition space K2/S. Again,
φ2 is obviously cell-like, since fibers are contractible. It suffices to prove the
following claim.

(3) Ric Ancel has suggested a variation on this proof which uses only one intermediate
space and two cell-like maps.
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Fig. 2. X ∗ Z CE' K?
3

Claim. K2/S ≈ K1.

Consider the cone Γ ′ on X × Z:
Γ ′ = p ∗ (X × Z).

Then K2/S ≈ Γ ′/S ′ where
S ′ =

{
X × z | z 6= z0

}
∪
{
p ∗ (X × z0)

}
.

We prove the Claim by showing that Γ ′/S ′ and K1 are the same when
considered as quotients of the space of triples X × Z × I.

Begin by writing
Γ ′ = X × Z × I/ 2∼

where 2∼ is generated by the rule

(a) (x1, z1, 1) ∼ (x2, z2, 1) for all x1, x2 ∈ X and z1, z2 ∈ Z.

Here X × Z disappears at the top (at the point p). So

Γ ′/S ′ ≈ X × Z × I/ 2′
∼

where 2′
∼ is generated by (a) along with the following two additional rules:

(b) (x1, z, 0) ∼ (x2, z, 0) for all x1, x2 ∈ X and z ∈ Z,
(c) (x1, z0, t1) ∼ (x2, z0, t2) for all x1, x2 ∈ X and t1, t2 ∈ I,

Now we can also write

X ∗ Z = X × Z × I/ 1∼
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where 1∼ is generated by (b) along with this rule:

(a′) (x, z1, 1) ∼ (x, z2, 1) for all x ∈ X and z1, z2 ∈ Z.

In other words, Z disappears at the top (at level 1) and X disappears at
the bottom (at level 0). So

K1 = X × Z × I/ 1′
∼

where 1′
∼ is obtained from 1∼ by adding rule (c). But the equivalence relations

1′
∼ and 2′

∼ are the same because (a) and (a′) are equivalent in the context of
(c). Therefore K2/S ≈ K1. This proves the infinite-dimensional version.

To get the finite-dimensional version of this proposition, we replace Q
with a finite-dimensional cube and Chapman’s Complement Theorem with
Proposition 2.2 in the above proof.

Along with Theorem 2, the proof of Theorem 1 requires two other results.
The first is due to Hosaka.

Theorem ([17, Theorem 3]). Let G = H ×K be a CAT(0) group with
infinite factors and X be a CAT(0) G-space. Then there is a CAT(0) H-
space Y and a CAT(0) K-space Z such that

∂X ≈ ∂Y ∗ ∂Z.

Note that this equation is exactly what one would expect in light of the
equation

∂(Y × Z) ≈ ∂Y ∗ ∂Z

given in [6, Example II.8.11(6)]. In fact, Y and Z are constructed as sub-
spaces of X. The action of H on Y and of K on Z is not immediate from
the original action of H ×K on X, however.

The second result is the observation of Geoghegan and Bestvina men-
tioned earlier. We refer the reader to the proof written by Ontaneda.

Theorem ([24, Corollary B]). Let G be any CAT(0) group and X and

Y be CAT(0) G-spaces. Then ∂X
SH' ∂Y .

The proof of Theorem 1 is now straightforward. Given any CAT(0) group
G = H ×K with infinite factors and any two CAT(0) G-spaces X and X ′,
we use Hosaka’s Theorem to write ∂X ≈ ∂Y ∗ ∂Z and ∂X ′ ≈ ∂Y ′ ∗ ∂Z ′
where Y and Y ′ are CAT(0) H-spaces and Z and Z ′ are CAT(0) K-spaces.

By Ontaneda’s Theorem, we have ∂Y
SH' ∂Y ′ and ∂Z

SH' ∂Z ′. By work
of Swenson in [27], we know that boundaries of CAT(0) groups are finite-
dimensional. So we apply Theorem 2 in the finite-dimensional category to

get ∂X
CEf

' ∂X ′.
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In closing, we note the reason for requiring both factors to be infinite.
If one of the factors, say H, is a finite group, then K acts geometrically
on exactly the same family of CAT(0) spaces as G. In other words, any
boundary of G is also a boundary of K and vice versa.
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[20] S. Mardešić and J. Segal, Shape Theory. The Inverse System Approach, North-
Holland Math. Library 26, North-Holland, Amsterdam, 1982.

[21] C. Mooney, Generalizing the Croke–Kleiner construction, preprint.
[22] —, Examples of non-rigid CAT(0) groups from the category of knot groups, Algebr.

Geom. Topology 8 (2008), 1666–1689.
[23] J. R. Munkres, Topology: A First Course, Prentice-Hall, Englewood Cliffs, NJ, 1975.
[24] P. Ontaneda, Cocompact CAT(0) spaces are almost geodesically complete, Topology

44 (2005), 47–62.
[25] K. E. Ruane, Boundaries of CAT(0) groups of the form Γ = G × H, Topology

Appl. 92 (1999), 131–151.
[26] R. B. Sher, Realizing cell-like maps in Euclidean space, General Topology Appl. 2

(1972), 75–89.
[27] E. L. Swenson, A cut point theorem for CAT(0) groups, J. Differential Geom. 53

(1999), 327–358.
[28] J. L. Taylor, A counterexample in shape theory , Bull. Amer. Math. Soc. 81 (1975),

629–632.
[29] G. A. Venema, Embeddings of compacta with shape dimension in the trivial range,

Proc. Amer. Math. Soc. 55 (1976), 443–448.
[30] J. M. Wilson, A CAT(0) group with uncountably many distinct boundaries, J. Group

Theory 8 (2005), 229–238.

Department of Mathematics
2074 East Hall
530 Church Street
Ann Arbor, MI 48109-1043, U.S.A.
E-mail: cpmooney@umich.edu

Received 7 August 2007;
in revised form 10 December 2008


