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Set-theoretic constructions of two-point sets
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Abstract. A two-point set is a subset of the plane which meets every line in exactly
two points. By working in models of set theory other than ZFC, we demonstrate two
new constructions of two-point sets. Our first construction shows that in ZFC + CH there
exist two-point sets which are contained within the union of a countable collection of
concentric circles. Our second construction shows that in certain models of ZF, we can
show the existence of two-point sets without explicitly invoking the Axiom of Choice.

1. Introduction. Given a cardinal κ, a subset of the plane is said to
be a κ-point set if and only if it meets every line in exactly κ many points
and is said to be a partial κ-point set if and only if it meets every line in at
most κ many points. We are particularly interested in the case that κ = 2,
and we refer to such sets as two-point sets.

The existence of two-point sets was first shown by Mazurkiewicz [8].
(A French translation is given in [9].) A two-point set is classically con-
structed via transfinite recursion, making use of an arbitrary well-ordering
of the collection of all lines in the plane. We will demonstrate two construc-
tions of two-point sets which result by varying the use of this well-ordering.

The first construction shows that working in ZFC+CH, we can construct
a two-point set which is contained in the union of a countable collection of
concentric circles of unbounded radius. In general, classical constructions
of two-point sets can be thought of as starting with a c-point set and then
refining it to a two-point set, and so this construction is of interest because
we obtain a two-point set by refining an ℵ0-point set. We achieve this de-
velopment by being careful about the well-ordering of the collection of all
lines that we choose to help us in our construction.

The second construction shows that in ZF, if we assume that the real
line satisfies a certain number of properties, we can construct a two-point set
without explicitly invoking the Axiom of Choice. It is a question of Erdős,
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as discussed by Mauldin [7], to determine if a two-point set can be a Borel
set. It is known from work of Larman [6] and Baston and Bostock [1] that a
two-point set cannot be an Fσ set, but we know little else about this problem.
Since a Borel set can always be described by a countable Borel code and
the known methods of constructing two-point sets use a transfinite recursion
of length c, it would appear that these existing techniques cannot possibly
yield a two-point set which is guaranteed to be Borel. Accordingly, new
methods of constructing two-point sets are necessary, which do not rely so
explicitly on the Axiom of Choice. In our construction, the assumptions that
we will make about the real line are implied by, and appear to be strictly
weaker than, the assumption that it is well-orderable. If it indeed turns out
to be the case that our assumptions are equivalent in ZF to the real line
being well-orderable, our construction is still of interest, since we construct
a two-point set by “dealing with” collections of lines simultaneously, rather
than by “dealing with” lines sequentially.

The proof of the following result is essentially that given by Mazurkiewicz,
and we include it for comparison.

Theorem 1.1. There exists a two-point set.

Proof. Note that we can always extend a given partial two-point set
with cardinality less than c to a partial two-point set which meets a given
line in exactly two points. To construct a two-point set we enumerate the
set of all lines in order type c, and construct an increasing c-sequence of
partial two-point sets, using the enumeration to ensure that the union of
the members of the sequence is a two-point set.

Throughout the remainder of this paper, we use the variables α, β, δ
and γ to range over ordinals, and the variables κ and λ to range over (well-
orderable) cardinals.

2. The existence of two-point sets contained in ℵ0-point sets.
Given a property P , the proofs of the existence of P two-point sets previ-
ously found in mathematical literature classically proceed in the manner of
Theorem 1.1, and consist of a recursion of length c which at each step re-
quires a choice to be made from c many possibilities. It follows that theorems
of the form “There exists a two-point set with P” which are proved in this
way can be stated as theorems of the form “There exist 2c two-point sets
with P”. Hence, if there exists some property P (expressible in the language
of set theory) such that the collection of P two-point sets has cardinality less
than 2c, then we cannot demonstrate that this is the case by constructing a
P two-point set with our classical techniques.

Isometry groups of two-point sets have been studied by Chad and Suabe-
dissen. In [3], it was shown that any subgroup of S1 of cardinality less than
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c is the isometry group of some two-point set and that there exist proper sub-
groups of S1 of cardinality c which are the isometry group of some two-point
set. In [2], it was shown that there exist proper subgroups of S1 which are
not the isometry group of any two-point set. Given G ≤ S1 with coset rep-
resentatives enumerated by 〈gα : α < κ〉, a two-point set X with isometry
group G is of the form

⋃
α<κ(rαgαG∪sαgαG) for some real-valued sequences

〈rα : α < κ〉 and 〈sα : α < κ〉. (To see this, note that X is a union of G-orbits,
and the line spanned by the origin and gα meets X in exactly two points.)
Hence, if G is chosen to have countable index, then there are at most c many
two-point sets with isometry group G. Further, if X is indeed a two-point set
with such an isometry group, then X is contained in a union of countably
many circles. While it was tempting for the authors to conjecture that it is
impossible for a two-point set to be contained in a union of countably many
circles, we will now demonstrate that this may possibly be the case.

We now introduce some terminology. Let Y be an ℵ0-point set and let
a, b, c ∈ Y be distinct. Then we say that x ∈ Y \ {a, b, c} is a focus point
with respect to a, b and c if and only if there is a line L and u, v, w ∈ L∩ Y
such that a, x and u are collinear; as are b, x and v; as are c, x and w. Any
line L witnessing that x is a focus point is called a screen. We note that if
Y has at most countably many focus points, then Y has at most countably
many screens.

For A ⊆ R2, we let L(A) denote the set of all lines spanned by distinct
points from A. Note that |L(A)| ≤ |A| + ℵ0. Further, for B ⊆ R2, we let
L(A,B) denote the set of all lines spanned by a point fromA and a (different)
point from B. It is easily seen that if B ⊆ A then

L(A) = L(B) ∪ L(B,A \B) ∪ L(A \B).

Again, let Y be an ℵ0-point set and let A ⊆ R2 be infinite. We say that
A is fat with respect to Y if and only if for all L ∈ L(A):

(1) L ∩ Y ⊆ A;
(2) {x ∈ Y : x is a focus point with respect to a triple in A ∩ Y } ⊆ A;
(3)

⋃
{L ∩ Y : L is a screen with respect to a triple in A ∩ Y } ⊆ A.

Lemma 2.1. Let Y be an ℵ0-point set such that each triple of distinct
points in Y has at most countably many focus points, and let A ⊆ R2 be
countably infinite. Then there exists B ⊆ R2 such that A ⊆ B, B is countably
infinite and B is fat with respect to Y . Further , B may be chosen to be
minimal with respect to set inclusion.

Proof. Let T1, T2 and T3 be transformations of P(R2) such that for all
X ⊆ R2,

T1(X) =
⋃
{L ∩ Y : L ∈ L(X)},
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T2(X) = {x ∈ Y : x is a focus point with respect to a triple in X ∩ Y },
T3(X) =

⋃
{L ∩ Y : L is a screen with respect to a triple in X ∩ Y }.

Let 〈Bn : n < ω〉 be an increasing sequence defined for n < ω by B0 = A
and

Bn+1 = Bn ∪ T1(Bn) ∪ T2(Bn) ∪ T3(Bn),

and let B =
⋃
n<ω Bn. Then it is easily verified that B is countably infinite,

that B is fat with respect to Y and that B is minimal.

We now introduce our final pieces of terminology. For each A ⊆ R2 and
each partial two-point set X ⊆ A, we say that X is full with respect to A
if and only if L(X) = L(A). We say that Z ⊆ R2 is a finite extension of a
partial two-point set X if and only if Z is a partial two-point set such that
Z ⊇ X and |Z \X| < ℵ0. Given an ℵ0-point set Y and a partial two-point
set X ⊆ Y , we let P(X,Y ) be the set {Z ⊆ Y : Z is a finite extension of X}
equipped with its partial order of reverse inclusion.

Recall that given a partial order 〈P,≤〉, a subset D of P is dense in P if
and only if for every p ∈ P there is d ∈ D such that d ≤ p.

Lemma 2.2. Let Y be an ℵ0-point set , let A ⊆ R2 be fat with respect to
Y and let X ⊆ A be a partial two-point set such that X is full with respect
to A. Then for all lines L, {Z ∈ P(X,Y ) : |L∩Z| = 2} is dense in P(X,Y ).

Proof. Let L be a line and let W ∈ P(X,Y ) be such that |L ∩W | < 2.
Then L 6∈ L(A), for otherwise L ∈ L(X) ⊆ L(W ). Suppose that there does
not exist a finite extension Z ⊆ Y of W such that L ∈ L(Z). Then every
point of L∩ Y , except perhaps one, belongs to a member of L(W ). We will
show that each of

L ∩ Y ∩
⋃
L(X), L ∩ Y ∩

⋃
L(X,W \X), L ∩ Y ∩

⋃
L(W \X)

is finite, which is then clearly a contradiction.
Suppose that there exist distinct x1, x2 ∈ L∩Y ∩(

⋃
L(X)). Then x1 ∈ L1

and x2 ∈ L2 for some L1, L2 ∈ L(X) = L(A), and so by fatness, both x1

and x2 belong to A, whence by fullness we obtain the contradiction that
L ∈ L(X).

Now, L(X,W \X) =
⋃
w∈W\X L(X, {w}), and it is easily seen that each

L∩Y ∩L(X, {w}) is at most a pair set, otherwise L is a screen with respect to
a triple in X ⊆ A∩Y . Since W \X is finite, it follows that L∩Y ∩

⋃
L(W \X)

is finite.
Since L(W \X) is finite, it is obvious that L∩Y ∩

⋃
L(W \X) is finite.

We are now in a position to prove the first of our two main results. Our
proof is similar to that of Theorem 1.1, which treats lines sequentially, the
main difference being that we do not trust an arbitrary well-ordering of the
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collection of all lines to be sufficient for our purposes. Intuitively, extending
a countable partial two-point set X to meet some countable collection K
of lines in exactly two points may create a situation where there exist lines
which our new partial two-point set cannot be extended to (within our given
ℵ0-point set). The preceding lemmas allow us to identify the family K′ of
lines which may be in future danger of witnessing this problem, and since
K′ is also countable, instead of extending X to meet all members of K in
exactly two points, we extend it to meet all members of K ∪ K′ in exactly
two points.

Theorem 2.3 (ZFC + CH). Let Y be an ℵ0-point set such that each
triple of distinct points in Y has at most countably many focus points. Then
Y contains a two-point set.

Proof. By applying Lemma 2.1, there exists a sequence 〈Aα : α < c〉 of
increasing countable sets which are fat with respect to Y and such that⋃
α<cAα = R2. We will construct an increasing sequence {Xα : α < c} of

partial two-point sets such that each
⋃
β≤αXβ is a countable set which is

full with respect to Aα and
⋃
α<cXα is a two-point set. Suppose that the

partial sequence 〈Xβ : β < α〉 has been chosen. Then L(Aα) is countable,
and so by Lemma 2.2 and the Rasiowa–Sikorski Lemma [5], there exists a
filter F in P(

⋃
β<αXβ, Y ) such that for all L ∈ L(Aα) there exists F ∈ F

such that L ∈ L(F ). Hence, letting Xα = (
⋃
F) ∩ Aα, we have a countable

partial two-point set which extends
⋃
β<αXβ and is full with respect to Aα.

Now letting the Xα be chosen for all α < c, we see that
⋃
α<cXα is a

two-point set contained in Y .

3. The existence of two-point sets in a union of countably many
concentric circles. We now show that a union of countably many concen-
tric circles of unbounded radii consistently contains two-point sets. Let S1

denote the unit circle in C, and for all zα, zβ, zγ ∈ C and all rα, rβ, rγ ∈ R+,
let E(zα, zβ, zγ , rα, rβ, rγ) denote the (formal) expression

rαrβzγ(z2
α − z2

β) + rβrγzα(z2
β − z2

γ) + rγrαzβ(z2
γ − z2

α),

which is derived from writing down the length of the vector product

(zα − zγ)× (zβ − zγ),

where the complex numbers are thought of as being vectors in the plane.
Note that for all zα, zβ, zγ ∈ C \ {0}, it can be seen that zα, zβ and zγ are
collinear over R if and only if

E
(
zα
|zα|

,
zβ
|zβ|

,
zγ
|zγ |

, |zα|, |zβ|, |zγ |
)

= 0.
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Further, for all zα, zβ, zγ ∈ C and all rα, rβ, rγ ∈ R+, it can be seen that

〈z2
α, zα/rα〉, 〈z2

β, zβ/rβ〉, 〈z2
γ , zγ/rγ〉 ∈ C2

are collinear over C if and only if E(zα, zβ, zγ , rα, rβ, rγ) = 0. For all ra, rb, rc,
rx, ru, rv, rw ∈ R+ and all za, zb, zc, zx, zu, zv, zw ∈ C, let

φ(za, zb, zc, zx, zu, zv, zw, ra, rb, rc, rx, ru, rv, rw)

be a sentence which is true if and only if each of E(za, zx, zu, ra, rx, ru),
E(zb, zx, zv, rb, rx, rv), E(zc, zx, zw, rc, rz, rw) and E(zu, zv, zw, ru, rv, rw) are
equal to zero.

Lemma 3.1. Let ra, rb, rc, rx, ru, rv, rw ∈ R+, let za, zb, zc ∈ S1 be such
that raza, rbzb, rczc ∈ C are distinct , let S be the set

{zx ∈ S1 : ∃zu, zv, zw ∈ S1 φ(za, zb, zc, zx, zu, zv, zw, ra, rb, rc, rx, ru, rv, rw)},
and let T be the set

{zx ∈ C : ∃zu, zv, zw ∈ C φ(za, zb, zc, zx, zu, zv, zw, ra, rb, rc, rx, ru, rv, rw)}.
If S is uncountable then T = C.

Proof. For each zx ∈ C, we consider E(za, zx, zu, ra, rx, ru) to be a poly-
nomial in zu, which is non-trivial when zx 6= raza/rx. By choosing one of
finitely many branch cuts, each of zu, zv, zw can be viewed as a complex
differentiable function of zx. Supposing that S is uncountable, let

S′ = S \
{
raza
rx

,
rbzb
rx

,
rczc
rx

}
,

which is uncountable. It can then be seen that some choice of branches takes
the value zero uncountably often on S′, and for this choice, we substitute zu,
zv, zw as functions of zx into E(zu, zv, zw, ru, rv, rw). This gives us a complex
differentiable function of zx, except on perhaps the branch cuts. By choosing
an appropriate branch cut and applying the Identity Theorem, the result
then follows.

For each r > 0, let Cr denote the circle in C of radius r and centred at
the origin.

Lemma 3.2. Let a, b, c ∈ C \ {0} be distinct , let rx, ru, rv, rw ∈ R+, and
let S be the set of all x ∈ Crx such that there exist u ∈ Cru , v ∈ Crv and
w ∈ Crw with the property that

φ

(
a

|a|
,
b

|b|
,
c

|c|
,
x

|x|
,
u

|u|
,
v

|v|
,
w

|w|
, |a|, |b|, |c|, |x|, |u|, |v|, |w|

)
.

If S is uncountable, then a, b and c are collinear.

Proof. Suppose that S is uncountable. We write rα = |α| and zα = α/rα
for α = a, b, c. By elementary algebra, we can show that there exists zx ∈ C
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such that

〈z2
a, za/ra〉, 〈z2

b , zb/rb〉, 〈z2
x, zx/rx〉 ∈ C2(1)

are collinear over C. Using Lemma 3.1, let zu, zv, zw ∈ C be such that

E(za, zx, zu, ra, rx, ru) = 0,(2)
E(zb, zx, zv, rb, rx, rv) = 0,(3)

E(zc, zx, zw, rc, rx, rw) = 0,(4)
E(zu, zv, zw, ru, rv, rw) = 0.(5)

Using (1), (2) and (3), we add 〈z2
u, zu/ru〉 and 〈z2

v , zv/rv〉 to the list of
collinear points in (1), then using (4) we add 〈z2

w, zw/rw〉 to the list, and
finally using (3) we add 〈z2

c , zc/rc〉 to the list. Thus E(za, zb, zc, ra, rb, rc) = 0,
giving that a, b and c are collinear over R.

The following is now easily seen:

Lemma 3.3. Let C be a collection of countably many concentric circles
of unbounded radii and let a, b, c ∈

⋃
C be distinct. Then there are only

countably many focus points with respect to a, b and c.

Theorem 3.4 (ZFC + CH). Let C be a collection of countably many
concentric circles of unbounded radii. Then

⋃
C contains a two-point set.

4. A non-sequential construction of a two-point set. Working
in a certain model of ZF, we will now construct a two-point set without
explicitly invoking the Axiom of Choice. We achieve this by changing the
strictly sequential nature of the classical construction, and instead of dealing
with lines one-by-one, we deal with collections of lines simultaneously. We
start with a technical lemma.

Lemma 4.1. Let L1 and L2 be distinct lines and let a ∈ R2 \ (L1 ∪ L2).
Then there are at most twenty-two r > 0 such that there exist b ∈ L1 \ L2

and c ∈ L2 \ L1 having the properties that a, b and c are collinear and
‖b‖ = ‖c‖ = r.

Proof. For r > 0, consider the circle C = {〈x, y〉 ∈ R2 : x2 + y2 = r2}.
Given x0 ∈ R and a line of the form L = {〈x, y〉 ∈ R2 : x = x0}, the
members of C ∩ L (if they exist) are of the form

〈x0,±
√
r2 − x2

0 〉,
and given m, b ∈ R and a line of the form L = {〈x, y〉 ∈ R2 : y = mx + b},
the members of C ∩ L (if they exist) are of the form〈

−mb±
√

(m2 + 1)r2 − b2
m2 + 1

,
b±m

√
(m2 + 1)r2 − b2
m2 + 1

〉
.
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Suppose that r, b and c are as in the statement of the lemma. By applying
a rotation to our system, we may assume that L1 is a vertical line with
parameter x1 ∈ R. We consider two cases, depending on the form of L2.

Case 1: L2 = {〈x, y〉 ∈ R2 : x = x2} for some x2 ∈ R. In this case,

±
√
r2 − x2

1 − a(2)

x1 − a(1)
=
±
√
r2 − x2

2 − a(2)

x2 − a(1)
,

and by repeated squaring to eliminate the radicals in this equality, we obtain
a polynomial equation in r whose highest formal power is 4. If the coeffi-
cient of r4 vanishes then the coefficient of r2 does not vanish, and so the
polynomial is non-trivial. Since the polynomial is of degree at most four, r
can be only one of four possibilities.

Case 2: L2 = {〈x, y〉 ∈ R2 : y = mx+ b} for some m, b ∈ R. If the line
spanned by a, b and c is vertical, then we can argue that

r2

m2 + 1
− b2

(m2 + 1)2
−
(
a(1) +

mb

m2 + 1

)2

= 0.

This represents a non-trivial quadratic equation in r, and so r can be only
one of two possibilities. Otherwise, we have

±
√
r2 − x2

1 − a(2)

x1 − a(1)
=

b±m
√

(m2 + 1)r2 − b2 − a(2)(m2 + 1)
−mb±

√
(m2 + 1)r2 − b2 − a(1)(m2 + 1)

.

If we rationalise the denominator of the value on the right-hand side of this
expression, make (r2−x2

1)/(x1− a(1))2 the subject, and multiply both sides
of the resulting equality by

(m2 + 1)r2 − b2 − (−mb− a(1)(m2 + 1))2,

then the left-hand side is a rational function in r with the coefficient of r4

being (m2 +1)/(x1−a(1)) 6= 0, and the right-hand side is a rational function
in r with no occurrences of r4. By repeated squaring to eliminate the radicals
in this equality, we obtain a polynomial in r of degree 16 with coefficient
of r16 being (m2 + 1)/(x1 − a(1)) 6= 0, and so r can be only one of sixteen
possibilities.

We are now in a position to demonstrate our construction. It is hoped
the axioms required for this construction may be found to be true in some
model of ZF +¬AC(R), but as we will later note, they are certainly true in
some models of ZFC, and can be proved from ZFC + CH.

Theorem 4.2 (ZF). Suppose that there exists a well-orderable cardinal
κ such that :

(1) κ+ is regular ;
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(2) R can be written as the union of a well-orderable and increasing
collection of sets with cardinality κ;

(3) R contains a well-orderable set of cardinality κ+.

Then there exists a two-point set.

Proof. By condition (2), there exists an increasing sequence 〈Aα : α < λ〉
of subsets of R where each Aα is of cardinality κ and λ is a well-orderable
cardinal less than or equal to κ+, and such that R =

⋃
α<λAα. By condi-

tion (3), there exists an injective sequence 〈xα : α < κ+〉 on R. By applying
suitable transformations, we will assume that each xα is positive, and that
for all M > 0, {α < κ+ : xα > M} is of cardinality κ+.

Let 〈Lα : α < λ〉 be an increasing sequence such that
⋃
α<λ Lα is the

collection of all lines in R2, where for all α < λ, |Lα| = κ and Lα+1 \Lα 6= ∅.
We will construct our two-point set as an increasing union

⋃
α<λXα, where

for each α < λ, Xα is a partial two-point set of cardinality κ which meets
every member of Lα in exactly two points.

Suppose that for some α < λ we have constructed the partial sequence
〈Xβ : β < α〉. We now show how to extend

⋃
β<αXβ to a partial two-point

set Yα, where Yα \
⋃
β<αXβ contains exactly one point on each member of

Lα which does not meet
⋃
β<αXβ in two points. Letting On denote the

class of all ordinals, we will achieve this by constructing an increasing term
〈Xα,β : β ∈ On〉 and a decreasing term 〈Lα,β : β ∈ On〉, both consisting of
sets of cardinality at most κ. Let

Xα,0 =
⋃
β<α

Xβ,

Lα,0 =
{
L ∈ Lα :

⋃
β<α

Xβ meets L in fewer than two points
}
.

Suppose that for some β ∈ On \ {0}, we have chosen 〈Xα,γ : γ < β〉 and
〈Lα,γ : γ < β〉. If

⋂
γ<β Lα,γ =∅ then we set Xα,β =

⋃
γ<β Xα,γ and Lα,β=∅.

Otherwise, let

Lα,β =
{
L ∈

⋂
γ<β

Lα,γ :
( ⋃
γ<β

Xα,γ \
⋃
γ<α

Xγ

)
∩ L = ∅

}
.

Given a partial two-point set P , recall from Section 2 that L(P ) denotes
the set of lines meeting P in exactly two points. Note that if P contains at
least two points, then P ⊆

⋃
L(P ). Let φ(L, δ) be a sentence such that for

L ∈ Lα,β and δ < κ+, φ(L, δ) is true if and only if:

there exists b ∈ L\
⋃

(L(
⋃
γ<β Xα,γ)∪

⋃
γ<α Lγ \ {L}) such that ‖b‖ =

xδ and for all a and c where a ∈
⋃
γ<β Xα,γ and K ∈

⋂
γ<β Lα,γ \ {L}

and c ∈ K and ‖c‖ = xδ, the distinct points a, b and c are not
collinear.
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Now, for all L ∈ Lα,β, the set {δ < κ+ : φ(L, δ)} is non-empty, since:

(1) | {δ < κ+ : L meets the circle of radius xδ}| = κ+;
(2)

⋃
γ<β Xα,γ and

⋂
γ<β Lα,γ \ {L} are of cardinality at most κ, and

for all a ∈
⋃
γ<β Xα,γ and all K ∈

⋂
γ<β Lα,γ \ {L}, there are at

most twenty-two δ such that we can find b ∈ L and c ∈ K with the
properties that a, b and c are collinear and ‖b‖ = ‖c‖ = xδ;

(3) L(
⋃
γ<β Xα,γ) ∪

⋃
γ<α Lγ \ {L} is of cardinality at most κ and does

not contain L.

(Note that in clause (2), we rely on the fact that from ZF we may prove the
existence of a choice function on finite subsets of the plane.)

Let f : Lα,β → κ+ be the function defined for L ∈ Lα,β by

f(L) = min {δ < κ+ : φ(L, δ)},
let δ = min {f(L) : L ∈ Lα,β}, and let Xα,β be chosen to enlarge

⋃
γ<β Xα,γ

by selecting one point on each L such that f(L) = δ. We can make such a
selection without the aid of the Axiom of Choice, since we will only choose
points with norm xδ, and we can deterministically choose between two points
on a line of norm xδ. Clearly Xα,β is of cardinality at most κ, and we now
verify that it is a partial two-point set. Let L be any line. If L does not meet⋃
γ<β Xα,γ , then by selecting points in a (fixed) circle, we have ensured that

Xα,β meets L in at most two points, and if L meets
⋃
γ<β Xα,γ in exactly

one (resp. two) point(s), then condition (2) (resp. (3)) above ensures that
Xα,β meets L in at most two points.

Consider the mapping g : κ+ → P(Lα) defined for β < κ+ by

g(β) = Lα,β \ Lα,β+1 .

Noting that g is a disjointification of a decreasing sequence of subsets of Lα,
it must eventually take the constant value ∅, otherwise g is an injection from
κ+ into a partition of

⋃
β<κ+ g(β) ⊆ Lα, which is a contradiction. Hence,

we set Yα =
⋃
β<αXα,β, which is an extension of

⋃
β<αXβ meeting every

member of Lα in exactly one additional point. We now repeat the above
process once more, extending

⋃
β<αXβ ∪ Yα instead of

⋃
β<αXβ to obtain

a partial two-point set Xα which meets every member of Lα in exactly two
points.

By working in ZFC and taking κ = ℵ0, we see that:

Theorem 4.3 (ZFC + CH). There exists a two-point set.

In comparison to the construction given in Sections 2 and 3, this con-
struction also refines the union of some collection of concentric circles to a
two-point set, and we have obtained its non-sequential nature at the price
of making our collection of circles uncountable.
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This proof was originally developed with the hope that it could be made
to work in a model of ZF where the reals can be written as a countable union
of countable sets. The “standard model” of ZF where the reals have this
property is due to Fefferman and Lévy and is described by Cohen [4]; in the
Fefferman–Lévy model, the reals do not contain an uncountable well-ordered
set. In response to private communication with the authors, Miller [10] has
shown in that in any model of ZF where the reals are a countable union of
countable sets, the reals do not contain an uncountable well-ordering, and
also that by using the method of forcing, one can find models of ZF where
the reals cannot be well-ordered, but which contain two-point sets.
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