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Physical measures for infinite-modal maps
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Abstract. We analyze certain parametrized families of one-dimensional maps with
infinitely many critical points from the measure-theoretical point of view. We prove that
such families have absolutely continuous invariant probability measures for a positive
Lebesgue measure subset of parameters. Moreover, we show that both the density of such
a measure and its entropy vary continuously with the parameter. In addition, we obtain
exponential rate of mixing for these measures and also show that they satisfy the Central
Limit Theorem.

1. Introduction. One of the main goals of dynamical systems is to
describe the global asymptotic behavior of the iterates of most points under
a transformation of a compact manifold, either from a topological or from a
probabilistic (or ergodic) point of view. The notion of uniform hyperbolicity,
introduced by Smale in [Sm], and of non-uniform hyperbolicity, introduced
by Pesin [P], have been the main tools to rigorously establish general results
in the field.

While uniform hyperbolicity is defined using only a finite number of
iterates of a given transformation, non-uniform hyperbolicity is an asymp-
totic notion from the very beginning, demanding the existence of non-zero
Lyapunov exponents almost everywhere with respect to some invariant prob-
ability measure.

On the one hand, the study of consequences of both properties in a
general setting has a long history (see [M, S, KH, B, BP, Y, BDV] for
details and thorough references).

On the other hand, it is rather hard in general to verify non-uniform
hyperbolicity, since we must take into account the behavior of the iterates
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of the given map when time goes to infinity. This was first achieved in the
groundbreaking work of Jakobson [J] on the quadratic family, which was
extended to more general one-dimensional families with a unique critical
point by many other mathematicians (see e.g. [BC1, R, MS, T, TTY]).
One-dimensional families with two critical points were first considered in
[Ro], and multimodal maps and maps with critical points and singularities
with unbounded derivative were treated in [LT, LV, BLS]. To the best of our
knowledge, maps with infinitely many critical points were first dealt with in
[PRV].

The aim of this paper is prove that the dynamics of the family consid-
ered in [PRV], for a positive Lebesgue measure subset of parameters, is non-
uniformly hyperbolic, and to deduce some consequences from the ergodic
point of view. These families naturally appear as one-dimensional models
for the dynamical behavior near the unfolding of a double saddle-focus ho-
moclinic connection of a flow in a three-dimensional manifold (see Figure 1
and [Sh]). The main novelty is that we prove global stochastic behavior for
a family of maps with infinitely many regions of contraction.
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Fig. 1. Double saddle-focus homoclinic connections

Roughly speaking, the family fµ of one-dimensional circle maps which
we consider here is obtained from first-return maps of the three-dimensional
flow in Figure 1 to appropriate cross-sections and disregarding one of the
variables. This reduction to a one-dimensional model greatly simplifies the
study of this kind of unfolding and provides important insight into its be-
havior. However, as we shall see, the dynamics of the reduced model is still
highly complex.

This family of maps is obtained by translating the left hand side and
right hand side, vertically in opposite directions, of the graph of the map
f = f0 described in Figure 2. This family approximates the behavior of any
generic unfolding of f0. Such unfolding was first studied in [PRV], where
it was shown that for a positive Lebesgue measure subset S of parameters
the map fµ, for µ ∈ S, exhibits a chaotic attractor. This was achieved by
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proving that the orbits of the critical values of fµ have positive Lyapunov
exponent and that fµ has a dense orbit.

Here we complement the topological description of the dynamics of fµ
provided in [PRV] for µ ∈ S with a probabilistic description constructing
for the same parameters a physical probability measure νµ. We say that an
invariant probability measure ν is physical or Sinai–Ruelle–Bowen (SRB) if
there is a positive Lebesgue measure set of points x ∈ S1 such that

lim
n→∞

1
n

n−1∑
k=0

ϕ(fkµ(x)) =
�
ϕdν

for any observable (continuous function) ϕ : S1 → R. The set of points
x ∈ S1 with this property is called the basin of ν. SRB measures provide a
statistical description of the asymptotic behavior of a large subset of orbits.
Combining this with the results from [PRV] we see that fµ has non-zero
Lyapunov exponent almost everywhere with respect to νµ, i.e. fµ is non-
uniformly hyperbolic for µ ∈ S.

The main feature needed for the construction of such measures is to ob-
tain positive Lyapunov exponent for Lebesgue almost every point under the
action of fµ, µ ∈ S. The presence of critical points is a serious obstruction
to achieving an asymptotic expansion rate of the derivative at most points.
Therefore the control of derivatives along orbits of the critical values is a
central subject in the ergodic theory of one-dimensional maps.

The crucial role of the orbits of the critical values in the statistical
description of the global dynamics of one-dimensional maps was already
present in the pioneer work of Jakobson [J], who considered quadratic maps
and obtained SRB measures for a positive Lebesgue measure subset of pa-
rameters.

This was later followed by the celebrated papers of Benedicks and Car-
leson [BC1, BC2], where the parameter exclusion technique was used to
show that, for a positive Lebesgue measure subset of parameters, the deriv-
ative along the orbit of the unique critical value has exponential growth and
satisfies what is nowadays called slow recurrence to the critical point. This
is enough to construct SRB measures for those parameters.

Recently, in the unimodal setting it was established that indeed the ex-
istence of SRB measures, and the exponential growth of the derivative along
the orbit of the critical value, are equivalent conditions for Lebesgue almost
every parameter for which there are no sinks (see [ALM, AM1, AM2]). See
also [BLS] for multimodal maps.

In [PRV] the technique of exclusion of parameters was extended to deal
with infinitely many critical orbits. Here we refine this technique to ob-
tain exponential growth of the derivatives and slow recurrence to the whole
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critical set for Lebesgue almost every orbit. By [ABV] this ensures the exis-
tence of SRB measures for every parameter µ ∈ S (see Subsection 1.2 and
Theorem A).

Moreover, we are able to control the measure of the set of points whose
orbits are too close to the critical set during the first n iterates, showing that
its Lebesgue measure is exponential in n (see Theorem B). In addition, the
Lebesgue measure of the set of points for which the derivative does not grow
exponentially fast in the first n iterates decreases exponentially fast with
n (see Theorem C). By recent general results in the ergodic theory of non-
uniformly hyperbolic systems [ALP, G], both estimates above taken together
imply exponential decay of correlations for Hölder continuous observables
for νµ and also that νµ satisfies the Central Limit Theorem, for all µ ∈
S (see Subsection 1.3 and Corollary D). We remark that these properties
are likewise satisfied by uniformly expanding maps of S1, which are the
touchstone of chaotic dynamics (see e.g. [B, V]), in spite of the presence of
infinitely many points with unbounded contraction (critical points).

Furthermore, analyzing our arguments we observe that the estimates
obtained do not depend on the choice of the parameter µ ∈ S. According to
[A, AOT] this shows that the density dνµ/dλ of the SRB measure νµ with
respect to Lebesgue measure and its entropy hνµ(fµ) vary continuously with
µ ∈ S (see Subsection 1.4 and Corollary E). This type of result was recently
obtained in [F] for quadratic maps on the set of parameters constructed
in [BC1, BC2] using a similar strategy. Hence statistical properties of the
maps fµ for µ ∈ S are stable under small variations of the parameter, i.e.
this family is statistically stable over S.

We emphasize that although the general strategy for proving our results
follows [BC1, BC2, PRV, F], several new difficulties had to be overcome.
Indeed, unlike [BC1, BC2, PRV] where the main purpose was to obtain
positive Lyapunov exponent along the orbits of critical values, here we need
to obtain positive Lyapunov exponents and slow recurrence to the critical
set along almost every orbit, which forces us to control the distance to the
critical set for far more iterates than in [PRV]. This demands at several
places a bound on the ratio between the second derivative at points near
the critical set. Moreover, there are inflection points which impose extra
restrictions on the arguments used in [PRV].

Furthermore, with infinitely many critical points the derivative of the
smooth map we consider here is not globally bounded (unlike any smooth
unimodal family, see [BC1, BC2, F]) which demanded a proof of an expo-
nential bound for the derivative along the orbits of critical values. In order
to obtain such a bound for a positive Lebesgue measure set of parameters
we changed the construction presented in [PRV] by adding a new constraint
in the exclusion of parameters algorithm.
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The paper is organized as follows. We first state precisely our results
in Subsections 1.2 to 1.4. We sketch the proof in Section 2. In Section 3
we explain how a sequence (Pn)n≥0 of partitions of S1 whose atoms have
bounded distortion under the action of fnµ is constructed. Basic lemmas are
stated and proved in Section 4. These are used to obtain the main estimates
in Section 5. In Sections 6 and 7 we use the main estimates to deduce slow
recurrence to the critical set and fast expansion for most points. In Section 8
we explain how an exponential upper bound on the growth of the derivatives
along critical orbits can be obtained through an extra condition imposed on
the construction performed in [PRV] without loss. Finally, in Section 9 we
inspect the estimates obtained during our constructions and show that they
do not depend on the parameter µ ∈ S.

1.1. Statement of the results. Let f̂ be the interval map f̂ : [−ε1, ε1]→
[−1, 1] given by

(1.1) f̂(z) =
{
azα sin(β log(1/z)) if z > 0,
−a|z|α sin(β log(1/|z|)) if z < 0,

where a > 0, 0 < α < 1, β > 0 and ε1 > 0 (see Figure 2).

Fig. 2. Graph of the circle map f

Maps f̂ as above have infinitely many critical points, of the form

(1.2) xk = x̂ exp(−kπ/β) and x−k = −xk for each large k > 0

where x̂ = exp
(
− 1
β tan−1 β

α

)
> 0 is independent of k. Let k0 ≥ 1 be the

smallest integer such that xk is defined for all |k| ≥ k0, and xk0 is a local
minimum.

We extend this expression to the whole circle S1 = I/{−1 ∼ 1}, where
I = [−1, 1], in the following way. Let f̃ be an orientation-preserving expand-
ing map of S1 such that f̃(0) = 0 and f̃ ′ > σ̃ for some constant σ̃ � 1. We
define ε = 2xk0/(1 + e−π/β), so that xk0 is the middle point of the interval
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(e−π/βε, ε), and fix two points xk0 < ŷ < ỹ < ε with

(1.3) |f̂ ′(ŷ)| � 1 and also 2
1− ετ

1 + e−π/β
xk0 > ŷ > xk0 ,

where τ is a small positive constant to be defined in what follows and we
take k0 = k0(τ) sufficiently large (and ε small enough) in order that (1.3)
holds. Then we take f to be any smooth map on S1 coinciding with f̂ on
[−ŷ, ŷ], with f̃ on S1 \ [−ỹ, ỹ], and monotone on each interval ±[ŷ, ỹ].

Finally, let fµ be the following one-parameter family of circle maps un-
folding the dynamics of f = f0:

(1.4) fµ(z) =
{
f(z) + µ for z ∈ (0, ε],
f(z)− µ for z ∈ [−ε, 0),

for µ ∈ (−ε, ε). For z ∈ S1 \ [−ε, ε] we assume only that
∣∣ ∂
∂zfµ(z)

∣∣ ≥ 2. In
what follows we write z±k (µ) = fµ(xk) for |k| ≥ k0.

Theorem 1.1 ([PRV, Theorem A]). For a given σ ∈ (1,
√
σ̃) there exists

an integer N such that taking k0 > N in the construction of (fµ)µ, we can
find a small positive constant ρ̃ such that for 0 < ρ < ρ̃ there exists a positive
Lebesgue measure subset S ⊂ [−ε,−ε2] ∪ [ε2, ε] satisfying , for every µ ∈ S,

(1) for all n ≥ 1 and all k0 ≤ |k| ≤ ∞,

(a) |(fnµ )′(z±k (µ))| ≥ σn,
(b) either |fnµ (fµ(xl))| > ε or |fnµ (fµ(xl))− xm(n)| ≥ e−ρn,

where xm(n) is the critical point nearest fnµ (fµ(xl));
(2) lim infn→∞ n−1 log |(fnµ )′(z)| ≥ log σ/3 for Lebesgue almost every

point z ∈ S1;
(3) there exists z ∈ S1 whose orbit {fnµ (z) : n ≥ 0} is dense in S1.

The statement of Theorem 1.1 is slightly different from the main state-
ment of [PRV] but the proof is contained therein.

1.2. Existence of absolutely continuous invariant probability measures.
The purpose of this work is to prove that for parameters µ ∈ S the map
fµ admits a unique absolutely continuous invariant probability measure νµ,
whose basin covers Lebesgue almost every point of S1, and to study some
of the main statistical and ergodic properties of these measures.

In what follows we write λ for the normalized Lebesgue measure on S1.
Our first result shows the existence of the SRB measure.

Theorem A. Let µ ∈ S be given. Then there exists an fµ-invariant
probability measure νµ which is absolutely continuous with respect to λ and
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such that for λ-almost every x ∈ S1 and every continuous ϕ : S1 → R,

(1.5) lim
n→∞

1
n

n−1∑
j=0

ϕ(f jµ(x)) =
�
ϕdνµ.

The proof is based on the technique of parameter exclusion developed
in [PRV] to prove Theorem 1.1 and on recent results on hyperbolic times
for non-uniformly expanding maps with singularities and criticalities, from
[ABV].

In our setting non-uniform expansion means the same as item (2) of
Theorem 1.1. However, due to the presence of (infinitely many) criticalities
and the singularity at 0, an extra condition is needed to construct the SRB
measure: we need to control the average distance to the critical set along
most orbits.

We say that fµ has slow recurrence to the critical set C = {xk : |k| ≥ k0}
∪ {0} if, for every δ > 0, there exists [ > 0 such that

(1.6) lim sup
n→∞

1
n

n−1∑
k=0

− log dist[(f
k
µ(x), C) < δ

for Lebesgue almost every x ∈ S1, where [ is a small positive value, and
dist[(x, y) = |x− y| if |x− y| ≤ [ and 1 otherwise.

Let f : I \ C → I be a C2 map. We say that C is a non-flat critical set if
there exist constants B > 1 and β > 0 such that

1
B

dist(x, C)β ≤ |f ′(x)| ≤ B dist(x, C)−β,(S1)

|log |f ′(x)| − log |f ′(y)| | ≤ B |x− y|
dist(x, C)β

,(S2)

for every x, y ∈ I \ C with |x− y| < dist(x, C)/2.
The following result ensuring the existence of finitely many physical

probability measures is proved in [ABV].

Theorem 1.2. If f satisfies (S1), (S2), is non-uniformly expanding and
has slow recurrence to the critical set C, then there are finitely many ergodic
absolutely continuous f -invariant probability measures µ1, . . . , µl such that
Lebesgue almost every point in I belongs to the basin of µi for some i ∈
{1, . . . , l}.

The maps fµ satisfy conditions (S1)–(S2) above. Indeed, we define yk =
2xk/(1 + e−π/β) for each k ≥ k0, so that xk is the middle point of the
interval (yk+1, yk). We also use a similar notation for k ≤ −k0. We will
argue using the following lemmas, which correspond to Lemmas 3.2 and 3.3
proved in [PRV].
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Lemma 1.3. There exists C > 0 depending on f̂ only (independent of
ε and µ) such that , for every x ∈ (yl+1, yl) and l ≥ k0, respectively x ∈
(yl, yl−1) and l ≤ −k0, we have

(1) C−1|xl|α−2|x− xl|2 ≤ |f(x)− f(xl)| ≤ C|xl|α−2|x− xl|2;
(2) C−1|xl|α−2|x− xl| ≤ |f ′(x)| ≤ C|xl|α−2|x− xl|.

Lemma 1.4. Let s, t ∈ [yl+1, yl] with l ≥ k0, respectively , s, t ∈ [yl, yl−1]
with l ≤ −k0. Then ∣∣∣∣f ′µ(s)− f ′µ(t)

f ′µ(t)

∣∣∣∣ ≤ K1
|s− t|
|t− xl|

where K1 > 0 is independent of l, s, t, ε and µ.

On the one hand, since 0 < α < 1, x ∈ (yl+1, yl) and |xl| < 1, from
Lemma 1.3(2) we have

C|xl|α−2|x− xl| = (C|xl|α−2|x− xl|2)|x− xl|−1 ≤ (C|xl|α−2|xl|2)|x− xl|−1

≤ C|x− xl|−1.

On the other hand, since α − 2 < 0 and |xl| < 1 we get C−1|xl|α−2|x − xl|
≥ C−1|x − xl|, showing that (S1) holds for fµ with B = C and β = 1,
whenever x ∈ (yk+1, yk) and xk is the closest critical point to x. Otherwise,
if x ∈ (yk+1, yk) and xk+1 is the closest critical point to x, then we have
|x− xk| > |x− xk+1| and so by the above calculations we get

|f ′µ(x)| ≤ C|x− xk|−1 = C|x− xk+1|−1

∣∣∣∣ x− xkx− xk+1

∣∣∣∣−1

≤ C|x− xk+1|−1,

|f ′µ(x)| ≥ 1
C
|x− xk| =

1
C
|x− xk+1|

∣∣∣∣ x− xkx− xk+1

∣∣∣∣ ≥ 1
C
|x− xk+1|.

This shows that (S1) is true for f in all cases.
To check that (S2) also holds we write

|f ′µ(x)|
|f ′µ(y)|

=
|f ′µ(x)− f ′µ(y) + f ′µ(y)|

|f ′µ(y)|
≤ 1 +

|f ′µ(x)− f ′µ(y)|
|f ′µ(y)|

and hence because log(1 + z) ≤ z for z > −1 we get

|log |f ′µ(x)| − log |f ′µ(y)| | ≤
|f ′µ(x)− f ′µ(y)|
|f ′µ(y)|

≤ K1
|x− y|
|x− xl|

,

which, by the same observation during the proof of (S1), is enough to prove
(S2) in all cases.

Thus according to Theorems 1.2 and 1.1, we only need to show that fµ
has slow recurrence to the critical set for µ ∈ S to achieve the result stated
in Theorem A. This is done in Sections 4 to 6, where a stronger result is
obtained, as explained in what follows.
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1.3. Exponential decay of correlations and Central Limit Theorem. Us-
ing some recent developments on the statistical behavior of non-uniformly
expanding maps [ALP, G] we are able to obtain exponential bounds on
the decay of correlations between Hölder continuous observables for νµ with
µ ∈ S. In addition, it follows from standard techniques that νµ also satisfies
the Central Limit Theorem. In order to achieve this we refine the arguments
in [PRV] using strong conditions on the exclusion of parameters extending
the estimates obtained therein for critical orbits to get an exponential upper
bound on the growth of the derivative along orbits of critical values, as ex-
plained in Section 8. Moreover, we are able to extend most of the estimates
from [PRV] for Lebesgue almost every orbit, yielding an exponential bound
on the Lebesgue measure of the set of points whose average distance to the
critical set during the first n iterates is small, as follows.

We first define the average distance to the critical set

(1.7) C[n(x) =
1
n

n−1∑
j=0

− log dist[(f
j
µ(x), C).

for a given [ > 0. Then we are able to prove the following.

Theorem B. Let µ ∈ S and δ > 0 be given. Then there are constants
C1, ξ1, [ > 0 depending on f̂ , σ, k0 and δ only such that R(x) = min{N ≥ 1 :
C[n(x) < δ, ∀n ≥ N} satisfies

λ({x ∈ S1 : R(x) > n}) ≤ C1e
−ξ1n.

We note that in particular this shows that fµ has slow recurrence to the
critical set and ensures the existence of the SRB measure νµ for µ ∈ S by
Theorem 1.2.

We are also able to obtain, using the same techniques, an exponential
bound on the set of points whose expansion rate up to time n is less than
the one prescribed by item (2) of Theorem 1.1. This is detailed in Section 7.

Theorem C. Let µ ∈ S be given. Then there exist constants C2, ξ2 > 0
depending on f̂ , ρ and k0 only such that E(x) = min{N ≥ 1 :

∣∣(fnµ )′(x)
∣∣ >

σn/3, ∀n ≥ N} satisfies
λ({x ∈ S1 : E(x) > n}) ≤ C2e

−ξ2n.

In particular we obtain a new proof of item (2) of Theorem 1.1, which
does not follow directly from Theorem A plus the Ergodic Theorem since it
is not obvious whether log |f ′| is νµ-integrable.

Theorems B and C ensure that for µ ∈ S there are constants C3 > 0 and
ξ3 ∈ (0, 1) such that Γn = {x ∈ S1 : E(x) > n or R(x) > n} satisfies
(1.8) λ(Γn) ≤ C3e

−ξ3n

for all n ≥ 1. This fits nicely into the following statements.
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Theorem 1.5. Let g : S1 → S1 be a transitive C2 local diffeomorphism
outside a non-flat critical set C such that (1.8) holds. Then

(1) ([ALP, Theorem 1]) there exists an absolutely continuous invariant
probability measure ν and some finite power of g is mixing with re-
spect to ν;

(2) ([G, Theorem 1.1]) there exist constants C, c > 0 such that the cor-
relation function Corrn(ϕ,ψ) =

∣∣	(ϕ ◦ gn)ψ dν −
	
ϕdν

	
ψ dν

∣∣, for
Hölder continuous observables ϕ,ψ : S1 → R, satisfies, for all n ≥ 1,

Corrn(ϕ,ψ) ≤ Ce−cn.

(3) ([ALP, Theorem 4]) ν satisfies the Central Limit Theorem: given a
Hölder continuous function φ : S1 → R which is not a coboundary
(φ 6= ψ ◦ g − ψ for any ψ : S1 → R) there exists θ > 0 such that for
every interval J ⊂ R,

lim
n→∞

ν

({
x ∈ S1 :

1√
n

n−1∑
j=0

(
φ(gj(x))−

�
φdν

)
∈ J

})
=

1
θ
√

2π

�

J

e−t
2/(2θ2) dt.

It is then straightforward to deduce the following conclusion.

Corollary D. For every µ ∈ S the map fµ has exponential decay
of correlations for Hölder continuous observables and satisfies the Central
Limit Theorem with respect to the SRB measure νµ.

1.4. Continuous variation of densities and of entropy. We note that dur-
ing the arguments in Sections 2 to 7 the constants used in every estimation
depend uniformly on the values of ρ, σ and ε which can be set right from the
start of the construction that proves Theorems B and C. This enables us to
use recent results of statistical stability and continuity of the SRB entropy
from [A, AOT], showing that both the densities of the SRB measures νµ and
the entropy vary continuously with µ ∈ S.

Let F be a family of C2 maps of S1 outside a fixed non-flat critical set
C such that for any given f ∈ F and δ1 > 0 there exists δ2 > 0 satisfying,
for every measurable subset E ⊂ S1,

λ(E) < δ2 ⇒ λ(f−1(E)) < δ1,

that is, f∗(λ) � λ. We say that a family F as above is a non-degenerate
family of maps.
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Theorem 1.6. Let a non-degenerate family F of C2 maps of S1 outside
a fixed non-flat critical set C be given such that for every f ∈ F the corre-
sponding functions E ,R : S1 → N define a family (Γn)n≥1 satisfying (1.8)
with constants C3, ξ3 not depending on f ∈ F . Then

(1) ([A, Theorem A]) the map (F , dC2)→ (L1(λ), ‖ ·‖1), f 7→ dνf/dλ ∈
L1(λ), is continuous, where dC2 is the C2 distance and ‖ · ‖1 the
L1-norm;

(2) ([AOT, Corollary C]) the map (F , dC2) → R, f 7→ hνf (f), is con-
tinuous.

We observe that F = {fµ : µ ∈ S} satisfies all the above conditions since

• f̂ is a C∞ map whose non-zero singularities, albeit infinitely many, are
of quadratic type, and near zero f̂ is bounded by |z|α;
• fµ is obtained from f̂ through a local diffeomorphism extension plus

two translations (or rigid rotations when viewed on S1);
• the values of β, ε, σ, ρ can be chosen so that

– S is given by Theorem 1.1 with positive Lebesgue measure;
– fµ for µ ∈ S satisfies (1.8) with C3, ξ3 > 0 depending only on ε, σ, ρ—

this is detailed in Section 9.

Thus we deduce the following corollary which shows that statistical prop-
erties of fµ are stable under small variations of the parameter µ within the
set S.

Corollary E. The following maps are both continuous:

S → (L1(λ), ‖ · ‖1),

µ 7→ dνµ
dλ

,
and

S → R,
µ 7→ hνµ(f).

2. Idea of the proof. From now on we fix a parameter µ ∈ S and write
C∞ =

⋃∞
n=0(fn)−1(C) for the set of pre-orbits of the critical set C. We also

write f = fµ in what follows.
Following [PRV] we consider a convenient partition {I(l, s, j)} of the

phase space into subintervals, with a bounded distortion property: trajecto-
ries with the same itinerary with respect to this partition have derivatives
which are comparable, up to a multiplicative constant. This is done as fol-
lows. Let l ≥ k0 and yl ∈ (xl, xl−1) be as defined in Subsections 1.1 and 1.2:
xl is the middle point of (yl+1, yl). We partition (xl, yl) into subintervals
I(l, s) = (xl+e−(π/β)s(yl−xl), xl+e−(π/β)(s−1)(yl−xl)), s ≥ 1. We denote by
I(l,−s) the subinterval of (yl+1, xl) symmetrical to I(l, s) with respect to xl.
We subdivide I(l,±s) into (l + |s|)3 intervals I(l,±s, j), 1 ≤ j ≤ (l + |s|)3,
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0

yl+1 xl ylxl+1 I(l,−s) I(l,s)

I(l,−s,1)
3

I(l,−s, (|l|+|s|)  )

Fig. 3. The initial partition P0

with equal length and j increasing as I(l,±s, j) is closer to xl (see Fig-
ure 3). We also perform entirely symmetric constructions for l ≤ −k0. Let
I(±k0, 1, 1) be the intervals having ±ε in their boundaries. Clearly we may
suppose that I(±k0, 1, 1) are contained in the region S1 \ [−ỹ, ỹ] where f
coincides with f̃ , and so |f ′| > σ0 > 1. Finally, for completeness, we set
I(0, 0, 0) = I(0, 0) = S1 \ [−ε, ε].

Remark 2.1. By the definition of I(l, s, j),

|I(l, s, j)| = a1
e−(π/β)(|l|+|s|)

(|l|+ |s|)3

and
a2e
−(π/β)(|l|+|s|) ≤ dist(I(l, s, j), xl) ≤ a2e

−(π/β)(|l|+|s|−1)

where |I| denotes the length of the interval I,

a1 = x̂
(eπ/β − 1)2

eπ/β + 1
and a2 = x̂

eπ/β − 1
eπ/β + 1

< 1.

Moreover, for any m ≥ 1 we have |xm − xm+1| = x̂(1 − e−π/β)e−(π/β)m.
In addition, we have dist(I(l, s, j), 0) = |xl| ± dist(I(l, s, j), xl) according
to the sign of s and consequently |x̂ − a2|e−(π/β)|l| ≤ dist(I(l, s, j), 0) ≤
(a2 + x̂)e−(π/β)|l|.

We will separate the orbit of a point x0 ∈ I \ C∞ into sequences of
consecutive iterates according to whether the point is near C or is in the
expanding region I(0, 0, 0). When xn = fn(x0) is near C, we say that n is
a return time and the expansion may be lost. But since we know that for
µ ∈ S the derivatives along the critical orbits grow exponentially fast, we
shadow the orbit of xn during a binding period by the orbit of the nearest
critical point and borrow its expansion. At the end of this binding period,
the expansion is completely recovered, which will be explained precisely in
Section 4.

This picture is complicated by the infinite number of critical points and
by the possible returns near another critical point during a binding period.
Iterates outside binding periods and return times are free iterates, where the
derivative is uniformly expanded.
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Our main objective is to obtain slow recurrence to C, which means that
the returns of generic orbits are not too close to C on the average. However,
even at a free iterate the orbits may be very close to the critical set, by the
geometry of the graph of f0, which demands a deeper analysis to achieve
slow recurrence to the critical set. Moreover, since |f ′| is not bounded from
above in our setting, we do not automatically have an exponential bound on
the derivative along orbits of critical values, which is needed to better control
the recurrence to C and must be proved by a separate argument involving a
stronger exclusion of parameters than in the algorithm presented in [PRV].

Using the slow recurrence we show that the derivative along the orbit of
Lebesgue almost every point grows exponentially fast. Using the estimates
from Sections 3 to 5 we are able to obtain more: we deduce the exponential
estimates of Theorems B and C in Sections 6 and 7.

Finally, the refinement of the parameter exclusion in [PRV] and the de-
pendence of the constants on the choices made during the entire construc-
tion are detailed in Sections 8 and 9 respectively, where we show that the
estimates are uniform in µ ∈ S.

3. Refining the partition. We are going to build inductively a se-
quence of partitions P0,P1, . . . of I (modulo a zero Lebesgue measure set)
into intervals. We will define inductively the set Rn(ω) = {r1, . . . , rγ(n)},
which is the set of return times of ω ∈ Pn up to n, and a set Qn(ω) =
{(l1, s1, j1), . . . , (lγ(n), sγ(n), jγ(n))}, which records the indices of the inter-
vals such that f ri(ω) ⊂ I(li, si, ji), i = 1, . . . , rγ(n).

In the process we will show inductively that for all n ∈ N0,

(3.1) ∀ω ∈ Pn fn+1|ω is a diffeomorphism,

which is essential for the construction itself. For n = 0 we define

P0 = {I(0, 0, 0)} ∪ {I(l, s, j) : |l| ≥ k0, |s| ≥ 1, 1 ≤ j ≤ (|l|+ |s|)3}.

It is obvious that P0 satisfies (3.1) for n = 0. We set R0(I(0, 0, 0)) = ∅
and R0(I(l, s, j)) = {0}, Q0(I(l, s, j)) = {(l, s, j)} for all possible (l, s, j) 6=
(0, 0, 0).

Remark 3.1. This means that every I(l, s, j) with |l| ≥ k0, |s| ≥ 1 and
j = 1, . . . , (|l| + |s|)3 has a return at time 0, by definition. This will be
important in Section 6.

For each (l, s) with |l| ≥ k0 and |s| ≥ 1 such that

(3.2) e−(π/β)|s| 1− e−π/β

1 + e−π/β
< τ, i.e. |s| > s(τ) = −β

π
log
(
τ

1 + e−π/β

1− e−π/β

)
,
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we define the binding period p(x) of x ∈ I(l, s) to be the largest integer
p > 0 such that

|fh(xl)| ≤ ε and |fh(x)− fh(xl)| ≤ |fh(xl)− xm(h−1)|e−τh

or(3.3)

|fh(xl)| > ε and |fh(x)− fh(xl)| ≤ ε1+τe−τh

for all 1 ≤ h ≤ p, where xm(h) is the critical point nearest fh(f(xl)) and
τ > 0 is a small constant to be specified during the construction.

Condition (3.2) failing means that I(l, s) is not close enough to C since

|x− xl| ≥ e−(π/β)|s|(yl − xl) ≥ e−(π/β)|s| 1− e−π/β

1 + e−π/β
|xl| ≥ τ |xl|

for all x ∈ I(l, s), and in this case there is no expansion loss at the point x.
Indeed, by Lemma 1.3 and using the definition of xl from (1.2) we get

(3.4) |f ′(x)| ≥ C−1|xl|α−2|x−xl| ≥ C−1|xl|α−2τ |xl| =
τ x̂α−1

C
e(1−α)(π/β)|l|.

Since 1 − α > 0 and |l| ≥ k0, this ensures that |f ′(x)| > 1 if we take
k0 = k0(τ) large enough.

Remark 3.2. As we will explain along the proof, the values of k0 and
τ−1 will both need to be taken sufficiently large. We note that k0 → ∞ as
τ → 0+. For more on these dependencies see Section 9.

We define the binding period p(l, s) of the interval I(l, s) to be the small-
est binding period of all points of this interval, that is, p(l, s) = inf{p(x) :
x ∈ I(l, s)}.

For (l, s, j) with |l| ≥ k0, |s| ≥ 1 and 1 ≤ j ≤ (|l|+ |s|)3, write I(l, s, j)+

for the union of I(l, s, j) with its two adjacent intervals in P0.
Now we assume that Pn−1 is defined and satisfies (3.1), and Rn−1, Qn−1

are also defined on each element of Pn−1. For a fixed interval ω ∈ Pn−1 there
are three possible situations.

(1) If Rn−1(ω) 6= ∅ and n < rγ(n−1) + p(lγ(n−1), sγ(n−1)) then we say
that n is a bound time for ω, put ω ∈ Pn and set Rn(ω) = Rn−1(ω),
Qn(ω) = Qn−1(ω).

(2) If either Rn−1(ω) = ∅, or n ≥ rγ(n−1) + p(lγ(n−1), sγ(n−1)) and
fn(ω) ⊂ I(0, 0, 0) ∪ I(±k0, 1, 1) and fn(ω) does not contain any
I(±k0, 1, 1), then we say that n is a free time for ω, put ω ∈ Pn and
set Rn(ω) = Rn−1(ω), Qn(ω) = Qn−1(ω).

(3) If the two conditions above fail then we consider two cases:

(a) fn(ω) does not cover completely any I(l, s, j), with |l| ≥ k0,
|s| ≥ 1 and j = 1, . . . , (|l| + |s|)3. Because fn is continuous
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and ω is an interval, fn(ω) is also an interval and thus it is
contained in some I(l, s, j)+, for certain |l| ≥ k0, |s| ≥ 1 and
l = 1, . . . , (|l|+ |s|)3, which is called the host interval.
If |s| > s(τ), then this n is an inessential return time for ω and
we set Rn(ω) = Rn−1(ω) ∪ {n}, Qn(ω) = Qn−1(ω) ∪ {(l, s, j)}
and put ω ∈ Pn.
Otherwise, |s| ≤ s(τ) and there is no expansion loss, thus n
is again a free time, put ω ∈ Pn and set Rn(ω) = Rn−1(ω),
Qn(ω) = Qn−1(ω).

(b) fn(ω) contains at least one interval I(l, s, j) with |l| ≥ k0, |s| ≥ 1
and j = 1, . . . , (|l|+ |s|)3, in which case we partition ω as follows.
We consider the sets

ω′l,s,j = f−n(I(l, s, j)) ∩ ω for |l| ≥ k0, |s| ≥ 1,

1 ≤ j ≤ (|l|+ |s|)3 and (|l|, s, j) 6= (k0, 1, 1),

ω′0,0,0 = f−n(I(0, 0, 0) ∪ I(±k0, 1, 1)) ∩ ω.
Denoting by I the set of indices (l, s, j) such that ω′l,s,j 6= ∅ we
have

(3.5) ω \ f−n(C) =
⋃

(l,s,j)∈I

ω′l,s,j .

By the induction hypothesis fn|ω is a diffeomorphism and then
each ω′l,s,j is an interval. Moreover, fn(ω′l,s,j) covers the whole
I(l, s, j) for |l| ≥ k0, |s| ≥ 1, j = 1, . . . , (|l| + |s|)3, except possi-
bly for one or two end intervals. When fn(ω′l,s,j) does not cover
entirely I(l, s, j) we enlarge ω′l,s,j gluing it with its adjacent in-
tervals in (3.5), getting a new decomposition of ω \ f−n(C) into
intervals ω l,s,j such that

I(l, s, j) ⊂ fn(ω l,s,j) ⊂ I(l, s, j)+

for |l| ≥ k0, |s| ≥ 1, 1 ≤ j ≤ (|l|+ |s|)3.
We put ω l,s,j ∈ Pn for all (l, s, j) such that ω l,s,j 6= ∅, with
|l| ≥ k0. This results in a refinement of Pn−1 at ω.
We set Qn(ω l,s,j) = Qn−1(ω) ∪ {(l, s, j)} for every non-empty
interval ω l,s,j . The interval I(l, s, j)+ is the host interval of ω l,s,j .
We define Rn(ω l,s,j) ∪ {n} and we say that n is an

(i) escape time for ω l,s,j if |l| ≥ k0 and s ≤ s(τ),
(ii) essential return time for ω l,s,j if |l| ≥ k0 and s > s(τ).

Remark 3.3. We note that if n is a free time or an escape time for z,
then x = fn(z) either is in the region S1 \ [−ε, ε] and thus |f ′(x)| � 1, or
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satisfies the inequality (3.4). Hence at free times and escape times we always
have expansion of derivatives bounded from below by some uniform constant
σ0 > 1. We stress that we may and will assume that σ0 > max{e,

√
σ̃} in

what follows.

To complete the induction step, all we need is to check that (3.1) holds
for Pn. Since for any interval J ⊂ S1,

fn|J is a diffeomorphism
C ∩ fn(J) = ∅

}
⇒ fn+1|J is a diffeomorphism,

all we are left to prove is that C ∩ fn(ω) = ∅ for all ω ∈ Pn.
Let ω ∈ Pn. If n is a free time for ω then we are done. If n is either a return

time for ω, essential or inessential, or an escape time, then by construction
we have fn(ω) ⊂ I(l, s, j)+ for some |l| ≥ k0, |s| ≥ 1, j = 1, . . . , (|l| + |s|)3
(or for (l, s, j) = (0, 0, 0)) and thus C ∩ fn(ω) = ∅. For the binding case we
use the following estimate.

Proposition 3.4. Let n ≥ 1 and ω ∈ Pn be such that n is a binding
time for ω. Then either |fn(x)| > xk0 or dist(fn(x), C) ≥ ρ0e

−ρ(n−r) for all
x ∈ ω, where r = rγ(n−1) is the last return time for ω with n < r+ p(f r(ω))
and ρ0 = 1 − e−ρ. Moreover , there is no element of C between fn(x) and
fn−r(xlr), where xlr is the critical point associated to the return at time r.

This result is enough to conclude that C ∩ fn(ω) = ∅, completing the
induction step.

Proof. We know, from item (1b) of Theorem 1.1, that for µ ∈ S, every
h ≥ 1 and all |l| ≥ k0, either

(3.6) |fh(f(xl))| > ε or |fh(f(xl))− xm(h)| ≥ e−ρh,

where xm(h) is the critical point closest to fh(f(xl)) as before. In the former
case, if n is a binding time for ω, by the the definition of binding period, for
all x ∈ ω we get

|fn(x)| ≥ |fn−rγ(n−1)(xlγ(n−1)
)| − |fn(x)− fn−rγ(n−1)(xlγ(n−1)

)|

≥ ε− ε1+τe−τ(n−rγ(n−1)) ≥ ε

xk0
(1− ετ )xk0

= 2
1− ετ

1 + e−π/β
xk0 > xk0 ,

according to condition (1.3) on the choice of k0 as a function of τ .
In the latter case in (3.6), by definition of binding (3.3) and because we

assume that ρ < τ , setting m = m(n − 1 − rγ(n−1)) for simplicity, we see
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that |fn(x)− xm| is bounded by

(3.7) |fn−rγ(n−1)(xlγ(n−1)
)− xm| − |fn(x)− fn−rγ(n−1)(xlγ(n−1)

)|

≥ e−ρ(n−1−rγ(n−1)) − |f (n−rγ(n−1))(xlγ(n−1)
)− xm|e−τ(n−rγ(n−1))

≥ e−ρ(n−rγ(n−1))(1− ε) > 0.

To complete the proof we consider the case when xlγ(n−1)
is not the

closest critical point to f rγ(n−1)(x). We first argue that no x′ ∈ C is between
fn(x) and fn−rγ(n−1)(xlγ(n−1)

). For otherwise using (3.3) and the definition
of xlγ(n−1)

we would have

1
2
|x′ − xm| < |fnµ (x)− fn−rγ(n−1)(xlγ(n−1)

)|

≤ |fn−rγ(n−1)(xlγ(n−1)
)− xm|e−τ(n−rγ(n−1))

≤ e−τ(n−rγ(n−1))

2
|x′ − xm|,

a contradiction because e−τ(n−rγ(n−1)) < 1. Hence there exists x′ ∈ C such
that x′ and xm are consecutive critical points in C and both fnµ (x) and
fn−rγ(n−1)(xlγ(n−1)

) are between x′ and xm. But then

|x′ − fn(x)| ≥ |x′ − fn−rγ(n−1)(xlγ(n−1)
)| − |fn(x)− fn−rγ(n−1)(xlγ(n−1)

)|

≥ 1
2
|x′ − xm| − |fn−rγ(n−1)(xlγ(n−1)

)− xm|e−τ(n−rγ(n−1))

≥ 1
2
|x′ − xm| −

1
2
|x′ − xm|e−τ(n−rγ(n−1))

≥ 1
2
|x′ − xm|(1− e−τ(n−rγ(n−1))).

We observe that since x′ and xm are consecutive critical points, x′ is either
xm+1 or xm−1, thus

|x′ − xm| ≥ 2|fn−rγ(n−1)(xlγ(n−1)
)− xm| ≥ 2e−ρ(n−rγ(n−1)).

Combining the last two inequalities and taking into account that ρ < τ gives

|x′ − fn(x)| ≥ e−ρ(n−rγ(n−1))(1− e−τ(n−rγ(n−1)))

≥ e−ρ(n−rγ(n−1))(1− e−ρ(n−rγ(n−1))).

Choosing ρ and ε close to 0 such that e−ρ > ε (ρ < log 2 and ε < 1/2 is
enough) we get 1−ε > 1−e−ρ and we may then replace 1−ε by ρ0 = 1−e−ρ
in (3.7), finishing the proof since 1− e−ρ(n−rγ(n−1)) ≥ 1− e−ρ = ρ0.
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4. Auxiliary lemmas. Here we collect some intermediate results need-
ed for the proofs of the main estimates. In all that follows we write C for a
constant depending only on the initial map f̂ or f0.

Lemma 4.1 ([PRV, Lemma 3.1]). Given α1, α2, β1, β2 with α1/α2 6=
β1/β2, there exists δ > 0 such that , for every x, at least one of the following
assertions hold : |α1 sinx+ β1 cosx| ≥ δ or |α2 sinx+ β2 cosx| ≥ δ.

Using this we obtain the following property of bounded distortion for the
second derivative near critical points. Observe that since there are inflection
points between consecutive critical points, the lower bound cannot hold in
general, so we restrict this bound to a small scaled neighborhood of the
critical set, reducing the value of τ > 0 if needed.

Lemma 4.2. There exists τ > 0 small enough and a constant C > 0
depending only on f̂ such that for every k ≥ k0 and t ∈ [yk+1, yk] we have
|f ′′(t)|/|f ′′(xk)| ≤ C.

Moreover , we can find a constant C, depending only on f̂ and τ , such
that for |t− xk| < τ |xk| we have |f ′′(t)|/|f ′′(xk)| ≥ C−1.

Note that the condition on the lower bound above is satisfied by all points
in a return situation, either essential or inessential, during the construction
of the sequence of partitions Pn, as detailed in the previous Section 3.

Proof. Since f is symmetric we can assume without loss that z > 0 in
what follows. We compute

f ′(z) = −azα−1[α sin(β log z) + β cos(β log z)],

f ′′(x) = −azα−2[A sin(β log z) +B cos(β log z)],

where A = α(α− 1)− β2 and B = β(2α− 1). Note that for z = xl we have

0 = f ′(xl) = α sin(β log xl) + β cos(β log xl)

and
α

A
6= β

B
⇔ α2 + β2 6= 0, which is true, since α, β > 0.

Applying Lemma 4.1 we get, because f ′(xk) = 0,

|f ′′(t)|
|f ′′(xk)|

≤
∣∣∣∣xk+1

xk

∣∣∣∣α−2 |A|+ |B|
δ

≤ e−(π/β)(α−2) |A|+ |B|
δ

,

where the last inequality is a direct consequence of (1.2).
Now for the lower bound we compute the zeroes of f ′′ and obtain

zk = ẑ exp
(
−kπ

β

)
for k ≥ k0, where ẑ = exp

(
1
β

tan−1 β(2α− 1)
β2 − α2 + α

)
.

By the expressions for the zeroes of f ′ and the zeroes of f ′′ we see that
their distance is scaled by a common factor. Thus if we consider a scaled
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neighborhood of each xl specified by a small enough τ > 0, that is, consid-
ering only t with |t− xl| < τ |xl|, then we ensure that t is far away from the
inflection point.

Moreover, the value of the quotient in the statement of the lemma is
invariant under the scaling: let l > k ≥ k0 and |t−xk| < τ |xk|. Then on the
one hand,

e−(l−k)π/β|t− xk| = |s− xl| < τ |xl| where s = te−(l−k)π/β.

On the other hand,

|f ′′(s)|
|f ′′(xl)|

=
|asα−2[A sin(β log s) +B cos(β log s)]|
|axα−2

l [A sin(β log xl) +B cos(β log xl)]|

=
|a(te−(l−k)π/β)α−2[A sin(β log t+ (k − l)π) +B cos(β log t+ (k − l)π)]|
|a(xke−(l−k)π/β)α−2[A sin(β log xk+(k−l)π)+B cos(β log xk+(k−l)π)]|

is the same value of |f ′′(t)|/|f ′′(xk)|. Therefore the lower bound is given by

inf
{
|f ′′(t)|
|f ′′(xk)|

: |t− xk| < τ |xk|
}

for any k ≥ k0. Taking C > 0 large enough we conclude the proof.

The next result guarantees that orbits of points in [−Cεα,−ỹ]∪ [ỹ, Cεα]
remain expanding during a number m0 of iterates that can be fixed arbi-
trarily large by reducing ε and µ. Recall that |f̃ ′| > σ0 � 1 and that f is
C1-close to f̃ outside [−ỹ, ỹ] if µ is small.

Lemma 4.3 ([PRV, Lemma 6.1]). There exist c, C>0 and m0≥c log(1/ε)
such that if ỹ < |x| ≤ Cεα, then f i(x) /∈ [−ỹ, ỹ] and |f ′(f i(x))| ≥ σ0 for all
1 ≤ i ≤ m0 and all µ ∈ [−ε, ε].

Next we establish some results of bounded distortion and uniformly
bounded expansion during binding periods.

Lemma 4.4 (Bounded distortion on binding periods). There exists A =
A(C, τ) > 1 such that for all x ∈ I(l, s) we have

1
A
≤
∣∣∣∣ (f j)′(ξ)
(f j)′(f(xl))

∣∣∣∣ ≤ A
for every 1 ≤ j ≤ p(l, s) and every ξ ∈ [f(xl), f(x)].

Proof. We let η = f(xl) and consider 0 ≤ i < j. There are two cases to
treat, corresponding to the two possibilities in (3.3). If |f i(η)| ≤ ε then, by
Lemma 1.4,∣∣∣∣f ′(f i(ξ))− f ′(f i(η))

f ′(f i(η))

∣∣∣∣ ≤ C |f i(ξ)− f i(η)|
|f i(η)− xm(i)|

≤ Ce−τi.
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If |f i(η)| > ε, then |f i(ξ) − f i(η)| ≤ ε1+τe−τi � ε and so the interval
bounded by f i(ξ) and f i(η) is contained in the region S1 \ [−ỹ, ỹ], where
f = f̃ . Thus,∣∣∣∣f ′(f i(ξ))− f ′(f i(η))

f ′(f i(η))

∣∣∣∣ ≤ C|f i(ξ)− f i(η)| ≤ Cε1+τe−τi ≤ Ce−τi.

Putting together all the above we get
j−1∑
i=0

∣∣∣∣f ′(f i(ξ))− f ′(f i(η))
f ′(f i(η))

∣∣∣∣ ≤ C j∑
i=0

e−τi ≤ C.

Thus

log
∣∣∣∣ (f j)′(ξ)(f j)′(η)

∣∣∣∣ ≤ j−1∑
i=0

log
(

1 +
∣∣∣∣f ′(f i(ξ))f ′(f i(η))

− 1
∣∣∣∣) ≤ j−1∑

i=0

∣∣∣∣f ′(f i(ξ))f ′(f i(η))
− 1
∣∣∣∣ ≤ C,

and the statement of the lemma follows.

Now we prove an exponential bound on the derivative along the orbit of
each critical value zk with |k| ≥ k0. This is needed to get a lower bound for
the binding time p in terms of the position of the return interval given by
(l, s) in the following Lemma 4.6. This demands a proof since the derivative
of f is unbounded due to the presence of infinitely many critical points,
unlike the quadratic family where we have this property for free.

In our setting we will obtain this by imposing an extra condition, besides
item (1b) from Theorem 1.1, in the construction of the set S of parameters
µ which we shall consider in the proof of Theorems B and C. This condition
is expressed by the inequality

(4.1)
n−1∑
j=0

− log dist(f jµ(zk), C) ≤ M̂n,

for all n ≥ 1 which are not bound times for the orbit of the critical value
zk, for every |k| ≥ k0 and for some fixed large constant M̂ > 0. Since for all
x ∈ I we have |x| ≥ dist(x, C) this implies

(4.2)
n−1∑
j=0

− log |f jµ(zk)| ≤ M̂n

and we are able to deduce the following.

Lemma 4.5. Assume that (4.2) holds for some µ ∈ S. Then there exists
a constant M > 0 such that

∣∣(fn)′(zk)
∣∣ ≤Mn for all n ≥ 1 and |k| ≥ k0.

Proof. Note that just by taking the derivative of f we see that there
exists a constant C > 0 such that |f ′(x)| ≤ C|x|α−1. On the one hand, for
n ≥ 1 such that n is not a bound time for zk and |k| ≥ k0 we use (4.2) to
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get

∣∣(fn)′(zk)
∣∣ ≤ n−1∏

j=0

C|f jµ(zk)|α−1

≤ exp
(n−1∑
j=0

(logC + (α− 1) log |f jµ(zk)|)
)

≤ exp(n logC + (1− α)M̂n) = M̃n,

where M̃ = exp(logC+(1−α)M̂). We can assume without loss that M̃ > A
where A > 1 is given by Lemma 4.4.

On the other hand, if n is a bound time for zk, let t1 < n be the return
time for zk which originated the binding and zl1 be the corresponding bound
critical value. Then by Lemma 4.4,

|(fn)′(zk)| ≤ A|(fn−t1)′(zl1)| · |(f t1)′(zk)|.

If t1 is not a bound time for zl1 , then by the bound just proved for all critical
values on free times and return situations we bound the last expression by
AM̃n−t1M̃ t1 = AM̃n. Otherwise there are t2 < n − t1, the return time for
zl1 which originated the binding, and zl2 , the corresponding bound critical
value, and as above we get

|(fn)′(zk)| ≤ A2|(fn−t1−t2)′(zl2)| · |(f t2)′(zl1)| · |(f t1)′(zk)|.

If n − t1 − t2 is not a bound time for zl2 we bound this expression by
A2M̃n−t1−t2M̃ t2M̃ t1 ≤ A2M̃n. Otherwise we repeat the argument. Knowing
that the orbit of every critical value has an initial number j0 � 1 of free
iterates [PRV, beginning of Section 4, p. 450], we see that this argument
must end in a free time and we arrive at

∣∣(fn)′(zk)
∣∣ ≤ AlM̃n where l < n is

the number of nested binding periods obtained. Since M̃ > A we conclude
the proof of the lemma by setting M = M̃2.

Now we obtain the estimates for the binding time assuming that (4.2)
holds for µ ∈ S. In Section 8 we explain how to obtain (4.2) for a positive
measure subset of parameters in S.

Lemma 4.6 (Expansion during binding periods). There are constants
A0 = A0(ε, ρ, τ) > 1, ι = ι(M) > 0 and θ = θ(M, ε, ρ, τ) ∈ N such that for
n ≥ 1 and ω ∈ Pn with Rn(ω) 6= ∅, if r is the last return time for ω and
f r(ω) ⊂ I(l, s, j), then setting p = p(l, s) > 0 and ζ = 2(ρ + τ)/log σ we
have, for τ small enough:

(a) ι(M)(|l|+ |s|) ≤ p ≤ 2π
β log σ

(|l|+ |s|);
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(b) |(fp+1)′(f r(x))| ≥ 1
C
ε1+τ exp

(
(1− ζ)

π

β
(|l|+ |s|)

)
and if |l|+ |s| ≥ θ, then

|(fp+1)′(f r(x))| ≥ 1
C

exp
(
π

β
(|l|+ |s|)

)
,

for every x ∈ ω;
(c) |(fp+1)′(f r(x))| ≥ A0σ

(p+1)/3 > 2 for every x ∈ ω.

Proof. To prove item (a), we use the definition of the partition and
the construction of the refinement. As p > 0, (l, s, j) 6= (±k0, 1, 1) and so
|f r(x) − xl| ≥ a2e

−(π/β)(|l|+|s|), by Remark 2.1, where x is any given point
in ω. Using the second order Taylor approximation and Lemma 4.2 we get

|f r+1(x)− f(xl)| ≥
1
C
|f ′′(xl)|(a2e

−(π/β)(|l|+|s|))2

≥ 1
C
e−(π/β)|l|(α−2)e−2(π/β)(|l|+|s|),

where |f ′′(xl)| ≥ C−1|xl|α−2 = C−1x̂α−2e−(π/β)|l|(α−2) by Lemma 1.3(2).
Then for each 0 ≤ j ≤ p, there is some ξ between f(xl) and f r+1(x) such
that

|f j+r+1(x)− f j+1(xl)| = |(f j)′(ξ)| · |f r+1(x)− f(xl)|(4.3)

≥ C−1e−(π/β)|l|(α−2)e−2(π/β)(|l|+|s|)|(f j)′(ξ)|.

Now since α − 2 < 0 and we can take |l| ≥ k0 very large, as a consequence
of Lemma 4.4 and of the exponential growth of the derivative at the critical
orbits, we get the bound

2e−2(π/β)(|l|+|s|)σj ≤ |f j+r+1(x)− f j+1(xl)| ≤ 2.

Hence e−2(π/β)(|l|+|s|)σj ≤ 1 for all 1 ≤ j ≤ p. In particular,

−2(π/β)(|l|+ |s|) + p log(σ) ≤ 0, implying p ≤ 2(π/β)(|l|+ |s|)
log σ

,

thus proving the upper bound in (a).
For the lower bound in (a), we note that by the definition of binding

period, we have

(4.4) |fp+r+1(x)− fp+1(xl)|

≥
{
|fp+1(xl)− xm(p)|e−τ(p+1) if |fp+1(xl)| ≤ ε,
ε1+τe−τ(p+1) if |fp+1(xl)| > ε.
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So in either case using Lemmas 4.4 and 4.5 we get

|fp+r+1(x)− fp+1(xl)| = |(fp)′(ξ)| · |f r+1(x)− f(xl)|
≤ A|(fp)′(zl)| · |f r+1(x)− f(xl)|
≤ AMpC|xl|α−2|f r(x)− xl|2

≤ AMpCe−(π/β)(α|l|+2|s|) ≤ AMpe−α(π/β)(|l|+|s|),

where ξ is some point between f r+1(x) and f(xl) and in the third line above
we have used Lemma 1.3.

On the one hand, if |fp+1(xl)| > ε then we arrive at ε1+τe−τ(p+1) ≤
AMpe−α(π/β)(|l|+|s|). On the other hand, if |fp+1(xl)| ≤ ε then by condition
(1b) from Theorem 1.1 we arrive at e−ρpe−τ(p+1) ≤ AMpe−α(π/β)(|l|+|s|). In
both cases if we take M large enough, then we get a bound of the form
p ≥ ι(M)(|l|+ |s|) concluding the proof of (a).

Now we prove (b). Since p+ 1 is not a binding time we must have (4.4)
as before. Using Theorem 1.1(1b), setting

∆p+1 = min{ε1+τe−τ(p+1), e−(ρ+τ)(p+1)}
we get for some ξ ∈ [f(xl), f r+1(x)], by Lemma 4.4, and using second or-
der Taylor expansion of f near xl together with the upper bound from
Lemma 4.2,

∆p+1 ≤ |fp+1(xl)− fp+r+1(x)| = |(fp)′(ξ)| · |f(xl)− f r+1(x)|(4.5)

≤ C|(fp)′(f r+1(x))| · |f ′′(xl)| · |f r(x)− xl|2.
Note that the second order Taylor expansion near xl gives

|f(xl)− f r+1(x)| =
∣∣∣∣f ′(xl)(xl − f r(x)) +

f ′′(ξ)
2

(xl − f r(x))2
∣∣∣∣

=
∣∣∣∣f ′′(ξ)2

(xl − f r(x))2
∣∣∣∣

for some ξ between xl and f r(x). Together with Lemma 4.2 we obtain the
bound in (4.5).

On the other hand, using Lemma 1.3 and again Lemma 4.4 we get

|(fp+1)′(f r(x))| = |f ′(f r(x))| · |(fp)′(f r+1(x))|
≥ C−1|xl|α−2|f r(x)− xl| · |(fp)′(f r+1(x))|.

Hence by the previous expression together with (4.5) we deduce

|(fp+1)′(f r(x))| ≥ ε1+τe−(ρ+τ)(p+1)

C|f r(x)− xl|
≥ 1
C
ε1+τe−(ρ+τ)(p+1)e(π/β)(|l|+|s|).

Now we have two possibilities: either ε > e−(ρ+τ)(p+1) or not. In the former
case we obtain, by the upper bound in item (a) and because we can assume
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that 2 + τ ≤ 3 and ρ+ τ ≤ 1,

|(fp+1)′(f r(x))| ≥ e−(2+τ)(ρ+τ)(p+1)e(π/β)(|l|+|s|) ≥ 1
C

exp
(
π

β
(|l|+ |s|)

)
.

In the latter case we get

|(fp+1)′(f r(x))| ≥ C−1ε1+τ exp
((

1− ρ+ τ

log σ

)
π

β
(|l|+ |s|)

)
.

Observe that in this case log ε ≤ −(ρ+ τ)(p+ 1), thus by the lower bound
in item (a) and since k0 = C log(1/ε) we have

(ρ+ τ)ι(M)(|l|+ |s|+ 1) ≤ (ρ+ τ)(p+ 1) ≤ Ck0.

So if |l|+|s| ≥ θ with (ρ+τ)ι(M)(θ+1) > Ck0 then only the first alternative
can happen. This concludes the proof of item (b).

In order to prove (c) we use Lemma 4.4 once again and the Mean
Value Theorem applied to f ′ near xl together with the lower bound from
Lemma 4.2 to get

(4.6) |(fp+1)′(f r(x))|2 = |(fp)′(f r+1(x))|2 · |f ′(f r(x))|2

≥ (C−1|(fp)′(f(xl))| · |(fp)′(f r+1(x))|)(C−1|f ′′(xl)|2|f r(x)− xl|2)

= C−1|(fp)′(f(xl))| · |f ′′(xl)|(|(fp)′(f r+1(x))| · |f ′′(xl)| · |f r(x)− xl|2).

Note that we can use the lower bound from Lemma 4.2 because r is a return
time, not an escape nor a free time. Comparing the last expression (4.6)
with (4.5) we see that (4.6) is bounded below by

C−1|(fp)′(f(xl))| · |f ′′(xl)|(|(fp)′(ξ)| · |f(xl)− f r+1(x)|)
= C−1|(fp)′(f(xl))| · |f ′′(xl)| · |fp+1(xl)− f r+p+1(x)|.

Finally, from Lemma 1.3(2) we deduce the lower bound

C−1σpC−1|xl|α−2|fp+1(xl)− f r+p+1(x)|.(4.7)

Now we consider two cases.
On the one hand, if |fp+1(xl)| > ε then, by the definition of p in (3.3), we

must have |fp+1(xl)− f r+p+1(x)| > ε1+τe−τ(p+1). The bound (4.7) together
with α− 2 < 0 and |xl| ≤ ε implies that

|(fp+1)′(f r(x))|2 ≥ C−2σpεα−2|fp+1(xl)− f r+p+1(x)|.
Now we can write

|(fp+1)′(f r(x))|2 ≥ C−1σpεα−1+τe−τ(p+1) ≥ A2
0σ

2(p+1)/3,

if we fix τ < min{1− α, log σ/3} and take ε small enough.
On the other hand, if |fp+1(xl)| ≤ ε then |fp+1(xl) − f r+p+1(x)| >

|fp+1(xl)− xm(p)|e−τ(p+1) by (3.3).
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Finally, we note that there is only one possibility according to item (1b)
of Theorem 1.1, that is, |fp+1(xl) − xm(p)| ≥ e−ρp, and thus |fp+1(xl) −
f r+p+1(x)| > C−1εe−(ρ+τ)(p+1). Hence

|(fp+1)′(f r(x))|2 ≥ C−1σpεα−2e−(ρ+τ)(p+1) ≥ A2
0σ

2(p+1)/3

as long as we take ε, ρ and τ small enough. This concludes the proof.

Remark 4.7. Note that ι(M)→ 0 as M →∞.

Now we will obtain estimates of the length of |fn(ω)|.

Lemma 4.8 (Lower bounds on the length at return times). Let r be
an essential or an inessential return time for ω ∈ Pn−1, with host interval
I(l, s, j)+. Let p = p(l, s) denote the length of its binding period and set

Q = Q(l, s, τ, ρ) =
ε1+τ

(|l|+ |s|)3
eζ(π/β)(|l|+|s|).

(1) Assuming that r∗ ≤ n − 1 is the next return situation for ω (either
essential , inessential or an escape), we have

|fk(ω)| ≥ Qσq0e
(1−2ζ)(π/β)(|l|+|s|)|f r(ω)|

for q = k − (r + p + 1) and every k such that r + p + 1 ≤ k ≤ r∗.
Moreover ,

|fk(ω)| ≥ σq0A0σ
(p+1)/3|f r(ω)| ≥ A0|f r(ω)| > |f r(ω)|.

(2) If r is the last return time for ω up to iterate n − 1 and also an
essential return, and r∗ is a return time for ω, then setting q =
k − (r + p+ 1) we have

|fk(ω)| ≥ a1Qσ
q
0e
−2ζ(π/β)(|l|+|s|) for all r + p+ 1 ≤ k ≤ r∗.

Suppose that r is an escape time for ω ∈ Pn−1.

(3) If r∗ ≤ n − 1 is the next return situation for ω, then |fk(ω)| ≥
σk−r0 |f r(ω)| for every k such that r < k ≤ r∗.

Remark 4.9. Note that Q = Q(l, s, τ, ρ)→∞ as |l|+ |s| → ∞.

Proof. We start by assuming r∗ ≤ n− 1. By the mean value theorem we
have |f r∗(ω)| ≥ |(f r∗−r)′(f r(ξ))| · |f r(ω)| for some ξ ∈ ω. Using Remark 3.3
and Lemma 4.6 we get, by setting q = r∗ − (r + p+ 1),

|f r∗(ω)| ≥ |(f q)′(f r+p+1(ξ))| · |(fp+1)′(f r(ξ))| · |f r(ω)|(4.8)

≥ σq0
1
C
ε1+τe(1−ζ)(π/β)(|l|+|s|)|f r(ω)|

≥ σq0
ε1+τ

C
eζ(π/β)(|l|+|s|)e(1−2ζ)(π/β)(|l|+|s|)|f r(ω)|.

Taking into account the definition of Q we obtain the first part of item (1).
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If r is an essential return time for ω, then I(l, s, j) ⊂ f r(ω) and |f r(ω)| ≥
a1e
−(π/β)(|l|+|s|)/(|l|+ |s|)3, hence

|f r∗(ω)| ≥ σq0
ε1+τeζ(π/β)(|l|+|s|)

C(|l|+ |s|)3
a1e
−2ζ(π/β)(|l|+|s|),

and by the definition of Q this proves (2).
For the second part of item (1) just use the inequality from Lemma 4.6(c)

in the first line of (4.8).
To get item (3) observe that between the iterate r and r∗ − 1 there are

only free iterates for ω, thus the estimate follows by the uniform expanding
rate at free times.

Altogether this concludes the proof of the lemma for the case k = r∗.
For the other cases r + p < k ≤ r∗ observe that only the number of free
iterates after the last bound iterate until k is affected, and this number
equals q = k − (r + p+ 1).

Lemma 4.10 (Bounded distortion). There is a constant D0 = D0(ρ, τ, σ)
> 0 such that for ω ∈ Pn−1, n ∈ N, and for every x, y ∈ ω we have

|(fn)′(x)|/|(fn)′(y)| ≤ D0.

Proof. Let

Rn−1(ω) = {r1, . . . , rγ} and Qn−1(ω) = {(l1, s1, j1), . . . , (lγ , sγ , jγ)}
be the sets of return situations (essential returns, inessential returns and
escapes) and indices of host intervals of ω, respectively, as defined during the
construction of the partition. Let ωi = f ri(ω), pi = p(li, si) for i = 1, . . . , γ
and, for y, z ∈ ω, let yk = fk(y) and zk = fk(z) for k = 0, . . . , n−1. Observe
that ωi ⊂ I(li, si, ji)+ for all i and∣∣∣∣ (fn)′(z)

(fn)′(y)

∣∣∣∣ =
n−1∏
k=0

∣∣∣∣f ′(zk)f ′(yk)

∣∣∣∣ ≤ n−1∏
k=0

(
1 +

∣∣∣∣f ′(zk)− f ′(yk)f ′(yk)

∣∣∣∣).(4.9)

On free iterates, if yk ∈ [−ε, ε], then by Lemma 1.4,

(4.10)
∣∣∣∣f ′(zk)− f ′(yk)f ′(yk)

∣∣∣∣ ≤ K1

∣∣∣∣ zk − ykyk − x̃k

∣∣∣∣ ≤ K1
|fk(ω)|
∆k(ω)

,

where we define ∆k(ω) = dist(fk(ω), C) = infx∈ω dist(fk(x), C) and x̃k is the
critical point closest to yk. We observe that in this case the interval fk(ω) is
between two consecutive critical points, xlk and xlk+1, and is contained in
some I(lk, sk, jk)+ with sk ≤ s(τ). Note that by the exponential character
of the initial partition, we have

(4.11) |fk(ω)| ≤ C|I(lk, sk, 1)+| and ∆k(ω) ≥ C−1|I(lk, sk)|

for some constant C > 0 depending only on f̂ (see Remark 2.1).
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Otherwise for free iterates yk ∈ S1 \ [−ε, ε] we get

(4.12)
∑

ri+pi<k<ri+1

|yk|>ε

∣∣∣∣f ′(zk)− f ′(yk)f ′(yk)

∣∣∣∣
≤ L

σ̃

∑
ri+pi<k<ri+1

|yk|>ε

|zk − yk| ≤
L

σ̃

∑
ri+pi<k<ri+1

|yk|>ε

|fk(ω)|

≤ L

σ̃

∑
ri+pi<k<ri+1

σ
k−ri+1

0 |f ri+1(ω)| ≤ K2
|ωi+1|

∆ri+1(ω)

by definition of f on S1\ [−ε, ε], since |f ′|S1\ [−ε, ε]| > σ̃ and |f ′′|S1\ [−ε, ε]|
≤ L for some constant L. We also recall that ∆ri+1(ω) < 1 by definition.

For an escape time k = ri with i ∈ {1, . . . , γ} we have either |yk| ≤ ε
and then we have the inequality (4.10), or |yk| > ε and we get as in (4.12)

(4.13)
∣∣∣∣f ′(zk)− f ′(yk)f ′(yk)

∣∣∣∣ ≤ L

σ̃
|zk − yk| ≤

L

σ̃
|fk(ω)| ≤ K3

|ωi|
∆ri(ω)

.

Hence up to now all cases are bounded by the same type of expression.
Next we find a bound for iterates during binding times. Let us fix i =

1, . . . , γ such that ri is not an escape time for ω, i.e. it is either an essential
or inessential return time. Then for k = ri we have the same bound (4.10).
For ri < k ≤ ri + pi we get, for some ξ ∈ ω,

|zk − yk| = |(fk−ri)′(f ri(ξ))| · |zri − yri | ≤ |(fk−ri)′(f ri(ξ))| · |f ri(ω)|

= |(fk−ri−1)′(f ri+1(ξ))| · |f ′(f ri(ξ))− f ′(xli)| · |ωi|

≤ C|(fk−ri−1)′(f ri+1(ξ))| · |f ′′(xli)| · |f
ri(ξ)− xli | · |ωi|,

where we have used the Mean Value Theorem applied to f ′ near the critical
point xli together with the upper bound from Lemma 4.2.

We now have two possibilities by definition of pi. On the one hand, for
the first case in (3.3) there exists w ∈ [f(xli), f

ri+1(ξ)] such that, by second
order Taylor expansion and the lower bound from Lemma 4.2,

(4.14) |fk−ri(xli)− xm(k−ri−1)|e−τ(k−ri) ≥ |fk(ξ)− fk−ri(xli)|

= |(fk−ri−1)′(w)| · |f ri+1(ξ)− f(xli)|

≥ C−1|(fk−ri−1)′(w)| · |f ′′(xli)| · |f
ri(ξ)− xli |

2

≥ (AC)−1|(fk−ri−1)′(f ri+1(ξ))| · |f ′′(xli)| · |f
ri(ξ)− xli |

2,

where we have used Lemma 4.4 in the last inequality. Note that we can use
the lower bound from Lemma 4.2 since ri is an essential or inessential return
time for ω.
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The last two expressions together show that

|zk − yk| · |f ri(ξ)− xli | ≤ AC
2|fk−ri(xli)− xm(k−ri−1)|e−τ(k−ri)|ωi|.

This and Lemma 1.4 provide∣∣∣∣f ′(zk)− f ′(yk)f ′(yk)

∣∣∣∣ ≤ K1

∣∣∣∣ zk − ykyk − x̃k

∣∣∣∣
≤ AC2K1e

−τ(k−ri) |ωi| · |f
k−ri(xli)− xm(k−ri−1)|

|f ri(ξ)− xli | · |yk − x̃k|
.

To bound the denominator from below, we note that clearly |f ri(ξ)− xli | ≥
∆ri(ω) since ξ ∈ ω and xli ∈ C. Moreover, from Proposition 3.4, the closest
critical point x̃k to yk and the closest critical point xm(k−ri−1) to fk−ri(xli)
are either equal or else consecutive critical points of f , and in the latter
case, both ωk and fk−ri(xli) lie between these consecutive critical points. In
the case x̃k = xm(k−ri−1) we can bound the previous expression by

De−τ(k−ri)
|ωi|

∆ri(ω)
·

|fk−ri(xli)− xm(k−ri−1)|
|fk−ri(xli)− xm(k−ri−1)| − |yk − fk−ri(xli)|

≤ D e−τ(k−ri)

1− e−τ(k−ri)
· |ωi|
∆ri(ω)

≤ D1e
−τ(k−ri) |ωi|

∆ri(ω)
.

But when x̃k 6= xm(k−ri−1), since yk and fk−ri(xli) are between these critical
points, we have

|x̃k − yk| ≥ |x̃k − fk−ri(xli)| − |yk − f
k−ri(xli)|

≥ |fk−ri(xli)− xm(k−ri−1)| − e−τ(k−ri)|fk−ri(xli)− xm(k−ri−1)|

= (1− e−τ(k−ri))|fk−ri(xli)− xm(k−ri−1)|,
and we arrive at the same bound as before.

On the other hand, for the second case in (3.3) we get a similar inequality
in (4.14) providing

|zk − yk| · |f ri(ξ)− xli | ≤ AC
2ε1+τe−τ(k−ri)|ωi|,

and thus by definition of f̃ we get∣∣∣∣f ′(zk)− f ′(yk)f ′(yk)

∣∣∣∣ ≤ L|zk − yk|
σ̃

≤ ACL

σ̃
e−τ(k−ri)

|ωi|ε1+τ

|f ri(ξ)− xli |

≤ D2e
−τ(k−ri) |ωi|

∆ri(ω)
.

This shows that for every i = 1, . . . , γ which is not an escape time, we have

(4.15)
ri+∑̀
k=ri

∣∣∣∣f ′(zk)− f ′(yk)f ′(yk)

∣∣∣∣ ≤ D3
|ωi|

∆ri(ω)
≤ 1
C
· |I(li, si, ji)+|
|I(li, si)|
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for all ` = 1, . . . , pi, where we have used the definition of ωi and of host
interval, together with the same estimate as in (4.11).

Considering (4.10), (4.12), (4.13) and (4.15) and summing over all iter-
ates we obtain

n−1∑
k=0

∣∣∣∣f ′(zk)− f ′(yk)f ′(yk)

∣∣∣∣ ≤ D4

∑
k∈F1

|fk(ω)|
∆k(ω)

(4.16)

+
(
L

σ̃
+K2

) ∑
k∈F2

|fk(ω)|.

Here F1 is the set of free iterates together with return situations (essential
and inessential returns and escapes) from k = 0 to k = n − 1 and F2 is
the set of free iterates which are not followed by any return, from rγ + pγ
to n. Moreover, D4 is a constant depending only on ε, τ and σ̃. So if we
can bound (4.16) uniformly we then also find a uniform bound on (4.9) and
complete the proof of the lemma.

The righmost sum in (4.16) is bounded:

∑
k∈F2

|fk(ω)| ≤
n−1∑
k=0

σ̃k−n|fn(ω)| ≤ C,

since |fn(ω)| is always less than 1. Now we bound the other sum:∑
k∈F1

|fk(ω)|
∆k(ω)

≤
∑
k∈F1

(lk,sk)=(0,0)

|fk(ω)|
∆k(ω)

+
∑
|l|≥k0

∑
|s|≥1

∑
k∈F1

(lk,sk)=(l,s)

|fk(ω)|
∆k(ω)

≤ C σ1

σ1 − 1
+
∑
|l|≥k0

∑
|s|≥1

σ1

σ1 − 1
· 1
C
· |f

q(l,s)(ω)|
|I(l, s)|

,

by (4.11), where q(l, s) = max{0 ≤ k ≤ n−1 : (l̂k, ŝk) = (l, s)} and we make
the convention that whenever {0 ≤ k ≤ n− 1 : (l̂q, ŝq) = (l, s)} = ∅ we have
|f q(l,s)(ω)|/|I(l, s)| = 0. We have used the following estimate for any given
fixed value of (l, s):∑
{k : ŝk=s}

|fk(ω)| ≤ |f q(l,s)(ω)|
∑

{k : (l̂k,ŝk)=(l,s)}

σ
k−q(l,s)
1 ≤ σ1

σ1 − 1
|f q(l,s)(ω)|

≤ C|I(l, s, j)+|,

because writing {k : ŝk = s} = {k1 < · · · < kh} we have |fki(ω)| ≤
σ−1

1 |fki+1(ω)| for i = 1, . . . , h, where 1 < σ1 = min{σ0, e
(1−2ζ)(π/β)(k0+1)} ≤

min{σ0, e
(1−2ζ)(π/β)(|l|+|s|)}, by Lemma 4.6(b) together with Remark 3.3.



240 V. Araújo and M. J. Pacifico

We observe that by construction we must have |I(l, s, j)+|/|I(l, s)| ≤
9(|l|+ |s|)−3 and so we arrive at∑

k∈F1

|fk(ω)|
∆k(ω)

≤ C
∑
|l|≥k0

∑
|s|≥1

9
(|l|+ |s|)3

<∞,

finishing the proof of the lemma.

5. Probability of deep essential returns. Here we use the results
from Section 4 to estimate the probability of having an orbit with a given
sequence of host intervals at essential return situations.

Recall that C∞ =
⋃∞
n=0(fn)−1(C) is the set of pre-orbits of the critical

set C. For each x ∈ I \ C∞ let ω be the element of Pn which contains x.
Consider the sets Rn(ω) and Qn(ω) of return situations (essential and

inessential returns and escapes) and indices of host intervals for ω, during the
iterates 0 to n. Let un(ω) denote, for ω ∈ Pn, the number of essential returns
or escapes associated to ω between 0 and n, let 0 ≤ t1(ω) ≤ · · · ≤ tun(ω) ≤ n
be the instants of occurrence of the essential returns or escapes, and let
(l1, s1, j1), . . . , (lun , sun , jun) be the corresponding critical points and indices
of the respective host intervals. We say that the sum |si|+ |ji| is the depth
of the corresponding return of ω.

Note that by construction t1(ω) = 0 for all ω ∈ P0 \ I(0, 0, 0) and t1(ω)
= 1 for ω = I(0, 0, 0) (see Remark 3.1).

Lemma 5.1 (No return probability). For every n ≥ 0 there exists no
non-degenerate interval ω ∈ Pn such that ω ∈ Pn+k for all k ≥ 1. Moreover ,
there exist constants 0 < ξ0 < 1 and K0 > 0 (depending only on σ, σ0 and
on ζ from Lemma 4.6), and n0 ≥ 1 such that for every n > n0 we have
λ(
⋃
{ω ∈ Pn : un|ω = 1}) ≤ K0e

−ξ0n.

Proof. If ω ∈ Pn+k for all k ≥ 0, then ω is not refined in all future
iterates. This means that fn+k(ω) has no essential returns nor escapes for
k ≥ 1. Hence every iterate is either free or a binding time associated to an
inessential return. Let p0, p1, p2, . . . be the lengths of the binding periods
associated to inessential return times (if any) t < r0 < r1 < r2 < · · · for ω
after t, where 0 ≤ t ≤ n is the last essential return time or escape before n.
Let k ≥ 0 and ri + pi ≤ n+ k < ri+1 for some i ≥ 0, where we set ri+1 =∞
if ri is the last inessential return time after t (it may happen that r1 = ∞,
in which case i = 0 and there are no inessential returns after t). Lemmas 4.6
and 4.8 ensure that

(5.1) 2 ≥ |fn+k(ω)| ≥ 2iσ
n+k−t−

Pi
j=0(pj+1)

0 |f t(ω)|,
for arbitrarily large values of k ≥ 0, where the exponent of σ0 counts the
number of free iterates between time t and n+ k.
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Note that if there are no inessential returns, then i = 0 and so

(5.2) |f t(ω)| ≤ 2σt+p0+1−n−k
0 .

Otherwise |f t(ω)| ≤ 21−iσ
t+

Pi
j=0(pj+1)−n−k

0 from (5.1).
We conclude that |f t(ω)| = 0, which is not possible for a non-degenerate

interval. This proves the first part of the lemma.
Now let ω ∈ Pn be such that un(ω) = 1. Then by the construction of

the refinement, we see that ω ∈ Pi for all 0 ≤ i ≤ n. Hence either

• ω = I(0, 0, 0) with t1 = 1 the unique essential return up to iterate n
and f(ω) = I(l, s, j) with (l, s, j) 6= (0, 0, 0); or
• ω = I(l, s, j) with |l| ≥ k0, |s| ≥ 1 and j = 1, . . . , (|l| + |s|)3, having a

single essential return t1 = 0 up to iterate n.

We concentrate on the latter case and write p0, p1, p2, . . . and 0 = t1 = r0 <
r1 < r2 < · · · for the binding periods associated to their respective inessen-
tial return times of the orbit of ω as before. Then by (5.1) and (5.2), and
since during binding periods the intervals of the partition are not subdivided
(see Section 3), we have either n ≤ r0 + p0 = p0 or

|ω| ≤ 2σp0−n0 if p0(ω) < n ≤ r1(ω) + p1(ω) ≤ ∞, or

|ω| ≤ 21−iσ
−(n−

Pi
j=0(pj(ω)+1))

0 for i ≥ 1 such that

ri(ω) + pi(ω) < n ≤ ri+1(ω) + pi+1(ω).

We note that in the case of f(ω) = I(l, s, j), that is, when t1(ω) = 1, we can
repeat the arguments for the interval f(ω), arriving at the same bounds for
|ω| except for an extra factor of σ̃ since |f(ω)| ≥ σ̃|ω|. Hence we may write,
according to the three cases above,

λ(∪{ω ∈ Pn : un|ω = 1}) ≤
∑

n≤p0(ω)

|ω|+
∑

p0(ω)<n≤r1(ω)+p1(ω)≤∞

|ω|

+
∑

ri(ω)+pi(ω)<n≤ri+1(ω)+pi+1(ω)

|ω|+ S3

= S0 + S1 + S2 + S3,

where, by the above comment, we may assume that every sum ranges over
ω ∈ P0 \I(0, 0, 0) and S3 corresponds to the sum over the partition elements
in I(0, 0, 0) ∩ P1, which is bounded by (S0 + S1 + S2)/σ̃.

For S0 we use Lemma 4.6(a) to deduce that the summands in S0 are the
elements of P0 such that n ≤ p0(ω) ≤ 2π

β log σ (|l| + |s|), that is, |l| + |s| ≥
β log σ

2π n, thus by Remark 2.1, setting C0 = β log σ
2π , we have
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S0 ≤
∑

|l|+|s|≥C0n

a1
e−(π/β)(|l|+|s|)

(|l|+ |s|)3
≤ a1

∑
k≥C0n

k
e−(π/β)k

k3
(5.3)

≤ a1

(C0n)2
· e
−(π/β)C0n

1− e−C0n
≤ K ′0σ−n/2.

We write S1 = S11 + S12 where

S11 =
∑

p0(ω)≤n/2

|ω| and S12 =
∑

n/2<p0(ω)

|ω| ≤ K ′0σ−n/4

and we have used the bound (5.3). We also split S2 = S21 + S22 according
to whether n−

∑i
k=0(pk(ω) + 1) ≥ n/2 or not, obtaining

S21 =
∑

|ω|≤21−iσ
−n/2
0

|ω| and S22 =
∑

n−
Pi
j=0(pj(ω)+1)<n/2

|ω|.

Since 21−i ≤ 2 we get S11 + S21 ≤ 2S11 and the summands ω ∈ P0 satisfy
|ω| ≤ 2σ−n/20 , thus by Remark 2.1 we get

|l|+ |s| ≥ n

2
· log σ0

3 + π/β
+
− log(2/a1)

3 + π/β
≥ C1

n

4
,

where C1 = log σ0/(3 + π/β) for every large enough n. Then S11 + S21 ≤
2K ′′0σ

−n/5
0 by the same calculations as in (5.3) with slightly different con-

stants.
For S22 we note that n−

∑i
k=0(1+pk(ω)) < n/2 implies

∑i
k=0(1+pk(ω))

> n/2, and so by Lemma 4.6(b) we get

2 ≥ |f ri+pi+1(ω)| > e(1−2ζ)(π/β)
Pi
j=0(1+pj(ω))|ω| > enπ(1−2ζ)/(2β)|ω|

and hence again by Remark 2.1, for every large enough n, we must have
|l| + |s| > C2n/4 where C2 = π(1 − 2ζ)/(3β + π). We deduce that S22 ≤
K ′′′0 e

−(π/β)C2n/4 following the same calculations as in (5.3).
Putting all together we see that there are constants 0 < ξ0 < 1, K0 > 0

and n0 ≥ 1 such that S0 + S1 + S2 + S3 ≤ K0e
−ξ0n for all n ≥ n0, with ξ0

and K0 depending on σ, σ0 and ζ, as stated.

Let v ≤ u ≤ n and let v pairs (η1, υ1), . . . , (ηv, υv) of positive integers be
given, with ηi ≥ k0, υi ≥ 1 and ηi + υi ≥ Θ, where

(5.4) Θ = Θ([) =
β

π
log

a2

[
.

This value of Θ is chosen so as to have dist(I(η, υ), C) < [ if, and only if,
η + υ ≥ Θ. We assume that [ is so small that Θ ≥ θ (recall that θ was
defined in Lemma 4.6) and, following Remark 4.9, that Θ is large enough in
order that Q(l, s, τ, ρ) > 1 for all |l|+ |s| ≥ Θ.
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For ω ∈ Pn with un(ω) = u, let 0 = t1 < · · · < tu ≤ n be the return
situations (essential returns or escapes) of ω, (li, si) the corresponding in-
dices of the host intervals, and dn(ω) = v the number of pairs (li, si) such
that |li| + |si| ≥ Θ. We say that a return situation whose depth satisfies
|li|+ |si| ≥ Θ is a deep return. Denote by 1 ≤ r1 < · · · < rv ≤ u the indices
of the return situations corresponding to deep returns.

We now define the subset Au,v(η1,υ1),...,(ηv ,υv)
(n) as⋃

{ω ∈ Pn : un(ω) = u, dn(ω) = v and |f tri (ω)| ⊂ I(ηi, υi), i = 1, . . . , v}.

Proposition 5.2 (Probability of essential returns with specified depths).
If Θ is large enough (depending on D0 from Lemma 4.10), then for every
large n ≥ u ≥ v ≥ 1 and ϑ = max{α, 3ζ},

λ(Au,v(η1,υ1),...,(ηv ,υv)
(n)) ≤

(
u

v

)
exp
[
(2ϑ− 1)

π

β

v∑
i=1

(ηi + υi)
]
.

Proof. We start by fixing n ∈ N, u ∈ {1, . . . , n}, v ∈ {1, . . . , u} and
taking ω0 ∈ P0. Let ω ∈ Pn be such that ω ⊂ ω0 and un(ω) = u and
1 = t1 < · · · < tu ≤ n be the return situations (essential returns or escapes)
of ω.

For m = 1, . . . , u we write ωm = ω((l1, s1, j1), . . . , (lm, sm, jm)) ∈ Ptm
for the subset of ω0 satisfying

(5.5)
f ti(ωm) ⊂ I(li, si, ji)+, i ∈ {1, . . . ,m− 1},
I(lm, sm, jm) ⊂ f tm(ωm) ⊂ I(lm, sm, jm)+,

by the definition of the sequence of partitions Pn. Note that we get a nested
sequence of sets

ω0 ) ω1 ) · · · ) ωu = ω.

We define T = {ω ∈ Pn : ω ⊂ ω0, un(ω) = u} and consider the sequence of
deep return situations (essential or escapes) of each ω ∈ T : 1 ≤ r1 < · · · <
rv ≤ u, that is, the indices of the return situations such that for i = 1, . . . , v,

|f tri (x)| ∈ I(ηi, υi) for all x ∈ ω and ηi + υi ≥ Θ.
Now we define by induction a sequence of partitions of T which will enable
us to determine the estimates we need.

Start by putting V0 =
⋃
{ω ∈ T }. For 1 ≤ i ≤ v and h ≥ 0 such that

ri ≤ ri + h < ri+1 we define the subset

Vj
1,...,ji

ri+h
=
⋃
{ωri+h : ω ∈ T & (5.5) holds with m = ri + h

& jk = jrk for k = 1, . . . , i},
where we make the convention rv+1 = u; and for 1 ≤ h < r1 we set Vh =⋃
{ωh : ω ∈ T }.
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Now we compare λ(Vj
1,...,ji
ri ) with λ(Vj

1,...,ji−1

ri−1 ). We claim that

λ(Vj1,...,jiri ) ≤ C

(ηi + υi)3
· e−(π/β)(ηi+υi)

e−ϑ(π/β)(ηi−1+υi−1)
λ(Vj1,...,ji−1

ri−1
),(5.6)

where ϑ = max{2ζ, α} ∈ (0, 1). Assuming this claim we deduce

λ(Vj1,...,jvu )≤· · ·≤λ(Vj1,...,jvv ) ≤ C

(ηv + υv)3
· e−(π/β)(ηv+υv)

e−ϑ(π/β)(ηv−1+υv−1)
λ(Vj

1,...,jv−1

rv−1 )

≤
( s∏
i=1

C

(ηi + υi)3

)
exp
(
−π
β

v∑
i=1

(ηi + υi) + ϑ
π

β

v∑
i=1

(ηi−1 + υi−1)
)
λ(V0).

Finally, we need to consider all possible combinations of the events Vj
1,...,jv
u

which are included in Au,v(η1,υ1),...,(ηv ,υv)
(n). Note that for any given v ≤ u

there are
(
u
v

)
ways of having v deep returns among u return situations and,

by symmetry, for any sequence of deep returns with given depth (ηi, υi)
there are 4(ηi + υi)3 different possibilities of falling in an element of the
partition P0. Thus since λ(V0) ≤ λ(ω0) we arrive at

λ(Au,v(η1,υ1),...,(ηv ,υv)
(n)) ≤

(
u

v

) v∏
i=1

4(ηi + υi)3
( v∏
i=1

C

(ηi + υi)3

)

· exp
(

(ϑ− 1)
π

β

v∑
i=1

(ηi + υi)
)∑
ω0∈P0

eϑ(π/β)(η0+υ0)λ(ω0)

≤
(
u

v

)
exp
(

(2ϑ− 1)
π

β

v∑
i=1

(ηi + υi)
)
,

where we have used the fact that
∑

ω0∈P0
eϑ(π/β)(η0+υ0)λ(ω0) <∞ and also

that
∑v

i=1(ηi + υi) ≥ vΘ and that Θ can be taken as large as needed.
Thus to complete proof it is enough to prove the claim (5.6). For this we

proceed as follows.
Given ω ∈ T and ωri−1 ∈ Vj

1,...,ji−1

ri−1 we have

ωri = ωri−1 ∩ Vj1,...,jiri ,

which is the set of points in ωri−1 which remain in the next level of the
partition. We divide the argument into the following cases.

(1) tri−1 is an essential return with depth (l, s).

In this case, since ωri ( ωri−1 ( · · · ( ωri−1+1 ( ωri−1 and ωri ∈ Ptri−1

by the refinement algorithm, we can use the Bounded Distortion Lemma 4.10
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to write

|ωri |
|ωri−1 |

≤ |ω
ri−1+1|
|ωri−1 |

· · · |ω
ri |

|ωri−1|
≤ 1 · 1 · · ·D0

|f tri (ωri)|
|f tri (ωri−1)|

≤ D0
|I(ηi, υi, ji)+|

a1Qe−2ζ(π/β)(|l|+|s|) ≤ D0
9a1e

−(π/β)(ηi+υi)

a1Q(ηi + υi)3e−2ζ(π/β)(|l|+|s|)

=
C

(ηi + υi)3
· e
−(π/β)(ηi+υi)

e−2ζ(π/β)(|l|+|s|) ≤
C

(ηi + υi)3
· e−(π/β)(ηi+υi)

e−2ζ(π/β)(ηi−1+υi−1)
,

where C = C(ρ, τ, ε, σ) and in the second and third inequalities we used
Remark 2.1 and Lemma 4.8(2). In the last inequality we argue as follows.

If ri = ri−1 + 1, then |l|+ |s| = ηi−1 +υi−1 by definition. If ri > ri−1 + 1,
then by definition of deep returns, |l|+ |s| < Θ ≤ ηi−1 + υi−1.

(2) tr1−1 is an escape time having host interval I(l, s, j)+ with (l, s, j) 6=
(±k0, 1, 1).

Arguing as in the previous case, we only need to get a lower bound for
|f tri (ωri−1)|. By the Mean Value Theorem, for some ξ ∈ f tri−1 (ωri−1) we
have

|f tri (ωri−1)| = |(f tri−tri−1)′(ξ)| · |f tri−1(ωri−1)|

= |(f tri−tri−1−1)′(f(ξ))| · |f ′(ξ)| · |f tri−1(ωri−1)|

≥ σtri−tri−1−1
0

τ x̂α−1

C
e(1−α)(π/β)|l||f tri−1(ωri−1)|

≥ C(τ)e(1−α)(π/β)|l|a1
e−(π/β)(|l|+|s|)

(|l|+ |s|)3

= C(τ)
e−(π/β)(α|l|+|s|)

(|l|+ |s|)3
= C(τ)e(α−1)(π/β)|s| e

−α(π/β)(|l|+|s|)

(|l|+ |s|)3

≥ C(τ)e(α−1)(π/β)s(τ) e
−α(π/β)(|l|+|s|)

(|l|+ |s|)3
≥ C(τ)e−α(π/β)(|l|+|s|),

where we have used the bound (3.4) in the first inequality and that |s| ≤ s(τ)
in the last inequalities. Thus we arrive at a similar bound

(5.7)
|ωri |
|ωri−1 |

≤ C

(ηi + υi)3
· e−(π/β)(ηi+υi)

e−α(π/β)(ηi−1+υi−1)
.

(3) tri−1 is an escape time having host interval I(k0, 1, 1) or I(−k0, 1, 1).

From Lemma 4.3, points in f tri−1(ωri−1) remain outside [−ε, ε] during a
minimum number m0 ≥ log(1/ε) of iterates with derivative greater than σ0,
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which can be taken larger than e. Hence

|f tri (ωri−1)| = |(f tri−tri−1)′(ξ)| · |f tri−1(ωri−1)|

≥ σm0
0 |f

tri−1(ωri−1)| ≥ elog(1/ε) e
−(π/β)(k0+1)

(k0 + 1)3

≥ C elog(1/ε)

(log(1/ε))3
e−(π/β)(k0+1) ≥ Ce−α(π/β)(k0+1),

where we have used the fact that k0 ≤ C log(1/ε) and assumed that ε is small
enough so that elog(1/ε) ≥ (log(1/ε))3. Thus we arrive again at a bound of
the form (5.7). We remark that since |f tri (ωri−1)| ≤ 2 the number of free
iterates tri − tri−1 is bounded from above by a constant depending on k0, β
and σ0 only, so that the lower bound we get is uniformly away from zero for
all intervals satisfying this third case.

Now we are ready to obtain (5.6) as follows for 1 ≤ i ≤ v:

λ(Vj1,...,jiri ) =
∑

ωri−1∈Vj
1,...,ji−1
ri−1

|ωri |
|ωri−1 |

|ωri−1 |

≤ C

(ηi + υi)3
· e−(π/β)(ηi+υi)

e−ϑ(π/β)(ηi−1+υi−1)
· λ(Vj1,...,ji−1

ri−1
),

where ϑ = max{2ζ, α} ∈ (0, 1) is obtained comparing the bounds for each
case.

Using the same notations as before with η ≥ k0, ς ≥ 1 and η+ ς ≥ Θ we
define

Av,u(η,ς),j(n) =
⋃
{ω ∈ Pn : (un(ω), dn(ω)) = (u, v) and

|f trj (x)| ∈ I(η, ς), ∀x ∈ ω},

Av,u(η,ς)(n) =
⋃
{ω ∈ Pn : (un(ω), dn(ω)) = (u, v) and

there exists 1 ≤ j ≤ v such that |f trj (x)| ∈ I(η, ς), ∀x ∈ ω},

A(η,ς)(n) =
⋃
{ω ∈ Pn : there exists t ≤ n such that

t(ω) is an essential return and |f t(x)| ∈ I(η, ς), ∀x ∈ ω},

and derive the following corollary which will be used during the final argu-
ments.

Corollary 5.3. For 1 ≤ j ≤ v ≤ u ≤ n we have

(1) λ(Av,u(η,ς),j(n)) ≤
(
u
v

)
e(2ϑ−1)(π/β)(η+ς),

(2) λ(Av,u(η,ς)(n)) ≤ v
(
u
v

)
e(2ϑ−1)(π/β)(η+ς),

(3) λ(A(η,ς)(n)) ≤ n3eo(Θ)ne(4ϑ−1)(π/β)(η+ς),
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if Θ is sufficiently large and ζ > ϑ/3 is small enough, where o(Θ) → 0 as
Θ →∞.

Proof. For item (1) we note that since

Av,u(η,ς),j(n) ⊆
⋃

ηi+ςi≥Θ, ηi≥k0, ςi≥1, i 6=j
Av,u(η1,ς1),...,(ηi−1,ςi−1),(η,ς),(ηi+1,ςi+1),...,(ηu,ςu)(n)

then

λ(Av,u(η,ς),j(n)) ≤
(
u

v

)( ∑
l+s≥Θ

e(2ϑ−1)(π/β)(l+s)
)v−1

e(2ϑ−1)(π/β)(η+ς)

≤
(
u

v

)
e(2ϑ−1)(π/β)(η+ς),

as long as Θ is large enough in order that
∑

l+s≥Θ e
(2ϑ−1)(π/β)(l+s) ≤ 1.

From this we get item (2) since Av,u(η,ς)(n) ⊂
⋃v
j=1A

v,u
(η,ς),j(n).

For item (3) we note that A(η,ς)(n) ⊂
⋃u
v=1

⋃n
u=v A

v,u
(η,ς)(n), but since

there is a deep essential return at iterate t (which is not an escape situation)
before n, we know that the corresponding binding period p is larger than
ι(M)(η + ς) > ι(M)Θ.

Let us assume first that t+p ≤ n. In this situation the maximum number
u of essential return situations in the first n iterates of such ω ∈ Pn is
bounded by n/(ι(M)Θṽ), where ṽ is the number of deep essential returns
among the u essential return situations. Since we know that ṽ ≥ 1 we get
u ≤ (ι(M)Θ)−1m. This alone enables us to bound the measure of the subset
A∗(η,ς)(n) of A(η,ς)(n) of those intervals ω ∈ Pn such that we can find t with
t+ p ≤ n as follows:

λ(A∗(η,ς)(n)) ≤
u∑
v=1

n∑
u=v

λ(Av,u(η,ς)(n))(5.8)

≤
n/(ι(M)Θ)∑

v=1

n∑
u=v

v

(
u

v

)
e(2ϑ−1)(π/β)(η+ς)

= e(2ϑ−1)(π/β)(η+ς)

(ι(M)Θ)−1n∑
v=1

v

n∑
u=v

(
u

v

)

< e(2ϑ−1)(π/β)(η+ς)n

(ι(M)Θ)−1n∑
v=1

v

(
n

v

)

< ne(2ϑ−1)(π/β)(η+ς)

(
n

(ι(M)Θ)−1n

) (ι(M)Θ)−1n∑
v=1

v
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<
n3

(ι(M)Θ)2
e(2ϑ−1)(π/β)(η+ς)eo(Θ)n

≤ n3eo(Θ)ne(2ϑ−1)(π/β)(η+ς)

where we have used the bound
(

n
(ι(M)Θ)−1n

)
≤ eo(Θ)n which can be obtained

by a straightforward application of Stirling’s formula, as long as Θ is large
enough.

Let us now assume that the only deep essential return t of ω satisfies
m = t+ p > n. By definition A(η,ς)(n) \A∗(η,ς)(n) ⊆ A∗(η,ς)(m) and so

λ(A(η,ς)(n)) ≤ λ(A∗(η,ς)(n)) + λ(A∗(η,ς)(m)).(5.9)

Hence we can apply the previous reasoning with m in place of n to obtain

λ(A∗(η,ς)(m)) ≤ m3eo(Θ)me(2ϑ−1)(π/β)(η+ς).

Finally, since m − n < p ≤ 2π
β log σ (η + ς) (by Lemma 4.6(a)), for ϑ small

enough we have

(5.10) λ(A∗(η,ς)(m))

≤ n3eo(Θ)ne(2ϑ−1)(π/β)(η+ς)eo(Θ)(m−n)

(
m

n

)3

≤ n3eo(Θ)ne(2o(Θ)/log σ+2ϑ−1)(π/β)(η+ς)

(
1 +

2π(η + ς)
nβ log σ

)3

≤ n3eo(Θ)ne(3ϑ−1)(π/β)(η+ς).

Putting (5.8)–(5.10) together, we complete the proof of the lemma.

6. Slow recurrence to the critical set. Now we make use of the lem-
mas from Section 5 to prove Theorem B and consequently also Theorem A.
We start by recalling the definition of C[n(ω) from (1.7) and that un(ω) is
the number of essential return situations or escape times of the f -orbit of
ω ∈ Pn between 0 and n.

We let 0 ≤ t1 < · · · < tun ≤ n be the essential return times or escape
times of the orbit of each point of ω and write (l1, s1, j1), . . . , (lun , sun , jun)
for the corresponding critical points and depths at each essential return
situation, as in Section 5. We also recall that d = dn(ω) is the number of
pairs (li, si) such that li + si ≥ Θ, where Θ = Θ([) is defined in (5.4).

We consider the sequence of deep return situations of ω: 1 ≤ r1 < · · · <
rd ≤ un among the sequence of return situations and then define

D[n(x) =
d∑

k=1

(|lrk |+ |srk |), x ∈ ω,

which is constant on the elements of Pn, and get the following bound.
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Proposition 6.1. There exists B0 = B0(σ, ρ, τ) > 0 such that for every
ω ∈ Pn such that dn|ω ≥ 2 we have C[n(x) ≤ (B0/n)D[n(x) for all x ∈ ω.

We start by proving the following.

Lemma 6.2. Let 1 ≤ ti < n be an essential return, inessential return or
escape situation for ω ∈ Pn, with binding time pi = p(li, si) (which we set to
zero in the case of an escape situation). Then there exists a constant B1 > 0
such that for all x ∈ ω,

C(ti, ti + pi) =
ti+pi∑
k=ti

− log dist[(f
k(x), C) ≤ B1(|li|+ |si|).

Moreover , if pi > 0, then dist(f ti+k(x), C) > dist(f ti(x), C) for k = 1, . . . , p
as long as ρ > 0 is small enough. In particular , C(ti, ti + pi) = 0 for escape
situations or return situations which are not deep, i.e. the host interval
I(l, s, j) is such that |l|+ |s| ≤ Θ.

Proof. Let us fix x ∈ ω in what follows. We consider first the case of ti
being an essential return or escape situation with |li|+ |si| ≤ Θ, i.e. ti 6= trk
for all k = 1, . . . , d. Thus log dist[(f ti(x), C) = 0. If ti is an escape situation
there is nothing else to prove because pi = 0. Otherwise pi > 0 and we
have two possibilities at the binding times ti + k with k = 1, . . . , pi: either
|f ti+k(x)| > ε, in which case we have again log dist[(f ti+k(x), C) = 0; or
else |f ti+k(x)| ≤ ε. In this last case by Proposition 3.4 and the definition of
binding time, if dist(f ti+k(x), C) ≤ dist(f ti(x), C), then

ρ0e
−ρk ≤ dist(f ti+k(x), C) ≤ dist(f ti(x), C) ≤ a2e

−(π/β)(|li|+|si|)

and thus
2π

β log σ
(|li|+ |si|) ≥ pi ≥ k ≥

1
ρ

log
ρ0

2
+

π

βρ
(|li|+ |si|),

which is impossible as long as π/(βρ) > 2π/(β log σ). Therefore choos-
ing k0 large enough and ρ sufficiently small we get dist(f ti+k(x), C) >
dist(f ti(x), C) for all k = 1, . . . , pi and so C(ti, ti + pi) = 0 for escapes
and returns which are not deep. This proves the last part of the statement
of the lemma.

On the other hand, if ti = trk for some 1 ≤ k ≤ d, we get

(6.1) dist[(f
trk (x), C) ≥ a2e

−(π/β)(|lrk |+|srk |)

and so if trk is an escape or a return we have the contribution

− log dist[(f
trk (x), C) ≤ − log a2 +

π

β
(|lrk |+ |srk |)

to the sum C[n(x). For escape situations the proof ends here.
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However, for return times we must consider the next binding period. We
stress that we are assuming (4.1) holds.

Now for h = 1, . . . , prk , l = lrk and i = rk we have

(6.2) dist(f ti+h(x), C) ≥ dist(fh(xl), C)− dist(fh(xl), f ti+h(x)).

Now we consider the two cases in the relations (3.3).

Case |fh(xl)| ≤ ε. Then (6.2) is bounded from below by

(1− e−τh) dist(fh(xl), C).(6.3)

Case |fh(xl)| > ε. Then from (1.3) we have

ετ <
1− e−π/β

2
so ε1+τ < ε

1 + e−π/β

2
= ε− xk0 < dist(fh(xl), C);

this ensures that (6.2) is bounded from below by the same expression (6.3)
above.

Hence we deduce

(6.4)
pi∑
h=1

− log dist(f ti+h(x), C) ≤ C(τ) +
pi∑
h=1

− log dist(fh(xl), C).

To bound the last sum we use the assumption (4.1) on free times of the orbit
of xl. We need to sum up to the first free time of the orbit of xl after pi. But
if pi is a bound time for the orbit of xl, then by [PRV, Lemma 5.3(a)] its
binding period must be smaller than (2ρ/log σ)pi. Thus there exists a free
time n for the orbit of xl with pi ≤ n ≤ (1 + 2ρ/log σ)pi. Hence

pi∑
h=1

− log dist(fh(xl), C) ≤ M̂(1 + 2ρ/log σ)pi

and so (6.4) is bounded by C(τ) + M̂(1 + 2ρ/log σ)pi.
For ε small enough, k0 and pi are very large and in both cases (6.2) we

get C(trk , trk + prk) ≤ M̃prk for a constant M̃ . By Lemma 4.6(a) we obtain

C(trk , trk + prk) ≤ B1(|lrk |+ |srk |)
for a constant B1 > 0, concluding the proof of the lemma.

Next we show that the depth of an inessential return or free time is not
greater than the depth of the essential return situation that precedes it.

Lemma 6.3. Let ti be an essential return or an escape for ω ∈ Pn with
I(li, si, ji) ⊂ f ti(ω) ⊂ I(li, si, ji)+. Then for each consecutive inessential
return ti < ti(1) < · · · < ti(v) < n before the next essential return or escape
and for each free time, i.e. for all iterates ti(k) + pi(k) < j ≤ ti(k + 1) for
k = 0, . . . , v − 1 with pi(k) the binding period of the kth return, the host
interval I(l, s, j) ⊃ f j(ω) is such that |l|+ |s| < |li|+ |si|.
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Proof. By items (1) and (3) of Lemma 4.8 we have |f j(ω)| > |f ti(ω)| >
|I(li, si, ji)|. Thus because each j is an inessential return or a free time we
get

a1
e−(π/β)(|l|+|s|)

(|l|+ |s|)3
> |f ti(k)(ω)| > a1

e−(π/β)(|li|+|si|)

(|li|+ |si|)3
.

As z−3e−(π/β)z is decreasing for z > 0, we conclude that |l|+|s| < |li|+|si|.

If we have deep returns we can use sharper bounds to obtain a relation
between the logarithmic distance to the critical set along the orbit between
consecutive essential returns and the depth of the first return. Note that by
(3.4) on “deep” free iterates between critical points we may write

(6.5) |f ′(x)| ≥
(
τ x̂α−1

C
e
−(1−α)π

β
|s(τ)|

)
e
(1−α)π

β
(|l|+|s|)

> e
(1−α̂)π

β
(|l|+|s|)

for some α < α̂ < 1, since at these times we have |s| ≤ s(τ) and we assume
that |l| + |s| ≥ Θ is so large that the expression in parenthesis in (6.5) is
larger than e−(α̂−α)Θ.

Lemma 6.4. Let ti be a deep essential return or an escape for ω ∈ Pn
with I(li, si, ji) ⊂ f ti(ω) ⊂ I(li, si, ji)+. Let ti = ti(0) < ti(1) < · · · <
ti(v) < ti(v+ 1) = ti+1 be the consecutive inessential returns before the next
essential return or escape and let pi(k) be the corresponding binding times
for k = 0, . . . , v + 1. Define J =

⋃v
k=0{ti(k) + pi(k) + 1, . . . , ti(k + 1)}, the

set of free iterates and of inessential return times. Assume that every such
iterate h ∈ J is contained in a “deep” interval I(lh, sh, jh), i.e. lh + sh ≥ Θ.
Then there exists a constant B2 > 0 such that

∑
h∈J − log dist[(fh(x), C) ≤

B2(|li|+ |si|).

Proof. By the choice of Θ we have Q > 1 in Lemma 4.8, and (6.5) also
holds. Then we deduce

|f ti+1(ω)| ≥
v∏
k=0

e(1−3ζ)(π/β)(|lti(k)|+|sti(k)|)

×
ti(k+1)−1∏

h=ti(k)+pi(k)

e(1−α̂)(π/β)(|lh|+|sh|)|f ti+pi(ω)|,

and since we may assume that 3ζ < α̂, by the definition of essential returns
and using Lemma 4.6(b) we get

e−(π/β)(|li+1|+|si+1|)

(|li+1|+ |si+1|)3
≥ exp

(
π

β

(
(1− α̂)

∑
h∈J

(|lh|+ |sh|)
))e−3ζ(π/β)(|li|+|si|)

(|li|+ |si|)3
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or equivalently

(6.6) 3 log
(
|li|+ |si|
|li+1|+ |si+1|

)
+ 3ζ

π

β
(|li|+ |si|)

≥ π

β
(|li+1|+ |si+1|) +

π

β

(
(1− α̂)

∑
h∈J

(|lh|+ |sh|)
)
.

Since |li+1|+ |si+1| � 1, the left hand side of (6.6) is smaller than(
3ζ +

3β log(|li|+ |si|)
π(|li|+ |si|)

)
π

β
(|li|+ |si|) ≤

(
3ζ +

3β logΘ
πΘ

)
π

β
(|li|+ |si|)

≤ 5ζ
π

β
(|li|+ |si|)

for Θ sufficiently large, because |li|+ |si| ≥ Θ and log(z)/z is decreasing for
z > e. Thus we get

(6.7) 5ζ(|li|+ |si|) ≥ |li+1|+ |si+1|+ (1− α̂)
∑
h∈J

(|lh|+ |sh|).

Now since every iterate is “deep”, for all x ∈ ω we have the bound∑
h∈J
− log dist[(f

h(x), C) ≤ −#J · log a2 +
π

β

∑
h∈J

(|lh|+ |sh|) ≤ B2(|li|+ |si|)

for a constant B2 > 0 depending on ζ and α̂ from (6.7), as long as |lh|+ |sh|
≥ Θ is sufficiently large. This completes the proof of the lemma.

Proof of Proposition 6.1. Let us fix x ∈ ω ∈ Pn with dn|ω ≥ 2 and
i ∈ {1, . . . , un(x)− 1}. According to Remark 2.1 and the definition of deep
essential return situation we have

(6.8) dist[(f
ri(x), C) ≥ a2e

−(π/β)(|li|+|si|).

Note that the above truncated distance is 1 on the return situations ti which
are not deep, by the choice of Θ. Moreover, this distance is also 1 for all
iterates between such ti (not deep) and the next return situation ti+1 by
Lemma 6.3 for the inessential return and free iterates, and by Lemma 6.2
for the bound iterates.

Hence we only have to take care of the deep essential return or escape
times plus the next iterates before the following essential return situation.
The sum of the logarithms of the truncated distance on binding periods,
given by Lemma 6.2, is bounded by a constant times the depth of the return
which originated the binding. In addition, the same sum over the free and the
inessential return iterates is likewise bounded by the depth of the essential
return or escape ti, by Lemma 6.4. If we keep the notations introduced in
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the statements of Lemmas 6.3 and 6.4, then we may write

C(ti, ti+1) ≤
v∑
k=0

[C(ti(k), ti(k) + pi(k)) + C(ti(k) + pi(k) + 1, ti(k + 1))]

≤ B1

v∑
k=0

(|lti(k)|+ |sti(k)|) +B2(|li|+ |si|)

≤ B1

v∑
k=0

C(ti(k) + pi(k) + 1, ti(k + 1)) +B2(|li|+ |si|)

≤ B2(1 +B1)(|li|+ |si|)

Setting B0 = B2(1 +B1) finishes the proof of Proposition 6.1.

6.1. The expected value of the distance at return times. Proposition 6.1
together with Lemma 5.1 and Proposition 5.2 ensure that, to obtain slow
recurrence to the critical set, we need to bound D[n(x)/n for Lebesgue almost
every x ∈ I. Indeed, for every large enough n we have

{x ∈ I : C[n(x) > δ} ⊆
⋃
{ω ∈ Pn : un|ω ≡ 1}

∪ {x ∈ I : un(x) ≥ 2 and D[n(x) > nδ/B0},

and Lemma 5.1 shows that the left hand side subset of the above union has
exponentially small measure. We now show that Proposition 5.2 implies a
similar bound for the right hand subset.

Lemma 6.5. For all z ∈ (0, (1− 2ϑ)π/(2β)) there is Θ1 so that
�
ezD

[
n(x) dλ(x) ≤ eo(Θ)n

for Θ > Θ1 = Θ1(z, τ, ρ, σ), where o(Θ)→ 0 as Θ →∞.

Proof. The integral in the statement equals the following series:∑
1≤v≤u≤n

(η1,υ1),...,(ηv ,υv)

exp
(
z

v∑
k=1

(ηk + υk)
)
· λ(Au,v(η1,υ1),...,(ηv ,υv)

(n)),

where ηk + υk ≥ Θ, υk ≥ 1 and ηk ≥ k0 for k = 1, . . . , v. Proposition 5.2
provides the bound∑

1≤v≤u≤n, (η1,υ1),...,(ηv ,υv)

(
u

v

)
ez

Pv
k=1(ηk+υk)+(2ϑ−1)(π/β)

Pv
k=1(ηk+υk)

=
∑

1≤v≤u≤n, (η1,υ1),...,(ηv ,υv)

(
u

v

)
e(z+(2ϑ−1)π/β)

Pv
k=1(ηk+υk).
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Now setting ∆ =
∑v

k=1(ηk + υk) and

K(v,∆) = #
{

((l1, s1), . . . , (lv, sv)) :
v∑
k=1

(lk + sk) = ∆,

lk ≥ k0, sk ≥ 1, lk + sk ≥ Θ, 1 ≤ k ≤ v
}

we may rewrite the last series as∑
1≤v≤u≤n

∑
∆≥vΘ

(
u

v

)
K(v,∆)e(z+(2ϑ−1)π/β)∆.

To estimate K(v,∆) we observe that

K(v,∆) ≤ #
{

(n1, . . . , n2v) :
2v∑
k=1

nk = ∆ and nk ≥ 0, k = 1, . . . , 2v
}

=
(
∆+ 2v − 1

2v − 1

)
.

By a standard application of Stirling’s formula we get

K(v,∆) ≤
(
C1/∆

(
1 +

2v − 1
∆

)(
1 +

∆

2v − 1

)(2v−1)/∆)∆
≤ ez∆,

since ∆ ≥ vΘ ensures that the expression in parentheses can be made ar-
bitrarily close to 1 if Θ is taken greater than some constant Θ0 = Θ0(z),
where 0 < C < 1 is a constant independent of Θ and we assume that z > 0
is small. Hence we arrive at

�
ezD

[
n(x) dλ(x) ≤

∑
1≤v≤u≤n

∑
∆≥vΘ

(
u

v

)
e(2z+(2ϑ−1)π/β)∆

≤
n∑
v=0

(
n

v

)
Ce(2z+(2ϑ−1)π/β)Θv

≤ (1 + Ce(2z+(2ϑ−1)π/β)Θ)n = eo(Θ)n,

as long as 0 < z < (1−2ϑ)π/(2β) and Θ > Θ1 > max{θ,Θ0} is large enough
so that Q > 1 in Lemma 4.8 and (6.5) holds, as stated.

As a consequence of this bound we can use Chebyshev’s inequality with
z and Θ as in the statement of Lemma 6.5 to obtain

λ({D[n ≥ nδ/B0}) = λ({ezD[n > ezδn/B0}) ≤ e−zδn/B0

�
ezD

[
n dλ

≤ e−zδn/B0eo(Θ)n.

Now observe that we may take [ = [(δ) > 0 so small that Θ([) becomes
large enough to satisfy all constraints and moreover o(Θ) < δz/n.
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As already explained, this together with Lemma 5.1 implies that there
are C, ξ > 0, where ξ = ξ(δ), such that λ({x ∈ I : Cn(x) > δ}) ≤ Ce−ξn for
all n ≥ 1. Then since

{x ∈ I : R(x) > n} ⊆
⋃
k>n

{x ∈ I : Ck(x) > δ}

we conclude that there are constants C1, ξ1 > 0 such that the conclusion of
Theorem B holds.

7. Fast expansion for most points. Here we use the results from
the previous sections to prove Theorem C and as a consequence obtain
Corollary D. We start by setting

En = {ω ∈ Pn : ∃1 ≤ k ≤ n such that dist(fk(ω), C) < e−ρn,

fk(ω) ⊂ I(l, s) and |l| ≥ k0, |s| > s(τ)}
and proving the following bound.

Lemma 7.1. There are constants C, ξ > 0 depending on f̂ , k0, ζ, ρ, and
τ only such that λ(

⋃
En) ≤ Ce−ξn for all n ≥ 1.

Proof. Let us take ω ∈ En and let k ∈ {1, . . . , n} be the iterate which is
very close to the critical set. Observe that by Remark 2.1 the constraint on
the distance implies

−ρn > log dist(fk(ω), C) ≥ log a2 −
π

β
(|l|+ |s|) and so |l|+ |s| ≥ βρ

20π
n.

Since this iterate is in the binding region, there must be an essential return
t < k, t ∈ Rn(ω), whose depth is at least as large as |l|+ |s|, by the results
of Lemmas 6.2 and 6.3.

Hence, according to the definition of A(η,υ)(n) from Section 5, if n ≥ Θ
then ⋃

En ⊂
⋃{

A(η,υ)(n) : (η, υ) is such that η + υ ≥ βρ

20π
n

}
.

Thus by Corollary 5.3 we can estimate

λ
(⋃

En

)
≤ n3eo(Θ)n

∑
η+υ≥βρn/(20π)
η≥k0,υ≥s(τ)

e(4ϑ−1)(π/β)(η+υ)

≤ n3eo(Θ)n
∑

∆≥βρn/(20π)

∆e(4ϑ−1)(π/β)∆

≤ Cn3eo(Θ)ne(4ϑ−1)ρn/20 ≤ Ce(4ϑ−1)(ρn/100)

for some constant C > 0 with ξ = (4ϑ− 1)ρ/100 for a large enough Θ. This
finishes the proof of the lemma.
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Lemma 7.2. If n is large enough, ρ small enough (depending only on σ

and A from Lemma 4.4) and x ∈ I \
⋃
En, then |(fn)′(x)| ≥ σn/3.

Proof. Let us take x ∈ ω ∈ Pn \ En and let 0 < r1 < · · · < rk < n be
the consecutive returns (either essential or inessential) of the first n iterates
of the orbit of ω, and p1, . . . , pk the respective binding periods. We also set
qi = ri+1− (ri + pi + 1), the free periods and possibly escape times between
consecutive returns, for i = 1, . . . , k − 1, q0 = r1 and qk = n− (rk + pk + 1)
if n > rk + pk or qk+1 = 0 otherwise.

We split the argument into the following two cases. If n > rk + pk then

|(fn)′(x)| =
k∏
i=0

(|(f qi)′(f ri+pi+1(x))| · |(fpi+1)′(f ri(x))|)

≥ σ
Pk+1
i=0 qi

0 Ak0σ
Pk
i=1(pi+1)/3 ≥ σn/3,

since σ0 > σ̃ > σ and A0 > 1 by Lemma 4.6(c), and also by (3.4) we may
assume that at escape times the expansion rate is at least σ.

On the other hand, if n ≤ rk + pk then using Lemma 4.4, Lemma 1.3(2)
and the fact that ω ∈ Pn \ En, we have

|(fn)′(x)| = |(f rk)′(x)| · |f ′(f rk(x))| · |(fn−rk−1)′(f rk+1(x))|

≥ |(f rk)′(x)|C−1|xlk |
α−2e−ρn

1
A
|(fn−rk−1)′(xl)|

≥ (CA)−1σrke
−ρn(α−2

20
− s(τ)

ρn
)
σn−rk−1

≥ exp
(
n

(
n− 1
n

log σ − log(CA)
n

− ρ
(
α− 2

20
− s(τ)

ρn

))
≥ σn/3

for ρ > 0 small enough and n large enough, where xl is the critical point
associated to f rk(ω) and we have also used the calculation for the previous
case to estimate |(f rk)′(x)|.

Finally, since

{x ∈ I : E(x) > n} ⊆
⋃
k>n

(⋃
{ω ∈ Pk : |(fk)′(x)| < σk/3, x ∈ ω}

)
we conclude from Lemmas 7.1 and 7.2 that there are C2, ξ2 > 0 such that

λ({x ∈ I : E(x) > n}) ≤
∑
k>n

λ
(⋃

Ek

)
≤ C2e

−ξ2n,

concluding the proof of Theorem C.

8. Exponential bound on derivatives along critical orbits. Here
we explain how to obtain the bound (4.1) for the parameters in the set S.
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First we claim that it is enough to obtain the following bound for a suffi-
ciently small value of [ > 0:

(8.1) C[n(zk) =
n−1∑
j=0

− log dist[(f
j
µ(zk), C) ≤ M̂n,

where M̂ > 0 is a large constant and this bound holds for every n ≥ 1 which
is not a bound time for zk, for every critical value zk with |k| ≥ k0. Indeed,
fixing n, k and [ > 0, if (8.1) holds then we can write
n−1∑
j=0

− log dist(f jµ(zk), C) ≤
∑

dist(fj(zk),C)<[
0≤j<n

− log dist[(f
j
µ(zk), C)

+
∑

dist(fj(zk),C)≥[
0≤j<n

− log [

≤ M̂n− log [ ·#{0 ≤ j < n : dist(f j(zk), C) ≥ [}

≤ (M̂ − log [)n,

proving the claim.
For any given µ ∈ S and |k| ≥ k0, let n satisfy 1 = r0 < r1 < · · · < ru

≤ n, where r1, . . . , ru are the essential return situations of the orbit of zk, in
the sense of the construction performed in [PRV]. We denote by (li, si) the
depth corresponding to ri for i = 1, . . . , u, and set (l0, s0) to be such that
zk(µ) = f(xk) ∈ I(l0, s0). To prove (8.1) it suffices to obtain the following
relations:

(8.2) C[n(zk) ≤ B
un(k)∑
i=0

(|li|+ |si|) ≤ Bn/2,

where un(k) denotes the number of return situations of the orbit of zk up to
the nth iterate, for every time n ≥ 1 which is not a bound time for the orbit
of zk, for all critical values zk with |k| ≥ k0, and B is a positive constant.
Obviously both inequalities in (8.2) together imply (8.1) with M̂ = B/2.

8.1. The left hand side from the right hand side. To obtain (8.2) we
first assume that the right hand inequality has been proved for all n ≥ 1,
|k| ≥ k0 and µ ∈ S and deduce the left hand inequality in the same setting
by induction on the number n of iterates, as follows.

According to [PRV, Section 4] for a fixed α < γ < 1 we have

ε > |f iµ(zk(µ))| ≥ |zk(µ)|γi−1
and |(f iµ)′(zk(µ))| ≥ ε(γ−1)i

for every 1 ≤ i < j0 = j0(k, µ), where j0 is the first iterate of fµ such that
|f jµ(zk(µ))| > ε. This threshold j0 is uniformly bounded from above (by L,
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say) for all |k| ≥ k0 and µ ∈ S. Consequently, since all the above iterates
are in the region of expansion between critical points, there are |li| ≥ k0 and
si such that

f iµ(zk(µ)) ∈ I(li, si) with |si| ≤ s(τ), i = 0, . . . , j0 − 1.

Hence by Remark 2.1,

dist(f iµ(zk(µ)), C) ≥ a2e
−(π/β)(|li|+|si|) ≥ a2e

−(π/β)s(τ)e−(π/β)|li|

and since

|f jµ(zk(µ))| ≤ dist(I(li − 1, s), 0) ≤ (a2 + x̂)eπ/βe−(π/β)|li|

we have

dist(f iµ(zk(µ)), C) ≥ a2e
−(π/β)s(τ)

eπ/β(a2 + x̂)
|f iµ(zk(µ))| ≥ K(τ)|zk(µ)|γi−1

for i = 1, . . . , j0 − 1, with 0 < K(τ) < 1. For i = 0 we obtain

dist(zk(µ), C) ≥ a2e
−(π/β)(|l0|+|s0|) ≥ a2e

−(π/β)s(τ)e−(π/β)|l0| ≥ K(τ)|zk(µ)|.

Because − log dist[(·, C) ≤ − log dist(·, C) we get the bound

(8.3)
j0−1∑
i=0

− log dist[(f
i
µ(zk(µ)), C)

≤ −j0 logK(τ)−
(

1 +
j0−1∑
i=1

γi−1
)

log |zk(µ)|.

Now using again Remark 2.1 we have

|zk(µ)| ≥ dist(I(l0, s0), C) ≥ |x̂− a2|e−(π/β)|l0| > |x̂− a2|e−(π/β)(|l0|+|s0|)

and so (8.3) is bounded by

−j0 logK(τ)− C log |x̂− a2|+ C
π

β
(|l0|+ |s0|)

= (|l0|+ |s0|)
(
C
π

β
− j0 logK(τ) + log |x̂− a2|

|l0|+ |s0|

)
≤ (|l0|+ |s0|)

(
C
π

β
− j0 logK(τ) + log |x̂− a2|

k0 + 1

)
≤ B̂(|l0|+ |s0|)

for a constant B̂ > 0 which depends on τ . Since these initial iterates are all
free, we have shown that the left hand inequality of (8.2) holds for the j0−1
initial iterates of the orbit of every critical value for any B ≥ B̂.

Now assume that the left hand inequality of (8.2) is true for a free time
n− 1 of the orbit of a critical value zk for a fixed µ ∈ S.

If n is a free time for zk and the last essential return situation was not
deep, i.e. the depth was smaller than Θ, then the depth of fn(zk) is also
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smaller than Θ by arguments akin to Lemma 6.3. Hence this situation does
not contribute to the sum C[n(zk).

If n is a free time for zk and the last essential return situation was deep,
then let r ≤ n − 1 be the last essential return time with depth (lr, sr) and
t > n be the next return situation (either essential, inessential or escape).
We claim that

(8.4)
t−1∑
j=r

− log dist[(f
j
µ(zk(µ)), C) ≤ B(|lr|+ |sr|),

which shows that the induction can be carried out up to iterate t− 1 ≥ n.
To prove the claim, note that similar arguments to those proving Lemma

6.4 show that the part of the sum (8.4) corresponding to free times after the
binding period is bounded by B2(|lr| + |sr|). Hence we get (8.4) as long as
B ≥ B2.

Finally, if n is a return situation for zk, either essential, inessential or
an escape, we let p be the binding period corresponding to the return and
consider the next free iterate n+ p of the orbit of zk.

If n is an escape, then p = 0 and we are done by Remark 2.1. Otherwise
0 < p ≤ (2ρ/log σ)n < n by [PRV, Lemma 5.3] and so we can use the
induction hypothesis to get (6.2) with ti = n, h = 1, . . . , p, x = zk and
xl = xln , the critical point which will shadow the orbit of zk during the
binding period. Hence we obtain the bound (6.4) as before.

Note that if |ln|+ |sn| ≤ Θ, then the truncated distance is always 1 and
we are done, by the same arguments as in the proof of Lemma 6.2. If we
have a deep return then, analogously, we need to consider the next free time
t ≥ p of the orbit of the bound critical value zln in order to properly use the
induction hypothesis. We have t ≤ (1 + 2ρ/log σ)p again by [PRV, Lemma
5.3], from which we get

n+p∑
j=n+1

− log dist[(f
j
µ(zk(µ)), C) ≤ C(τ) +

(
1 +

2ρ
log σ

)
p ≤ B(|ln|+ |sn|)

by induction and assuming that the right hand inequality of (8.2) holds. We
have also used the upper bound in Lemma 4.6(a) and assumed that

B > C(τ)/Θ +
2π

β log σ

(
1 +

2ρ
log σ

)
.

Thus if B is sufficiently large, then the inductive step can be performed in
every situation.

This shows that the left hand inequality in (8.2) is true if the right hand
inequality holds.
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8.2. The right hand inequality. Now we explain why we can assume that
parameters µ ∈ S satisfy the right hand inequality of (8.2) for all critical
values. The condition (30) used in [PRV, p. 463],

(8.5) B(n, ω, k) =
n−1∑
j=1

p(j, ω, k) < n/2,

to test whether a given interval ω of parameters should be excluded or not,
can be replaced by

(8.6)
un(k)∑
i=0

(|li|+ |si|) ≤ n/2

without loss since B(n, ω, k) ≤ C
∑un(k)

i=0 (|li| + |si|) by Claim (3) in [PRV,
p. 478]. Indeed, it is this last inequality that is used in the arguments proving
[PRV, Lemma 5.7] establishing the exponential bound on the measure of the
set of excluded parameters. Therefore repeating the algorithm presented
there step by step with the new condition (8.6) instead of (8.5) leads to the
construction of a positive Lebesgue measure set S satisfying Theorem 1.1
and (8.2) for all n ≥ 1, every |k| ≥ k0 and for every µ ∈ S. This concludes
the proof of (8.1).

9. Constants depend uniformly on initial parameters. We finally
complete the proof of Corollary E by explicitly showing the dependence of
the constants used in the estimates of Sections 2 to 7.

In the statements of the lemmas and propositions in the aforementioned
sections we stated explicitly the direct dependence of the constants appear-
ing in each claim from earlier statements. For constants which depend only
on f̂ we used the plain letter C.

It is straightforward to see that every constant depends on values that
ultimately rest on the choice of initial values for σ, σ0 and k0 and on the
choice of ρ and τ , which are taken to be small enough and where 0 < ρ < τ
is the unique restriction, used solely in the proof of Proposition 3.4. Note
that by definition ε = ε(k0), and k0 = k0(τ) according to (1.3). Thus τ can
be made as small as needed.

Hence by choosing 1 < σ <
√
σ̃ < σ0 and a small δ, we may then take

0 < ρ < τ as small as we need to obtain a small ε > 0 (and k0 large
enough, as a consequence, see Remark 3.2), and then find [ > 0 in order
that Θ = Θ([) be large enough so that the constants C1, C2, ξ1, ξ2, and
consequently C3, ξ3 in the statements of Section 1, are defined depending
only on α, β, which depend only on f̂ . So C1, C2, C3, ξ1, ξ2, ξ3 depend on
σ, σ0, ρ and τ , but do not depend on µ ∈ S. This concludes the proof of
Corollary E.
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Universidade Federal do Rio de Janeiro
C. P. 68.530

21.945-970 Rio de Janeiro, R. J., Brazil
E-mail: pacifico@impa.br

pacifico@im.ufrj.br
http://www.dmm.im.ufrj.br

Received 4 October 2007;
in revised form 27 January 2009


