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Abstract. The main purpose of this work is to study fixed points of fiber-preserving
maps over the circle S1 for spaces which are fiber bundles over S1 and the fiber is the
Klein bottle K. We classify all such maps which can be deformed fiberwise to a fixed point
free map. The similar problem for torus fiber bundles over S1 has been solved recently.

Introduction. Given a fiber bundle E → B and a fiber-preserving map
f : E → E over B, the question whether f can be deformed over B (by a
fiberwise homotopy) to a fixed point free map has been considered by many
authors (see for example [Do74], [FH81], [Go87]). In [FH81], Fadell and Hus-
seini showed that the above problem can be stated in terms of obstructions
(including higher ones). This was done under the hypothesis that the base
space, the total space and the fiber F are manifolds, and the dimension of
F is greater than or equal to 3. The case where the fiber has dimension 2
was considered in [GPV04], where a few generalities were discussed and the
fixed point problem over B as defined above was completely solved for any
torus fiber bundles over the circle S1. In the present work we study the fixed
point problem over B for Klein bottle fiber bundles over S1.

Recall that a Klein bottle bundle over S1 has as total space the mapping
torus M(φ) where φ : K → K is a homeomorphism. A relevant step in
solving the problem is to determine, for each fiber bundle M(φ) → S1, the
set of homotopy classes of maps f over S1 such that f restricted to the fiber
can be deformed to a fixed point free map. This is done in Theorem 2.4.
The main result of the paper is Theorem 6.26, which gives a classification of
the homotopy classes of fiber-preserving maps given by Theorem 2.4 which
can be deformed over S1 to a fixed point free map. Our method is to study
solutions of a system of equations in a free group either by providing an
explicit solution or by considering the system in some quotients of this group.
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The paper is organized in six sections. In Section 1 we give some re-
sults about the Klein bottle, K-bundles and an algebraic formulation of our
main question. In Section 2 we classify all K-bundles over S1 and bundle
maps which have the property that their restriction to a fiber can be de-
formed to a fixed point free map (Theorem 2.4). In Section 3 we compute
the fundamental group of the K-bundle M(φ)×S1 M(φ) with suitable base
points. In Section 4 we compute the fundamental group of the K-bundle
M(φ) ×S1 M(φ) − ∆ where ∆ is the diagonal. In Section 5 we give neces-
sary and sufficient conditions for the existence of a lifting in the algebraic
diagram (1.1); this existence is equivalent to the map being fiberwise de-
formable to a fixed point free map (Theorem 5.1). Then we reduce the cases
to be analyzed (Corollary 5.4). In Section 6 we derive necessary conditions
for the relevant system of equations on a free group F to have a solution, by
looking at the system on some quotients of F . In certain cases we construct
explicit solutions. Then we derive the main result, which is Theorem 6.26.

1. Preliminaries

1.1. The algebraic problem. Let f : E → E be a fiber-preserving map
over S1 where E is a fiber bundle over S1 with fiber a surface S. From
Corollary 1.3 in [GPV04] we know that all such bundles are of the form
S → M(φ)

p→ S1 where φ : S → S is a homeomorphism and M(φ) is the
quotient of S × I by the relation (x, 0) ∼ (φ(x), 1).

Let M(φ)×S1M(φ) be the pullback of p : M(φ) → S1 along p : M(φ)
→ S1, and pi : M(φ)×S1M(φ) → M(φ), i = 1, 2, the projections to the
first and the second coordinates, respectively. The fixed point problem for
a fiber-preserving map f over S1 is equivalent to the algebraic problem
given by Proposition 1.6 from [GPV04]. So we must compute the groups
and homomorphisms in the following diagram:

(1.1)

1

��
π1(F)

j2#◦∂2
��

' π2(S, S − x0)

π1(E(M(φ)×S1 M(φ)−∆))

q#

��

' π1(M(φ)×S1 M(φ)−∆)

π1(M(φ))

ψ
55jjjjjjjj

(1,f)#

// π1(M(φ)×S1 M(φ))

��
1
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where S is the Klein bottle and the homomorphisms are defined at the
beginning of Section 5. The group π2(S, S − x0) is well known and Proposi-
tions 1.7 and 1.8 of [GPV04] tell us how to compute the groups π1(M(φ))
and π1(M(φ)×S1 M(φ)), respectively. To compute π1(M(φ)×S1 M(φ)−∆)
we will use the proposition below, which holds for any closed surface S
different from S2 and RP 2.

Proposition 1.1. The fundamental group π1(M(φ) ×S1 M(φ) −∆) is
isomorphic to the semidirect product π1(S×S−∆) oθ Z for some action θ.

Proof. The fiber bundle S × S − ∆ → M(φ) ×S1 M(φ) − ∆
p◦p2|−−−→ S1

provides the short exact sequence

1→ π1(S × S −∆)→ π1(M(φ)×S1 M(φ)−∆)
p◦p2|#−−−−→ Z→ 1,

and the result follows since Z is free.

1.2. Generators of π1(K) and the Nielsen number of a continuous map
f : K → K. Let π1(K) = 〈α, β | αβαβ−1 = 1〉 be the well known presenta-
tion of the fundamental group of the Klein bottle.

If f : K → K is a continuous map then f# : π1(K) → π1(K) is a
homomorphism of the form:

• Type 1: f#(α) = 1, f#(β) = αpβ2q,
• Type 2: f#(α) = αr, f#(β) = αpβ2q+1.

In some situations we will distinguish the two types, but not always.
To compute the Nielsen number of a map f : K → K given by f#(α)

= αr, f#(β) = αsβt we have the following result of [DJ93].

Theorem 1.2. The Nielsen number of the above map f : K → K is

N(f) = |t− 1|max{1, |r|}.
Corollary 1.3. If f : K → K is a continuous map so that f# :

π1(K)→ π1(K) is of type 2, then

N(f) =
{ |2rq| if r 6= 0,
|2q| if r = 0.

2. The Klein bottle case—preliminary reductions. We use some
homeomorphisms of the Klein bottle to describe all K-bundles over S1 up
to fiberwise isotopy.

Let us consider in R2 the equivalence relation generated by the relations
(x, y) ∼ (x, y + 1) and (x, y) ∼ (x + 1, 1− y). The quotient space is K and
the equivalence class of (x, y) ∈ R2 is denoted by [(x, y)] ∈ K.

Let φ be a homeomorphism of K so that φ([(0, 0)]) = [(0, 0)] = x2.
As in Section 1, let M(φ) be the quotient space of K × [0, 1], where we

identify ([(x, y)], 0) with (φ[(x, y)], 1). The class of ([(x, y)], t) in the quotient
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is denoted by 〈[(x, y)], t〉. The space M(φ) is a fiber bundle over the circle S1,
where the fiber is the Klein bottle. The projection map p : M(φ) → S1 is
given by p(〈[(x, y)], t〉) = 〈t〉 ∈ [0, 1]/0'1 ' S1.

We denote by fs(r, t) : α 7→ αr, β 7→ αsβt the homomorphism on π1(K)
induced by the restriction of f to K, and by φp(ε, η) : α 7→ αε, β 7→ αpβη

the isomorphism of π1(K) induced by the homeomorphism φ. Since φp(ε, η)
is an isomorphism it follows that ε = ±1 and η = ±1.

Proposition 2.1.

(1) π1(M(φp(ε, η)),0) = 〈α, β, c0 | αβαβ−1 = 1, c0αc0
−1 = αε, c0βc0

−1

= αpβη〉, where 0 = 〈[(0, 0)], 0〉.
(2) There are four isotopy classes of homeomorphisms of K where a set

of representatives is given by {φ0(1, 1), φ1(1, 1), φ0(1,−1), φ1(1,−1)}.
(3) For any homeomorphism φ : K → K, M(φ) is homeomorphic over

S1 to M(φp(1, η)) where φp(1, η) is given by (1). Further , the
M(φp(1, η))’s are not homeomorphic for two different φp(1, η) given
in (2).

Proof. (1) This follows from Proposition 1.7 in [GPV04].
(2) It is a straightforward calculation to show that the number of con-

jugacy classes of isomorphisms of π1(K) is four and a set of representatives
is given by {φ0(1, 1), φ1(1, 1), φ0(1,−1), φ1(1,−1)}. Since the surface K is a
K(π, 1) we can identify these classes with the isotopy classes of K.

(3) The first part follows from Proposition 1.2 in [GPV04]. The last
part follows from the fact that the spaces have nonisomorphic fundamental
groups (given before the proposition).

Proposition 2.2. If f is deformable to a fixed point free map over S1

then the Nielsen number of f restricted to the fiber is zero, which implies
that fs(r, t) is of the form fs(r, 1).

Proof. The first part is clear. That fs(r, t) is of the form fs(r, 1) follows
from Corollary 1.3.

Let us denote by fs(r, t, c1, c2) : π1(M(φq(1, η))) → π1(M(φq(1, η))) the
homomorphism α 7→ αr, β 7→ αsβt and c0 7→ αc1βc2c0. Consequently,
r, s, t, c1, c2 must satisfy certain equations as a result of the relations in
the group.

Proposition 2.3. Let f : M(φq(1, η))→M(φq(1, η)) be a map over S1,
where q ∈ {0, 1} and η = ±1. If the Nielsen number of f restricted to the
fiber is zero then f# : π1(M(φq(1, η))) → π1(M(φq(1, η))) has the form
fs(r, 1, c1, c2) where

(i) (−1)c2r = r,
(ii) 2c1 = s[1− (−1)c2 ] + q[r − (−1)c2 ].
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Conversely , for each homomorphism fs(r, 1, c1, c2) : π1(M(φq(1, η))) →
π1(M (φq(1, η))), with q ∈ {0, 1} and η = ±1, where (r, s, c1, c2, q) satisfy the
conditions (i) and (ii) above, there is a map f : M(φq(1, η))→M(φq(1, η))
over S1 such that f# = fs(r, 1, c1, c2) and the Nielsen number of f restricted
to the fiber is zero.

Proof. Since f : M(φq(1, η)) → M(φq(1, η)) is a map over S1 we have
the following commutative diagram:

1 −−−−→ π1(K) −−−−→ π1(M(φ)) −−−−→ π1(S1) −−−−→ 1y (f |K)#

y f#

y id

y y
1 −−−−→ π1(K) −−−−→ π1(M(φ)) −−−−→ π1(S1) −−−−→ 1

Because f |K has Nielsen number zero, (f |K)# = fs(r, 1) for some r, s ∈ Z.
Therefore f# = fs(r, 1, c1, c2).

Now we will show (i) and (ii).
Because π1(M(φq(1, η))) = 〈α, β, c0 | αβαβ−1 = 1, c0αc

−1
0 =α, c0βc

−1
0 =

αqβη〉 by Proposition 2.1, we must have f#(c0αc
−1
0 ) = f#(α) and f#(c0βc

−1
0 )

= f#(αqβη). Using

(αrβs)t =

{
α
t
2

[r(1+(−1)s)]βst if t is even,
α
t−1
2

[r(1+(−1)s)]+rβst if t is odd,

we have (−1)c2r = r and 2c1 = s[1 − (−1)c2 ] + q[r − (−1)c2 ]. This finishes
the proof of the first part.

For the converse we first observe that p# ◦ fs(r, 1, c1, c2) = p#. Because
all spaces are K(π, 1) there exists g : M(φq(1, η)) → M(φq(1, η)) and a
homotopy H : M(φq(1, η)) × I, x1 × I) → (S1, 1) so that H(x, 0) = p ◦
g(x) and H(x, 1) = p(x) and g# = fs(r, 1, c1, c2). The map G : (x1 × I ∪
M(φq(1, η))× 0, x1 × I)→ (M(φq(1, η)), x2) defined by G(x, 0) = g(x) and
G(x1 × I) = x2 makes the diagram

(x1 × I ∪M(φq(1, η))× 0, x1 × I)

i
��

G // (M(φq(1, η)), x2)

p

��
(M(φq(1, η))× I, x1 × I)

L

33

H // (S1, 1)

commutative. Since p : (M(φq(1, η)), x2)→ (S1, 1) is a fiber bundle it follows
that there exists L : (M(φq(1, η)) × I, x1 × I) → (M(φq(1, η)), x2) such
that p ◦ L = H and f = L( , 1) : (M(φq(1, η)), x1) → (M(φq(1, η)), x2)
is over S1, and the induced homomorphism on the fundamental group is
fs(r, 1, c1, c2); indeed, p ◦ f = p ◦ L( , 1) = H( , 1) = p and f# = L( , 0)# =
g# = fs(r, 1, c1, c2).

Then we have
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Theorem 2.4. Let f : M(φq(1, η)) → M(φq(1, η)) be a map over S1 ,
where q ∈ {0, 1} and η = ±1. If the Nielsen number of f restricted to the
fiber is zero then f# : π1(M(φq(1, η))) → π1(M(φq(1, η))) is given by the
table:

Case I I.1: fs(r, 1, 0, 2k) : α 7→ αr, β 7→ αsβ, c0 7→ β2kc0 r, s, k ∈ Z
φ0(1, 1) I.2: fs(0, 1, s, 2k + 1) : α 7→ 1, β 7→ αsβ, c0 7→ αsβ2k+1c0 s, k ∈ Z

Case II fs(2r + 1, 1, r, 2k) : α 7→ α2r+1, β 7→ αsβ, c0 7→ αrβ2kc0 r, s, k ∈ Z
φ1(1, 1)

Case III III.1: fs(r, 1, 0, 2k) : α 7→ αr, β 7→ αsβ, c0 7→ β2kc0 r, s, k ∈ Z
φ0(1,−1) III.2: fs(0, 1, s, 2k + 1) : α 7→ 1, β 7→ αsβ, c0 7→ αsβ2k+1c0 s, k ∈ Z

Case IV fs(2r + 1, 1, r, 2k) : α 7→ α2r+1, β 7→ αsβ, c0 7→ αrβ2kc0 r, s, k ∈ Z
φ1(1,−1)

Proof. By Proposition 2.3, we have 2c1 = s[1 − (−1)c2 ] + q[r − (−1)c2 ]
and (−1)c2r = r. Using these equations for various values of η ∈ {1,−1}
and q ∈ {0, 1} yields the result.

3. Calculation of π1(M(φ)×S1M(φ), (〈x2, 0〉, 〈xi, 0〉)), i = 1, 2. Recall
that x2 = [(0, 0)] and set x1 = [(0, q)] for q small. Later we will choose φ
such that also φ(x1) = x1. We have the short exact sequence

1→π1(K,xi)
l#−→ π1(M(φ)×S1 M(φ), (〈x2, 0〉,〈xi, 0〉))

(p1)#−−−→ π1(M(φ), 〈x2, 0〉)→1

where l# is the homomorphism induced by the map l : K→M(φ)×S1M(φ)
given by x 7→ (〈x2, 0〉, 〈x, 0〉), and (p1)# is induced by the map p1 : M(φ)×S1

M(φ)→M(φ) given by (〈x, t〉, 〈y, t〉) 7→ 〈x, t〉.
We will define an explicit set of generators for π1(K). For this we start

by choosing a set of elements of π1(K − x) which will also be used in the
next section. Let %11, %12, B12 and %21, %22 be the elements of π1(K−x2, x1)
and π1(K − x1, x2), as defined in [S69], respectively. See Figures 1 and 2.

Fig. 1. The braids %i1 and %i1 Fig. 2. The braid B12
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By abuse of notation denote also by %ij the element of π1(K) which is
the image of the %ij defined above under the map induced by the inclusion
K − x ↪→ K.

We consider the presentations π1(K,xi) = 〈ai, bi | aibiaib−1
i = 1〉 where

ai = %i1%i2 and bi = %−1
i2 and π1(M(φ), 〈x2, 0〉) = 〈α, β, c0 | αβαβ−1 = 1,

c0αc
−1
0 = α, c0βc

−1
0 = αpβη)〉 where η = ±1 and p ∈ {0, 1}.

Denote by α1, β1, c01, u1, v1 the homotopy classes of the loops given re-
spectively by the pairs of loops (α(t), 〈x1, 0〉), (β(t), 〈x1, 0〉), (c0(t), 〈x1, t〉),
(〈x2, 0〉, a1(t)), (〈x2, 0〉, b1(t)); and α2, β2, c02, u2, v2 the homotopy classes of
the loops given respectively by the pairs of loops (α(t), 〈x2, 0〉), (β(t), 〈x2, 0〉),
(c0(t), c0(t)), (〈x2, 0〉, α(t)), (〈x2, 0〉, β(t)).

Theorem 3.1. Let φp(1, η) be one of the four cases given by Theorem 2.4
and αi, βi, c0i, ui, vi the elements in π1(M(φ)×S1 M(φ), (〈x2, 0〉, 〈xi, 0〉)).
Then π1(M(φ)×S1M(φ), (〈x2, 0〉, 〈xi, 0〉)) = 〈αi, βi, c0i, ui, vi | uiviuiv−1

i = 1,
αiβiαiβ

−1
i = 1, c0iαic

−1
0i α

−1
i = 1, c0iβic0i

−1β−ηi α−pi = 1, αiuiαi−1 = ui,
αiviα

−1
i = vi, βiuiβi−1 = ui, βiviβi−1 = vi, c0iuic

−1
0i = ui, c0ivic

−1
0i = upi v

η
i 〉.

Proof. The result follows promptly from Proposition 1.8 of [GPV04].
Also it is a corollary of Theorem 4.1 by letting B be the trivial element in
the presentation given by that theorem.

4. Calculation of π1(M(φ)×S1 M(φ)−∆, (〈x2, 0〉, 〈x1, 0〉)). As before
we have x2 = [(0, 0)], x1 = [(0, q)], and φ : K → K is a homeomorphism
such that φ(x2) = x2 and φ(x1) = x1.

In order to compute π1(M(φ)×S1M(φ)−∆, (〈x2, 0〉, 〈x1, 0〉)) we consider
the fiber bundle

(K − x2, x1)
j2→ (M(φ)×S1 M(φ)−∆, (〈x2, 0〉, 〈x1, 0〉))

p1|−−→ (M(φ), 〈x2, 0〉)

where j2 : K − x2 → M(φ)×S1 M(φ) − ∆ is given by y 7→ (〈x2, 0〉, 〈y, 0〉)
and p1| : M(φ)×S1 M(φ)−∆→M(φ) is given by (〈x, t〉, 〈y, t〉) (with y 6= x)
7→ 〈x, t〉. The homotopy sequence of this bundle is

1→π1(K−x2,x1)
j2#−−→π1(M(φ)×S1M(φ)−∆,(〈x2,0〉,〈x1,0〉))

(p1|)#−−−−→π1(M(φ),〈x2,0〉)→ 1.

We consider the presentations π1(K−x2, x1) = 〈ā, b̄〉 (the free group on the
set {ā, b̄}) where ā = %11%12 and b̄ = %−1

12 , and π1(M(φ), 〈x2, 0〉) = 〈α, β, c0 |
αβαβ−1 = 1, c0αc

−1
0 = α, c0βc

−1
0 = αpβη〉 where η = ±1, p ∈ {0, 1}. The

%ij were defined in the previous section, and α, β, c0 : I → M(φ) are given
by α = 〈%21%22, 0〉, β = 〈%−1

22 , 0〉 and c0 = 〈x2, t〉. Finally, consider the
elements α̃, β̃, c̃0, ã, b̃ : I → M(φ)×S1 M(φ) − ∆ given by α̃ = (α, 〈x1, 0〉),
β̃ = (β, 〈x1, 0〉), c̃0 = (c0, 〈x1, t〉), ã = (〈x2, 0〉, 〈ā, 0〉) and b̃ = (〈x2, 0〉, 〈b̄, 0〉).

According to [Jo76, Chap. 13, Theorem 1], there is a presentation
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π1(M(φ)×S1 M(φ)−∆, (〈x2, 0〉, 〈x1, 0〉))=〈α̃, β̃, c̃0, ã, b̃ | α̃β̃α̃β̃−1 =p1(ã, b̃),

c̃0α̃c̃
−1
0 α̃−ε = p2(ã, b̃), c̃0β̃c̃

−1
0 β̃−ηα̃−p = p3(ã, b̃), α̃ãα̃−1 = p4(ã, b̃),

α̃b̃α̃−1 = p5(ã, b̃), β̃ãβ̃−1 = p6(ã, b̃), β̃b̃β̃−1 = p7(ã, b̃), c̃0ãc̃
−1
0 = p8(ã, b̃),

c̃0b̃c̃
−1
0 = p9(ã, b̃)〉

where pj(ã, b̃), j = 1, . . . , 9, are words in ã and b̃.

Theorem 4.1. Let φp(1, η) be one of the four cases given by Theorem 2.4
and α̃, β̃, c̃0, ã, b̃ the elements in π1(M(φ)×S1 M(φ) − ∆, (〈x2, 0〉, 〈x1, 0〉))
defined above. Then

π1(M(φ)×S1 M(φ)−∆, (〈x2, 0〉, 〈x1, 0〉))

= 〈α̃, β̃, c̃0, ã, b̃ | α̃β̃α̃β̃−1 = p1(ã, b̃), c̃0α̃c̃
−1
0 α̃−1 = p2(ã, b̃),

c̃0β̃c̃
−1
0 β̃−ηα̃−p = p3(ã, b̃), α̃ãα̃−1 = p4(ã, b̃), α̃b̃α̃−1 = p5(ã, b̃),

β̃ãβ̃−1 = p6(ã, b̃), β̃b̃β̃−1 = p7(ã, b̃), c̃0ãc̃
−1
0 = p8(ã, b̃), c̃0b̃c̃

−1
0 = p9(ã, b̃)〉

where pj(ã, b̃), j = 1, . . . , 9, are words in ã and b̃ given by the tables

(4.1)

α̃β̃α̃β̃−1 = B = ãb̃ãb̃−1

α̃ãα̃−1 = BãB−1 β̃ãβ̃−1 = b̃−1ã−1b̃

α̃b̃α̃−1 = B(ã−1b̃ã−1)B−1 β̃b̃β̃−1 = b̃−1(Bb̃)b̃

and

(4.2)

Case I c̃0α̃c̃
−1
0 = α̃ c̃0β̃c̃

−1
0 = β̃

φ0(1, 1) c̃0ãc̃
−1
0 = ã c̃0b̃c̃

−1
0 = b̃

Case II c̃0α̃c̃
−1
0 = α̃ c̃0β̃c̃

−1
0 = B−1α̃β̃

φ1(1, 1) c̃0ãc̃
−1
0 = ã c̃0b̃c̃

−1
0 = b̃ã−1

Case III c̃0α̃c̃
−1
0 = B−1α̃ c̃0β̃c̃

−1
0 = β̃−1

φ0(1,−1) c̃0ãc̃
−1
0 = ãB−1 c̃0b̃c̃

−1
0 = Bb̃−1B−1

Case IV c̃0α̃c̃
−1
0 = B−1α̃ c̃0β̃c̃

−1
0 = α̃β̃−1

φ1(1,−1) c̃0ãc̃
−1
0 = ãB−1 c̃0b̃c̃

−1
0 = Bb̃−1ã−1

Proof. To simplify we set ᾱ = %21%22 and β̄ = %−1
22 . Since (ᾱβ̄ᾱβ̄−1, x1)

= (%21%22%
−1
22 %21%22%22, x1) = (%2

21%
2
22, x1) is homotopic to (x2, %

2
11%

2
12) =

(x2, āb̄āb̄
−1) it follows that

α̃β̃α̃β̃−1 = (αβαβ−1, 〈x1, 0〉) = (〈ᾱβ̄ᾱβ̄−1, 0〉, 〈x1, 0〉)

= (〈x2, 0〉, 〈āb̄āb̄−1, 0〉) = ãb̃ãb̃−1.

We set B = ãb̃ãb̃−1. Then α̃β̃α̃β̃−1 = B.
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In order to compute α̃ãα̃−1, α̃b̃α̃−1, β̃ãβ̃−1 and β̃b̃β̃−1 as elements of the
kernel we consider the presentation π1(K, ∗) = 〈%1, %2 | %2

1%
2
2 = 1〉.

Since the short exact sequence

1→ π1(K ×K −∆K , (x2, x1))
i#→ π1(M(φ)×S1 M(φ)−∆, (〈x2, 0〉, 〈x1, 0〉))

p◦p1|#−−−−→ π1(S1, 〈0〉) ' Z→ 1

splits we have α̃ = i#(α̂), β̃ = i#(β̂), ã = i#(â) and b̃ = i#(b̂) where α̂, β̂, â
and b̂ are the generators of π1(K ×K −∆K , (x2, x1)).

If we denote by j# : π1(K − x2, x1) → π1(K,x1) the homomorphism
induced by the inclusion j : K − x2 → K, and by k# : π1(K − x1, x2) →
π1(K,x2) the homomorphism induced by the inclusion k : K − x1 → K
then ā = %11%12, b̄ = %−1

12 , ᾱ = %21%22 and β̄ = %−1
22 where %11, %12 are the

generators of π1(K − x2, x1) such that j#(%11) = %1 and j#(%12) = %2, and
%21, %22 are the generators of π1(K − x1, x2) such that k#(%21) = %1 and
k#(%22) = %2.

Also, if we denote by (i2)# : π1(K−x2, x1)→ π1(K ×K−∆K , (x2, x1))
the homomorphism induced by i2 : K − x2 → K ×K − ∆K given by
i2(x) = (x2, x), and by (i1)# the homomorphism induced by i1 : K − x1 →
K×K−∆K given by i1(x) = (x, x1), then â = (i2)#(%11%12), b̂ = (i2)#(%−1

12 ),
α̂ = (i1)#(%21%22) and β̂ = (i1)#(%−1

22 ), or equivalently, â = (i2)#(ā),
b̂ = (i2)#(b̄), α̂ = (i1)#(ᾱ) and β̂ = (i1)#(β̄) where ā, b̄, ᾱ and β̄ are the
generators of π1(K − x2, x1) and π1(K − x1, x2), respectively.

Let B12 be as given in Figure 2 of Section 3, and B21 = B−1
12 .

Using [S69] and the convention that the product cd of two elements in
π1 is the class of a representative of c followed by a representative of d we
obtain the following presentation for π1(K ×K −∆K , (x2, x1)):

B12 = %2
11%

2
12, B−1

21 = %2
21%

2
22,

%21%11%
−1
21 = %11B

−1
12 , %21%12%

−1
21 = B12%

−1
11 B12%11%12%

−1
11 B

−1
12 %11B

−1
12 ,

%21B12%
−1
21 = B12%

−1
11 B

−1
12 %11B

−1
12 , %22%11%

−1
22 = %11,

%22%12%
−1
22 = %12B

−1
12 , %22B12%

−1
22 = B12%

−1
12 B

−1
12 %12B

−1
12 ,

%−1
21 %11%21 = %2

11B
−1
12 %

−1
11 , %−1

21 %12%21 = %11B12%
−1
11 B12%12B

−1
12 %11B

−1
12 %

−1
11 ,

%−1
21 B12%21 = %11B

−1
12 %

−1
11 , %−1

22 %11%22 = %11,

%−1
22 %12%22 = %2

12B
−1
12 %

−1
12 , %−1

22 B12%22 = %12B
−1
12 %

−1
12 .

We have α̂âα̂−1 = (i1)#(%21%22)(i2)#(%11%12)(i1)#(%−1
22 %

−1
21 ). Using the re-

lations above we obtain %21(%22(%11%12)%−1
22 )%−1

21 = %21(%11%12B
−1
12 )%−1

21 =
B12%11%12 B

−1
12 = B̂âB̂−1. Therefore α̃ãα̃−1 = BãB−1.

Similarly we obtain all the other relations of the table (4.1).
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The fiber bundle

(K ×K −∆K , (x2, x1)) i→ (M(φ)×S1 M(φ)−∆, (〈x2, 0〉, 〈x1, 0〉))
p◦p1|−−−→ S1,

where i(x, y) = (〈x, 0〉, 〈y, 0〉), provides the short exact sequence

1→ π1(K ×K−∆K , (x2, x1))
i#−→ π1(M(φ)×S1 M(φ)−∆, (〈x2, 0〉, 〈x1, 0〉))

p◦p1|#−−−−→ π1(S1, 〈0〉) ' Z→ 1,

which splits since the quotient is Z. The action of Z → Aut(π1(K ×K −
∆K , (x2, x1))) which comes from the section s0 is given by c · % = c%c−1 =
(φ × φ)|#(%), where c = p ◦ p1|#〈s0〉 is the generator of π1(S1), hence
π1(M(φ) ×S1 M(φ) − ∆, (〈x2, 0〉, 〈x1, 0〉)) is isomorphic to the semidirect
product π1(K ×K −∆K , (x2, x1)) o Z.

Using the homeomorphism h : M(φ)×S1M(φ)→M(φ×φ) over S1 given
by h(〈x, t〉, 〈y, t〉) = 〈x, y, t〉 we obtain by restriction the homeomorphism
h| : M(φ)×S1 M(φ)−∆→M(φ× φ)− h(∆) over S1.

In M(φ× φ)− h(∆) the loops α̃, β̃, c̃0, ã, b̃ can be seen as α̃ = 〈ᾱ, x1, 0〉,
β̃ = 〈β̄, x1, 0〉, c̃0 = 〈x2, x1, t〉, ã = 〈x2, ā, 0〉 and b̃ = 〈x2, b̄, 0〉, and they can
be viewed as classes of the representative loops in K ×K −∆K of natural
form.

So the loops α̃, β̃, c̃0, ã, b̃ can be interpreted as follows: ã, b̃ are elements
in the second copy K of K ×K and α̃, β̃ are elements in the first copy K of
K ×K. So

c̃0α̃c̃
−1
0 α̃−1 = (φ× φ)|#(α̃)α̃−1 = p2(ã, b̃),

c̃0β̃c̃
−1
0 β̃−ηα̃−p = (φ× φ)|#(β̃)β̃−ηα̃−p = p3(ã, b̃),

c̃0ãc̃
−1
0 = (φ× φ)|#(ã),

c̃0b̃c̃
−1
0 = (φ× φ)|#(b̃).

Now we are going to calculate

(φ× φ)|# : π1(K ×K −∆K , (x2, x1))→ π1(K ×K −∆K , (x2, x1)).

For this:

(i) We consider the commutative diagrams

π1(K − x2, x1)

j#
����

(φ|)# // π1(K − x2, x1)

j#
����

π1(K,x1)
φ# // π1(K,x1)
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and

π1(K − x2, x1)
��

(i2)#
��

(φ|)# // π1(K − x2, x1)
��

(i2)#
��

π1(K ×K −∆K , (x2, x1))

(q1|)#
��

(φ×φ)|#// π1(K ×K −∆K , (x2, x1))

(q1|)#
��

π1(K,x2)
φ# // π1(K,x2)

where j# is induced by the inclusion j : K − x2 → K, (i2)# is
induced by i2 : K−x2 → K ×K−∆K given by i2(x) = (x2, x), and
(q1|)# is induced by q1| : K ×K −∆K → K given by q1|(x, y) = x.

(ii) We denote by â, b̂, α̂ and β̂ the generators of π1(K×K−∆K , (x2, x1))
such that i#(â) = ã, i#(b̂) = b̃, i#(α̂) = α̃, i#(β̂) = β̃ and i2#(ā)
= â, i2#(b̄) = b̂, i1#(ᾱ) = α̂, i1#(β̄) = β̂.

(iii) We consider the identities

c̃0α̃(c̃−1
0 ãc̃0)α̃−1c̃−1

0 = (c̃0α̃c̃
−1
0 )ã(c̃0α̃

−1c̃−1
0 ),

c̃0α̃(c̃−1
0 b̃c̃0)α̃−1c̃−1

0 = (c̃0α̃c̃
−1
0 )b̃(c̃0α̃

−1c̃−1
0 ),

c̃0β̃(c̃−1
0 ãc̃0)β̃−1c̃−1

0 = (c̃0β̃c̃
−1
0 )ã(c̃0β̃

−1c̃−1
0 ),

c̃0β̃(c̃−1
0 b̃c̃0)β̃−1c̃−1

0 = (c̃0β̃c̃
−1
0 )b̃(c̃0β̃

−1c̃−1
0 ).

(iv) We write π1(K, ∗) = 〈ā, b̄ | āb̄āb̄−1 = 1〉 and π1(K − x, ∗) = 〈a, b〉.
If wa, wb ∈ π1(K − x, ∗) are such that wawbwaw−1

b = abab−1 or
wawbwa w

−1
b = ba−1b−1a−1 then by Theorem 1.1 of [Sko87] there

exists a homeomorphism φ : K → K such that (φ|)# maps a 7→ wa
and b 7→ wb.

Now we are going to use the above diagrams in each of the four cases.

Case I: φ0(1, 1). In this case let φ : K → K be the identity. We have
(φ|)# : ā 7→ ā, b̄ 7→ b̄ and so (φ × φ)|# : â 7→ â, b̂ 7→ b̂. Therefore
c̃0ãc̃

−1
0 = (φ × φ)|#(ã) = (φ)|#(ã) = ã and c̃0b̃c̃

−1
0 = (φ × φ)|#(b̃) = b̃.

Since in this case c̃−1
0 b̃c̃0 = b̃ and c̃−1

0 ãc̃0 = ã it follows from the identi-
ties c̃0α̃(c̃−1

0 ãc̃0)α̃−1c̃−1
0 = (c̃0α̃c̃

−1
0 )ã(c̃0α̃

−1c̃−1
0 ) and c̃0α̃(c̃−1

0 b̃c̃0)α̃−1c̃−1
0 =

(c̃0α̃c̃
−1
0 )b̃(c̃0α̃

−1c̃−1
0 ) that p2(ã, b̃) must satisfy BãB−1 = p2(ã, b̃)BãB−1

p2(ã, b̃)−1 and Bã−1(b̃ã−2)ãB−1 = p2(ã, b̃)Bã−1(b̃ã−2)ãB−1p2(ã, b̃)−1. So
p2(ã, b̃) commutes with the subgroup generated by BãB−1 and Bã−1(b̃ã−2)
· ãB−1. Suppose that p2(ã, b̃) 6= 1. From Exercise 7 in Section 1.4 of [MKS66]
we know that some nontrivial power of BãB−1 is also a power of p2(ã, b̃).
Similarly for Bã−1(b̃ã−2)ãB−1. By Exercise 4 in Section 1.4 of [MKS66]
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the two elements BãB−1 and Bã−1(b̃ã−2)ãB−1 commute, so they gener-
ate a cyclic subgroup. But the subgroup generated by BãB−1 and Bã−1

· (b̃ã−2)ãB−1 cannot be cyclic since it is not cyclic in the abelianization.
So we get p2(ã, b̃) = 1. Also, from the identities c̃0β̃(c̃−1

0 ãc̃0)β̃−1c̃−1
0 =

(c̃0β̃c̃
−1
0 )ã(c̃0β̃

−1c̃−1
0 ) and c̃0β̃(c̃−1

0 b̃c̃0)β̃−1c̃−1
0 = (c̃0β̃c̃

−1
0 )b̃(c̃0β̃

−1c̃−1
0 ) we find

that p3(ã, b̃) must satisfy b̃−1ã−1b̃=p3(ã, b̃)b̃−1ã−1b̃+p3(ã, b̃)−1 and b̃−1(Bb̃)b̃
= p3(ã, b̃)b̃−1(Bb̃)b̃p3(ã, b̃)−1. So p3(ã, b̃) = 1 is the unique solution. There-
fore c̃0α̃c̃

−1
0 α̃−1 = p2(ã, b̃) = 1 and c̃0β̃c̃

−1
0 β̃−1 = p3(ã, b̃) = 1. As c̃0α̃c̃

−1
0 α̃−1

= (φ × φ)|#(α̃)α̃−1 = 1 and c̃0β̃c̃
−1
0 β̃−1 = (φ × φ)|#(β̃)β̃−1 = 1 it follows

that (φ× φ)|#(α̃) = α̃ and (φ× φ)|#(β̃) = β̃.

Case II: φ1(1, 1). By (iv) we can take φ such that (φ|)# : ā 7→ ā, b̄ 7→
b̄ā−1. Now, by diagrams in (i) we have φ# = φ1(1, 1) and (φ×φ)|# : â 7→ â,
b̂ 7→ b̂â−1. So c̃0ãc̃

−1
0 = (φ× φ)|#(ã) = ã and c̃0b̃c̃

−1
0 = (φ× φ)|#(b̃) = b̃ã−1.

Now, as in Case I, it follows from the identities (iii) that p2(ã, b̃) = 1 and
p3(ã, b̃) = B−1 are the unique solutions. Therefore c̃0α̃c̃

−1
0 α̃−1 = p2(ã, b̃) = 1

and c̃0β̃c̃
−1
0 β̃−1α̃−1 = p3(ã, b̃) = B−1. As c̃0α̃c̃

−1
0 α̃−1 = (φ×φ)|#(α̃)α̃−1 = 1

and c̃0β̃c̃
−1
0 β̃−1α̃−1 = (φ × φ)|#(β̃)β̃−1α̃−1 = B−1 where B = ãb̃ãb̃−1 it

follows that (φ× φ)|#(α̃) = α̃ and (φ× φ)|#(β̃) = B−1α̃β̃.

Case III: φ0(1,−1). By (iv) we can take φ such that (φ|)# : ā 7→
āb̄ā−1b̄−1ā−1 = āĒ−1, b̄ 7→ āb̄āb̄−1ā−1b̄−1ā−1 = Ēb̄−1Ē−1 where Ē =
āb̄āb̄−1. Now, by diagrams in (i) we have φ# = φ0(1,−1) and (φ × φ)|# :
â 7→ âb̂â−1b̂−1â−1 = âÊ−1, b̂ 7→ âb̂âb̂−1â−1b̂−1â−1 = Êb̂−1Ê−1 where
Ê = âb̂âb̂−1. Therefore c̃0ãc̃

−1
0 = (φ × φ)|#(ã) = ãb̃ã−1b̃−1ã−1 = ãB−1 and

c̃0b̃c̃
−1
0 = (φ × φ)|#(b̃) = ãb̃ãb̃−1ã−1b̃−1ã−1 = Bb̃−1B−1 where B = ãb̃ãb̃−1.

Now, as in Case I, it follows from the identities (iii) that p2(ã, b̃) = B−1 and
p3(ã, b̃) = 1 are the unique solutions. Therefore c̃0α̃c̃

−1
0 α̃−1 = p2(ã, b̃) = B−1

and c̃0β̃c̃
−1
0 β̃ = p3(ã, b̃) = 1. As c̃0α̃c̃

−1
0 α̃−1 = (φ × φ)|#(α̃)α̃−1 = B−1 and

c̃0β̃c̃
−1
0 β̃ = (φ × φ)|#(β̃)β̃ = 1 it follows that (φ × φ)|#(α̃) = B−1α̃ and

(φ× φ)|#(β̃) = β̃−1.

Case IV: φ1(1,−1). By (iv) we can take φ such that (φ|)# : ā 7→ āĒ−1,
b̄ 7→ Ēb̄−1ā−1 where Ē = āb̄āb̄−1. Now, by diagrams in (i) we have φ# =
φ1(1,−1) and (φ×φ)|# : â 7→ âÊ−1, b̂ 7→ Êb̂−1â−1 where Ê = âb̂âb̂−1. There-
fore c̃0ãc̃

−1
0 = (φ × φ)|#(ã) = ãB−1 and c̃0b̃c̃

−1
0 = (φ × φ)|#(b̃) = Bb̃−1ã−1.

So, it follows from the identities (iii) that p2(ã, b̃) = B−1 and p3(ã, b̃)
= 1 are the unique solutions. Therefore c̃0α̃c̃

−1
0 α̃−1 = p2(ã, b̃) = B−1 and

c̃0β̃c̃
−1
0 β̃α̃−1 = p3(ã, b̃) = 1. As c̃0α̃c̃

−1
0 α̃−1 = (φ × φ)|#(α̃)α̃−1 = B−1 and
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c̃0β̃c̃
−1
0 β̃α̃−1 = (φ × φ)|#(β̃)β̃α̃−1 = 1 it follows that (φ × φ)|#(α̃) = B−1α̃

and (φ× φ)|#(β̃) = α̃β̃−1. This settlesall the cases from the table (4.2).

Remark 4.1. We observe that every word p(ã, b̃) can be written as a
word in w = ãb̃ã−1b̃−1ã−1 and v = ãb̃ because ã = v−1w−1v and b̃ = v−1wv2.
For the next sections it will be convenient to calculate the conjugates of the
generators v and w by α̃, β̃ and c̃0. They are given in the tables (4.3) and
(4.4) below.

(4.3)

α̃vα̃−1 = wvw α̃−1vα̃ = w−1vw−1

α̃wα̃−1 = w α̃−1wα̃ = w

α̃Bα̃−1 = α̃(w−1v−1w−1v)α̃−1 α̃−1Bα̃ = α̃−1(w−1v−1w−1v)α̃

= w−1Bw = wBw−1

β̃vβ̃−1 = v β̃−1vβ̃ = v

β̃wβ̃−1 = v−1w−1v β̃−1wβ̃ = vw−1v−1

β̃Bβ̃−1 = v−1wB−1w−1v β̃−1Bβ̃ = vwB−1w−1v−1

(4.4)

Case I c̃0vc̃
−1
0 = v c̃0wc̃

−1
0 = w c̃0Bc̃

−1
0 = B

φ0(1, 1) c̃−1
0 vc̃0 = v c̃−1

0 wc̃0 = w c̃−1
0 Bc̃0 = B

Case II c̃0vc̃
−1
0 = wv c̃0wc̃

−1
0 = w c̃0Bc̃

−1
0 = B

φ1(1, 1) c̃−1
0 vc̃0 = w−1v c̃−1

0 wc̃0 = w c̃−1
0 Bc̃0 = B

Case III c̃0vc̃
−1
0 = v−1 c̃0wc̃

−1
0 = v−1w−1v c̃0Bc̃

−1
0 = B−1

φ0(1,−1) c̃−1
0 vc̃0 = v−1 c̃−1

0 wc̃0 = v−1w−1v c̃−1
0 Bc̃0 = B−1

Case IV c̃0vc̃
−1
0 = v−1w−1 c̃0wc̃

−1
0 = v−1w−1v c̃0Bc̃

−1
0 = B−1

φ1(1,−1) c̃−1
0 vc̃0 = v−1w c̃−1

0 wc̃0 = v−1w−1v c̃−1
0 Bc̃0 = B−1

5. The lifting problem and some reductions. Now we study the
existence of the lift in the algebraic diagram (1.1) given in Subsection 1.1.

The homomorphism j2# is the induced by the map

j2 : (K − x2, x1)→ (M(φ)×S1 M(φ)−∆, (〈x2, 0〉, 〈x1, 0〉))

given by y 7→ (〈x2, 0〉, 〈y, 0〉). The homomorphism ∂2 is the connecting ho-
momorphism of the homotopy exact sequence of the pair (K,K − x2),

1→ π2(K,K − x2, x1) ∂2−→ π1(K − x2, x1)
jπ−→ π1(K,x1)→ 1

and the homomorphism

π1(M(φ)×S1 M(φ)−∆, (〈x2, 0〉, 〈x1, 0〉))
q#

��
π1(M(φ)×S1 M(φ), (〈x2, 0〉, 〈x2, 0〉))
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is given by the composition

π1(M(φ)×S1 M(φ)−∆, (〈x2, 0〉, 〈x1, 0〉))

κ

��
π1(M(φ)×S1 M(φ), (〈x2, 0〉, 〈x1, 0〉))

'ν̄
��

π1(M(φ)×S1 M(φ), (〈x2, 0〉, 〈x2, 0〉)).

Here ν̄(η) = ν−1ην where ν : I → M(φ) ×S1 M(φ) is given by ν(t) =
(〈x2, 0〉, 〈σ(t), 0〉) with σ : I → K a path joining x1 to x2 and κ is the
homomorphism given by α̃ 7→ α1, β̃ 7→ β1, c̃0 7→ c01, ã 7→ u1, b̃ 7→ v1.
In order to compute ν̄−1 ◦ (1, f)# we will compute the homomorphism
(1, f)# and the homomorphism ν̄−1 of the above diagram, where f# =
fs(r, 1, c1, c2) is given in the table from Theorem 2.4. From Sections 1, 3
and 4 we have

π1(M(φ), 〈x2, 0〉) = 〈α, β, c0 | αβαβ−1 = 1, c0αc
−1
0 = α, c0βc

−1
0 = αpβη〉,

π1(M(φ)×S1 M(φ), (〈x2, 0〉, 〈x2, 0〉)) = 〈α2, β2, c02, u2, v2 | u2v2u2v
−1
2 = 1,

α2β2α2β
−1
2 = 1, c02α2c02

−1α−1
2 = 1, c02β2c

−1
02 β

−η
2 α−p2 =1, α2u2α

−1
2 =u2,

α2v2α
−1
2 =v2, β2u2β

−1
2 =u2, β2v2β

−1
2 =v2, c02u2c

−1
02 =uε2, c02v2c

−1
02 =up2v2

η〉,

π1(M(φ)×S1 M(φ)−∆, (〈x2, 0〉, 〈x1, 0〉))

= 〈α̃, β̃, c̃0, ã, b̃ | α̃β̃α̃β̃−1 = ãb̃ãb̃−1 = B, c̃0α̃c̃
−1
0 α̃−ε = (φ× φ)|#(α̃)α̃−ε,

c̃0β̃c̃
−1
0 β̃−ηα̃−p = (φ× φ)|#(β̃)β̃−ηα̃−p, α̃ãα̃−1 = BãB−1,

α̃b̃α̃−1 = Bã−1b̃ã−1B−1, β̃ãβ̃−1 = b̃−1ã−1b̃, β̃b̃β̃−1 = b̃−1(Bb̃)b̃,

c̃0ãc̃
−1
0 = (φ× φ)|#(ã), c̃0b̃c̃

−1
0 = (φ× φ)|#(b̃)〉

and

π1(M(φ)×S1 M(φ), (〈x2, 0〉, 〈x1, 0〉)) = 〈α1, β1, c01, u1, v1 | u1v1u1v
−1
1 = 1,

α1β1α1β
−1
1 = 1, c01α1c

−1
01 α

−ε
1 = 1, c01β1c

−1
01 β

−η
1 α−p1 = 1, α1u1α

−1
1 = u1,

α1v1α
−1
1 = v1, β1u1β

−1
1 = u1, β1v1β

−1
1 = v1, c01u1c

−1
01 = uε1, c01v1c

−1
01 = up1v

η
1〉,

where p ∈ {0, 1}, ε = ±1 and η = ±1.
We have (1, f)#(〈α(t)〉) = 〈(1, f) ◦ α(t)〉 = 〈(α(t), f ◦ α(t))〉. But (α(t),

f ◦ α(t)) ∼∂I (α(t), 〈x2, 0〉) ∗ (〈x2, 0〉, f ◦ α(t)).
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Since f#(α) = αr it follows that

(1, f)#(〈α〉) = 〈(1, f) ◦ α〉 = 〈(α, f ◦ α)〉
= 〈(α, 〈x2, 0〉)〉〈(〈x2, 0〉, f ◦ α)〉
= 〈(α, 〈x2, 0〉)〉〈(〈x2, 0〉, αr)〉 = α2u

r
2.

Similarly, as f#(β)=αsβ we have (1, f)#(〈β〉)=β2u
s
2v2. Also, (1, f)#(〈c0〉)

= 〈(1, f)◦c0〉 = 〈(c0, f ◦c0)〉. But, since f#(c0) = αc1βc2c0 we have (c0, f ◦c0)
'∂I (〈x2, 0〉, αc1)∗(〈x2, 0〉, βc2)∗(c0, c0). So (1, f)#(c0) = uc12 v

c2
2 c02. Summa-

rizing, in all cases, if f# = fs(r, 1, c1, c2) then (1, f)# is given by α 7→ α2u
r
2,

β 7→ β2u
s
2v2 and c0 7→ uc12 v

c2
2 c02.

For

ν̄ : π1(M(φ)×S1 M(φ), (〈x2, 0〉, 〈x1, 0〉))→ π1(M(φ)×S1 M(φ), (〈x2, 0〉, 〈x2, 0〉))

we have

ν̄(α1) = ν−1α1ν = (〈x2, 0〉, 〈σ−1, 0〉)(α, 〈x1, 0〉)(〈x2, 0〉, 〈σ, 0〉)
= (α, 〈x2, 0〉) = α2.

Similarly ν̄(β1) = β2, ν̄(c01) = c02, ν̄(u1) = u2 and ν̄(v1) = v2.
Therefore, in all cases, if f# = fs(r, 1, c1, c2) then

ν̄−1 ◦ (1, f)# : π1(M(φ), 〈x2, 0〉)→ π1(M(φ)×S1 M(φ), (〈x2, 0〉, 〈x1, 0〉))
is given by α 7→ α1u

r
1, β 7→ β1u

s
1v1 and c0 7→ uc11 v

c2
1 c01.

The next theorem describes the homomorphisms of diagram (1.1).

Theorem 5.1. Let fs(r, 1, c1, c2) be one of the four cases given by The-
orem 2.4, α, β, c0 loops in M(φ) based at 〈x2, 0〉 given respectively by α =
〈%21%22, 0〉, β = 〈%−1

22 , 0〉, c0(t) = 〈x2, t〉, and ā = %11%12, b̄ = %−1
12 loops in

K − x2 based at x1. Then:

(1) The homomorphism

(1, f)# : π1(M(φ), 〈x2, 0〉)→ π1(M(φ)×S1 M(φ), (〈x2, 0〉, 〈x2, 0〉))
is given by

α 7→ α2u
r
2, β 7→ β2u

s
2v2, c0 7→ uc12 v

c2
2 c02.

(2) The homomorphism ν̄ is given by ν̄(η) = ν−1ην where ν : I →
M(φ)×S1 M(φ) is given by ν(t) = (〈x2, 0〉, 〈σ(t), 0〉) with σ : I → K
a path joining x1 to x2, and the homomorphism κ is given by α̃ 7→ α1,
β̃ 7→ β1, c̃0 7→ c01, ã 7→ u1 and b̃ 7→ v1.

(3) The lifting homomorphism

ψ : π1(M(φ), 〈x2, 0〉)→ π1(M(φ)×S1 M(φ)−∆, (〈x2, 0〉, 〈x1, 0〉))
exists if and only if we can find elements Z1, Z2, Z3 ∈ π2(K,
K − x2, x1) and A,F,C ∈ π1(M(φ)×S1 M(φ)−∆, (〈x2, 0〉, 〈x1, 0〉))
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such that

ψ :


α 7→ Z1A with κ(A) = α1u

r
1 if f#(α) = αr,

β 7→ Z2F with κ(F ) = β1u
s
1v1 if f#(β) = αsβ,

c0 7→ Z3C with κ(C) = uc11 v
c2
1 c01 if f#(c0) = αc1βc2c0,

and it must satisfy ψ(αβαβ−1) = 1, ψ(c0αc
−1
0 α−ε) = 1 and

ψ(c0βc
−1
0 β−ηα−p) = 1 where p ∈ {0, 1}, ε = ±1 and η = ±1.

Proof. (1) and (2) follow from the considerations before.
Therefore it is enough to prove (3). First we observe that if ψ(α) = x

and f#(α) = αr then κ(x) = ν̄−1 ◦ (1, f)#(α) = α1u
r
1. On the other hand,

if κ(A) = α1u
r
1 then xA−1 = Z1, where Z1 ∈ π2(K,K − x2, x1) = kernel

of π1(K − x2, x1) → π1(K,x1), and the result follows. Similarly we argue
for β and c0. Now the equalities ψ(αβαβ−1) = 1, ψ(c0αc

−1
0 α−ε) = 1 and

ψ(c0βc
−1
0 β−ηα−p) = 1 follow from the relations in π1(M(φ), 〈x2, 0〉).

Now we will derive the equations that Z1, Z2, Z3, A, F,C must satisfy in
order that there exists a lifting

ψ : π1(M(φ), 〈x2, 0〉)→ π1(M(φ)×S1 M(φ)−∆, (〈x2, 0〉, 〈x1, 0〉))

in each of the four cases given by Theorem 2.4.
From the theorem above, for f# = fs(r, 1, c1, c2), ψ is of the form

α 7→Z1A with κ(A) = α1u
r
1,

β 7→Z2F with κ(F ) = β1u
s
1v1,

c0 7→Z3C with κ(C) = uc11 v
c2
1 c01,

and it must satisfy ψ(αβαβ−1)=1, ψ(c0αc
−1
0 α−ε) = 1 and ψ(c0βc

−1
0 β−ηα−p)

= 1 where p ∈ {0, 1}, ε = ±1 and η = ±1. Hence, there exists a lift ψ if and
only if the system of equations

(I)


Z1(AZ2A

−1)(AFAF−1)(FA−1Z1AF
−1)Z−1

2 = 1,
Z3(CZ1C

−1)(CAC−1A−1)(AZ−1
3 A−1)Z−1

1 = 1,
Z3(CZ2C

−1)(CFC−1F−ηA−p)(ApF ηZ−1
3 F−ηA−p)

· (ApF (η−1)/2Z−η2 F (1−η)/2A−p)Z−p1 = 1

has a solution in Z1, Z2, Z3.
We refer to (I) as the system generated by the input data (A,F,C; r, s,

(c1, c2)) where κ(A) = α1u
r
1, κ(F ) = β1u

s
1v1 and κ(C) = uc11 v

c2
1 c01.

Each equation in (I) involves a product where all the factors are conju-
gates of Zi, except one. The factor which is not a conjugate of Zi is called
the constant term of the equation; these are AFAF−1, CAC−1A−1 and
CFC−1F−ηA−p, respectively. Since the variables Zj belong to the normal
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subgroup π2(K,K − x2, x1) of π1(M(φ)×S1 M(φ)−∆, (〈x2, 0〉, 〈x1, 0〉)), all
factors (including the constant terms) belong to π2(K,K − x2, x1).

Proposition 5.2. There is a solution of the system generated by the
input data (A1, F1, C1; r, s, (c1, c2)) if and only if there exist solutions for all
systems generated by any input data (A,F,C; r, s, (c1, c2)).

Proof. Suppose that X1, X2, X3 is a solution for the system generated by
(A1, F1, C1; r, s, (c1, c2)). As κ(A1) = κ(A), κ(F1) = κ(F ) and κ(C1) = κ(C)
we can write A1 = Y1A, F1 = Y2F and C1 = Y3C for some Yj ∈ π2(K,
K − x2, x1). When we substitute these in the above system we obtain

X1Y1AX2Y2FX1Y1AF
−1Y −1

2 X−1
2 = 1,

X3Y3CX1Y1AC
−1Y −1

3 X−1
3 A−1Y −1

1 X−1
1 = 1,

X3Y3CX2Y2FC
−1Y −1

3 X−1
3 (F−1Y −1

2 X−1
2 )η(A−1Y −1

1 X−1
1 )p = 1.

Therefore Z1 = X1Y1, Z2 = X2Y2, Z3 = X3Y3 is a solution of the system
generated by the input data (A,F,C; r, s, (c1, c2)). The converse is immedi-
ate.

Conjugating the equations of the system by a word q in ã and b̃ (or v
and w) we find that κ(q) = um1 v

n
1 and so we obtain

Theorem 5.3. Let φ = φp(1, η) be one of the four cases given by Theo-
rem 2.4. If q denotes a word so that κ(q) = um1 v

n
1 then conjugating by q the

equations of the system (I) generated by the input data (A,F,C; r, s, (c1, c2)),
we obtain a new system generated by(
A′, F ′, C ′; (−1)nr, 2m+ (−1)ns,(
(1−(−1)c2+(1−η)n)m+(−1)c2+n

(
1− (−1)n

2

)
p+(−1)nc1, (1−η)n+c2

))
where A′ = qAq−1, F ′ = qFq−1 and C ′ = qCq−1. Moreover , if (Z1, Z2, Z3)
is a solution of the system (I) then (Z ′1 = qZ1q

−1, Z ′2 = qZ2q
−1, Z ′3 =

qZ3q
−1) is a solution of the new system given above.

Proof. The final part is straightforward. For the first part it is sufficient
to calculate κ(A′), κ(F ′) and κ(C ′).

Using the relations in π1(M(φ)×S1 M(φ), (〈x2, 0〉, 〈x1, 0〉)) we obtain

κ(A′) = κ(qAq−1) = um1 v
n
1α1u

r
1v
−n
1 u−m1 = α1α

−1
1 um1 v

n
1α1u

r
1v
−n
1 u−m1

= α1u
m
1 v

n
1u

r
1v
−n
1 u−m1 = α1u

m
1 u

(−1)nr
1 vn1 v

−n
1 u−m1 = α1u

(−1)nr
1 .

Similarly κ(F ′) = β1u
2m+(−1)ns
1 v1.
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For the system (I) we have

κ(C ′) = κ(qCq−1) = um1 v
n
1u

c1
1 v

c2
1 c01v

−n
1 u−m1

= um1 v
n
1u

c1
1 v

c2
1 c01v

−n
1 u−m1 c−1

01 c01

= u
[1−(−1)c2+(1−η)n]m+[(−1)n+c2 (

1−(−1)n

2
)]p+(−1)nc1

1 v
c2+(1−η)n
1 c01.

Remark 5.1. As a consequence of the above theorem the existence of a
lifting for fs(r, 1, c1, 2k) or fs(r, 1, s, 2k+ 1) is equivalent to the existence of
a lifting for f2m+(−1)ns((−1)nr, 1,−(1−(−1)n

2 )p + (−1)nc1, (1 − η)n + 2k) or
f2m+(−1)ns((−1)nr, 1, 2m+(1−(−1)n

2 )p+(−1)ns, (1−η)n+2k+1) respectively.

Using the results above we can reduce the cases to be analyzed.

Corollary 5.4. In order to study the problem of existence of solution
of the system generated by the input data (A,F,C; r, s, (c1, c2)) it suffices to
solve the problem for input data given by the homomorphisms fs(r, 1, c1, c2)
listed in the following table:

Case I I.1: fs(r, 1, 0, 2k) : α 7→ αr, β 7→ αsβ, c0 7→ β2kc0, r ≥ 0, s ∈ {0, 1}, k ∈ Z
φ0(1, 1) I.2: fs(0, 1, s, 2k + 1) : α 7→ 1, β 7→ αsβ, c0 7→ αsβ2k+1c0, s ∈ {0, 1}, k ∈ Z

Case II fs(2r + 1, 1, r, 2k) : α 7→ α2r+1, β 7→ αsβ, c0 7→ αrβ2kc0, r ≥ 0, s ∈ {0, 1}, k ∈ Z
φ1(1, 1)

Case III III.1: fs(r, 1, 0, 2k) : α 7→ αr, β 7→ αsβ, c0 7→ β2kc0, r ≥ 0, s ∈ {0, 1}, k ∈ {0, 1}
φ0(1,−1) III.2: fs(0, 1, s, 1) : α 7→ 1, β 7→ αsβ, c0 7→ αsβc0, s ∈ {0, 1}

Case IV fs(2r + 1, 1, r, 0) : α 7→ α2r+1, β 7→ αsβ, c0 7→ αrc0, r ∈ Z, s ∈ {0, 1}
φ1(1,−1)

Proof. Let S be the system generated by (A,F,C; r, s, (c1, c2)) where
fs(r, 1, c1, c2) is given by the table of Theorem 2.4. From Theorem 5.3, by
straightforward calculation in each of the four cases, it follows that there
is a system S ′, generated by (A′, F ′, C ′; r′, s′, (c′1, c

′
2)) where fs′(r′, 1, c′1, c

′
2)

belongs to the table in the statement of the corollary, such that S has a
solution if and only if S ′ has a solution.

Now from Proposition 5.2 there is a solution for S ′ if and only if there
exist solutions for all systems S ′′ determined by fs′(r′, 1, c′1, c

′
2). So the result

follows.

6. The systems on some quotients and the main classification
theorem. The system (I) given after Theorem 5.1 is on π2(K,K−x2, x1) =
π2. Now, we will look at the equations of that system on some quotients of
the abelianized π2, which is (π2)ab = π2/[π2, π2]. Whenever one of those
equations on the abelianization (π2)ab has no solution, we can infer that the
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initial system has no solution. On the other hand, if the system has a solu-
tion on the abelianization we will try to find a solution on π2 itself. In order
to decide whether the equations on the abelianization (π2)ab have no solu-
tion, we project the system to Z using the augmentation homomorphism E :
(π2)ab → Z and study if the corresponding equation on Z has a solution or
not. We will show that one system has a solution if and only if the other does.

We recall that the group π1(K,x1) acts on π2/[π2, π2] = (π2)ab since for
each ξ ∈ π1(K − x2, x1) we have the commutative diagram

1 // π2(K,K − x2, x1)

τ ′ξ
��

∂2 // π1(K − x2, x1)

τξ

��

jπ // π1(K,x1)

τη

��

// 1

1 // π2(K,K − x2, x1)
∂2 // π1(K − x2, x1)

jπ // π1(K,x1) // 1

where η = jπ(ξ).
We note that π2 is the kernel of the map jπ : 〈w̄, v̄〉 = π1(K − x2, x1)→

π1(K,x1) = 〈w̄, v̄ | w̄−1v̄−1w̄−1v̄ = 1〉 and we set B = w−1v−1w−1v where
w, v are as in Remark 4.1.

Theorem 6.1.

(1) There is an isomorphism (π2)ab
∼= Z[π1(K)], where Z[π1(K)] is the

group ring of the fundamental group of the Klein bottle.
(2) The abelianization homomorphism A : π2 → (π2)ab sends the ele-

ment p(w, v)B(p(w, v))−1 to 1.[p(w̄, v̄)] where [p(w̄, v̄)] = jπ(p(w̄, v̄)).

Proof. This follows from [Ly50, end of page 650].

Let A : π2(K,K − x2, x1) = π2 → π2/[π2, π2] = (π2)ab be the projec-
tion. Then A(p(w, v)Bt(p(w, v))−1) = t.(w̄xv̄y) where p(w, v)Btp(w, v)−1 =
j2#(p(w̄, v̄)Ēt(p(w̄, v̄))−1) and jπ(p(w̄, v̄)) = w̄xv̄y for some x, y ∈ Z, where
p(w, v) and p(w̄, v̄) denote the same words in w, v and w̄, v̄ respectively. Now
we define the π1(K,x1)-homomorphism E : (π2)ab → Z by E(t.(w̄xv̄y)) = t.

In the first subsection we study the system on the abelianization and in
the second subsection we prove the classification result.

6.1. The system of equations on quotients of (π2)ab
∼= Z[π1(K)]. In

this subsection we will calculate AFAF−1, E ◦ A(CAC−1A−1) and E ◦
A(CFC−1FA−p), p = 0, 1, where AFAF−1, CAC−1A−1 and CFC−1FA−p

are the constant terms of the equations of the system. Then we apply E◦A to
the equations. In certain cases we project the system onto another quotient.

If fs(r, 1, c1, c2) is the homomorphism on π1(M(φ(1, η))) defined before,
then the terms appearing in the system are denoted by A = α̃wr, r ∈ Z,
F = β̃vw1−s, s ∈ {0, 1}, and C = wc1(vw)c2 c̃0.

Because w = ãb̃ã−1b̃−1ã−1 and v = ãb̃ we have κ(v) = κ(ãb̃) = u1v1,
κ(w) = κ(ãb̃ã−1b̃−1ã−1) = u1(v1u

−1
1 v−1

1 u−1
1 ) = u1 and therefore κ(α̃ãr) =
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κ(α̃wr) = κ(A), κ(β̃ãsb̃) = κ(β̃vw1−s) = κ(F ) and κ(C) = κ(wc1(vw)c2 c̃0)
= uc11 (u1v1u1)c2c01 = uc11 v

c2
1 c01 = κ(ãc1 b̃c2 c̃0).

Proposition 6.2. If A = α̃wr, F = β̃vw1−s where r ∈ Z and s ∈ {0, 1}
then AFAF−1 = 1. Hence E ◦ A(AFAF−1) = 0.

Proof. We have

AFAF−1 = α̃wrβ̃vw1−sα̃wrws−1v−1β̃−1

= α̃wrα̃−1α̃β̃vw1−sβ̃−1α̃−1(α̃β̃α̃β̃−1)β̃wr+s−1v−1β̃−1

= wr+svwBv−1w−r−s+1 = wr+s−1w−r−s+1 = 1.

The second part is clear.

Now, let us consider the term CAC−1A−1. If we let a = −1+η
2 then we

have

CAC−1A−1 = wc1(vw)c2 c̃0α̃w
r c̃−1

0 (vw)−c2w−c1w−rα̃−1

= wc1(vw)c2Baα̃vawηrv−a(vw)−c2w−c1w−rα̃−1

= (wc1(vw)c2Ba(vw)−c2w−c1)

· (wc1(vw)c2(wvw)awηr(wvw)−a(wvww)−c2w−rw−c1).

In Cases I and II we have η = 1 and therefore a = 0. So

CAC−1A−1 = wc1 [(vw)c2wr(wvww)−c2w−r]w−c1 .

Proposition 6.3. If η = 1 then E ◦ A(CAC−1A−1) = c2. Hence:

(1) In Cases I.1 and II, E ◦ A(CAC−1A−1) = 2k, k ∈ Z.
(2) In Case I.2, E ◦ A(CAC−1A−1) = 2k + 1, k ∈ Z.
Proof. Consider CAC−1A−1 for r = 0, which is wc1 [(vw)c2(w−1Bv−1)c2 ]

·w−c1 . We will show that E ◦A((vw)c2(w−1Bv−1)c2) = c2 for c2 ∈ Z, which
implies the assertion for Case I.2.

If c2 = 1 then (vw)c2(w−1Bv−1)c2 = vww−1Bv−1 = vBv−1 and there-
fore E ◦ A(vBv−1) = 1. Suppose that the assertion is true for c2 − 1. Then

(vw)c2(w−1Bv−1)c2 = (vw)c2−1(vw)(w−1Bv−1)(w−1Bv−1)c2−1

= (vw)c2−1(vBv−1)(w−1Bv−1)c2−1

= [(vw)c2−1(vBv−1)(vw)1−c2 ](vw)c2−1(w−1Bv−1)c2−1.

Therefore

E ◦ A((vw)c2(w−1Bv−1)c2) = E ◦ A((vw)c2−1(vBv−1)(vw)1−c2)

+ E ◦ A((vw)c2−1(w−1Bv−1)c2−1)

= 1 + (c2 − 1) = c2.

The proof for Cases I.1 and II follows from the two lemmas below.
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Lemma 6.4. E ◦ A([v2, wr]) = 0 for any r ≥ 0.

Proof. The case r = 0 is trivial. The rest of the proof is straightforward
induction on r.

Lemma 6.5. If c2 is even then E ◦ A((vw)c2wr(w−1Bv−1)c2w−r) = c2.

Proof. The case c2 = 0 is trivial. If c2 = 2 the conclusion follows by
straightforward calculation using Lemma 6.4. For the general case we use
induction on c2.

In Cases III and IV we have η = −1 and therefore a = −1. So

CAC−1A−1 = (wc1(vw)c2B−1(vw)−c2w−c1)

· (wc1(vw)c2(wvw)−1w−r(wvw)(wvww)−c2w−rw−c1).

Proposition 6.6. If η = −1 then E ◦ A(CAC−1A−1) = c2 + r − 1.
Hence:

(1) In Case III.1, E ◦ A(CAC−1A−1) = 2k + r − 1, r ≥ 0, k ∈ {0, 1}.
(2) In Case III.2, E ◦ A(CAC−1A−1) = 0.
(3) In Case IV, E ◦ A(CAC−1A−1) = r − 1, r ∈ Z.
Proof. Consider CAC−1A−1 in Case III.2, where c2 = 1, c1 = s and

r = 0. So we have

CAC−1A−1 = (ws(vw)B−1(vw)−1w−s)

· (ws(vw)(wvw)−1(wvw)(wvww)−1w−s)

= (ws(vw)B−1(vw)−1w−s)(wsvBv−1w−s),

and therefore E ◦ A(CAC−1A−1) = −1 + 1 = 0.
The proof for Cases III.1 and IV follows from the two lemmas below.

Lemma 6.7. E ◦ A(v−1w−rvw−r) = r and E ◦ A((vw)−1w−r(vw)w−r)
= r for r ∈ Z.

Proof. For the first part assume that r ≥ 0. The case r ≤ 0 is similar
and left to the reader.

If r = 0 then the assertion is trivial. The rest of the proof is induction
on r.

Lemma 6.8. If c2 is even then

E ◦ A(CAC−1A−1) = −1 + E ◦ A((vw)−1w−rvww−r) + c2.

Proof. We have

CAC−1A−1 = (wc1(vw)c2B−1(vw)−c2w−c1)

· (wc1(vw)c2(wvw)−1w−r(wvw)(wvww)−c2w−rw−c1).

Using Lemma 6.5 we obtain the result.
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Now consider the term CFC−1FA−p. We compute E ◦A(CFC−1FA−p)
in Cases III and IV. Because we will show that the necessary conditions
obtained so far for Cases I and II are also sufficient, we do not need to
compute E ◦ A(CFC−1FA−p) in Cases I and II.

Proposition 6.9. In Case III, where p = 0, we have

E ◦ A(CFC−1F ) =
{−2k + s− 1 in Case III.1,
−2, in Case III.2.

Proof. In Case III.1 we have F = β̃vw1−s with s ∈ {0, 1} and C =
(vw)2k c̃0 with k ∈ {0, 1}. So CFC−1F = (vw)2kv−1w1−sv(vw−1)−2kw1−s.

If k = 0 and s = 0 then CFC−1F = v−1wvw = B−1 and it follows that
E ◦ A(CFC−1F ) = −1.

If k = 0 and s = 1 then CFC−1F = v−1v = 1 and hence E◦A(CFC−1F )
= 0.

If k = 1 and s = 0 then

CFC−1F = [(vw)2B−1(vw)−2](v2B−1v−2)(w−1vB−1v−1w)

and so E ◦ A(CFC−1F ) = −3.
If k = 1 and s = 1 then CFC−1F = (v2B−1v−2)(v2wB−1w−1v−2) and

therefore E ◦ A(CFC−1F ) = −2.
In Case III.2 we have F = β̃vw1−s and C = wsvwc̃0 where s ∈ {0, 1}. So

CFC−1F = (ws−1vB−1v−1w1−s)(w−1vB−1v−1w) and the result follows.

Now we consider Case IV. Then A = α̃w2r+1, F = β̃vw1−s and C = wr c̃0

where r ∈ Z and s ∈ {0, 1}.

Proposition 6.10. In Case IV we have E ◦ A(CFC−1FA−1) = s − 1
where F = β̃vw1−s, s ∈ {0, 1}.

Proof. We have

CFC−1FA−1 = wr c̃0β̃vw
1−sc̃−1

0 w−rβ̃vw1−sw−2r−1α̃−1

= wrα̃β̃−1v−1w−1v−1ws−1vw−rβ̃vw−s−2rα̃−1.

If s = 1, then CFC−1FA−1 = 1 and therefore E ◦ A(CFC−1FA−1) = 0. If
s = 0, then CFC−1FA−1 = wrB−1w−r and so E◦A(CFC−1FA−1) = −1.

Now, we are going to study the behavior of E ◦ A after conjugating the
variable Z = wmvnBkv−nw−m by α̃, α̃−1, β̃, β̃−1 and c̃0 in each case of
φp(1, η), where B = w−1v−1w−1v.

Proposition 6.11. If Z = wmvnBkv−nw−m then

(1) E ◦ A(Z) = E ◦ A(α̃Zα̃−1) = E ◦ A(α̃−1Zα̃) = −E ◦ A(β̃Zβ̃−1)

= −E ◦ A(β̃−1Zβ̃) = k.

(2) In each case of φp(1, η) we have E ◦ A(c̃0Zc̃
−1
0 ) = ηk.
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Proof. In fact, since Z = wmvnBkv−nw−m and since α̃Bα̃−1 = w−1Bw
from the table (4.3), it follows that E ◦ A(Z) = k and E ◦ A(α̃Zα̃−1) = k.
Also β̃Bβ̃−1 = v−1wB−1w−1v and so E ◦ A(β̃Zβ̃−1) = −k.

Now α̃−1Bα̃ = wBw−1 and therefore E ◦A(α̃−1Zα̃) = k. Also β̃−1Bβ̃ =
vwB−1w−1v−1 and therefore E ◦A(β̃−1Zβ̃) = −k. Finally, according to the
table (4.4), c̃0Bc̃

−1
0 = Bη and therefore E ◦ A(c̃0Zc̃

−1
0 ) = ηk.

Corollary 6.12. If Z = wmvnBkv−nw−m, A = α̃wr, F = β̃vw1−s

and C = wc1(vw)c2 c̃0, then in each case of φp(1, η),

• E ◦A(AZA−1) = E ◦A(FA−1ZAF−1) = −E ◦A(ApF ηZF−ηA−p) = k,
• E ◦ A(CZC−1) = ηk.

Proof. This is an immediate consequence of Proposition 6.11.

Now, we will apply E ◦ A to the second and the third equations of the
system (I). By Corollary 6.12 and Proposition 6.2 we do not obtain any
information if we apply the homomorphism to the first equation.

Let

Z1 =
∏
i

wuivviBti1v−viw−ui , Z2 =
∏
i

wmivniBti2v−niw−mi ,

Z3 =
∏
i

wxivyiBti3v−yiw−xi and tj =
∑
i

tij

where tij is the exponent of B in the ith factor of Zj .

Theorem 6.13. If we apply E ◦ A to the second equation of the system
(I) we obtain c2 = 0 in Cases I and II, and −2t1 − 1 + c2 + r = 0 in cases
III and IV.

Proof. This follows from Corollary 6.12 and Propositions 6.3 and 6.6.

We will see that the conditions given by Theorem 6.13 are also sufficient
to solve the problem for Cases I and II.

For the other cases we have

Theorem 6.14. In Cases III.1 and IV, i.e. φp(1,−1) where p = 0, 1
respectively , if we apply E ◦ A to the third equation of the system (I ) we
obtain 2(t3 − t2)− pt1 − c2 + s− 1 = 0.

Proof. This follows from Corollary 6.12 and Propositions 6.9 and 6.10.

In order to solve Case III.1 completely we need some further results. The
strategy will now change slightly.

Let us consider Case III.I, which corresponds to φ0(1,−1). We first con-
sider the maps f1(r, 1, 0, 0) with r odd, r ≥ 3.
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Recall that from the system generated by the input data (A = αwr, F =
βv,C = c0; r, 1, (0, 0)) the second equation is

Z3(CZ1C
−1)
(r−1∏
i=1

wiBw−i
)

(AZ−1
3 A−1)Z−1

1 = 1

once CAC−1A−1 =
∏r−1
i=1 w

iBw−i.
For Z1 and Z3 as above we have

A(CZ1C
−1) =

∑
i

(−ti1)w̄ui v̄−vi ,

A(Z−1
1 ) =

∑
i

(−ti1)w̄ui v̄vi ,

A(AZ−1
3 A−1) =

∑
i

(−ti3)w̄r+xi−(−1)yi v̄yi ,

A(Z3) =
∑
i

ti3w̄
xi v̄yi ,

A(CAC−1A−1) =
r−1∑
i=1

1w̄i.

We claim that the second equation does not have a solution.

Proposition 6.15. For Case III.1 with φ0(1,−1) and f1(r, 1, 0, 0) with
r ≥ 3, the second equation of the system,

Z3(CZ1C
−1)(CAC−1A−1)(AZ−1

3 A−1)Z−1
1 = 1,

has no solution where A = αwr and C = c0.

Proof. The second equation is

Z3(CZ1C
−1)
(r−1∏
i=1

wiBw−i
)

(AZ−1
3 A−1)Z−1

1 = 1

and by taking A(second equation) = 0 we get

A(Z3)− wrA(Z3)w−1 − 2A(Z1) +
r−1∑
i=1

1w̄i = 0.

Let H ⊂ Z[π1(K)] be the subring generated by the homogeneous elements
of the form w̄i for i ∈ Z. As a group, H is isomorphic to the free abelian
group generated by w̄i with i ∈ Z. It is easy to see that H is a subring which
can be identified with the ring of Laurent polynomials over the integers. If
we project the equation above on the group H (the projection maps w̄ui v̄vi
to 0 if vi 6= 0 and to w̄ui otherwise), and if by abuse of notation we write Zi
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for the projection of Zi to H, we get

A(Z3)(1− w̄r−1)− 2A(Z1) +
r−1∑
i=1

1w̄i = 0,

which is equivalent to

A(Z3)(1− w̄)(1 + w̄ + · · ·+ w̄r−2)− 2A(Z1) + w̄(1 + w̄ + · · ·+ w̄r−2) = 0.

Now let us look at this equation on H/2H. Then we obtain

(A(Z3)(1− w̄) + w̄)(1 + w̄ + · · ·+ w̄r−2) = 0.

This is an equation in the ring H/2H and this ring has no zero divisors by
Theorem 1.4 in [KLM88]. Therefore we must have

A(Z3)(1− w̄) + w̄ = 0, or A(Z3)(w̄ − 1) = w̄

since r ≥ 3. But the last equation has no solution (set w̄ = 1). Hence the
result follows.

Now we will consider the maps f1(r, 1, 0, 2) with r odd, r ≥ 1. This will
complete the analysis of Case III.1.

We have A = αwr, F = βv and C = (vw)2c0. In order to study the
second equation we need the following calculation:

CAC−1A−1 = [(vw)2B(vw)−2](v2B−2v−2)(vw1−rvBv−1wr−1v−1)

·
r∏
i=0

vwi−rBwr−iv−1

and therefore

A(CAC−1A−1) = 1v̄2 − 2v̄2 + 1w̄r−1v̄2 +
r∑
i=0

1w̄r−iv̄.

Moreover,
A(CZ1C

−1) =
∑
i

(−ti1)w̄ui v̄2−vi .

We claim:

Proposition 6.16. For Case III.1 with φ0(1,−1) and f1(r, 1, 0, 2) with
r ≥ 0, the second equation of the system,

Z3(CZ1C
−1)(CAC−1A−1)(AZ−1

3 A−1)Z−1
1 = 1,

has no solution.

Proof. As before we consider A(second equation) = 0. The summands
A(Z3) and A(AZ−1

3 A−1) are as stated before Proposition 6.15. The sum-
mands A(CZ1C

−1) and A(CAC−1A−1) are calculated above. So we deduce
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that∑
i

ti3w̄
xi v̄yi+

∑
i

(−ti1)w̄ui v̄2−vi+(1−w̄)(1+w̄+· · ·+w̄r−2)(−v̄2)+
r∑
i=0

1w̄r−iv̄

+
∑
i

(−ti3)w̄r+xi−(−1)yi v̄yi +
∑
i

(−ti1)w̄ui v̄vi = 0,

where the indices run over the i’s such that vi = yi = 1.
A homogeneous summand of Z3 and its conjugate which appear in the

equation are indexed by elements of the same horizontal line. A homoge-
neous summand of Z1 and its conjugate which appear in the equation are
indexed by elements of two horizontal lines symmetric to the line w̄ = 1.
In particular, if a summand is indexed by an element which belongs to the
line w̄ = 1 its conjugate is also a summand which is indexed by an element
which belongs to the line w̄ = 1. So we let H be the abelian group generated
by the elements w̄iv̄ with i ∈ Z and we project the equation on H. Then we
obtain the equation

(1− w̄r+1)
(∑

i

ti3w̄
xi
)

+ 2
∑
i

(−ti1)w̄ui +
r∑
i=0

1w̄r−i = 0,

where the last equality follows from the fact that Z[π1(K)] has no zero
divisors (see Theorem 1.4 in [KLM88]).

Now we consider this equation mod 2H, and using the fact that the
group ring Z2[Z] has no zero divisors (Theorem 1.4 in [KLM88]) we obtain(∑

i

ti3w̄
xi
)

(1− w̄)
( r∑
i=0

1w̄r−i
)

+
r∑
i=0

1w̄r−i = 0.

But this implies that (∑
i

ti3w̄
xi
)

(1− w̄) + 1 = 0,

which, as we have already seen in the proof of Proposition 6.15, does not
have a solution. So the result follows.

6.2. The classification theorem. Let us consider first the cases:

I.1. φ0(1, 1) and fs(r, 1, 0, 2k), r ≥ 0, s ∈ {0, 1} and k ∈ Z,
I.2. φ0(1, 1) and fs(0, 1, s, 2k + 1), s ∈ {0, 1} and k ∈ Z,
II. φ1(1, 1) and fs(2r + 1, 1, r, 2k), r ≥ 0, s ∈ {0, 1} and k ∈ Z.

Proposition 6.17.

(i) Cases I.1 and II have no solution for k 6= 0 and Case I.2 has no
solution for all k ∈ Z.

(ii) In Case I.1 for fs(r, 1, 0, 0) and II for fs(2r + 1, 1, r, 0), r ≥ 0, s ∈
{0, 1} there is a lifting.
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Proof. For (i) we have c2 6= 0 and the result follows from Theorem 6.13.
For (ii) let us first consider Case I.1. It is sufficient to prove that the sys-

tem generated by the input data (A = α̃wr, F = β̃vw1−s, C = c̃0; 0, 0, (0, 1))
has trivial solution. In fact, in this case we have

AFAF−1 = CAC−1A−1 = CFC−1F−1 = 1.

So we have the trivial solution.
Similarly for II, if we take A = α̃w2r+1, F = β̃vw1−s and C = wr c̃0

then the system generated by the data (A,F,C; 2r + 1, s, (r, 0)) has trivial
solution.

Now, let us consider Case III.1 with φ0(1,−1) and fs(r, 1, 0, 2k), s ∈
{0, 1}, r ≥ 0 and k ∈ {0, 1}.

Corollary 6.18. Case III.1 has no solution for r even or s even.

Proof. The condition from Theorem 6.13 is not satisfied modulo 2 for
r even. The condition from Theorem 6.14 is not satisfied modulo 2 for s
even.

Corollary 6.19. In Case III.1 if r ≥ 3 is odd then the system generated
by the input data (A = α̃wr, F = β̃v, C = c̃0; r, 1, (0, 0)) has no solution.

Proof. This follows from Proposition 6.15.

Corollary 6.20. In Case III.1, if r ≥ 1 is odd then the system gener-
ated by the input data (A = α̃wr, F = β̃v, C = (vw)2c̃0; r, 1, (0, 2)) has no
solution.

Proof. This follows from Proposition 6.16.

Theorem 6.21. In Case III.1, if s = 1, r = 1 and c2 = 0 then the
system generated by the input data (A = α̃w, F = β̃v, C = c̃0; 1, 1, (0, 0))
has a solution.

Proof. In fact, using the tables (4.3) and (4.4) we obtain

AFAF−1 = CAC−1A−1 = CFC−1F = 1.

Now let us consider Case III.2 with φ0(1,−1) and fs(0, 1, s, 1), s ∈ {0, 1}.

Theorem 6.22. The system generated by the input data (A = α̃, F =
β̃vw1−s, C = ws−1vc̃0; 0, s, (s, 1)) for s ∈ {0, 1} has trivial solution. So there
is a lifting for fs(0, 1, s, 1) with s ∈ {0, 1}.

Proof. In fact, we have AFAF−1 = 1 (see proof of Proposition 6.2).
Moreover, using the tables (4.3) and (4.4) we obtain

CAC−1A−1 = CFC−1F = 1.
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Now let us consider Case IV with φ1(1,−1) and fs(2r+ 1, 1, r, 0), r ∈ Z,
s ∈ {0, 1}.

Proposition 6.23. In Case IV, if r − s = 2l, l ∈ Z and s ∈ {0, 1},
then the system generated by the input data (A = α̃w2r+1, F = β̃vw1−s,
C = wr c̃0; 2r + 1, s, (r, 0)) has no solution.

Proof. In fact, in Case IV, p = 1 and c2 = 0 and therefore the hypotheses
make it impossible to solve the system{ E ◦ A(second equation)

E ◦ A(third equation)
=
{−2t1 + 2r = 0

2(t3 − t2)− t1 + s− 1 = 0.

Now it is necessary to decide whether or not there is a lifting in each of
the cases f0(2r + 1, 1, r, 0) with r odd, and f1(2r + 1, 1, r, 0) with r even.

Lemma 6.24. In Case IV, if q = v−1wv then

α̃qα̃−1 =w−1qw

β̃−1qβ̃ =w−1 β̃qβ̃−1 = v−1q−1v

β̃wβ̃−1 = q−1 c̃−1
0 qc̃0 =w−1

c̃−1
0 wc̃0 = q−1 c̃0wc̃

−1
0 = q−1

Proof. All the above relations follow immediately from the tables (4.3)
and (4.4).

Proposition 6.25. In Case IV of Corollary 5.4 there is a lifting for
fs(2r + 1, 1, r, 0) and r + s = 2l + 1, l ∈ Z and s ∈ {0, 1}.

Proof. Consider the system generated by the input data (A = CFC−1F ,
F = β̃ws−1v, C = q1−swl+1−sqs−l−1c̃0; 4l + 3− 2s, s, (2l + 1− s, 0)), where
q = v−1wv.

It follows from Lemma 6.24 that AFAF−1 = 1 and CAC−1A−1 = 1.
Also, since A = CFC−1F we have CFC−1FA−1 = 1. Therefore the system
generated by the input data above has trivial solution and so there is a
lifting for fs(4l + 3− 2s, 1, 2l + 1− s, 0), l ∈ Z and s ∈ {0, 1}.

The considerations above together with Remark 5.1 allow us to state the
main result. Let φ be a homeomorphism of K, where K denotes the Klein
bottle, and let M(φ) be K× [0, 1] with (x, 0) with (φ(x), 1) identified. Then
M(φ) is a fiber bundle over the circle S1 with fiber K.

Theorem 6.26. Let f : M(φ)→M(φ) be a fiber-preserving map over S1.
If f belongs to one of the cases of Theorem 2.4 then it can be deformed to
a fixed point free map g by a fiberwise homotopy over S1 if and only if f
belongs to the corresponding case in the table below.
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Case I fs(r, 1, 0, 0) : α 7→ αr, β 7→ αsβ, c0 7→ c0, r, s ∈ Z
φ0(1, 1)

Case II fs(2r + 1, 1, r, 0) : α 7→ α2r+1, β 7→ αsβ, c0 7→ αrc0, r, s ∈ Z
φ1(1, 1)

Case III f2s+1(1, 1, 0, 4k) : α 7→ α, β 7→ α2s+1β, c0 7→ β4kc0, s, k ∈ Z

φ0(1,−1) f2s+1(−1, 1, 0, 4k + 2) : α 7→ α−1, β 7→ α2s+1β, c0 7→ β4k+2c0, s, k ∈ Z

fs(0, 1, s, 2k + 1) : α 7→ 1, β 7→ αsβ, c0 7→ αsβ2k+1c0 s, k ∈ Z

Case IV f2s(4l + 3, 1, 2l + 1, 4k) : α 7→ α4l+3, β 7→ α2sβ, c0 7→ α2l+1β4kc0, s, k, l ∈ Z

φ1(1,−1) f2s(4l + 1, 1, 2l, 4k + 2) : α 7→ α4l+1, β 7→ α2sβ, c0 7→ α2lβ4k+2c0, s, k, l ∈ Z

f2s+1(4l + 3, 1, 2l + 1, 4k + 2) : α 7→ α4l+3, β 7→ α2s+1β, c0 7→ α2l+1β4k+2c0, s, k∈Z

f2s+1(4l + 1, 1, 2l, 4k) : α 7→ α4l+1, β 7→ α2s+1β, c0 7→ α2lβ4kc0, s, k, l ∈ Z
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