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Isometries of systolic spaces
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Tomasz Elsner (Columbus, OH, and Wroctaw)

Abstract. We provide a classification of isometries of systolic complexes correspond-
ing to the classification of isometries of CAT(0)-spaces. We prove that any isometry of a
systolic complex either fixes the barycentre of some simplex (elliptic case) or stabilizes a
thick geodesic (hyperbolic case). This leads to an alternative proof of the fact that finitely
generated abelian subgroups of systolic groups are undistorted.

1. Introduction. A systolic complex is a simplicial analogue of a non-
positively curved metric space, introduced by T. Januszkiewicz and J. Swigt-
kowski in [JS2] and independently by F. Haglund in [Ha]. It is a connected,
simply connected simplicial complex satisfying some local combinatorial con-
dition (see Definition 2.1) with many properties similar to properties of
CAT(0)-spaces. However, systolicity does not imply, and is not implied by,
nonpositive curvature of the complex equipped with the standard piecewise
Euclidean metric, for which simplices are regular Euclidean simplices.

In this paper we provide a classification of individual isometries of sys-
tolic spaces, similar to the classification of isometries of nonpositively curved
metric spaces. The first result of the paper is the following;:

THEOREM 1.1 (see Theorem 3.5). If g is a simplicial isometry of a uni-
formly locally finite systolic complex X then either there is a g-invariant
simplex of X or there is a g"-invariant geodesic in X for some n > 1.

If an isometry stabilizes a simplex, then the barycentre of the simplex
can be considered a fix-point, so isometries of this type will be called elliptic.
The above theorem proves that some power of a nonelliptic isometry has
an invariant geodesic on which it acts by translation (it is a hyperbolic
isometry). Unfortunately, the following example shows that there are non-
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elliptic isometries of systolic spaces which do not have an invariant geodesic
(i.e. the power n in Theorem 1.1 is essential).

ExaMPLE 1.2. Let k& > 2. Define a simplicial complex A; such that
A,go) =Z and 0 C A,(CO) spans a simplex if and only if |a — a/| < k for all
a,a’ € . The complex Ay is systolic (see Definition 2.1) and the isometry
Yo : Ap — Ap induced by the map Z > ¢ — = + n € Z has no invariant
geodesics if n is not divisible by k.

However, the situation described in the example is the only possible case
when there is no invariant geodesic—for any nonelliptic isometry of a systolic
complex there is an invariant subcomplex isomorphic to Ax on which the
isometry acts as 7, in the example. This motivates introducing the concept
of a thick axis (which is a subcomplex at Hausdorff distance at most 1 from
a geodesic) and stating the elliptic/hyperbolic dichotomy for systolic spaces
in the following way:

THEOREM 1.3 (see Theorem 3.8). If g is a simplicial isometry of a uni-
formly locally finite systolic complex X then either g stabilizes the barycentre
of some simplex (elliptic case) or there is a g-invariant thick azis, i.e. a full
subcomplex A C X isomorphic to Ay for some k > 1 (hyperbolic case).

As a corollary we obtain a proof (alternative to [JS2]) of the fact that
infinite cyclic subgroups of a group acting cocompactly and properly discon-
tinuously on a systolic complex are undistorted (see Corollary 3.9).

The rest of the paper is devoted to the proof of Theorem 1.3.

2. Systolic complexes. If X is a simplicial complex and ¢ a simplex
of X, then the link of X at o is the subcomplex of X consisting of all
simplices that are disjoint from ¢ and together with ¢ span a simplex of X.

Any subcomplex v C X isomorphic to a triangulation of a circle is called
a cycle in X. The length of + (denoted |v|) is the number of its edges.
A diagonal of a cycle is an edge joining its two nonconsecutive vertices.

A simplicial complex X is flag if every finite set of its vertices pairwise
connected by edges spans a simplex of X. A subcomplex Y C X is full if
every simplex of X whose vertices are all contained in Y is also contained
inY.

Whenever in the paper we refer to a metric on a simplicial complex, we
think of the combinatorial metric (i.e. the geodesic metric in which every edge
has length 1) only on the 1-skeleton of the complex—we do not introduce any
metric on the whole complex. Similarly, we use the symbol dx to denote the
combinatorial metric on X, Moreover, throughout the paper a geodesic
in a simplicial complex X means actually a geodesic in X having both
endpoints in X (@,
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DEFINITION 2.1 (see [JS1]). A simplicial complex X is called:

e G-large if it is flag and every cycle v in X of length 4 < |y| < 6 has a
diagonal;

e locally 6-large if the link at every simplex of X is 6-large;

e systolic if it is locally 6-large, connected and simply connected.

By the following fact the local condition in the definition of systolicity
can be replaced with the global one by replacing the words “locally 6-large”
with “6-large”.

Fact 2.2 (|JS2, Proposition 1.4]). Every systolic complex is 6-large. In
particular, a cycle of length smaller than 6 in a systolic complexr bounds a
triangulated disc with no internal vertices.

Minimal surfaces. The main tool used in the paper is the theory of min-
imal surfaces in systolic complexes, developed in [E|. A minimal surface is
a simplicial map S : A — X from a triangulation A of a 2-disc to a sys-
tolic complex X such that A has the minimal number of triangles among
all maps extending S|pa. The existence of minimal surfaces follows from the
contractibility of systolic complexes ([JS2, Theorem 4.1]|) and is stated as
follows:

LEMMA 2.3 (|E, Lemma 4.2]). Let X be a systolic space. Then:

(1) Any simplicial map f : S* — X where S* is a triangulated circle can
be extended to a minimal surface (the extension need not be unique).

(2) For any minimal surface S : N — X the domain A is a systolic
complex.

For any vertex v of a triangulation A of a disc we define the defect at v
by the following formula:
def(v) = {6 — #{triangles in A containing v} if v ¢ A,
3 — #{triangles in A containing v} if v € OA.

We call vertices (non)positive, (non)negative or (non)zero if so are their
defects. The term the sum of the defects of /A along a boundary line I C 0N
will be used for the sum of the defects at all vertices on [ but the endpoints.

LEMMA 2.4 (Gauss—Bonnet Lemma). If A is a triangulation of a 2-disc,

then
Z def(v) = 6.
veA0)
In particular, if I\ is a systolic triangulation (e.g. the domain of a minimal

surface), then the sum of the defects at boundary vertices is at least 6, with
equality if and only if /N has no internal vertices of negative defects.
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Facrt 2.5. If A is a triangulation of a 2-disc and g is a geodesic in A
contained in /\, then the sum of the defects along g is at most 1.

Proof. Since g is geodesic, there are no vertices of defect 2 on g different
from its endpoints, and if g passes through vertices u and v of defect 1, then
there is at least one negative vertex on g lying between v and v. Thus any
positive vertex on g has defect 1 and any two positive vertices are separated
by a negative one, so the sum of the defects is at most 1. m

The proof of Theorem 1.3 is based on the following two theorems, which
summarize the relevant results from [E, Sections 3-5]:

THEOREM 2.6. Let X be a systolic complex, P a simplicial triangulation
of a strip Rx I, and f: P — X a simplicial map. Suppose that

(i) every vertex v € OP has defect —1, 0 or 1;

(ii) every internal vertex v € P has defect 0;

(iii) n each boundary component of P, any two nonzero vertices of the
same sign are separated by a vertex of the opposite sign;

(iv) OP is a full subcomplez of P;

(v) for every internal vertexr v € P and for every edge uw C P with
both endpoints at internal vertices, f|n () and f|n(w) are minimal
surfaces.

Then f maps each boundary component of OP to a geodesic in X.

Here and subsequently, N(K) denotes the union of all closed simplices
intersecting K.

Proof. The complex P is an increasing union of simplicial discs P, such
that any internal vertex v € P, has defect 0, any boundary vertex v € P,
has defect at least —1 and any two negative vertices on 9P, are separated by
a positive one. By [E, Lemma 3.5| the simplicial maps f|p, : P, — X satisfy
the assumptions of [E, Theorem 4.12|. By |E, Proposition 4.7(2), Theorem
4.12 and Corollary 4.11(2)] the intersection of P, with any boundary com-
ponent of P is mapped by f to a geodesic in X. Since P is the increasing
union of P, for n = 1,2,..., each boundary component of P is mapped to
a geodesic in X. m

THEOREM 2.7 (see [E, Theorem 5.2]). Let EZ be a triangulation of the
FEuclidean plane by congruent equilateral triangles, X a systolic complex and
F . EZ — X a simplicial map. If F|n,) is an isometric embedding for any
vertex v € EA and diam(Im F) > 3, then F is an isometric embedding.

3. Classification of isometries. In the theory of CAT(0)-spaces an
elliptic isometry is an isometry with a fix-point. For systolic complexes we
define an elliptic isometry to be a simplicial isometry that stabilizes some
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simplex, so it can also be thought of as an isometry with a fix-point (the
barycentre of the simplex).

First we prove that any power of a nonelliptic isometry of a systolic
complex is also nonelliptic. Thus, in the subsequent part of the paper we
will only need to consider free actions of Z on systolic complexes.

PROPOSITION 3.1. Let g be a simplicial isometry of a systolic complex X .
If there is a g"™-invariant simplex of X for some n > 1, then there is a
g-invariant simplex of X.

Proof. Let o be a g"-invariant simplex of X. Then for a sufficiently large
integer R > 0 the full subcomplex

Y := Ngr(o) N Nr(g(o))N---NNr(g" (o)) c X

is nonempty and g-invariant. It is also geodesically convex, since by [HS,
Corollary 4.10] balls around vertices in systolic complexes are geodesically
convex. Hence Y is itself a systolic complex, as a geodesically convex sub-
complex of a systolic complex ([JS2, Lemma 7.2|; the notion of convexity
used in [JS2| coincides by [HS, Proposition 4.9] with the notion of geodesic
convexity), so Y is contractible (by [JS2, Theorem 4.1] every systolic com-
plex is contractible). Thus, H;(Y) =0 for ¢ = 1,2,... and by the Lefschetz
Fix-Point Theorem the isometry gy : Y — Y has a fix-point y € Y. Since ¢
preserves the simplicial structure, the minimal simplex of Y containing y is
g-invariant. m

3.1. The minimal displacement. For a simplicial isometry g of a simpli-
cial complex X we define the minimal displacement to be

lgl = min dx(z,g(x)).
xeX(0)

We denote by Min(g) the full subcomplex of X spanned by all vertices v € X
satisfying dx(v,g(v)) = |g|. The subcomplex Min(g) is clearly nonempty.
Moreover, in the case where g is nonelliptic it is a systolic complex whose 1-
skeleton is isometrically embedded in X (see Propositions 3.3 and 3.4 below).

Fact 3.2. Let g be a nonelliptic simplicial isometry of a systolic com-
plex X. Then for any vertex v € Min(g) and any geodesic o C X joining v
to g(v) the simplicial path v : R — X (where R is equipped with the simpli-
cial structure with 7 as the set of vertices) defined to be the concatenation
of the geodesics g™ (), n € Z, is a |g|-geodesic, i.e.

d(v(a),v(b)) =|a—"0b| ifa,b are integers such that |a — b| < |g|.
In particular, Im(vy) C Min(g).

Proof. We prove the statement for the case where |a — b| = |g| (this
implies the general case). Then, by the construction of +, either ~(b) =
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9(v(a)) or y(a) = g(y(b)), thus we have d(v(a),7(b)) = |g|. The opposite
inequality follows from the fact that ~ is a simplicial map. =

PRrROPOSITION 3.3. If g is a nonelliptic simplicial isometry of a systolic
complex X, then the 1-skeleton of Min(g) is isometrically embedded in X .

Proof. Suppose the 1-skeleton of Min(g) is not isometrically embedded.
Then there exist vertices v,w € Min(g) such that no geodesic in X with
endpoints v and w is contained in Min(g). Choose v and w so that dx (v, w)
is minimal (clearly, dx (v, w) > 1). Let geodesics o, # and & join v to g(v),
w to g(w) and v to w, respectively. Then g(v) is joined to g(w) by g(§), and

(3.1) £NMin(g) = {v,w}, g(§) NMin(g) = {g(v), g(w)}

by the minimality of dx(v,w), and a,3 C Min(g) by Fact 3.2. Thus, the

geodesics o and 3 intersect the geodesics € and g(§) only at the endpoints.
Suppose there is a vertex x € £ N g(§). Then g(z) € g(&) and g(x) # =,

since g has no fix-points. We may assume, without losing generality, that

g(v), x, g(z) and g(w) lie on g(&) in this order. Then

d(z, g(x)) = d(g(v), g(z)) — d(g(v), ) = d(v,z) = d(g(v), )
< d(v,g(v)) = g,
so & € Min(g), contradicting (3.1).

Thus either the geodesics a, [, &, g(§) are pairwise disjoint off the
endpoints (Figure 3.1(b)), or @ and [ have nonempty intersection (Figure
3.1(a)). First consider the case where « and 3 can be chosen so that aNg # ()
and let the intersection be maximal. The intersection is a geodesic with end-
points p and ¢. Decompose a=a' U [p, q|Ua” and B="U[p,q|UB". Let S :
A'— X be a minimal surface spanning the cycle £x3'+(a/) "1 and S : A" — X
a minimal surface spanning the cycle g(&) * (3”)~! x o (Figure 3.1(a)).

w v & ww

Fig. 3.1

Choose «, 3, £ such that the area of /A’ is minimal, and among such
triples choose the one minimizing the area of A”. Thus the boundary vertices
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of A’ different from v, w, p have nonpositive defects, so by the Gauss—
Bonnet Lemma defa/(v) = defar(w) = defar(p) = 2 and the defects at all
other vertices of /A’ are equal to 0. A similar calculation proves that either
defpn(g(v)) = 2 or defarn(g(w)) = 2 (the defects at the vertices on o’ and
3" different from the endpoints are nonpositive and the sum of the defects
along ¢(&) does not exceed 1 by Fact 2.5). Thus, if we denote by v' and w’
the vertices on £ neighbouring to v and w, respectively, as in Figure 3.1 (we
allow v/ = w'), then either v’ to g(v') or w’ to g(w’) can be connected by a
polygonal path of length d(v, g(v)) = d(w, g(w)) = |g|, contradicting (3.1).

Now assume we cannot choose o and (3 with a nonempty intersection.
Denote by S : A — X a minimal surface spanning the cycle £x3xg(&) " 1xa ™1
and choose «, f and ¢ minimizing the area of A (Figure 3.1(b)). Thus,
the defects at the vertices on a and [ different from their endpoints are
nonpositive. Hence, the sum of the defects along « plus the defects at the
endpoints of a cannot exceed 2, as otherwise either def(v) = def(g(v)) =2 or
def(v) = 2, def(g(v)) = 1 (or conversely) and the defect at any vertex on «
different from its endpoints is 0, which in both cases leads us to d(v/, g(v')) <
d(v,g(v)) = |g|, contradicting (3.1). Similarly, the sum of the defects along
0B plus the defects at the endpoints of 8 does not exceed 2.

As by the Gauss—Bonnet Lemma the sum of the defects at the vertices
on OA is at least 6, it follows that there is a vertex x € ¢ different from
the endpoints such that def(z) + def(g(z)) > 0. As £ and g(&) are geodesic,
we have def(z) < 1 and def(g(z)) < 1, so at least one of the defects (say
def(x)) is equal to 1. By modifying the boundary geodesics ¢ and g(&) by
cutting off A both triangles adjacent to x and gluing their g-images at g(z)
we obtain a surface S’ : A’ — X, where /\’ has the same area as 2\, but S’ is
not minimal (z ¢ Min(g) implies d(z, g(z)) > 1, so g(x) € A is an internal
vertex adjacent to fewer than six triangles). This contradicts the minimality
of the area of A.

Hence the 1-skeleton of Min(g) is isometrically embedded in X. =

PROPOSITION 3.4. IfY C X is a full subcomplex of a systolic compler X
such that YY) is isometrically embedded in X, then'Y is a systolic complez.
In particular, for any nonelliptic simplicial isometry g of X the subcomplex
Min(g) is systolic.

Proof. The complex Y is 6-large (as a full subcomplex of a systolic com-
plex) and connected (since Y € X is an isometric embedding). Thus, we
only need to prove that m(Y) = 0.

It suffices to prove that any loop in Y (!) is homotopically trivial in Y.
Suppose that, on the contrary, there is a loop in Y'(!) which is not contractible
in Y, and let v be the shortest such loop. Then v is embedded, |y| > 3 (by
the flagness of Y) and any subpath of v of length not greater than 3|v| is
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geodesic (as otherwise there would be vertices v, w € 7 disconnecting v into
subpaths 1 and 72 so that for a geodesic £ connecting v to w the loops y1 U&
and vy, U¢ would be homotopically trivial by the minimality of |vy|). Thus, the
loop 7 can be covered by not more than five geodesic subpaths ~1,...,75 so
that every vertex of v occurs as an internal vertex of ; for precisely one 3.
It follows that for a minimal surface S : A — X spanning ~, the sum of
the defects at the vertices of OA is at most 5 by Fact 2.5, contradicting the
Gauss-Bonnet Lemma. Therefore, 71 (Y) = 0.
The last part of the proposition follows from Proposition 3.3. =

3.2. An invariant geodesic

THEOREM 3.5. Let g be a nonelliptic simplicial isometry of a uniformly
locally finite systolic complex X. Then there is a g"-invariant geodesic for
somen > 1.

Proof. By Propositions 3.3 and 3.4 we may assume, without losing gener-
ality, that Min(g) = X. Denote by G the cyclic group of isometries generated
by g. Since g™ is nonelliptic for any n > 1 (Proposition 3.1), the action of G
on X is free.

CASE 1. The action of G on X = Min(g) is not cocompact and |g| > 3.

Choose vertices v1,v2 € X such that the (|g| + 1)-neighbourhoods of the
orbits Gv; and Guy are disjoint. Connect v; to g(v1) and va to g(va) by
geodesics ag and ao, respectively. Let 8 be a geodesic connecting vy to vs.
By Lemma 2.3 there exists a simplicial map p : A — X, where A is a
triangulation of a disc, such that the restriction of p to A is the closed
path which is the concatenation oy * g(8) * ay ' * B, Since |g| > 3, the
quotient space X/G is a simplicial locally 6-large complex and we obtain as
the quotient of p a simplicial map f: A — X/G, where A is a triangulation
of an annulus. Now we modify A and f applying four types of operations:

(a) If there exists in A a cycle € of length 3 not bounding a triangle of A,
then by the assumption |g| > 3 and the flagness of X/G the cycle ¢ is
homotopically trivial, so it disconnects A into two components, one
of them being a triangulation of a disc. By replacing this component
with a single triangle we obtain another triangulation of an annulus.

(b) If any cycle of length 3 in A bounds a triangle and there is an internal
vertex v € A adjacent to four or five triangles, we cut out the open
star of v and glue in the disc without internal vertices instead (this is
possible, since X/G is locally 6-large), obtaining another simplicial
triangulation of an annulus.

(c) If any cycle of length 3 in A bounds a triangle and there exists an
internal vertex v € A such that f(ON(v)) bounds a disc having no
internal vertices, then we proceed as in (b) with the open star of v.



Isometries of systolic spaces 47

(d) If we cannot apply the procedure from (a) or (b) and there exist two
internal vertices v, w € A connected by an edge such that f(ON (vw))
bounds a disc with at most one internal vertex, then we cut out the
interior of N(vw) and glue in such a filling.

As we modify A, we modify f. Since each operation lowers the number
of vertices in A, the procedure terminates. Thus we obtain a map f': A" —
X/G, where A’ is a triangulation of an annulus for which every internal
vertex is adjacent to at least six triangles and f’ satisfies condition (v) of
Theorem 2.6. The boundary A’ is the disjoint union of two circles: ¢; and co,
each of length |g|.

Let f/: A’ — X be the universal covering of f’, where A’ is a triangula-
tion of a strip (X/G = X, since by [JS2, Theorem 4.1] systolic complexes are
contractible). By Fact 3.2 the paths f/(¢1) and f/(;) are |g|-geodesics in X,
so there are no vertices of defect 2 on dA’, and every arc in A" with both
endpoints at vertices of defects 1 contains a vertex of negative defect. Thus
the sum of the defects at the boundary vertices of A’ is nonpositive and by
the construction of A’ every internal vertex has a nonpositive defect. Since
the Euler characteristic of an annulus is 0, the combinatorial Gauss—Bonnet
Theorem implies that every internal vertex of A’ has defect 0 and the sum of
the defects at the boundary vertices is equal to 0. Hence there are no vertices
on QA of defects lower than —1 and any two vertices on A’ of defects —1
are separated by a vertex of defect 1.

Thus, the strip A’ satisfies conditions (i)—(iii) of Theorem 2.6. Condition
(iv) follows from the fact that

distx (f'(21), F'(€2)) > distx (Ny(Gv1), Ny (Gua)) > 3.

Hence, by Theorem 2.6 any boundary component of the strip is mapped to a
geodesic in X and by the construction of the strip it is a g-invariant geodesic.

CASE 2. The action of G on X = Min(g) is not cocompact and |g| < 3.
Consider the sequence of subcomplexes
Xo=X, X,=Minx, ,(¢"), forn=1,2....

By Propositions 3.3 and 3.4 the subcomplex X,, C X,_; is systolic, g-
invariant and isometrically embedded. Since for any n the complex X, is
uniformly locally finite, G acts freely on X,, and we have

d(v,g*()) = |¢"|x, fork=1,...,nand ve X,

there exist n and k& < n such that |gF|x, > 3. As in Case 1, we obtain a
g*-invariant geodesic I in X,,. As X,, C X is a g-invariant and isometrically

embedded subcomplex, [ is a ¢gF-invariant geodesic in X.

CASE 3. The action of G on X = Min(g) is cocompact.
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Since any ball in X contains a finite number of vertices (by the local
finiteness of X) and diam(X) = oo (the action of G = Z is free), there exists
(by a standard diagonal argument) a bi-infinite geodesic [ in X.

As G =2 Z acts freely cocompactly on X, the space X has two ends.
Thus there exists a finite subcomplex B C X disconnecting X such that any
bi-infinite geodesic in X intersects B. Let n be the number of vertices in B.
Then for any i there are two geodesics among [, g(1), ..., ¢"(l) with a common
vertex in g*(B). Hence there are geodesics ¢/(I) and ¢g¥(I) with an infinite
intersection for some 0 < j < k < n. The existence of a ¢gF J-invariant
geodesic follows from the subsequent lemma.

LEMMA 3.6. Let f be a simplicial isometry without fix-points of a locally
finite simplicial complex X, and v a geodesic in X. If v N f(v) contains
infinitely many vertices, then there is an f-invariant geodesic in X .

Proof. We construct inductively a sequence of geodesics v;, 4 = 0,1,2, ...,
such that 4; N f(;) has infinitely many vertices and contains a geodesic of
length at least ¢ and contains ag. Put 79 := 7. Suppose we have already
constructed 7; and [a;,b;] C ;N f(7;) is a maximal geodesic in the intersec-
tion. We may assume, not losing generality, that b; separates f(b;) and a;
on f(7;). Then a; separates b; and f~!(a;) on ~;. Since v; and f(7;) have
infinite intersection, there is x; € v;N f(;) such that either f(b;) separates b;
and z; on f(;), or f~!(a;) separates a; and x; on ;. In the first case we
obtain ~; 1 from ~; by replacing the segment with endpoints b; and x; with
the segment of f(v;) with the same endpoints. Then there is a common
segment [a;, f(bi)] C vit1 N f(7i+1). In the second case we define f(7it1)
to be f(v;) with the segment with endpoints x; and a; replaced with the
segment of +; having the same endpoints. Then there is a common segment
[F71 (@), bi] € yigr N F(yig)

Now fix an arbitrary vertex v € X. By the local finiteness of X and a
standard diagonal argument we can choose a subsequence of geodesics 7,
such that the sequences v/ and f(7}) are convergent (uniformly on compact
sets). Hence the limiting geodesics 7 and f(%) have some common infinite
ray.

Finally, either the sequence f"(3), n =1,2,..., or the sequence f~"(¥),
n=1,2,..., converges to an f-invariant geodesic. =

REMARK. If there exists a g"-invariant geodesic in X, then for any vertex
x € Min(g") C X there exists a g"-invariant geodesic passing through x.

Proof. We construct a polygonal g"-invariant line [ passing through x as
in Fact 3.2. By the existence of a g"-invariant geodesic and by the fact that
[ C Min(g™), the triangle inequality implies that [ is also a geodesic. =
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3.3. Thick axis Fix some integer k > 2. Recall that A, is a simplicial
complex with A,(CO) = Z such that ¢ C Z spans a simplex if and only if
la —d'| <k forall a,a’ € 0. A thick geodesic in a systolic complex X will be
a full subcomplex A, C X, k > 1, such that for any a,ad’ € Z we have

kla—d = dx(a,d')=da,(a,a).

Facr 3.7. Let Ag, k > 1, be a thick geodesic in a systolic complex X .
Then:

(1) There is an ordinary geodesic in X at Hausdorff distance at most 1
from Ag.

(2) The restriction to Ay of a nonelliptic isometry of X stabilizing Ay,
has the form ~yy, : x — x +n for some n € Z.

Proof. Part (1) follows from the fact that the vertices jk € Ay, j € Z,
span a geodesic in Ay, hence in X. Part (2) is implied by the fact that if the

number |a—d/| for a,d’ € A;O) is not greater than k, then it can be described
as dim((") o) where the intersection is taken over all simplices o in Ay such
that dimo =k and a,a’ € 0. =

THEOREM 3.8. Let g be a simplicial isometry of a uniformly locally finite
systolic complex X . Then either there is a g-invariant simplex (elliptic case)
or there is a g-invariant thick geodesic (hyperbolic case).

Proof. By Theorem 3.5, if g is nonelliptic, then there exists a g"-invariant
geodesic in X for some n > 1. Let n be minimal. If n = 1 then there is an
ordinary g-invariant geodesic in X (isomorphic to A;), thus suppose n > 1.

Denote by IEQA a triangulation of the Euclidean plane by congruent equi-
lateral triangles.

STEP 1. There exist translations 7,0 € Isom(E2 ), a T-invariant geodesic
m C EZ and a simplicial map F : EZA — X such that:

(i) 7 and o generate a group T = 72 of simplicial isometries of EX;
(i) For=g¢g"oF and Foo =go F,
(iii) F(m) C X is a g"-invariant geodesic.

Let [ be a g"-invariant geodesic in X and define I’ = g(I). The geodesics [
and [” are disjoint by the minimality of n and by Lemma 3.6. Choose vertices
x €1, 2 € I’ and join them by a geodesic v in X. Denote by a and o/ the
segments of [ and I’ connecting = to ¢g"(z) and 2z’ to ¢"(z'), respectively. Let
f: /A — X be a simplicial map (a minimal surface), where A is a simplicial
disc, such that the restriction of f to A coincides with the closed path
ax g™ (y) * (/)" xy~! (such a map exists by Lemma 2.3). Let [, 2, 2’ and
~ be chosen so that the area of A is minimal.
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By gluing the maps (g")of for i € Z we obtain a g"-equivariant simplicial
map f': S — X, where S is a triangulation of a strip R x I on which g" acts
by translation and each component of 95 is mapped to a geodesic in X.
By the systolicity of X every internal vertex of S is adjacent to at least six
triangles (for internal vertices of A C S this comes from Lemma 2.3, for
vertices on « it comes from the choice of v minimizing the area of A).

Denote the boundary components of S by m and m’ (so that f'(m) =1
and f'(m’) = ') and define p : m — m’ to be the isomorphism satisfying
frop=go f'lm

We prove that def(z) + def(p(x)) < 0 for all vertices z € m. This is
immediate in the case where |¢g"| = 1, as then by the g"-invariance and
the geodesity of m and m’, any boundary vertex z € 95 has a nonpositive
defect. Thus assume |¢g"| > 1. Since m and m’ are geodesics in S, there are
no vertices on 9S of defect 2. Consider a vertex x € m C S of defect 1.
If the defect at p(z) € m’ C S is nonnegative, then we can modify S by
cutting out the triangles adjacent to the vertices (¢")'(x) € m C S (the
open stars of these vertices are disjoint, as |¢"| > 1) for i € Z and gluing
their g-images at the vertices p((¢")*(x)) € m’ C S, so that the modified
map f: S — X is g"-equivariant and maps 05 to the disjoint union of two
geodesics [ and g(I). If the distance between p(x) and the set {(¢")!(x) : i € Z}
is greater than 1, then S contains an internal vertex adjacent to fewer than
six triangles, which contradicts the minimality of the area of A (by the
systolicity of X). Otherwise, [¢g' ™| = 1 for some i € Z, so | and g(I) are
Hausdorff 1-close and disjoint, which implies def(x) + def(p(z)) < 0 for all
vertices x € m, completing the proof of this inequality.

Now by the Gauss—Bonnet Lemma applied to the subcomplexes of S
bounded by long enough subsegments of m and m’ and two geodesics joining
the endpoints of these subsegments, we obtain def(x) + def(p(x)) = 0 for
all vertices * € m, and any internal vertex v € S is adjacent to exactly
six triangles (see Fact 2.5). Therefore, by gluing the maps g° o f’ for i € Z,
we obtain a simplicial map F : E4 — X satisfying (i)—(iii), where o is
determined by p.

STEP 2. Choose T, o, m and F satisfying conditions (1)—(iii) of Step 1
so that the number of orbits of the action of T on the 0-skeleton of E% is
minimal. Then m and o(m) are Hausdorff 1-close.

Since the 7-invariant geodesic m C EZ is mapped by F' to a g"-invariant
geodesic in X, any T-invariant geodesic m C EQA is mapped to a g™-invariant
geodesic in X. This comes from the following inequality, satisfied for all
xr€e€m,r €mand N,i € Z:

Nd(F(z), F(r'(z))) > Nd(F(x), F(r'(x))) — 2d(F(x), F(z)).
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If F| N(v) Were an isometric embedding for every vertex v € EZ , then by
Theorem 2.7 the map F' would be an isometric embedding. However, F' is
not injective, hence there is a vertex v € EQA such that F|y(,) is not an
isometric embedding (so by the systolicity of X the closed path F(ON(v))
can be filled with a 2-disc without internal vertices). If the distance between
m and o(m) is greater than 1, then there is a 7-invariant geodesic m disjoint
from the orbit Tw. Thus, by repeating the procedure of Step 1 starting with
[ = F(m) instead of | = F(m) we obtain a contradiction with the minimality
of the number of T-orbits. Therefore m and o(m) are Hausdorff 1-close.

STEP 3. If 7, 0, m and F are chosen as in Step 2, then m C IEQA s a
convex geodesic.

We introduce a coordinate system on EQA by choosing a vertex 0 € m C
EZ and a triangle adjacent to 0. The edges of the triangle containing the
vertex 0 represent base vectors e; and es. Let the coordinates of the vectors
07(0) and 00(0) be (a, ) and (a,b), respectively, o, 3,a,b € Z. We may
choose e1 and e so that a, 8 > 0.

We have to prove that either & = 0 or § = 0. Assume, on the contrary,
that a, 3 > 0. Then for any vertices p; = (z;,y;) € E%, i = 0,1, we have

(3.2) xo <21 Ayo <y1 = dgs (Po,p1) = dx (F(po), F(p1)),

since there exist integers j < k such that pp and p; lie in this order on a
geodesic joining 77(0) and 7%(0), and the latter vertices lie on the geodesic
m which is mapped to a geodesic in X.

If a,b > 0 or a,b < 0, then by (3.2) a geodesic in E4 passing through
o®(0) = (ka, kb) for all k € Z is mapped by F to a geodesic v in X and
v N g(7y) has infinitely many vertices (since F'o o = go F'). By Lemma 3.6
there is a g-invariant geodesic in X, contrary to the assumption.

The only case left is when a and b are of different signs. Without loss
of generality we can assume a < 0 < b. The set of vertices of any geodesic
joining 0 and 7(0) = («, ) is contained in

{(z,y): 0<2x<a,0<y<p,z,y €L}

Thus the geodesic m passing through 7%(0) = (ka,kB3) for all k € Z is
contained in

P={(z,y):ka<z<(k+1Da, kB <y < (k+1)3, z,y, k € Z}.

Since o(m) is at Hausdorff distance 1 from m, we have dist(c(0), P) < 1.
There are only six vectors of length 1 in EQA: +eq, Ltes, €1 —eg, €9 —e1, hence
the coordinates of o(0) = (a,b) satisfy: a = —land 1 <b< f+1lorb=1
and —a— 1 <a < —1 (since a < 0 < b).
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In the first case we prove by induction that m passes through (0, k(b—1))
for any k € N: if the geodesic m passes through (0, (b — 1)) for some j > 0,
then

o((0,j(b—1)))=(-L G+ 10 -1)+1)

is at distance 1 to m, which implies that m passes through (0, (j+1)(b—1)).
In the second case we similarly deduce that m passes through (k(a + 1),0)
for any k € N. Both results contradict the assumption «, 8 > 0.

Now we define a thin strip to be the infinite simplicial complex S spanned
by two convex geodesics in E% at distance 1 to each other (as in Figure 3.2).
We are especially interested in simplicial maps f : S — X with thin strip S
such that the images of the boundary geodesics of S are the geodesics ¢°(l)
and g’(I) for 0 < i < j < n. Since g'(l) and ¢’(I) are disjoint (otherwise by
Lemma 3.6 we obtain a g/ ‘-invariant geodesic, contrary to the minimality
of n), the map f is injective, so we may assume S is a subcomplex of X. If
such a map f exists, we say that ¢g*(l) and ¢’(l) span a thin strip. In Steps
2 and 3 we proved that [ and g(I) span a thin strip.

Fig. 3.2

Let ¢g°(1) and ¢7(1), 0 < i < j < n, span a thin strip S. The subcomplex
S’ C S consisting of all edges e C S such that e ¢ 9S is combinatorially
equivalent to a line. Thus, it determines two linear orders on the set of
vertices of g*(1) U ¢?(1). We define <;; to be the order for which z < g"(z)
for some (hence every) x € ¢*(1) U g7 (I).

STEP 4. If the geodesics g'(l) and ¢’ (1), 0 < i < j < n, span a thin strip
S C X, then S is a full subcomplex of X.

Since the boundary lines of S are geodesic and disjoint (Lemma 3.6),
S C X is not a full subcomplex if and only if there are vertices a and x in
different components of 95 such that ds(a,z) = 2 and dx(a,z) =1 (as in
Figure 3.2). Suppose this is the case.

The boundary geodesics gi(l) and ¢g’(I) are g"-invariant and g" acts on
them as a translation of length & > 1. Thus ¢?" acts as a translation of
length 2¢ > 2. If we replace the vertices g?*"(b) € ¢*(1) with ¢g>*"(x) € ¢/ (1)
for all @ € Z we obtain a g*"-invariant geodesic I’. Since x € ¢/(1), we have
g7 (x) € g'(1) and g* =7+ (z) € g'(l). The vertices g*~7(z) and ¢g'~/7"(x) are
not in the same g>"-orbit. As g*(I) \ I’ contains only one g*>"-orbit, I’ passes
either through  and ¢*~/(x) or through x and ¢*~#*"(x). By Lemma 3.6
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there exists a ¢/ ‘-invariant geodesic or ¢*~/*™-invariant geodesic, contra-
dicting the minimality of n.

STEP 5. If g°(1) and g’(1) span a thin strip and so do ¢’ (1) and g (1) for
0<i<j<k<mn,then g'(l) and g¥(l) span a thin strip. Moreover, the
relation <, = <i; U <jx U <k 1s transitive.

Denote the strips spanned by ¢'(1), ¢/ (1) and by ¢?(1), g*(I) by S and S,
respectively. By gluing the strips ¢g®*=9(S) and g**=9(§") for a € Z we
obtain a simplicial map P : Ez — X (as in Figure 3.3), which is not injective,

as § = g"F=1)(9).

Fig. 3.3

If the restriction of P to N(v) were an isometric embedding for every
vertex v € EZ, then by Theorem 2.7, P would be an isometric embedding,
contrary to the fact it is not injective. Thus there is a vertex v € EQA such
that P| N(v) 1s not an isometric embedding. Without loss of generality we
may assume v = ag € ¢’ (1) as in Figure 3.3.

The map Py () is injective, since P|s and P|g are injective and the
geodesics ¢'(1) and g*(l) are disjoint (Lemma 3.6). Since P|y(4,) is not an
isometric embedding, there are two vertices in N (ag) not connected by an
edge in EQA, whose images are connected by an edge. Thus, by the systolicity
of X, the image of ON(ap) bounds a disc of area 4. Since by Step 4 the
vertex P(a_1) is connected by an edge neither to P(u1) nor to P(w;), and
P(ay) is connected neither to P(ug) nor to P(wp), the filling contains the
edges P(up)P(wo), P(u1)P(w;) and either P(wo)P(u1) or P(ug)P(w1), say
the former.

By induction on j we prove that the vertex P(w;) € X is connected
by edges to the vertices P(u;) and P(ujt1): If we have already proved
the existence of the edges P(uj)P(wj) and P(w;)P(ujt1), then by the
systolicity the quadrilateral P(w;)P(ujt1)P(aj4+1)P(w;y1) has a diagonal
and by Step 4 it is P(ujt1)P(wj4+1). Now again by the systolicity of X
the pentagon P(wjy1)P(ujt1)P(ujr2)P(aj+2)P(wjr2) has two diagonals:
P(ujt2)P(wjq2) and either P(uji1)P(wjq2) or P(ujyo)P(wjt1). However,
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the case P(ujy1)P(wjt2) is impossible, since then proceeding as in Step 4
we obtain a contradiction with the minimality of n. Thus g*(l) and ¢*(I)
span a thin strip.

The fact that <;j;, is transitive is now clear from Figure 3.3.

STEP 6. There is a thick geodesic embedded into X .

Define Y = |J;Z 01 g'(l). By Steps 2 and 3 the geodesics [ and g(I) span
a thin strip (since m is a convex geodesic in E4 and o(m) is 1-close to m).
Thus, applying Step 5 we prove by induction on k that the geodesics | and
g*(1) for 0 < k < n span a thin strip. It follows that ¢’(l) and ¢’(I) span a
thin strip for 0 < ¢ < j < n. By Step 4 the subcomplex Y C X is full.

We can now introduce on the set V(%) the relation

< = U <ij
0<i<j<n

which by Step 5 is well-defined and transitive. It is also reflexive, antisym-
metric and linear, as so are the <;;. Hence < defines a linear order on y ),
Thus, we may identify Y(©) with Z. Since for any two consecutive vertices
a,a’ € ¢g'(I) and any j # i there is exactly one vertex b € ¢/(I) such that
a < b < d, the vertices of g¢(I) are identified with kn + r;, k € Z, for
some 7;. It follows that the vertices a € g%(l) and b € ¢7(I) are connected
by an edge in X if and only if they are identified with integers of difference
not greater than n. Hence, the flag completion of Y is a g-invariant thick
geodesic in X. u

COROLLARY 3.9. Let G be a systolic group, i.e. a group acting prop-
erly discontinuously and cocompactly on some systolic complex X . Then any
finitely generated abelian subgroup of G is undistorted.

This fact is a consequence of [JS2, Theorem 13.1], stating that systolic
groups are biautomatic. Below we present an alternative proof, as an appli-
cation of the theory of minimal surfaces.

Proof. As a finitely generated abelian group has a finite-index free abelian
subgroup, it suffices to prove that free abelian subgroups are nondistorted.
In [E, Theorem 6.1] we proved that free abelian subgroups of rank 2 of a
systolic group are undistorted and that systolic groups do not contain free
abelian subgroups of higher ranks.

The case n = 1 follows directly from Theorem 3.5. Let X be a systolic
complex admitting a cocompact and properly discontinuous action of G and
let x € X be an arbitrary vertex. Then the map g — g(z) defines a quasi-
isometry ¢ : G — X. By Theorem 3.5, for any infinite cyclic subgroup
H < @G there exists an H-invariant quasi-geodesic [ in X, which is mapped
by a quasi-inverse of ¢ to a quasi-geodesic k in G, such that k¥ C G and
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H C G are at finite Hausdorff distance. Thus H <— G is a quasi-isometric
embedding, i.e. H is undistorted. m
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