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On isomorphism classes of C(2m ⊕ [0, α]) spaces

by

Elói Medina Galego (São Paulo)

Abstract. We provide a complete isomorphic classification of the Banach spaces of
continuous functions on the compact spaces 2m ⊕ [0, α], the topological sums of Cantor
cubes 2m, with m smaller than the first sequential cardinal, and intervals of ordinal num-
bers [0, α]. In particular, we prove that it is relatively consistent with ZFC that the only
isomorphism classes of C(2m⊕ [0, α]) spaces with m ≥ ℵ0 and α ≥ ω1 are the trivial ones.
This result leads to some elementary questions on large cardinals.

1. Introduction and statement of the main results. Given a com-
pact Hausdorff topological space K, C(K) stands for the Banach space of all
continuous real-valued functions on K, equipped with the supremum norm.
For a fixed cardinal number m, 2m denotes the product of m copies of the
two-point space 2, provided with the product topology.

If α is an ordinal number, [0, α] denotes the interval of ordinals {ξ :
0 ≤ ξ ≤ α} endowed with the order topology. As usual, we denote by
ℵ0, ℵ1, ω and ω1 the first infinite cardinal, the first uncountable cardinal,
the first infinite ordinal and the first uncountable ordinal, respectively. The
symbol X ⊕ Y will denote the Cartesian product of the Banach spaces X
and Y , i.e. the space of all pairs (x, y), x ∈ X, y ∈ Y , with the norm
‖(x, y)‖ = max{‖x‖, ‖y‖}. We write X ∼ Y when the Banach spaces X and
Y are isomorphic. By X ↪→ Y we mean that the Banach space Y contains a
subspace isomorphic to the Banach space X. Other notations are standard
and in conformity with [20].

This paper is concerned with the question of describing the isomorphism
classes of C(2m ⊕ [0, α]) spaces, where 2m ⊕ [0, α] is the topological sum
of 2m and [0, α] for some cardinal m and ordinal α, that is, of the fam-
ily of C(2m) ⊕ C([0, α]) spaces. As we will see in the first three remarks
below, the motivation for this work comes from some classical isomorphic
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classifications of C(K) spaces closely connected with C(2m) ⊕ C([0, α])
spaces.

Remark 1.1. First of all, notice that this family of spaces includes
the finite-dimensional spaces R2m+α as well as the C([0, α]) spaces with
α ≥ ω. The isomorphic classification of C([0, α]) spaces was accomplished
by Bessaga and Pe lczyński [2] in the case where ω ≤ α < ω1; by Semadeni
[19] in the case where ω1 < α ≤ ω1ω; by Labbé [11] in the case where
ω1ω < α < ωω1 ; and independently by Kislyakov [10] and Gul’ko and Os’kin
[8] in the general case.

Remark 1.2. For m = ℵ0 and α < ω1, it follows from the classical
Milyutin theorem [20, Theorem 21.5.10] about the isomorphic classification
of C(K) spaces, with K compact metric uncountable, that every space of
this family is isomorphic to C(2ℵ0).

Remark 1.3. Assume m ≥ ℵ0 and α < ω1. Then 2m is homeomorphic
to the topological product 2m × 2ℵ0 . Hence C(2ℵ0) is isomorphic to a com-
plemented subspace of C(2m). That is, there exists a Banach space Y such
that C(2m) is isomorphic to Y ⊕C(2ℵ0). Therefore, by the above mentioned
Milyutin theorem we deduce

C(2m)⊕ C([0, α]) ∼ Y ⊕ C(2ℵ0)⊕ C([0, α]) ∼ Y ⊕ C(2ℵ0) ∼ C(2m).

Consequently, if m, n ≥ ℵ0 and α, β < ω1, then by [20, Corollary 8.2.7],

C(2m)⊕ C([0, α]) ∼ C(2n)⊕ C([0, β]) if and only if m = n.

Remark 1.4. Now we turn to the cases where both m and α are large:
m ≥ ℵ0 and α ≥ ω1. Suppose that n ≥ ℵ0 and β ≥ ω. Then C(2m) ⊕
C([0, α]) ∼ C(2n) ⊕ C([0, β]) implies that m = n. Indeed, assume that
m < n and let Γ and Λ be two sets of the same cardinality as α and β,
respectively. According to [17, Proposition 5.2],(∑

2m

⊕L1[0, 1]m
)

1
⊕ l1(Γ ) ∼

(∑
2n

⊕L1[0, 1]n
)

1
⊕ l1(Λ).

Recall that given a Banach space X, the dimension of X is the smallest
cardinal δ for which there exists a subset of cardinality δ with linear span
norm-dense in X. Pick a subspace H of L1[0, 1]n which is isomorphic to a
Hilbert space of dimension n [18, Proposition 1.5]. Hence

H ↪→
(∑

2m

⊕L1[0, 1]m
)

1
⊕ l1(Γ ).

Since H contains no subspace isomorphic to l1, by a standard gliding hump
argument (see [3]) we infer that there exist a finite sum of L1[0, 1]m and



Isomorphism classes of C(2m ⊕ [0, α]) spaces 89

1 ≤ p < ω such that

H ↪→ L1[0, 1]m ⊕ · · · ⊕ L1[0, 1]m ⊕ Rp,

which is absurd, because the dimension of L1[0, 1]m is clearly m.

Remark 1.5. If m ≥ ℵ0 then C(2m) ⊕ C([0, α]) � C(2m) for every
α ≥ ω1. Indeed, suppose C(2m) ⊕ C([0, α]) ∼ C(2m) for some α ≥ ω1. Let
Γ be the set of isolated points of [0, α] and denote by C0(Γ ) the classical
Banach space of all functions defined on Γ such that for every ε > 0 the set
{γ ∈ Γ : |f(γ)| ≥ ε} is finite. Thus C0(Γ ) ↪→ C([0, α]) ↪→ C(2m).

Now recall that a topological space K is said to satisfy the countable
chain condition (ccc) if every uncountable family of open subsets of K con-
tains two distinct sets with nonempty intersection. Since C0(Γ ) ↪→ C(2m),
it follows from [17, Theorem 4.5] that 2m would not satisfy the ccc, which
is absurd by [6, Theorem 2.3.17].

In order to present a complete isomorphic classification of C(2m) ⊕
C([0, α]) spaces, we will state a more general result on isomorphic classi-
fication of some Banach spaces. To do this, we recall that a Banach space
X is said to have the Mazur property if every element of X∗∗, the bidual
space of X, which is sequentially weak∗ continuous is weak∗ continuous and
thus is an element of X. Such spaces were investigated in [5], [12] and also
in [9] and [21] where they were called d-complete and µB-spaces, respec-
tively. Section 2 is devoted to proving the following isomorphic classification
theorem for X ⊕ C([0, α]) spaces:

Theorem 1.6. Let X be a Banach space having the Mazur property and
α, β ≥ ω1. If X ⊕ C([0, α]) ∼ X ⊕ C([0, β]) then C([0, α]) ∼ C([0, β]).

Before applying Theorem 1.6, we need to recall a concept which had
its origins in the study of continuity of functions on large Cartesian prod-
ucts. Following Noble [14] and Antonovskĭı–Chudnovskĭı [1], we say that a
cardinal m is sequential if there exists a sequentially continuous but not con-
tinuous real-valued function on 2m. We recall that a function f : 2m → R is
said to be sequentially continuous if f(kn) converges to f(k) whenever the
sequence (kn)n<ω converges to k in 2m.

Remark 1.7. Important for us is a result due to Plebanek which states
that C(2m) has the Mazur property for every nonsequential cardinal m [15]
(see also [16, Theorem 5.2.c]).

Remark 1.8. Mazur [13] showed that the first sequential cardinal s is
weakly inaccessible. Hence ω1 < s. Moreover, there are many weakly inac-
cessible cardinals before s [4]. On the other hand, let mR and m2 denote the
least real-valued measurable cardinal and two-valued measurable cardinal,
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respectively [7]. It is well-known that s ≤ mR; s ≤ 2ℵ0 or s = m2; and s = m2

under Martin’s axiom [1], [7] and [13].
In particular, it is relatively consistent with ZFC that there exist no

sequential cardinals [16]. Therefore, keeping in mind the above remarks, it
is also consistent with ZFC that Corollary 1.9 completes the isomorphic
classification of C(2m)⊕ C([0, α]) spaces.

Corollary 1.9. Suppose that m is a nonsequential cardinal and α, β
≥ ω1. If C(2m)⊕ C([0, α]) ∼ C(2m)⊕ C([0, β]) then C([0, α]) ∼ C([0, β]).

Remark 1.10. As another direct application of Theorem 1.6 we get
the isomorphic classification of C(K) ⊕ C([0, α]) spaces where C(K) has
the Mazur property and α ≥ ω1. This includes the cases where K is first-
countable [16, Corollary 3.2], or the ω1th Cantor derived set of K is empty
[9, Theorem 4.1], or K is a Corson-compact [16, Corollary 3.4].

2. Proof of Theorem 1.6. As in [2], C([0, α]) will be denoted by Rα
and we set Rα0 = {f ∈ Rα : f(α) = 0}. By [2, Lemma 1.2.1], Rα ∼ Rα0 .

Since Rα with α ≥ ω1 does not have the Mazur property [21, p. 49] and fi-
nite sums of Banach spaces with the Mazur property also have this property,
it follows that Theorem 1.6 is an immediate consequence of Proposition 2.5
below.

A fundamental ingredient in the proof of Proposition 2.5 is Lemma
2.1, which generalizes the following result of Bessaga and Pe lczyński [2,
Lemma 2]:

Rα
ω

X↪→ Rα, ∀α ≥ ω.
Lemma 2.1. Let X be an infinite-dimensional Banach space and α ≥ ω.

Then Rαω
↪→ X ⊕ Rα implies that Rα ↪→ Xn for some 1 ≤ n < ω.

Proof. Assume that Rαω
↪→ X ⊕ Rα0 and consider the ordinal λ defined

by
λ = min{ξ ≤ α : ∃m, 1 ≤ m < ω, with Rα0 ↪→ Xm ⊕ Rξ0}.

Thus there exists m, 1 ≤ m < ω, such that

(1) Rα0 ↪→ Xm ⊕ Rλ0 .
We distinguish two cases:

Case 1: λ is finite. In this case, (1) yields Rα0 ↪→ Xm ⊕ Rλ ↪→ Xm+1,
and we are done.

Case 2: λ is infinite. Then again by (1),

(2) Rλ
ω
↪→ Rα

ω
↪→ X ⊕ Rα0 ↪→ Xm+1 ⊕ Rλ0 .

Notice that if Rλ ↪→ Xm+1⊕Rξ0 for some ξ < λ, then by (1) we would have

Rα0 ↪→ X2m+1 ⊕ Rξ0,
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which is absurd by the choice of λ. Hence

(3) Rλ X↪→ Xm+1 ⊕ Rξ0, ∀ξ < λ.

According to (2) there are operators π1 : Rλω → Xm+1 and π2 : Rλω → Rλ0 ,
and a ∈ R+, such that for every f ∈ Rλω

,
(4) a‖f‖ ≤ max{‖π1(f)‖, ‖π2(f)‖} ≤ ‖f‖.
Fix an integer N and ε > 0 such that aN > 1 and 1 + ε < aN . For every
0 ≤ ξ < λ, write

∆1
ξ = (λNξ, λN (ξ + 1)].

Let YN be the subspace of Rλω
given by

{f ∈ Rλω
: f is constant on ∆1

ξ for all ξ ∈ [0, λ), and

f(ξ) = 0 for all ξ ∈ [λN+1, λω]}.
Clearly, YN is isomorphic to Rλ. Thus by (3), π1 restricted to YN is not an
isomorphism of YN into Xm+1. So there exists f1 ∈ YN such that ‖f1‖ = 1
and ‖π1(f1)‖ ≤ ε/2.

We may change f1 to −f1 and assume that there exists ξ1 ∈ [0, λ) such
that f1(γ) = 1 for all γ ∈ (λNξ1, λN (ξ1 + 1)].

Since π2(f1) ∈ Rλ0 , there exists λ1 < λ such that for every γ ∈ [λ1 +1, λ],
we have |π2(f1)(γ)| ≤ ε/2.

For the second step, for every 0 ≤ ξ < λ, write
∆2
ξ = (λNξ1 + λN−1ξ, λNξ1 + λN−1(ξ + 1)].

Let YN−1 be the subspace of Rλω
defined by

{f ∈ Rλω
: f is constant on ∆2

ξ for all ξ ∈ [0, λ), and

f(ξ) = 0 for all ξ 6∈ (λNξ1, λN (ξ1 + 1)]}.
Denote by Pλ1 the natural projection of Rλ0 onto Rλ1

0 and define the
operator π1 + Pλ1π2 : Rλω → Xm+1 ⊕ Rλ1

0 by

(π1 + Pλ1π2)(f) = (π1(f), Pλ1(π2(f))), ∀f ∈ Rλω
.

Since YN−1 is isomorphic to Rλ, and since by (3), Xm+1 ⊕ Rλ1
0 contains no

subspace isomorphic to Rλ, it follows that π1 + Pλ1π2 restricted to YN−1 is
not an isomorphism of YN−1 into Xm+1 ⊕ Rλ1

0 .
Hence there exists f2 ∈ YN−1 such that ‖f2‖ = 1, ‖π1(f2)‖ ≤ ε/22 and

|π2(f2)(γ)| ≤ ε/22 for every γ ∈ [0, λ1].
Since π2(f2) ∈ Rλ0 , pick λ2 ∈ [λ1 + 1, λ) such that |π2(f2)(γ)| ≤ ε/22 also

for all γ ∈ [λ2 + 1, λ].
We may change f2 to −f2 and suppose that there exists ξ2 ∈ [0, λ) such

that f2(γ) = 1 for all γ ∈ (λNξ1 + λN−1ξ2, λ
Nξ1 + λN−1(ξ2 + 1)].

Repeating this procedure N times we will find

• f1, . . . , fN ∈ Rλ
ω
,
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• ξ1 < · · · < ξN < λ,
• λ1 < · · · < λN < λ,

such that for every 1 ≤ k ≤ N and for every γ belonging to

(λNξ1 + λN−1ξ2 + · · ·+ λN−k+1ξk, λ
Nξ1 + λN−1ξ2 + · · ·+ λN−k+1(ξk + 1)]

we have:

• fk(γ) = ‖fk‖ = 1,
• supp f2 ⊂ f−1

1 (1), supp f3 ⊂ f−1
2 (1), . . . , supp fk ⊂ f−1

k−1(1),
• ‖π1(fk)‖ ≤ ε/2k,
• |π2(fk)(γ)| ≤ ε/2k, ∀γ ∈ [λk + 1, λ],
• |π2(fk)(γ)| ≤ ε/2k, ∀γ ∈ [0, λk−1], k > 1.

Let f = f1 + · · · + fN . Then it is obvious that ‖f‖ = N , ‖π1(f)‖ ≤ ε, and
‖π2(f)‖ ≤ 1+ε. Finally, by (4) we conclude that aN ≤ 1+ε, which is absurd
by the choice of ε.

To state the next lemmas, we need to recall some Banach spaces intro-
duced in [8] and [10]. Let us recall that an ordinal α is said to be regular if
the smallest ordinal cofinal with α is equal to α. Otherwise α is said to be
singular.

Let X be a Banach space and α a regular ordinal. We denote by Xα the
space of all x∗∗ ∈ X∗∗ having the following property: for any limit ordinal
β < α and transfinite sequence (fξ)ξ<β of continuous linear functionals on

X with sup{‖fξ‖ : ξ < β} <∞ and fξ(x)
ξ→β−−−→ 0 for every x ∈ X, we have

x∗∗(fξ)
ξ→β−−−→ 0.

From now on, if X is a Banach space, then cX denotes the canonical
image of X in X∗∗.

Remark 2.2. Clearly cX ⊂ Xα ⊂ Xω1 for every regular ordinal α ≥ ω1.
Moreover, it may easily be shown that if X ∼ Y , then

Xα

cX
∼ Yα
cY

.

Observe also that if X has the Mazur property, then Xω1 = cX.

Lemma 2.3. Let X and Y be Banach spaces and α be a regular ordinal.
Then there exists an isomorphism Φ : X∗∗ ⊕ Y ∗∗ → (X ⊕ Y )∗∗ satisfying

(i) Φ(cX ⊕ cY ) = c(X ⊕ Y ).
(ii) Φ(Xα ⊕ Yα) = (X ⊕ Y )α.

Proof. Let T : (X ⊕ Y )∗ → X∗ ⊕ Y ∗ be the isomorphism given by
T (z∗) = (z∗|X , z

∗
|Y ) for z∗∗ ∈ (X⊕Y )∗. Then the isomorphism T ∗ : (X∗⊕Y ∗)∗

→ (X ⊕ Y )∗∗ is given by (T ∗z∗∗)(w∗) = z∗∗(Tw∗) for z∗∗ ∈ (X∗ ⊕ Y ∗)∗ and
w∗ ∈ (X ⊕ Y )∗.



Isomorphism classes of C(2m ⊕ [0, α]) spaces 93

Consider also the isomorphism L : X∗∗ ⊕ Y ∗∗ → (X∗ ⊕ Y ∗)∗ defined by
L(x∗∗, y∗∗)(x∗, y∗) = x∗∗(x∗) + y∗∗(y∗) for x∗∗ ∈ X∗∗, y∗∗ ∈ Y ∗∗, x∗ ∈ X∗
and y∗ ∈ Y ∗.

Put Φ = T ∗L. Then Φ(x∗∗, y∗∗)(w∗) = x∗∗(w∗|X)+y∗∗(w∗|Y ) for x∗∗ ∈ X∗∗,
y∗∗ ∈ Y ∗∗ and w∗ ∈ (X ⊕ Y )∗. Now it is easy to see that (i) and (ii) hold.

The next lemma is a generalization of a result of Gul’ko and Os’kin [8]
and independently of Kislyakov [10]. Let ξ be any ordinal and α a regular
ordinal. The cardinality of ξ will be denoted by ξ̄. Let Λαξ denote the subset
of [0, ξ] consisting of the nonisolated points that are not limit points for any
set of cardinality smaller than ᾱ.

Lemma 2.4. Let α be an uncountable regular ordinal and ξ ∈ [α, α2],
with ξ = αξ′ + δ and ξ′, δ ≤ α. Suppose that X is a Banach space satisfying
Xα = cX. Then

(X ⊕ Rξ)α
c(X ⊕ Rξ)

∼ C0(Λαξ ).

Proof. Let Φ be as defined in Lemma 2.3. Then by using [10, Corollary
4.1], it can be easily checked that

(X ⊕ Rξ)α
c(X ⊕ Rξ)

=
Φ(Xα ⊕ Rξα)
Φ(cX ⊕ cRξ)

∼ Xα ⊕ Rξα
cX ⊕ cRξ

=
cX ⊕ Rξα
cX ⊕ cRξ

∼ Rξα
cRξ
∼ C0(Λαξ ).

Proposition 2.5. Suppose that ω1 ≤ α ≤ β and X is a Banach space
satisfying

• Rα X↪→ Xn for every 1 ≤ n < ω,
• Xω1 = cX.

Then X ⊕ Rα ∼ X ⊕ Rβ implies that Rα ∼ Rβ.

Proof. First we will prove that ᾱ = β̄. Suppose that ᾱ < β̄. Then αω < β.
Consequently,

(5) Rα
ω
↪→ Rβ ↪→ X ⊕ Rβ ∼ X ⊕ Rα.

Therefore by Lemma 2.1, Rα ↪→ Xn for some 1 ≤ n < ω, contradicting our
hypotheses.

Next let λ be the first ordinal of cardinality ᾱ. There are two cases:

Case 1: λ is a singular ordinal or λ is a regular ordinal with λ2 ≤ α. If
αω ≤ β, then (5) holds and again we obtain a contradiction. Thus β < αω

and by [10, Theorem 1], we conclude that Rα ∼ Rβ.

Case 2: λ is a regular ordinal with α < λ2. Thus Xλ = cX. Write
α = λα′+γ with α′, γ < λ. If λ2 < β, then Rλ2

↪→ Rβ ↪→ X⊕Rβ ∼ X⊕Rα
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and according to [10, Lemmas 1.4 and 2.4] we deduce

C0(Λλλ2) ∼
Rλ2

λ

cRλ2 ↪→
(X ⊕ Rα)λ
c(X ⊕ Rα)

∼ C0(Λλα).

Therefore by [10, Corollary 4.1], λ̄ ≤ α′, which is absurd. So we may assume
that β ≤ λ2. Write β = λβ′ + δ, with β′, δ ≤ α. Then Lemma 2.4 yields

C0(Λλα) ∼ (X ⊕ Rα)λ
c(X ⊕ Rα)

∼ (X ⊕ Rβ)λ
c(X ⊕ Rβ)

∼ C0(Λλβ).

Once again by [10, Corollary 4.1] we see that α′ = β′ and by [10, Theorem 2]
we conclude that Rα ∼ Rβ.

3. Some questions. Corollary 1.9 leads naturally to the following ques-
tion.

Question 3.1. Assume that C(2m) has the Mazur property. Does it
follow that m is not sequential?

As pointed out by the referee, C(2m2) does not have the Mazur property.
Moreover, he noticed that C(2m2)λ 6= cC(2m2) for every ω1 ≤ λ < m2.
Indeed, let F be an m2-complete ultrafilter and x∗∗ the weak∗-limit along
the ultrafilter F of {c(pα) : α ∈ m2} ⊂ C(2m2)∗∗, where pα : 2m2 → 2 is the
αth projection. Then x∗∗ ∈ C(2m2)λ \ cC(2m2) for all λ < m2.

However, we do not know the answer to the following question.

Question 3.2. Is it true that C(2m)ω1 = cC(2m) whenever ℵ1 ≤ m
< m2?

Acknowledgements. The author wishes to thank the referee for help-
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version of the paper.
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