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On isomorphism classes of C'(2™ @ [0, a]) spaces
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El6i Medina Galego (Sao Paulo)

Abstract. We provide a complete isomorphic classification of the Banach spaces of
continuous functions on the compact spaces 2™ @ [0, o], the topological sums of Cantor
cubes 2™, with m smaller than the first sequential cardinal, and intervals of ordinal num-
bers [0, . In particular, we prove that it is relatively consistent with ZFC that the only
isomorphism classes of C'(2™ & [0, a]) spaces with m > Ry and o > w; are the trivial ones.
This result leads to some elementary questions on large cardinals.

1. Introduction and statement of the main results. Given a com-
pact Hausdorff topological space K, C'(K) stands for the Banach space of all
continuous real-valued functions on K, equipped with the supremum norm.
For a fixed cardinal number m, 2™ denotes the product of m copies of the
two-point space 2, provided with the product topology.

If o is an ordinal number, [0,a] denotes the interval of ordinals {¢ :
0 < ¢ < a} endowed with the order topology. As usual, we denote by
Ng, N1, w and w; the first infinite cardinal, the first uncountable cardinal,
the first infinite ordinal and the first uncountable ordinal, respectively. The
symbol X @& Y will denote the Cartesian product of the Banach spaces X
and Y, i.e. the space of all pairs (z,y), v € X, y € Y, with the norm
(x, y)|| = max{||z|], ||y|]|}. We write X ~ Y when the Banach spaces X and
Y are isomorphic. By X — Y we mean that the Banach space Y contains a
subspace isomorphic to the Banach space X. Other notations are standard
and in conformity with [20].

This paper is concerned with the question of describing the isomorphism
classes of C'(2™ & [0,a]) spaces, where 2™ & [0, o] is the topological sum
of 2™ and [0, a] for some cardinal m and ordinal «, that is, of the fam-
ily of C'(2™) & C([0,«]) spaces. As we will see in the first three remarks
below, the motivation for this work comes from some classical isomorphic
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classifications of C(K) spaces closely connected with C(2™) @& C([0,«])
spaces.

REMARK 1.1. First of all, notice that this family of spaces includes
the finite-dimensional spaces R?" T as well as the C([0,a]) spaces with
a > w. The isomorphic classification of C([0,«]) spaces was accomplished
by Bessaga and Pelczyriski [2] in the case where w < o < wy; by Semadeni
[19] in the case where w; < a < wjw; by Labbé [11] in the case where
wiw < a < w{; and independently by Kislyakov [10] and Gul’ko and Os’kin
[8] in the general case.

REMARK 1.2. For m = Ny and a < wq, it follows from the classical
Milyutin theorem [20, Theorem 21.5.10] about the isomorphic classification
of C(K) spaces, with K compact metric uncountable, that every space of
this family is isomorphic to C(2%°).

REMARK 1.3. Assume m > Ny and o < wy. Then 2™ is homeomorphic
to the topological product 2™ x 280, Hence C(2%0) is isomorphic to a com-
plemented subspace of C(2™). That is, there exists a Banach space Y such
that C(2™) is isomorphic to Y @ C(280). Therefore, by the above mentioned
Milyutin theorem we deduce

C2™ @ C([0,a]) ~Y @ C(2%) @ C([0,a]) ~ Y @ C(2%) ~ C(2™).
Consequently, if m,n > Xy and «, 8 < wy, then by [20, Corollary 8.2.7],
C2™M e C([0,a]) ~C(2") @ C([0,0]) if and only if m =n.

REMARK 1.4. Now we turn to the cases where both m and « are large:
m > Ny and o > wj. Suppose that n > Ry and f > w. Then C(2™) ®
C([0,a]) ~ C(2") & C([0,4]) implies that m = n. Indeed, assume that
m < n and let I" and A be two sets of the same cardinality as a and £,
respectively. According to [17, Proposition 5.2],

(> ez, 1]*“)1 su(r) ~ (YL, 1]“>1 @ 11(A).

Recall that given a Banach space X, the dimension of X is the smallest
cardinal § for which there exists a subset of cardinality ¢ with linear span
norm-dense in X. Pick a subspace H of L'[0,1]" which is isomorphic to a
Hilbert space of dimension n [18, Proposition 1.5]. Hence

H (Z@Ll[o, 1]‘“)1 @ 1 (D).
o

Since H contains no subspace isomorphic to [, by a standard gliding hump
argument (see [3]) we infer that there exist a finite sum of L'[0,1]™ and
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1 < p < w such that
H— L'0,1]"& & L'0,1]" & R,
which is absurd, because the dimension of L[0, 1]™ is clearly m.

REMARK 1.5. If m > Ry then C(2™) @ C([0,a]) =~ C(2™) for every
a > w;. Indeed, suppose C(2™) @ C([0,a]) ~ C(2™) for some o > wy. Let
I' be the set of isolated points of [0, ] and denote by Cp(I") the classical
Banach space of all functions defined on I" such that for every ¢ > 0 the set
{yeTI':|f(y)| > €} is finite. Thus Co(I") — C([0,a]) — C(2™).

Now recall that a topological space K is said to satisfy the countable
chain condition (ccc) if every uncountable family of open subsets of K con-
tains two distinct sets with nonempty intersection. Since Cy(I") — C(2™),
it follows from [17, Theorem 4.5] that 2™ would not satisfy the ccc, which
is absurd by [6, Theorem 2.3.17].

In order to present a complete isomorphic classification of C(2™) &
C([0, ) spaces, we will state a more general result on isomorphic classi-
fication of some Banach spaces. To do this, we recall that a Banach space
X is said to have the Mazur property if every element of X**, the bidual
space of X, which is sequentially weak® continuous is weak® continuous and
thus is an element of X. Such spaces were investigated in [5], [12] and also
in [9] and [21] where they were called d-complete and pB-spaces, respec-
tively. Section 2 is devoted to proving the following isomorphic classification
theorem for X & C([0, a]) spaces:

THEOREM 1.6. Let X be a Banach space having the Mazur property and
a,fZw. If X ®C([0,a]) ~ X & C([0, 8]) then C([0,a]) ~ C([0, 5]).

Before applying Theorem 1.6, we need to recall a concept which had
its origins in the study of continuity of functions on large Cartesian prod-
ucts. Following Noble [14] and Antonovskii—~Chudnovskii [1], we say that a
cardinal m is sequential if there exists a sequentially continuous but not con-
tinuous real-valued function on 2™. We recall that a function f: 2™ — R is
said to be sequentially continuous if f(ky) converges to f(k) whenever the
sequence (ky)n<w converges to k in 2™.

REMARK 1.7. Important for us is a result due to Plebanek which states
that C'(2™) has the Mazur property for every nonsequential cardinal m [15]
(see also [16, Theorem 5.2.c]).

REMARK 1.8. Mazur [13] showed that the first sequential cardinal s is
weakly inaccessible. Hence w; < 5. Moreover, there are many weakly inac-
cessible cardinals before s [4]. On the other hand, let mg and mg denote the
least real-valued measurable cardinal and two-valued measurable cardinal,
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respectively [7]. It is well-known that s < mp; s < 280 or 5 = my; and 5 = my
under Martin’s axiom [1], [7] and [13].

In particular, it is relatively consistent with ZFC that there exist no
sequential cardinals [16]. Therefore, keeping in mind the above remarks, it
is also consistent with ZFC that Corollary 1.9 completes the isomorphic
classification of C'(2™) @ C([0, «]) spaces.

COROLLARY 1.9. Suppose that m is a nonsequential cardinal and «, 3
> wi. If C(27) & C([0,a]) ~ C(2™) & C([0, B]) then C([0,a]) ~ C([0, 8]).

REMARK 1.10. As another direct application of Theorem 1.6 we get
the isomorphic classification of C'(K) @ C([0,«]) spaces where C(K) has
the Magzur property and o > wy. This includes the cases where K is first-
countable [16, Corollary 3.2], or the with Cantor derived set of K is empty
[9, Theorem 4.1], or K is a Corson-compact [16, Corollary 3.4].

2. Proof of Theorem 1.6. As in [2], C([0,a]) will be denoted by R®
and we set R = {f € R*: f(a) = 0}. By [2, Lemma 1.2.1], R* ~ R§.

Since R* with @ > w; does not have the Mazur property [21, p. 49] and fi-
nite sums of Banach spaces with the Mazur property also have this property,
it follows that Theorem 1.6 is an immediate consequence of Proposition 2.5
below.

A fundamental ingredient in the proof of Proposition 2.5 is Lemma
2.1, which generalizes the following result of Bessaga and Pelczynski [2,
Lemma 2]:

w

R* < R® Vo> w.

LEMMA 2.1. Let X be an infinite-dimensional Banach space and o > w.
Then R® — X @ R® implies that R* — X™ for some 1 <n < w.

Proof. Assume that R® — X @ R§ and consider the ordinal A defined
by
A=min{¢ < a:3Im,1 <m <w, with Rf <—>Xm69Rg}.

Thus there exists m, 1 < m < w, such that
(1) RS — X™ @R},
We distinguish two cases:

CASE 1: ) is finite. In this case, (1) yields R§ «— X™ @ R* < X™m+1
and we are done.

CASE 2: )\ is infinite. Then again by (1),
(2) R — R* — X @R — X" @ Ry.
Notice that if R* < X+ g ]Rg for some & < A, then by (1) we would have
RG — X2m+l g R{
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which is absurd by the choice of A\. Hence
(3) R oo X" g RE,  VE < .

According to (2) there are operators 71 : R — X™*+1 and 7y : RY — R},
and a € R, such that for every f € R,
(4) al[f| < max{{|my (£)I|; w2 (I} < 1.
Fix an integer N and € > 0 such that aN > 1 and 1+ ¢ < alN. For every
0 <& < A, write

Ag = (WY 2N (E+ 1))

Let Yy be the subspace of R* given by

{f e R" : f is constant on A% for all £ € [0, A), and

f(&) =0 for all £ € AN AL

Clearly, Yy is isomorphic to R*. Thus by (3), m; restricted to Yy is not an
isomorphism of Yy into X™*1. So there exists f; € Yy such that || fi|| = 1
and [[m1(f1)]] < €/2.

We may change f; to —f1 and assume that there exists & € [0, A) such
that fi(y) =1 for all v € (AN&, AV (& + 1)].

Since ma(f1) € R}, there exists A\; < A such that for every v € [\ +1, A,
we have |ma(f1)(7)| < €/2.

For the second step, for every 0 < & < A, write

A= (WVe + AN g + AV e+ 1),

Let Yy_1 be the subspace of R* defined by

{f € R* : f is constant on Ag for all £ € [0,\), and

F(&) =0 for all € & (AV&r, AV (& + 1))}

Denote by P, the natural projection of Ré onto Rél and define the
operator m; + Py, my : RY — X™m+l g R(’)\l by

(m1 + Paym2)(f) = (mi(f), P (m2(f))),  Vf € RY.

Since Yy _; is isomorphic to R*, and since by (3), Xmtl g Ra\l contains no
subspace isomorphic to R?, it follows that 71 + Py, mo restricted to Yy_1 is
not an isomorphism of Yy_; into X! @ Ré‘l.

Hence there exists fo € Yy_1 such that || f2|| = 1, [|m1(f2)| < €/22 and
7o f2) ()] < €/22 for every 7 € [0, M].

Since ma(f2) € R}, pick Ay € [A1 41, A) such that |ma(f2)(7)| < €/22 also
for all v € [Aa + 1, A].

We may change f to — fo and suppose that there exists & € [0, A) such
that fo(y) =1 for all v € (AN& + A1, AVg + A1 (& + 1))

Repeating this procedure N times we will find

o fi,....fn €RN,
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o &< <EN <A,
o\ < <Ay <A,

such that for every 1 < k < N and for every « belonging to
()\N§1 +)\N—1£2 N +)\N_k+1§k7AN§1 +)\N—l§2 4. +)\N—k+1(£k + 1)]

we have:

o fr(v)=Irfell =1,

supp fo C f; '(1), supp f3 C f3 '(1),...,supp fr C f;1(1),

I (fi)ll < €/2%,

[ (fe) (V)] < €/2%, ¥y € [ + 1, A,

[ (fi) (V)| < €/2F, ¥y € [0, Ap—1], k> 1.

Let f = fi+---+ fn. Then it is obvious that ||f|| = N, ||m1(f)]] < ¢, and
lm2(f)]| < 1+e€. Finally, by (4) we conclude that aN < 1+¢, which is absurd
by the choice of €. =

To state the next lemmas, we need to recall some Banach spaces intro-
duced in [8] and [10]. Let us recall that an ordinal « is said to be regular if
the smallest ordinal cofinal with « is equal to a. Otherwise « is said to be
singular.

Let X be a Banach space and « a regular ordinal. We denote by X, the
space of all z** € X** having the following property: for any limit ordinal
B < o and transfinite sequence (fg)e<p of continuous linear functionals on

X with sup{||fe]| : £ < B} < 0o and fe(x) 28,0 for every x € X, we have

™ (fe) — 0.

From now on, if X is a Banach space, then ¢X denotes the canonical
image of X in X**.

REMARK 2.2. Clearly cX C X, C X, for every regular ordinal o > wy.
Moreover, it may easily be shown that if X ~ Y, then

Xo Y.,

cX Y’
Observe also that if X has the Mazur property, then X,, = cX.

LEMMA 2.3. Let X andY be Banach spaces and a be a regular ordinal.
Then there exists an isomorphism @ : X* @Y™ — (X @ Y)*™ satisfying

(i) P(cXdcY)=c(XDY).

(i) 2(Xa @ Ya) = (X BY)q.

Proof. Let T : (X ®Y)* — X* @ Y"* be the isomorphism given by
T(z*) = (z‘*X, z‘*y) for 2** € (X®Y)*. Then the isomorphism 7% : (X*®Y™)*
— (X ®Y)™ is given by (T72*)(w*) = 2™ (Tw*) for z** € (X* @ Y™*)* and
w e (XaY)~
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Consider also the isomorphism L : X** @& Y** — (X* @ Y*)* defined by
and y* € Y*.

Put @ = T"L. Then ®(z™, y™*)(w”) = ™" (w]y ) +y** (w]y) for z** € X7,
y*™* e Y* and w* € (X @Y)*. Now it is easy to see that (i) and (ii) hold. =

The next lemma is a generalization of a result of Gul’ko and Os’kin [§]
and independently of Kislyakov [10]. Let £ be any ordinal and « a regular
ordinal. The cardinality of ¢ will be denoted by &. Let /1? denote the subset
of [0, ] consisting of the nonisolated points that are not limit points for any
set of cardinality smaller than a.

LEMMA 2.4. Let a be an uncountable reqular ordinal and ¢ € |a,a?],
with £ = af' + 6 and £,6 < a.. Suppose that X is a Banach space satisfying
Xo =cX. Then

(X ®R)q
(X & RY)

Proof. Let @ be as defined in Lemma 2.3. Then by using [10, Corollary
4.1], it can be easily checked that

~ Co(Ag).

(XoR)y _ P(Xa®RY) X @RS _cXoORS Ry (42)
— ~ = ~ s Y . n
(XDORE)  S(cXDRE) X DRE X PcRE RS 047
PROPOSITION 2.5. Suppose that w1 < o < 8 and X is a Banach space
satisfying

o R < X” for every 1 < n < w,
o X, =cX.

Then X ® RY ~ X @ RP implies that R® ~ RP.
Proof. First we will prove that & = 3. Suppose that & < . Then o < f3.
Consequently,
(5) R R X @R ~ X ®R™.
Therefore by Lemma 2.1, R* — X" for some 1 < n < w, contradicting our

hypotheses.
Next let A be the first ordinal of cardinality &. There are two cases:

CASE 1: X is a singular ordinal or ) is a regular ordinal with \? < a. If
a¥ < 3, then (5) holds and again we obtain a contradiction. Thus § < o
and by [10, Theorem 1], we conclude that R® ~ R?.

CASE 2: ) is a regular ordinal with a < A2. Thus X, = cX. Write
a =X +v with o/,7 < X\. If A2 < 38, then R < RS < X ®RF ~ X aR™
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and according to [10, Lemmas 1.4 and 2.4] we deduce
RY | (XoRY),
(ﬁ

R (X ®RY)
Therefore by [10, Corollary 4.1], A < o/, which is absurd. So we may assume
that 8 < A2, Write 8 = A\’ + §, with 3/, < a. Then Lemma 2.4 yields

X oR X @R

(X 3R (X &RP)

Once again by [10, Corollary 4.1] we see that o/ = 3’ and by [10, Theorem 2]
we conclude that R® ~ R”. u

Co(A3).

3. Some questions. Corollary 1.9 leads naturally to the following ques-
tion.

QUESTION 3.1. Assume that C(2™) has the Mazur property. Does it
follow that m is not sequential?

As pointed out by the referee, C'(2™2) does not have the Mazur property.
Moreover, he noticed that C(2™2)) # c¢C(2™) for every w1 < A < may.
Indeed, let F' be an my-complete ultrafilter and z** the weak*-limit along
the ultrafilter I of {c¢(pa) : @ € ma} C C(2™2)**, where p, : 2™ — 2 is the
ath projection. Then z** € C(2™), \ ¢cC(2™) for all A < my.

However, we do not know the answer to the following question.

QUESTION 3.2. Is it true that C(2™),, = cC(2™) whenever X; < m
<mg?
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