
FUNDAMENTA

MATHEMATICAE

204 (2009)

Minimal number of periodic points for
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Grzegorz Graff (Gdańsk) and Jerzy Jezierski (Warszawa)

Abstract. Let f be a continuous self-map of a smooth compact connected and
simply-connected manifold of dimension m ≥ 3 and r a fixed natural number. A topolog-
ical invariant Dm

r [f ], introduced by the authors [Forum Math. 21 (2009)], is equal to the
minimal number of r-periodic points for all smooth maps homotopic to f . In this paper
we calculate D3

r [f ] for all self-maps of S3.

1. Introduction. A classical problem in periodic point theory is to de-
termine or estimate the least number of fixed, or more generally r-periodic,
points in the homotopy class of a given self-map f of a compact mani-
fold Mm, where r is a fixed natural number (cf. [2], [11]). If Mm is simply-
connected and has dimension m ≥ 3, then one can always find a map g
homotopic to f with only one point in Fix(gr) (cf. [9]). This is, however, im-
possible if we demand additionally that g is smooth. In [6] the authors define
a topological invariant Dm

r [f ] equal to the minimal number of elements in
Fix(gr) for all g which are smooth and homotopic to f . This leads to a new,
smooth branch of Nielsen periodic point theory. Let us remark that Dm

r [f ]
may be interpreted purely in terms of the smooth category, namely we may
assume that f is smooth and approximate the homotopy which joins f to g
by a smooth one. Then Dm

r [f ] gives the minimal number of periodic points
in the smooth homotopy class of f .

This invariant is obtained by decomposing the Lefschetz numbers of iter-
ations into sequences which can be realized as local fixed point indices of iter-
ations of a C1 map at an isolated periodic orbit. As a result, to find Dm

r [f ] we
need two types of data: information about {L(fn)}n|r (more precisely, about
the set of so-called algebraic periods: {n ∈ N :

∑
k|n µ(n/k)L(fk) 6= 0},
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for n | r, where µ is the Möbius function) and the description of all possible
sequences of local indices of iterations. The article joins the ideas of three pa-
pers: [6] in which Dm

r [f ] is defined, [12] where a description of the algebraic
periods of self-maps of S3 is given, and finally [7], giving a classification of
sequences of local indices of iterations in dimension 3. Basing on these results
we are able to determineD3

r [f ] for all self-maps of a smooth 3-manifold which
is closed, connected and simply-connected, i.e., a 3-dimensional sphere, pro-
vided that the result of G. Perelman on the Poincaré conjecture is true.

It is worth pointing out that D3
r [f ], for self-maps of S3, is almost in-

dependent of f , namely it is insensitive to the homotopy class of f , which
seems rather unexpected. For example, if r is odd and f is a map with
|deg(f)| > 1, then D3

r [f ] ∈ {ζ(r) − 1, ζ(r)}, where ζ(r) is the number of
divisors of r (cf. Theorem 4.2). This follows from the simply-connectedness
of S3 and the fact that the set of algebraic periods is equal to the set of
all natural numbers. As a consequence, for S3 the value of D3

r [f ] may be
perceived as an invariant of the whole space rather than of the homotopy
class of f . The same remains true for self-maps of 3-dimensional manifolds
(with boundary) with fast growth of the Lefschetz numbers of iterations [5].

The article is organized as follows: in Sections 2 and 3 we introduce the
notation and definitions and we recall the necessary statements of [6], [7]
and [12]. In Section 4 we give the main results (Theorems 4.2 and 4.7). The
case of r odd is a consequence of the previously known facts (in particular
Theorem 2.9 from [6]), while the case of r even needs a careful and detailed
analysis.

2. Preliminary results. A sequence of indices of iterations at an iso-
lated fixed (periodic) point plays a crucial role in minimizing the number of
periodic points in a homotopy class. Let f : U → Rm, where U is an open
subset of Rm, be a map such that x0 is an isolated fixed point for each itera-
tion of f . Then the sequence {ind(fn, x0)}∞n=1 of local indices is well-defined.
Below we introduce a useful notation for representing such sequences, which
will be used in the next sections.

Definition 2.1. For a given k ∈ N we define

regk(n) =
{
k if k | n,
0 if k -n.

In other words, regk is the periodic sequence

(0, . . . , 0, k, 0, . . . , 0, k, . . .),

where the non-zero entries appear for indices divisible by k. A sequence of
indices of iterations (just as any integer sequence) has the so-called periodic



Periodic points for self-maps of S3 129

expansion [13],

(2.1) ind(fn, x0) =
∞∑

k=1

akregk(n),

where an = n−1
∑

k|n µ(n/k)ind(fk, x0) and µ is the classical Möbius func-
tion, i.e., µ : N → Z is defined by the following three properties: µ(1) = 1,
µ(k) = (−1)s if k is a product of s different primes, and µ(k) = 0 otherwise.

It has turned out that the indices of iterations must satisfy some condi-
tions, found in [4], called the Dold relations (or Dold congruences).

Theorem 2.2 (Dold relations). All coefficients of the periodic expansion
of a sequence of indices of iterations are integers, i.e., ak ∈ Z in (2.1).

For p ≥ 1 we define Pp(f) = Fix(fp) \
⋃

0<n<p Fix(fn). If x ∈ Pp(f),
then the orbit of x will be called a p-orbit.

Now we introduce the notion of a differential Dold sequence in Rm for a
p-orbit, briefly a DDm(p) sequence. This is a sequence which can be realized
as a sequence of indices of iterations on an isolated p-orbit for some smooth
map in m-dimensional space.

Definition 2.3. A sequence of integers {cn}∞n=1 is called a DDm(p)
sequence if there is a C1 map φ : U → Rm (U an open subset of Rm) and its
isolated p-orbit P such that cn = ind(φn, P ). If this equality holds for n | r,
where r is fixed, then the finite sequence {cn}n|r will be called a DDm(p|r)
sequence. The number p will be called the multiplicity of {cn}n.

There is a close relation, established in [6], between the minimal number
of r-periodic points for all smooth maps in a given homotopy class and
DDm(p|r) sequences (Theorem 2.5 below).

Definition 2.4. Let {ξn}n|r be a sequence of integers satisfying the
Dold relations, i.e., its coefficients in the periodic expansion are integers.
Assume that we are able to decompose {ξn}n|r as

ξ(n) = c1(n) + · · ·+ cs(n),

where ci is a DDm(li|r) sequence for i = 1, . . . , s. Each such decomposition
determines the sum of the multiplicities, i.e., the number l = l1 + · · · + ls.
We define Dm

r [ξ] to be the smallest l which can be obtained in this way.

Let {L(fn)}n|r be the sequence of the Lefschetz numbers of iterations
of f . We define Dm

r [f ] = Dm
r [{L(fn)}n|r].

Theorem 2.5 ([6]). Let M be a smooth, compact , connected and simply-
connected manifold of dimension m ≥ 3 and r ∈ N a fixed number. For M
with nonempty boundary , assume additionally that f has no periodic points
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on the boundary. Then

min{#Fix(gr) : g is C1 and is homotopic to f} = Dm
r [f ].

By Definition 2.4 determining Dm
r [f ] requires the knowledge of all

DDm(p) sequences. There are strong restrictions on such sequences, found
by Chow, Mallet-Paret and Yorke [3].

It is not difficult to observe that in order to obtain any DDm(p) sequence
{dn}n it is enough to replace each regk by regpk in the periodic expansion of
some DDm(1) sequence {cn}n (we will say that {dn}n comes from {cn}n).
As a consequence, we will know all DDm(p) sequence if we know all DDm(1)
sequences. This is provided in dimension 3 by the following theorem:

Theorem 2.6 ([7]). The complete list of DD3(1) sequences is given
below :

(A) cA(n) = a1reg1(n) + a2reg2(n),
(B) cB(n) = reg1(n) + adregd(n),
(C) cC(n) = −reg1(n) + adregd(n),
(D) cD(n) = adregd(n),
(E) cE(n) = reg1(n)− reg2(n) + adregd(n),
(F) cF (n) = reg1(n) + adregd(n) + a2dreg2d(n), where d is odd ,
(G) cG(n) = reg1(n)−reg2(n)+adregd(n)+a2dreg2d(n), where d is odd.

In all cases d ≥ 3 and ai ∈ Z.

In fact, in dimension 3, to find D3
r [f ] we only need to know some special

DD3(2) sequences, in addition to DD3(1) sequences (see Lemma 2.7).
Let us list three DD3(2) sequences which come from DD3(1) sequences

of the form (E), (F) and (G):

(E′) cE′(n) = reg2(n)− reg4(n) + a2dreg2d(n), where d ≥ 3,
(F′) cF ′(n) = reg2(n) + a2dreg2d(n) + a4dreg4d(n), where d ≥ 3 is odd,
(G′) cG′(n) = reg2(n)− reg4(n) +a2dreg2d(n) +a4dreg4d(n), where d ≥ 3

is odd.

In all cases a2d and a4d are arbitrary integers.

Lemma 2.7 ([6]). Let f : M →M be a C1 map with dimM = 3. Then
in the definition of D3

r [f ] it is enough to consider only DD3(1|r) sequences,
i.e., sequences which for n | r are of the forms (A)–(G), and DD3(2|r) se-
quences of the forms (E′), (F′) and (G′).

Let r be a fixed natural number. The sequence of Lefschetz numbers
{L(fn)}∞n=1 also satisfies the Dold relations, so we can write its periodic
expansion:

(2.2) L(fn) =
∞∑

k=1

bkregk(n).
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Definition 2.8. We define B(f), the set of algebraic periods of f , as
B(f) = {k ∈ N : bk 6= 0}, and Br(f), the set of algebraic periods of f up to
level r, as Br(f) = {k ∈ N : k | r and bk 6= 0}.

Let us now rewrite the formula (2.2) for n | r as

(2.3) L(fn) = b1reg1(n) + b2reg2(n) + b4reg4(n) +
∑
k∈G

bkregk(n),

where b1, b2, b4 are arbitrary integers, and

G = {k ∈ N : k 6∈ {1, 2, 4} and bk 6= 0} = Br(f) \ {1, 2, 4}.
Let

H = {k ∈ G : k is odd and bk 6= 0, b2k 6= 0}.
In the next section we will use the following result proved in [6].

Theorem 2.9. If r is odd , then

(∗) D3
r [f ] =

{
#G if |L(f)| ≤ #G,
#G+ 1 otherwise.

If r is even and r > 4, then

(∗∗) D3
r [f ] ∈ [#G−#H,#G−#H + 2].

3. Algebraic periods. In order to calculate D3
r [f ] we need to know

the periodic expansion of the Lefschetz numbers. Thus, we need to know
exactly the set of algebraic periods of f (cf. Definition 2.8). We will base on
the description of the algebraic periods for self-maps of S3 which is given
in [12]. We use homology spaces with rational coefficients.

Let us recall that

Hi(S3) =
{

Q for i = 0, 3,
0 otherwise.

Let f : S3 → S3. The homomorphism f∗3 : H3(S3; Q) → H3(S3; Q)
is multiplication by a number β ∈ Z, called the degree of f (denoted
deg(f)). Fix r ∈ N. We consider the periodic expansion of {L(fn)}∞n=1

given by (2.2). Recall that by Definition 2.8, bn 6= 0 is equivalent to
n ∈ B(f).

Lemma 3.1 ([12, Theorem 1.2]). Let bn denote the nth coefficient of the
periodic expansion of {L(fn)}∞n=1. Then:

(a) b1 = 1− β.
(b) b2 = 0 if and only if β ∈ {0, 1}.
(c) If n > 2, then bn = 0 if and only if β ∈ {−1, 0, 1}.
Let ζ(r) denote the number of divisors of r. Assume that β 6∈ {−1, 0, 1}.

Then, by Lemma 3.1, B(f) = N and the following proposition holds:
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Proposition 3.2. Br(f)={n ∈ N : n | r}, or equivalently #Br(f)=ζ(r).

By Proposition 3.2 and the definition of G we obtain:

Proposition 3.3.

(1) For r odd , G = Br(f) \ {1}, thus #G = ζ(r)− 1.
(2) For r even:

• if 4 | r, then G = Br(f) \ {1, 2, 4}, thus #G = ζ(r)− 3,
• if 4 - r, then G = Br(f) \ {1, 2}, thus #G = ζ(r)− 2.

Lemma 3.4. If r is even, then #H = η(r) − 1, where η(r) denotes the
number of odd divisors of r.

Proof. Observe that #H is the number of pairs k, 2k, where k | r, k > 1
is odd, in G. As each natural 2k is also an algebraic period, every odd k > 1
determines such a pair and thus an element in H.

4. Minimal number of periodic points for self-maps of S3. The
exact determination of the minimal number of r-periodic points for all
smooth maps homotopic to a map f : S3 → S3 of degree β will be given in
Proposition 4.1 and Theorems 4.2 and 4.7 below.

Proposition 4.1. For each self-map f of S3 we have L(fn) = 1− βn.
This implies the following statements.

• If β = 1, then L(fn) = 0 for all n, hence D3
r [f ] = 0.

• If β = −1, then L(fn) = 2reg1(n) − reg2(n), hence D3
r [f ] = 1 for all

r, because the Lefschetz numbers of iterations form a sequence of the
type (A).
• If β = 0, then L(fn) = reg1(n), and analogously to the previous case,
D3

r [f ] = 1.

In order to find D3
r [f ] for f such that |β| = |deg(f)| > 1, we will use

Theorem 2.9. For r odd, Theorem 2.9 together with Proposition 3.3(1) and
the fact that L(f) = 1− β immediately give the value of D3

r [f ]:

Theorem 4.2. For r odd and |β| > 1,

D3
r [f ] =

{
ζ(r)− 1 if ζ(r) ≥ β ≥ 2− ζ(r),
ζ(r) otherwise.

4.1. The case of r even. Let

(4.1) L(fn) = b1reg1(n)+b2reg2(n)+b4reg4(n)+
∑
k∈G

bkregk(n) =
∑

i

ci(n)

be a minimal decomposition of Lefschetz numbers, where each ci is a
DD3(pi|r) sequence and

∑
i pi = D3

r [f ] (cf. Definition 2.4). Let A be the set
consisting of the sequences ci.
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Note that, by Lemma 2.7, each ci has one of the forms (A)–(G), (E′)–(G′),
which implies that pi ≤ 2. Recall that by Theorem 2.9,

(4.2) D3
r [f ] ∈ [#G−#H,#G−#H + 2].

Definition 4.3. We will say that a sequence ψ of one of the types
(A)–(G), (E′)–(G′) reduces a sequence bkregk in the periodic expansion of
Lefschetz numbers (4.1) if k ∈ Br(f) and ak = bk, i.e. bkregk appears in the
periodic expansion of ψ.

For a self-map f of S3, the following lemma holds.

Lemma 4.4. If |β| = |deg(f)| > 1, 4 | r and r > 4 then each set A of
sequences realizing D3

r [f ] contains a sequence of one of the types (B)–(E)
with the term a4reg4 (a4 6= 0).

Proof. Suppose that inA there is no sequence of any of the types (B)–(E)
with a4reg4, where a4 6= 0. Then b4 = (β2−β4)/4 ≤ −3 (as |β| > 1) implies
the existence in A of at least three sequences:

(4.3) γ1, γ2, γ3

of the types (G′) or (E′), since only these give a negative contribution to b4.
We will show that this leads to a contradiction with the minimality of A.

For odd d (d > 1, 4d | r) let us consider the following triple which appears
in the formula (4.1):

(4.4) bdregd(n) + b2dreg2d(n) + b4dreg4d(n).

By Lemma 3.1 each coefficient in (4.4) is non-zero. A (G′) sequence may be
used in A only if it reduces part of such a triple, namely its last two terms.
Then we have to use one (B)–(E) sequence to reduce bdregd, which makes
the contribution of the triple (4.4) to D3

r [f ] equal to 2 + 1 = 3. On the other
hand, we may use (F) or (G) to reduce the first two terms and one (B)–(E)
sequence to reduce the last. As a result we get the smaller contribution
1 + 1 = 2.

Suppose that among γ1, γ2, γ3 in (4.3) there are three (G′)’s. Their
contribution to D3

r [f ] is 9. On the other hand, independently of the values
of b1, b2, b4, there is a smaller realization: we may reduce these three triples
by six other sequences in the way indicated above and b1reg1(n)+b2reg2(n)+
b4reg4(n) by one (A) sequence and one (B)–(E) sequence. This gives eight
sequences in total, contradicting the minimality.

Similarly, we get a contradiction when we assume that at least one of
the three sequences γ1, γ2, γ3 is of the type (E′) (we replace the expression
cE′ = reg2(n)− reg4(n) + a2dreg2d(n) which counts with multiplicity 2 with
cD = a2dreg2d(n) of multiplicity 1 and repeat the same reasoning as in the
case of three (G) sequences).
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Corollary 4.5. Under the assumptions of Lemma 4.4,

D3
r [f ] ∈ {#G−#H + 1,#G−#H + 2}.

Proof. By Theorem 2.9 it is enough to exclude the possibility D3
r [f ] =

#G −#H. Assume that a set A of sequences realizes D3
r [f ] = #G −#H.

By Lemma 4.4 there is a sequence of one of the types (B)–(E) in A with the
term a4reg4. The remaining #G−#H−1 sequences (counting multiplicity)
must reduce bkregk for k ∈ G. Only (F) and (G) sequences reduce two bkregk,
k ∈ G, and we may use them in such a way #H times ((F′), (G′) also reduce
two bkregk’s but they are counted twice). Now the remaining #G − 2#H
bkregk’s must be reduced by #G − 2#H − 1 sequences of types (A)–(E),
(E′)–(G′) (counting multiplicity). This is impossible, since each of (A)–(E)
reduces at most one bkregk with k ∈ G, and each (E′)–(G′) is counted twice
and reduces at most two bkregk with k ∈ G.

Lemma 4.6. Suppose that |deg(f)| > 1 and D3
r [f ] = #G−#H+1. Then

there is a minimal set realizing D3
r [f ] containing only (B)–(G) sequences.

Moreover , we may assume that this set contains one sequence of the type
(B)–(E) with adregd such that d = 4 and #G− 2#H sequences of the types
(B)–(E) with d 6= 4 and #H sequences of the types (F)–(G).

Proof. Let us fix a minimal set A. By Lemma 4.4 there is a sequence
c(4) in A of one of the types (B)–(E) with a4reg4. We then take a4 = b4.
The remaining sequences realize bkregk for k ∈ G, hence each of them must
realize at least one bkregk so none of them is of the type (A).

Let us assume that A contains a sequence of the type (G′),

cG′ = reg2 − reg4 + a2dreg2d + a4dreg4d.

We will show how to change A into another minimal system A′ in which cG′

does not appear. Namely, we change three sequences in A:

• Instead of cG′ we take two sequences of the type (D): a2dreg2d, a4dreg4d.
• Instead of c(4) with a4reg4 we take c′(4) with (a4 − 1)reg4.
• Let us notice that b2 = (β − β2)/2 < 0 implies the existence of a se-

quence ψ of the type (E) or (G), since only these have a negative contri-
bution to b2. Instead of such a sequence we take ψ′(n) = reg2(n)+ψ(n),
which is an expression of the type (B) or (F) respectively.

This gives a system A′ with the same sum of multiplicities as A (so also min-
imal) with one fewer expression of the type (G′). Similarly we may remove
expressions of the type (E′) and (F′).

Theorem 4.7. Let r be even and |β|> 1. Then D3
r [f ]∈ {ζ(r)−η(r)−1,

ζ(r) − η(r)}. What is more, D3
r [f ] = ζ(r) − η(r) − 1 if and only if one of
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the following two conjunctions holds:

(4.5)
(i) ζ(r)− η(r) ≥ β2 and (β2 − β)/2− η(r) ≥ 0,

(ii) ζ(r)− 3η(r) ≥ β − 2 and (β2 − β)/2− η(r) ≤ −1.

Before giving the proof of the above theorem, we illustrate it by the
following example:

Example 4.8. Let f : S3 → S3 have degree β = 2 and let r = 12. The
Lefschetz numbers L(fn) are equal to 1 − 2n. We represent this sequence
(for n | 12) in the form of a periodic expansion. We get b1 = 1 − β = −1,
b2 = (β − β2)/2 = −1, b4 = (β2 − β4)/4 = −3, thus

L(fn) = − reg1(n)− reg2(n)− 3reg4(n)(4.6)
+ b3reg3(n) + b6reg6(n) + b12reg12(n).

We have ζ(12) = 6 and η(12) = 2. Because ζ(r) − 3η(r) = β − 2 = 0 and
(β2 − β)/2 − η(r) = −1, we see that the condition (ii) of (4.5) is satisfied
and thus D3

r [f ] = ζ(r) − η(r) − 1 = 3. Indeed, we may take the following
three sequences, which together realize {L(fn)}n|12:

cG(n) = reg1(n)− reg2(n) + b3reg3(n) + b6reg6(n),
cC1(n) = −reg1(n)− 3reg4(n),
cC2(n) = −reg1(n) + b12reg12(n).

Proof of Theorem 4.7. First notice that if |β| > 1, then D3
2[f ] = 1 and

D3
4[f ] = 2, thus we verify directly that for r = 2 and r = 4 the assertion

holds. For r > 4 we divide the proof into two cases.

Part (I): 4 | r. By Corollary 4.5, D3
r [f ] ∈ {#G−#H+1,#G−#H+2},

which by Proposition 3.3(2) for 4 | r and Lemma 3.4 is equal to {ζ(r)−η(r)−1,
ζ(r) − η(r)}. We will now find conditions equivalent to the statement that
D3

r [f ] = #G−#H + 1 = ζ(r)− η(r)− 1.
By Lemma 4.6 we may assume that there is a minimal set A of sequences

realizing D3
r [f ] with #H sequences of the types (F) or (G) and #G− 2#H

sequences of the types (B)–(F), which reduce bkregk for k 6= 4, and one extra
expression c(4) of the type (B), (C), (D) or (E), which reduces b4reg4. Thus
there are #G−#H sequences plus one extra in A.

Let us denote the contribution of the single sequence c(4) to the first
two terms of the formula (4.1) by ε1reg1(n) + ε2reg2(n), where (ε1, ε2) ∈
{(1, 0), (−1, 0), (0, 0), (1,−1)}.

Let mX , where X ∈ {B,C,D,E, F,G}, denote the number of sequences
(not counting c(4)) of the given type in the minimal realization A. Then
D3

r [f ] = #G−#H + 1 if and only if there are integers

(ε1, ε2) ∈ {(1, 0), (−1, 0), (0, 0), (1,−1)}
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such that the following system of equations has an integer solution in non-
negative unknowns mX :

(4.7)

mB +mC +mD +mE +mF +mG = #G−#H,
mB −mC +mE +mF +mG = b1 − ε1,

−mE −mG = b2 − ε2,
mF +mG = #H,

where the first and last equations describe the number of sequences (not
counting c(4)), and the second and third give their contribution to the first
two terms of the periodic expansion.

The above system is equivalent to

(4.8)

mD +mB +mF +mG = #G−#H −mC −mE ,

mB +mF +mG = b1 +mC −mE − ε1,
mF +mG = #H,

mG = −b2 −mE + ε2.

Notice that:

• For any fixed mC ,mE , (4.8) is a Cramer system with determinant +1,
thus mD,mB,mF ,mG are uniquely determined.
• If mC ,mE are integers, then the other unknowns must be integers.
• For any fixed values of mC ,mE ≥ 0 the solutions of (4.8) are nonneg-

ative if and only if the following system of inequalities holds:

0 ≤ −b2 −mE + ε2 ≤ #H ≤ b1 +mC −mE − ε1(4.9)
≤ #G−#H −mC −mE .

As a consequence, to find the solution of the system (4.7), it is enough
to solve (4.9) with integer mC ,mE such that mC ,mE ≥ 0. We rewrite (4.9)
as a system of four inequalities:

mE ≤ −b2 + ε2,(4.10)
mE ≥ −b2 + ε2 −#H,(4.11)

mC −mE ≥ #H − b1 + ε1,(4.12)

mC ≤
1
2

(−b1 + #G−#H + ε1).(4.13)

The problem reduces to finding a point (mC ,mE) ∈ Z2 with mC ,mE ≥ 0
for which the inequalities (4.10)–(4.13) are satisfied.

We substitute the values of #G and #H using Lemma 3.3(2) and Lem-
ma 3.4 and the values of b1 and b2 calculated directly:

#G = ζ(r)− 3, #H = η(r)− 1, b1 = 1− β, b2 =
1
2

(β − β2).
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Then the inequalities (4.10)–(4.13) can be rewritten (in a different order) as

mC ≤
1
2

(ζ(r)− η(r) + β − 3 + ε1),(4.14)

mE ≥
1
2

(β2 − β)− η(r) + 1 + ε2,(4.15)

mE ≤
1
2

(β2 − β) + ε2,(4.16)

mE ≤ mC − η(r)− β + 2− ε1.(4.17)

Now the problem transforms into the following: for which r ∈ N and
β ∈ Z (4 | r, |β| ≥ 2) can one choose (ε1, ε2) ∈ {(0, 0), (1, 0), (−1, 0), (1,−1)}
so that the inequalities (4.14)–(4.17) have a nonnegative integer solution
(mC ,mE)? To simplify the notations we write

b =
1
2

(ζ(r)− η(r) + β − 3 + ε1),

c =
1
2

(β2 − β)− η(r) + 1 + ε2,

d =
1
2

(β2 − β) + ε2,

e = −η(r)− β + 2− ε1.

Now the system of inequalities (4.14)–(4.17) takes the form

(4.18) mC ≤ b, c ≤ mE , mE ≤ d, mE ≤ mC + e.

Lemma 4.9. Let b, c, d, e ∈ R satisfy c, e ∈ Z and c ≤ d. Then the
inequalities (4.18) have a nonnegative integer solution (mC ,mE) if and only
if b ≥ 0, d ≥ 0, and max{c, 0} ≤ [b] + e, where [b] denotes the integer part
of b.

To prove the above lemma it is enough to notice that the first three
inequalities describe (−∞, b] × [c, d] while the last defines the closed half-
plane under the line mE = mC + e in (mC ,mE) coordinates.

Finally, by Lemma 4.9 the problem becomes: for which β and r can one
choose (ε1, ε2) such that the following inequalities hold:

(4.19) ζ(r)− η(r) + β − 3 + ε1 ≥ 0,

(4.20)
1
2

(β2 − β) + ε2 ≥ 0,

(4.21) max
{

1
2

(β2 − β)− η(r) + 1 + ε2, 0
}

≤
[

1
2

(ζ(r)− η(r) + β − 3 + ε1)
]
− η(r)− β + 2− ε1.
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We notice that the inequality (4.20) always holds. In fact, |β| ≥ 2 implies
β2 − β ≥ 2 and 1

2 (β2 − β) + ε2 ≥ 1− 1 = 0.
Now we study (4.19). We will consider four cases.

Case (1): ζ(r) − η(r) + β ≤ 1. Then the inequality (4.19) never holds,
hence the system has no solution.
Case (2): ζ(r)− η(r) + β = 2 and Case (3): ζ(r)− η(r) + β = 3 will be

discussed separately below.
Case (4): ζ(r)− η(r) + β ≥ 4. Then (4.19) holds for each ε1.

We will consider these cases (in reverse order: starting from Case 4 to
Case 1) as assumptions in the next subcases. We will look for solutions of
the inequality (4.21).

Case (4). We assume that ζ(r) − η(r) + β ≥ 4 (the inequality (4.19)
holds for each ε1). To get rid of the maximum and the integer part in (4.21)
we consider several subcases.

Subcase (4.≥): 1
2(β2−β)−η(r) ≥ 0. Now c = 1

2(β2−β)−η(r) + 1 + ε2
≥ 0, since ε2 ∈ {−1, 0}. The inequality (4.21) takes the form
1
2

(β2−β)−η(r) + 1 + ε2 ≤
[

1
2

(ζ(r)−η(r) +β−3 + ε1)
]
−η(r)−β+ 2− ε1,

or
1
2

(β2 + β)− 1 + ε1 + ε2 ≤
[

1
2

(ζ(r)− η(r) + β − 3 + ε1)
]
.

If the above inequality holds for some (ε1, ε2)∈ {(0, 0), (1, 0), (−1, 0), (1,−1)}
then it also holds for (−1, 0), thus it is enough to solve

1
2

(β2 + β)− 2 ≤
[

1
2

(ζ(r)− η(r) + β − 4)
]
,

hence
1
2

(β2 + β) ≤
[

1
2

(ζ(r)− η(r) + β)
]
.

Subsubcase (4.≥.even): ζ(r)− η(r) + β is even. Now we may omit the
integer part:

1
2

(β2 + β) ≤ 1
2

(ζ(r)− η(r) + β),

which implies
β2 ≤ ζ(r)− η(r).

Subsubcase (4.≥.odd): ζ(r)− η(r) + β is odd. Now we get
1
2

(β2 + β) ≤ 1
2

(ζ(r)− η(r) + β)− 1
2
,

which implies
β2 ≤ ζ(r)− η(r)− 1.
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Moreover, we notice that in this subsubcase the above inequality is equiva-
lent to

β2 ≤ ζ(r)− η(r).

In fact, by the parity assumption in this subsubcase we have ζ(r)− η(r) +β
≡ 1 (mod 2), and thus ζ(r)− η(r)− β2 ≡ 1 (mod 2). As a consequence, the
equality β2 = ζ(r)− η(r) cannot hold.

Thus the assumptions of Case 4, Subcase (4.≥) and the above inequality
give the following system of conditions:

(4.22) ζ(r)− η(r) + β ≥ 4,
β2 − β

2
− η(r) ≥ 0, ζ(r)− η(r) ≥ β2.

Subcase (4.<): 1
2(β2−β)−η(r) < 0. Now c = 1

2(β2−β)−η(r) + 1 + ε2
≤ 0 (for any ε2), hence the inequality (4.21) becomes

0 ≤
[

1
2

(ζ(r)− η(r) + β − 3 + ε1)
]
− η(r)− β + 2− ε1.

Let us notice that if the above inequality holds for some ε1 ∈ {−1, 0, 1} then
it also holds for ε1 = −1, hence we get

η(r) + β − 3 ≤
[

1
2

(ζ(r)− η(r) + β)− 2
]
.

Subsubcase (4.<.even): ζ(r) − η(r) + β is even. Now η(r) + β − 3 ≤
1
2 (ζ(r)− η(r) + β)− 2 or

ζ(r)− 3η(r) ≥ β − 2.

Subsubcase (4.<.odd): ζ(r) − η(r) + β is odd. Now η(r) + β − 3 ≤
1
2 (ζ(r)− η(r) + β)− 2− 1

2 , hence we get

ζ(r)− 3η(r) ≥ β − 1.

Moreover, in this subsubcase the above inequality is equivalent to

ζ(r)− 3η(r) ≥ β − 2.

In fact, the equality ζ(r)− 3η(r) = β − 1 cannot hold because of the parity
assumptions in (4.<.odd).

Thus, Case 4, Subcase (4.<) and the above inequality give the following
system of conditions:

(4.23) ζ(r)−η(r)+β ≥ 4,
β2 − β

2
−η(r) ≤ −1, ζ(r)−3η(r) ≥ β−2.

Case (3): ζ(r)− η(r) + β = 3. The assumption of Case 3 implies that

b =
1
2

(ζ(r)− η(r) + β − 3 + ε1) =
1
2
ε1.
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Now b ≥ 0 for ε1 = 0 or ε1 = 1.

Subcase (3.0): ε1 = 0. Since ε1 = 0 implies ε2 = 0, the inequality (4.21)
takes the form

max
{

1
2

(β2 − β)− η(r) + 1, 0
}
≤ −η(r)− β + 2.

Subsubcase (3.0.≥): 1
2(β2 − β)− η(r) + 1 ≥ 0. Now we get

1
2

(β2 − β)− η(r) + 1 ≤ −η(r)− β + 2,

which is equivalent to
β2 + β ≤ 2

and the last holds only for β = −2. Then (3.0.≥) and the assumptions of
Case (3) take the form 4 ≥ η(r) and ζ(r) = η(r) + 5 respectively. Since
η(r) | ζ(r), we obtain η(r) = 1 and ζ(r) = 6. This implies r = 25.

Subsubcase (3.0.<): 1
2(β2 − β)− η(r) + 1 < 0. We get

0 ≤ −η(r)− β + 2.

In other words, η(r) ≤ −β + 2. On the other hand, the assumption (3.0.<)
gives β2−β < 2η(r)−2. The above inequalities imply β2 +β−2 < 0, which
is never true for |β| > 1.

Subcase (3.1): ε1 = 1. The inequality (4.21) takes the form

max
{

1
2

(β2 − β)− η(r) + 1 + ε2, 0
}
≤ −η(r)− β + 1.

Since ε2 may be 0 or −1, here we may put ε2 = −1, which implies

max
{

1
2

(β2 − β)− η(r), 0
}
≤ −η(r)− β + 1.

Subsubcase (3.1.≥): 1
2(β2 − β)− η(r) ≥ 0. Now

1
2

(β2 − β)− η(r) ≤ −η(r)− β + 1

implies β2 + β − 2 ≤ 0, hence β = −2. Then the assumption of Case 3,
ζ(r)− η(r) + β = 3, gives ζ(r) = η(r) + 5. On the other hand, the condition
(3.1.≥) takes the form 3 ≥ η(r). Again η(r) | ζ(r) implies η(r) = 1, ζ(r) = 6
and thus r = 25.

Subsubcase (3.1.<): 1
2(β2 − β)− η(r) < 0. The inequality (4.21) takes

the form
0 ≤ −η(r)− β + 1,
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hence implies η(r) ≤ −β+ 1. We combine this inequality with the condition
(3.1.<) to get

1
2

(β2 − β) < η(r) ≤ −β + 1.

This implies the inequality

1
2

(β2 − β) < −β + 1,

which is not valid for any |β| > 1.

Case (2): ζ(r)− η(r) + β = 2. Here we get

b =
1
2

(ζ(r)− η(r) + β − 3 + ε1) =
1
2

(ε1 − 1).

Notice that b ≥ 0 only for ε1 = +1, and then b = 0. This shows that (4.21)
has the form

max
{

1
2

(β2 − β)− η(r) + 1 + ε2, 0
}
≤ −η(r)− β + 1.

Since ε2 may be 0 or −1, it is enough to consider ε2 = −1. We then get

max
{

1
2

(β2 − β)− η(r), 0
}
≤ −η(r)− β + 1.

Subcase (2.≥): 1
2(β2 − β) − η(r) ≥ 0. The inequality (4.21) takes the

form
1
2

(β2 − β)− η(r) ≤ −η(r)− β + 1,

which implies β2 + β ≤ 2, hence β = −2. Moreover, (2.≥) and the condi-
tion of Case (2) become 3 ≥ η(r) and ζ(r) = η(r) + 4 respectively. Since
η(r) | ζ(r), there are two possibilities: η(r) = 1 or η(r) = 2. In the first case
ζ(r) = 5 and r = 24. In the second case ζ(r) = 6 and r = 22p where p is a
prime number greater than 2. Now we get either

• β = −2 and r = 24, or
• β = −2 and r = 4p for an odd prime p.

Subcase (2.<): 1
2(β2 − β) − η(r) < 0. Now the inequality (4.21) takes

the form 0 ≤ −η(r) − β + 1, which implies η(r) ≤ −β + 1. On the other
hand, the condition (2.<) gives β2 − β < 2η(r). This implies β2 + β < 2,
which has no solution for |β| > 1.

Summing up the previous considerations, we conclude that D3
r [f ] =

ζ(r) − η(r) − 1 if and only if one of the following five conditions holds (cf.
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(4.22), (4.23), Cases (3) and (2)):

(1) ζ(r)− η(r) + β ≥ 4, ζ(r)− η(r) ≥ β2,
β2 − β

2
− η(r) ≥ 0,

(2) ζ(r)− η(r) + β ≥ 4, ζ(r)− 3η(r) ≥ β − 2,
β2 − β

2
− η(r) ≤ −1,

(3) β = −2 and r = 16,
(4) β = −2 and r = 32,
(5) β = −2 and r = 4p for an odd prime p.

We now show that

[(i) or (ii)] ⇔ [(1) or (2) or (3) or (4) or (5)],

where (i) and (ii) are the conditions of Theorem 4.5, which we recall below:

(4.24)
(i) ζ(r)− η(r) ≥ β2 and (β2 − β)/2− η(r) ≥ 0,

(ii) ζ(r)− 3η(r) ≥ β − 2 and (β2 − β)/2− η(r) ≤ −1.

First we prove that (ii)⇔(2).
⇐ is trivial. To prove ⇒ it suffice to show that the second and third

inequalities in (2) imply the first. The second and the third inequality give
respectively ζ(r) − η(r) ≥ 2η(r) + β − 2 and η(r) ≥ (β2 − β)/2 + 1. This
implies that ζ(r)−η(r) ≥ β2, and as β2 ≥ 4−β for β 6= −2, we see that the
first inequality results from the second and the third for β 6= −2. If β = −2,
we get η(r) ≥ 4 and we should check whether ζ(r)−η(r) ≥ 2η(r)−4 implies
ζ(r)− η(r) ≥ 6. This is obviously satisfied if η(r) > 4, and for η(r) = 4 we
find (because 4 | r) that ζ(r) must be greater than 10, so ζ(r)− η(r) ≥ 6 is
also satisfied in this case.

It remains to show that

(i) ⇔ [(1) or (3) or (4) or (5)].

⇐ (1) implies (i) in a trivial way. Then we check case by case that each
of (3), (4), (5) implies (i).
⇒ We show that (i) and the negation of (1) imply the alternative [(3)

or (4) or (5)].
Recall that (i) means

ζ(r)− η(r) ≥ β2 and
β2 − β

2
− η(r) ≥ 0.

Now the negation of (1) means in particular that

ζ(r)− η(r) + β < 4.

The above two inequalities imply β2 ≤ ζ(r)−η(r) < 4−β, hence β2 +β−4
< 0, which holds only for β = −2. This in turn implies that the above
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inequalities take the forms

ζ(r)− η(r) ≥ 4, η(r) ≤ 3, ζ(r)− η(r) < 6.

Now we get (ζ(r)− η(r) = 4 or 5) and η(r) ≤ 3.
If ζ(r)− η(r) = 5 then η(r) = 1, hence r = 25 = 32, so we get (4).
If ζ(r) − η(r) = 4 then η(r) = 1 or 2. For η(r) = 1 we get r = 24 = 16,

so we obtain (3). Finally, for η(r) = 2, we obtain r = 4p, where p is an odd
prime, which gives (5). This ends the proof of Part I.

Part (II): 2 | r but 4 - r. Since b4 = 0, we see that D3
r [f ] ∈ {#G−#H,

#G − #H + 1} = {ζ(r) − η(r) − 1, ζ(r) − η(r)}, where the last equality
results from Lemma 3.4 and Proposition 3.3(2) for 4 - r.

Searching for conditions equivalent to D3
r [f ] = #G − #H, we repeat

the same reasoning as in the case 4 | r, with the only difference being that
we do not need an additional sequence to reduce b4reg4, so we have to find
nonnegative integer solutions of (4.7) without parameters ε1, ε2.

Then similar computations give conditions (i) and (ii) of (4.5), which
completes the proof of the theorem.
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