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Abstract. The paper is concerned with the computation of covering numbers in the
presence of large cardinals. In particular, we revisit Solovay’s result that the Singular
Cardinal Hypothesis holds above a strongly compact cardinal.

0. Introduction. The Generalized Continuum Hypothesis (GCH) as-
serts that 27 = p* for every infinite cardinal p, and the Singular Cardinal
Hypothesis (SCH) that vef) =yt . 29 for any singular cardinal v. One
of the many equivalent reformulations of GCH states that |P;(\)| < AT for
every regular uncountable cardinal x and every cardinal A > k. Similarly,
SCH can be rephrased as the assertion that |P,(\)| < 2<%- AT for all k and
A as above. Now since |P;(\)| = 2<% - u(k,\) (where u(x,\) denotes the
least cardinality of a cofinal subset of (Pg(\), C)), it is natural to consider
the statement that u(x,\) < AT for all x and A as above. This assertion is
equivalent to Shelah’s Strong Hypothesis (SSH).

What is the relative status of these three hypotheses? Clearly GCH im-
plies SSH, which in turn implies SCH. Neither implication can be reversed.
Adding Ny Cohen reals to a model of GCH will yield a model of “- GCH +
SSH”. And, as Moti Gitik pointed out to the author, one obtains a model
of “u(wi,wy) > w} (and hence =SSH) + SCH” by adding R,+1 Cohen re-
als to a model of “for every infinite cardinal v, 2" equals v+ if v = w,,
and T otherwise”. Unlike that of GCH, the failure of SSH has large car-
dinal strength. In fact, if the covering lemma holds with respect to some
inner model satisfying GCH, then SSH holds. Gitik [10] established that
the failure of SCH is equiconsistent with the existence of a cardinal v with
o(v) = v, It is not known whether the failure of SSH is equiconsistent
with that of SCH. We will show (Proposition 3.8) that if SCH holds, then
u(k,\) < AT for every regular uncountable cardinal x and every cardinal
A > k- T, where 7 is the least uncountable strong limit cardinal.
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The starting point of this paper is Solovay’s epochal result [33] that SCH
holds above a strongly compact cardinal. More precisely, Solovay proved the
following local result: Let s be a regular uncountable cardinal. Suppose & is
T-compact, where 7 > k is a regular cardinal. Then |P,(7)| = 7, and in fact
7P = 1 for every regular infinite cardinal p with 2 < 7. Now using Silver’s
Theorem [31] and the fact that if x is o-compact for some cardinal o > &
with ¢f(o) < K, then k is o -compact, it easily follows that if A > & is a
singular cardinal such that s is A-compact, then A\f®) = X\t . 2¢f(N)  Can
one improve this result? First look at the conclusion. Consider for instance
the case when A = k™ < 2%. Then of course \* = 2% but this is not very
informative (and does not make use of the A-compactness of !). One way to
make progress is to switch from the computation of A\* to that of u(xk™,\),
and more generally to that of u(u, A) for a regular cardinal p with © < p < A.

Now what about weakening the assumption of Solovay’s result? There is
more than one possibility since the A-compactness of £ can be formulated in
several ways (for instance in terms of compactness properties of the infinitary
language L, or in terms of existence of prime ideals on P, (\)). Also note
that the assumption can be made “weaker” in more than one sense. For
example we could look for an assumption of lesser consistency strength. Or
we could try to make x small. How small can small be? Well, as small as
wa, as shown by Todorcevic ([34], [35]) who proved (from a supercompact
cardinal) the consistency of Rado’s Conjecture (RC) and established that
RC implies SCH. In fact it implies SSH since Todorcevic also proved that
RC entails 280 < Ry, “Small” could also mean “smaller than 2807, We will
show (Proposition 7.3) that if there is an ideal on P (\) that is p-saturated
for some cardinal p < k, where k is a regular uncountable cardinal and
A > k a cardinal, then for any regular cardinal p with £ < p < A, u(p, \)
equals X if ¢f(\) > p, and AT otherwise.

Before he obtained his result on strongly compact cardinals, Solovay
[33] showed that if x is A-supercompact and A is regular, then the func-
tion @ — (Ja is injective on some set A C P, () such that A € J* for
every normal prime ideal J on P, (\). Johnson [13] sharpened this result
in the case when )\ is a successor cardinal. Namely, he showed that if % is
A-Shelah and A = v, then the sup-function is injective on a set in N.S h; \-
Abe [3] remarked that Johnson’s result remains valid in the case when A is
a regular limit cardinal. We complete the picture by proving two companion
results, one (Proposition 9.4) for the case when xk < cf(\) < A and the other
(Proposition 9.6) for the case when cf(\) < k.

The paper is organized as follows. In Section 1 we review basic material
concerning ideals on P, (). Section 2 lists several results of Shelah and others
on covering numbers that will be needed later. In Section 3 we establish
a result concerning the consequences of “u(u, A) > A" (and, more generally,
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of “cov(A, i, i, k) > A1”). This will be the main tool in our subsequent
investigation of the effect of large cardinals on cardinal arithmetic. Our
motivation for considering cov(\, p, i, £) for uncountable k goes beyond the
search for greater generality. Consider for instance the case when u = k™ and
A > 2% Then cov(A, p, p, k) = X if and only if the ideal I, z|C is k-normal
for some club subset C of P,()\). This is proved in Section 4.

In Section 5 we review results of Todorcevic ([34], [35]) and Magidor—
Shelah [18] concerning the compactness properties wRC and PT and their
impact on cardinal arithmetic. In Section 6 we extend work of Abe [2] con-
cerning the consequences of the existence of a k™ -saturated ideal on P ()\).
In Section 7 we strengthen our assumption (requiring now the existence of
an ideal that is <k-saturated) to get a better conclusion.

In Section 8 we prove a P.(\) version of the result of Solovay [32]
concerning the partition relation satisfied by a normal ideal on x that is
T-saturated for some 7 < k. In Section 9 we revisit Solovay’s result [33]
on the sup-function. Following Johnson [13], we assume Shelahness rather
than supercompactness. Shelahness (or rather a weak variant of it) appears
again in Section 10, where we remark that Krueger’s striking result [15]
that the strong compactness of k does not entail the stationarity of the set
{a € Py(kT) : |a] > JaNk|} is in some sense optimal.

1. Ideals on P, (A). In this section we review basic material concerning
ideals on P.()). For a set A and a cardinal p, we let P,(A) = {a C A :
la < p}.

Let k be a regular uncountable cardinal, and A > x be a cardinal.

I,. » denotes the collection of all A C P, () such that {a € A: b Ca} =0
for some b € P,(\). An ideal on P.(\) is a collection J of subsets of P, ()
such that (i) P(A) C J for any A € J, (ii) X € J for every X € P,(J),
(iii) Tun C J, and (iv) Pe()) & J.

Let J be an ideal on P, ()\). We set J* = P(P,;(\))\J and J* = {P,()\)\
A:AeJ}.For Ae Jt let JJA={BC P;(\): BNA¢€ J}. Let cof(J)
denote the least size of any X C J such that for any A € J, there is
Q € P.(X) with A C Q.

Let J be an ideal on P, (), and § be an ordinal with x < § < A. Then
J is 6-normal if for every A € JT and every f : A — 4 such that f(a) € a
for all @ € A, there is B € J* N P(A) such that f is constant on B. NS° |
denotes the smallest 6-normal ideal on P (). For f : P,(8) — Pk(\), let
C";’A denote the set of all a € P,(\) such that (i) w C a and (ii) f(e) C a
for every e € P,(anNy).

LEMMA 1.1 (Matet-Péan-Shelah [23]). NS?  is the set of all A C Py())
such that AN C’?”\ =0 for some f: P,(0) — P.(\).
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J is normal if it is A-normal. We let NS, \ = NSIQ\,)\-

J is seminormal if it is d-normal for every ¢ with k < § < A\. NS5, »
denotes the smallest seminormal ideal on P, ().

J is strongly normal if for every A € J* and every f: A — P.()\) such
that f(a) € Pang(a) for all a € A, there is B € J* N P(A) such that f is
constant on B.

The following is readily checked:

LEMMA 1.2. Suppose cf(\) < k. Then every seminormal ideal on Pg(\)
s normal.

LEMMA 1.3 (Carr—Levinski—Pelletier [5]). Suppose k is a limit cardinal.
Then there exists a strongly normal ideal on Pg(\) if and only if k is Mahlo.

Assuming « is Mahlo, N.S L \ " denotes the smallest strongly normal ideal
on P(N).

For a cardinal p,J is p-saturated (respectively, weakly u-saturated) if
there is no @ C J* such that (a) |Q] = p and (b) AN B € J (respec-
tively, AN B = ) for any two distinct members A, B of Q. J is prime
if it is 2-saturated. k is A\-compact if there exists a prime ideal on Py (),
and A-supercompact if there exists a normal prime ideal on Pg(\). k is
strongly compact (respectively, supercompact) if it is T-compact (respectively,
T-supercompact) for every cardinal 7 > k.

A<

LEMMA 1.4.

(i) (Erdés—Tarski [9]) Let J be an w-saturated ideal on Py(\). Then
J|A is prime for some A € JT.

(ii) (Erdés—Tarski [9]) Let v be a singular cardinal, and J be a v-
saturated ideal on Py(X). Then J is T-saturated for some cardinal
T <.

(iii) Let v be a singular cardinal, and J be a weakly v-saturated ideal on
P.(\). Then J|A is weakly T-saturated for some A € J* and some
cardinal T < v.

J is weakly normal if (a) J is weakly cf(\)-saturated, and (b) for every
A € Jt and every f : A — X such that f(a) € a for all a € A, there are
B e JtNP(A) and a < X such that f(b) < a for all b € B.

Let X,Y C P(P.())), and let p be a cardinal. X — [V]2 means that
for every A € X and every F : A x A — p, there are B € Y N P(A) and
¢ € p such that F(a,b) # &£ for all a,b € B with a C b. For a cardinal
T<p,X — [Y]§,<T means that for every A € X and every F': A x A — p,
there are B € Y N P(A) and e € Pr(p) such that F(a,b) € e for all a,b € B
with a C b.
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Most of the definitions above are P,(\) versions of notions which origi-
nated in the study of k. For the original definitions see e.g. [14]. They will
not be repeated here, except for that of Kk — [/@]/2)7 <, which is maybe not so
widely known. k — [/i]/%y - means that for every F': Kk X K — p, there are
B C k with |B| = k and e € P;(p) such that F(«, ) € e for all o, € B
with a < 3.

Let us also recall the following;:

LEMMA 1.5.

(i) (Kunen [16]) If & carries a £ -saturated ideal, then it is measurable
in some inner model of ZFC.
(ii) (Ulam [36]) If k carries a k-saturated ideal, then it is a limit car-
dinal.
(iii) (see [14, p. 212]) If k carries a p-saturated ideal for some cardinal
p < K, then it has the tree property.

Givensets X and Y, f: X — Y and J C P(X), welet f(J)={ACY:
fTHA) e g}

2. Covering numbers. In this section we recall a number of results
that will be needed in the sequel.

DEFINITION. Given four cardinals A, x, it and & such that A > x
and u > Kk > 2, cov(A, x, i, k) denotes the least cardinality of any X
such that for any a € P,(\), there is Q € P.(X) with a C J Q.

>

>
C Py

RS

PROPOSITION 2.1 (Shelah [28, pp. 85-86]). Let A\, x,u and k be four
cardinals such that A > x > u > w and p > k > 2. Then the following hold:

(i) If A = x and either cf(\) < k or cf(X) > p, then cov(\, x, p, k) =
cf(N).
) If either A\>x, or A=x and Kk <cf(\) <u, then cov(A,x, 1, K) > .
111) COV(A7 X5 My ’i) = COV()‘a X5 My W - R)'
) cov(A, X, p, k) < cov(\, x, i, &) for every infinite cardinal k' < k.
) cov(\, X, p, &) < cov(, x, i, k) for every cardinal ' with x > 1/
=
(vi) cov(A, x, i, k) < cov(A, X/, p, k) for every cardinal x' with x > X’
=
(vii) cov(A, x, p, k) < cov(N, x, p, k) for every cardinal N > .
(an) COV(A+a X5 Hs K‘) =t COV()‘7 X5 Hs K)'
) Suppose A is a limit cardinal such that A\ > x and cf(\) > p. Then
cov(A, X, p, k) = UxS/\’<A cov(N, X, i, K).

(X) If:u > K2 W, then COV()‘a X5 My ’%) = U COV<)‘7X7 p+7 ’%)'

KSp<p
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(xi) If A > x and cf(\) < k = cf(k), then

cov(Ax, k) = | cov(X,x, k).
XSA <A
PROPOSITION 2.2. Let A\, x and p be three uncountable cardinals such
that X > x > p = cf(u) > cf(x). Then cov(A, x, i, 2) = cov(A, 7, u,2) for
some cardinal T with k < T < X.

Proof. Let X C P, () be such that for any a € P,(\), there is b € X
with a C b. Select an increasing sequence (x; : i < cf(x)) of infinite cardinals
cofinal in x. For i < cf(x), put 7; = {d € P,(A) : b€ X NP, (A) (d Cb)}.
Since Py(A) = U;<cr(y) T3 we may find j < cf(x) such that T; € I;:/\. Then
clearly for any a € P,()), there is b € T; with a C b. =

PRroOPOSITION 2.3. Let A, x, u and k be four infinite cardinals such
that X\ > x > p = cf(un) > k. Then either cf(cov(\, x,u, k) < K, or
cf(cov(A, x, i, ) > p.

Proof. Suppose toward a contradiction that k < 7 < u, where 7 =
cf(cov(A, x, i, £)). Pick X C P, (\) so that | X| = cov(\, x, u, k) and for
every a € P,()), there is w € Py(X) with a C Jw. Let X = ., Xi,
where |X;| < |X]| for any i < 7. For ¢ < 7, select a; € P,(\) so that
a; \Jw # 0 for all w € P,(X;). Now set a = |J,, a;. Since a € P,()\), one
can find w € P,(X) so that a C [Jw. Then there must be ¢ < 7 such that
w C X;. Clearly, a; C |Jw. Contradiction. =

COROLLARY 2.4 (Liu [17]). Let A be a singular cardinal. Then
cov(A\ A\, k1K) > A, where k = cf()\).

PROPOSITION 2.5 (Shelah [28, Remark 6.6.A p. 101]). Let A be a sin-
gular cardinal and let k = cf(X). Then cov(\, X\, kT, k) > AT if and only if
cov(A, A kT, 2) > AT,

Hugh Woodin, starting from a hypermeasurability hypothesis, const-
ructed a model where 2V = v for every infinite cardinal v. It is simple to

see that in this model for every singular cardinal \, cov(\,\,k1,2) = AT
where k = cf(X).

PROPOSITION 2.6 (Shelah [28, p. 99]). Let A\ be a singular cardinal and
let k = cf(X). Suppose cov(\, \, kT, k) > AT. Then one can find y, € P+ (N)
for a« < Xt so that for any nonzero 3 < AT, there is a one-to-one h €
Ha<ﬁ Ya-

Proof. Select a partition (X, : v < k) of A into x pieces of size A. For
B e X, let B = U,Y<Hdg, where |d€] < A for all v < k. Given v < K,
define by induction y € P+ (X,) for a < AT so that y2 \ AS # 0 for all
B < AT, where A?, = U{Z/Z ¢ €an d?,} (note that Ag € P\(X,) since
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\Ag| < k- |laU d§,| < A). For a < A\, set yo = U7<Ry2. Now suppose
0 < B < A". Define g : 8 — & by g(a) = the least v < k such that a € dg.

Select
h e H (yg““) \U{yg(a) :(ean dg(a)}).

a<fB

Then h is easily seen to be one-to-one. u

We omit the definition of the function pp, which can be found in [28,
p. 41].

PROPOSITION 2.7 (Shelah, see e.g. [17] and [12, p. 270]). Let X\ be a
singular cardinal. Then cov(\,\,k1,2) > pp(A) > AT, where k = cf()).

PROPOSITION 2.8. Let A be a singular cardinal, and let k = cf(\). Then
the following hold:

(i) (Shelah [28, p. 384]) If A < wy, then pp(\) = cov(A, A, kT, 2).

(ii) (Shelah [29, Claim 1.1]) If K > w and pp(\) = AT, then pp()\) =
cov(\, A\, kT, 2).

(iii) (Shelah [28, p. 369]) Suppose that (a) k = w, (b) pp(x) < A for
every singular cardinal x < A with c¢f(x) = w, and (c) there is a
cardinal @ < \ with the property that pp(mw) =t for every singular
cardinal ™ such that 0 < m < X\ and cf(w) = wi. Then pp(A) =
cov(\, A\ kT, 2).

DEFINITION. For two infinite cardinals A > pu, we let u(u,\) =
cov(A, p, 11, 2).

PROPOSITION 2.9 (Donder-Matet [7]). Let A\, and K be three infinite
cardinals such that X\ > p = cf(u) > k = cf(k). Then u(k,\) < u(k,p) -
u(ps, A).-

Note that by Proposition 2.9, if A and k are two infinite cardinals such
that A > k = cf(k), then u(k, \) < u(kt,\).

ProposITION 2.10 (folklore). Let A\ and p be two cardinals such that
A > p=cf(u). Then X<F = 2F - u(pu, N).

PROPOSITION 2.11 (Shelah [29, Claim 2.1(1)]). Let k, p and X be three
infinite cardinals such that k < p < X, and let 0 = cov(\, p™, pT, k). Suppose
0 > u(k,p). Then u(k,0) = u(p™, \).

PROPOSITION 2.12. Let A and x be two infinite cardinals such that A >
k = cf(k) > cf(N\). Suppose u(k,\T) = A\T. Then u(k,\) = AT.

Proof. By Proposition 2.1(vii) and Corollary 2.4,
A < cov(\ A (ef(A) T, ef(N) < u(k,A) <u(k, AT) = AT, =
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PROPOSITION 2.13 (Shelah [30, Conclusion 1.2]). Let 7 be an uncount-
able strong limit cardinal, and A > T be a cardinal. Then there exists an
infinite cardinal k < T such that cov(\, p, pu, k) = X for every cardinal u
with kK < p < 7.

PROPOSITION 2.14 (Gitik—Shelah [11]). Let 2 < n < w. Suppose that
there are n strong cardinals. Then there exists a generic extension in which
(a) wy, is a strong limit cardinal, and (b) setting A = w,,,,

u(wisr, A) = AT = cov(\, wipr, wigr, w;)

for every i < n.

3. When cov(\, p, i, k) > AT, In this section we extend the following
result of Shelah and Rinot (see the proof of Theorem 3.3 in [26]):

(x) Let 6 be an infinite cardinal such that u(p™,0) < 6% for every
infinite cardinal p < 6. Suppose C # (), where C is the class of all
cardinals m > 6 such that u(u,7) > 7+ for some successor cardinal
p with w < p < 7. Then letting v = [ C, v is a singular cardinal.
Moreover, cov(v, v, (cf(v))",2) > vT.

Consider the following statement;:

(xx) Let p be a regular uncountable cardinal, and € be an infinite car-
dinal such that u(p™,0) < #F for any infinite cardinal p < N p.
Suppose T > - is a cardinal such that u(y, 7) > 7. Then there is
a cardinal v such that (a) # < v < 7 and cf(v) = w, (b) pp(v) > v,
and (c) u(p™,7) < 7t for any two cardinals m and p with § < 7 < v
and p < 7N .

It is simple to see that (x) follows from (xx) (set 7 = (C and u = p™,
where p is some infinite cardinal with p < 7 and u(p™,7) > 7). Now (*x) is
concerned with the two-variable function u(p, ) (= cov(¥, p, p,w)). Switch-
ing to the three-variable function cov(t, p, p,n), we obtain the following,
more general result:

PROPOSITION 3.1. Let o be a regular infinite cardinal, p > o be a reqular
cardinal, and 0 > o be a cardinal such that cov(0,p™,pt,o) < 0FF for
every cardinal p with o < p < 0N w. Suppose T > 0 is a cardinal such
that cov(T,p,u,0) > 7. Then there is a cardinal v such that (a) 6 <
v < 1 and cf(v) = o, (b) pp(v) > v and cov(v,v,0",0) > vT, and
(c) cov(m, pt,pT,0) < wt for any two cardinals © and p with § < ™ < v
and o < p<7mNp.

We need some preparation.
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DEFINITION. Let @ be a nonempty set of ordinals, and (u; : i € Q) a
strictly increasing sequence of infinite cardinals. For f, g € HieQ i, we let
f<*gjustincase |[{i € Q: f(i) > g(i)}| < |Q|- Let § be an ordinal. By a
scale of length 6 on [[;cq pi we mean a sequence (f, : @ < 6) of elements
of [[;eq wi such that (a) fo <* fz whenever a < 8 < 4, and (b) for any
9 € [Licq 1, there is a < & such that g <* fa.

LEMMA 3.2 (Shelah [28, p. 55]). Suppose v is a singular cardinal of
uncountable cofinality o, and let (v; : i < o) be an increasing continuous
sequence of infinite cardinals with supremum v. Then for some closed un-
bounded subset C of o, there is a scale of length v+ on [Lice V;r.

The following is essentially due to Liu [17] who proved it for kK = w. We
include the proof for completeness.

PROPOSITION 3.3. Let k be a regular infinite cardinal, and v be a sin-
gular cardinal of cofinality o > k. Let (v; : i < o) be an increasing contin-
uous sequence of cardinals greater than o with supremum v. Suppose there
is a stationary set S C {i < o : cf(i) > Kk} such that for each i € S,
cov (v, v, 0,k) < Vj. Then cov(v,v,0™,2) = vT.

Proof. By Lemma 3.2 one can find W C S and F C [[;cy V;r so that
S\ W is a nonstationary subset of o, |F| = v" and for each g € [[;cy v,
thereis f € F with [{i € W : g(i) > f(i)}| < 0. Fori € W, pick X; C P, (v;)
so that | X[ < v; and for any e € P,(v;), there is Q € P,(X;) withe C J Q.
Set X; = {2}, : @ < v;'}. For a € P,+(v), let a = {87+ j < o}, and set
ai = v N{B} : j < i} for each i € W. Now for f € F and { < o, let
Z; be the set of all a € P,+(v) such that for any ¢ € W \ &, there is
Qe P.({2%,:a < f(i)}) with a; CUQ.

Cram 1. Let f € F and £ < o. Then there is Yfg C P,(v) such that

Vil <o and 25 CU{P(y) 1y € Y}}.

Proof of Claim 1. Fori € W\ &, let {x! :a < f(i)} = {tfy 1y <v;}. For
k,l € o, set

= LJ{tZ7 cie W\E v <y and ]t;| <y}
Put Yfg = {yl : k,l € 0}. Now fix a € Zjé. For i € W\ &, select Q; € Pi(v;)
so that a; C UveQi tfy. There must exist [ < o and a stationary subset A of
W\ € such that for any i € A and any v € Q;, |tﬁ,] < y;. There must also be

k < o and a stationary subset B of A such that Q); C vy, for all i € B. Then
clearly a C y,l(;.

CLAM 2. Poi(v) =U{Z}: f € F and £ < o}.
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Proof of Claim 2. Let a € P,+(v). Then for i € W, there is Q; € P (X;)
with a; C (J@Q;. Select g € [[;cny v;" so that for any i € W,Q; C {f, :
a < g(i)}. Then one can find f € F and £ < o so that g(i) < f(i) for all
i€ W\E&. Clearly a € Zg7 which completes the proof of the claim.

Set A = U{Yfé : f € F and € < o}. Then clearly, A C P,(v) and
|A] < |o| - vt =vT. Moreover, for each a € P,+(v), by Claim 2 there is
ye AwithaCy. m

We are now ready to prove our result. For better clarity we distinguish
two cases corresponding to Propositions 3.4 and 3.5 below.

PROPOSITION 3.4. Let 6 be an uncountable cardinal such that u(wn,0)
< 6%+, Suppose there is a cardinal A > 6 such that u(wi, \) > AT, and let v
be the least such \. Then cf(v) =w and pp(v) > v™.

Proof. By Proposition 2.1(viii), v is a limit cardinal. It follows from
Proposition 2.1(ix) that cf(v) = w. Moreover, cov(v, v,w1,2) > v since by
Proposition 2.1(ii),

cov(v,v,wi,2) = cov(v,v,wi,2) - ( U u(wl,ﬂ)) > u(wy, V).
o0<m<v
Now suppose to the contrary that pp(r) < v*. Then v = w, by Propo-
sition 2.8(i). Now for every singular cardinal x < 6 with cf(x) = w,

pp(X) < COV(X7 X, W1, 2) < COV(G, X5 W1, 2) < COV(@, Wi, Wi, 2) = u(wla 0)
< 9++

by Propositions 2.1((iii) and (vii)) and 2.7. Moreover, for every cardinal 7
such that § < 7 < v and cf(7) = w,

7t < pp(r) < cov(m, 7wy, 2) < cov(m,w,wi,2) = ulwy, ) < 7.

by Propositions 2.1((iii) and (vi)) and 2.7. Hence by Propositions 2.7 and
3.3, cov(n,n,w2,2) = pp(n) = nt for any singular cardinal n such that
0 < n < vand cf(n) = w. We can now deduce from Proposition 2.8(iii)
that pp(v) = cov(v, v,wi,2). Contradiction. =

PROPOSITION 3.5. Let k, i, A and 6 be four infinite cardinals such that
cf(k) = K, k-wp < cf(p) = p < X and kK < 0 < A Suppose that (i)
cov(f,pT, pt, k) < 0T for every cardinal p with k < p < 6 N u, and (ii)
cov(, pi, pt, k) > AT, Then there exists a cardinal v such that (a) 0 < v < ),
(b) cf(v) = k&, (c) cov(v,v, kT, k) > vT, (d) cov(m, p, pT, k) < 7T whenever
7 and p are two cardinals such that 6 < 7™ < v and k < p < 7N, and (e)
pp(v) > vt.

Proof. Let W be the set of all cardinals 7 > 0 such that cov(m, p™, p*, k)
> 7t for some cardinal p with K < p < 7N p. Then A\ € W by Propo-
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sition 2.1((vi) and (x)). Let v be the least element of W. Note that by
Proposition 2.1((i) and (viii)), » > 0%. Let o be the least cardinal p such
that k < p < vNpu and cov(v, pt, p*, k) > v*. Then o < v by Proposi-
tion 2.1(i).

It follows from Proposition 2.1(viii) that v is a limit cardinal. Set 7 =
cf(v). Let (v; : i < 7) be an increasing continuous sequence of cardinals such
that 0 - 0 < vy and |J;_. v; = v. Note that cov(v;, 0", 0", k) < v for every
1< T.

1<T

CoamM 1. k<71 <o.

Proof of Claim 1. That x < 7 follows from Proposition 2.1((vii) and
(xi)). For the other inequality use Proposition 2.1((vii) and (ix)).

CLAIM 2. T =o0.

Proof of Claim 2. Suppose otherwise. Then cov(v, 77,77, k) < vT, so
there exists X C P.+(v) such that | X| < v and for every ¢ € P,+(v), there
is Q € Py(X) with ¢ CJQ. For i < 7, select Y; C P,+(v;) so that |Y;| <v
and for any b € P +(v;), there is R € P.(Y;) with b C |J R. Pick an onto
function f; : v — Y;. Finally, set dp = (Js¢c, U, <, fi(9) for each 2 € X. Note
that d, € P,+(v). Now given a € P_+(v), select R; € P, (v) for i < 7 so that
aNv; C Usep, fi(0). There must be @ € P, (X) such that UJ,_, B € UQ.
Then clearly a C J,eqds- It follows that cov(v, o™, 07, k) < |X], which
yields the desired contradiction.

Cram 3. cov(v,v,0", k) > vT.

Proof of Claim 3. Suppose otherwise. Pick T C {t € P,(v) : 0T Uo™ C t}
so that |T'| < v* and for any b € P+ (v), there is H € P,(T) with b C |J H.
For t € T, cov(|t|,oc", 0%, k) < |[¢t|T so one can find Z; C P,+(t) so that
|Z;] < vT and for every ¢ € P,(t), there is G € P,(Z;) with ¢ C |JG.
Set Z = U,er Zi- Then clearly Z C P,+(v). Moreover, |Z]| < vt. Now
given b € P,+(v), there must be H € P.(T) with b C |JH. For t € T,
select Gy € Py(Z;) so that bNt C |JGy. Then b C |J(U,epy Gt), where
Uien Gt € Pu(Z). Thus cov(v,0", 07, k) < v, a contradiction.

CLAIM 4. T = K.

Proof of Claim 4. Suppose otherwise. Then by Propositions 2.1((iii) and
(iv)) and 3.4, there must be i < o such that cf(i) = k and cov(v;, v;, 0, K)
> v, But then by Proposition 2.1((v) and (vi)),

+ +

k) > cov(vi, v, 0t k) > cov(vi, v, 0,8) > Uit

R
cov(v, 0" 0 2

Contradiction.

Cram 5. pp(v) > v™.
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Proof of Claim 5. Suppose otherwise. Then by Propositions 2.1((iii) and
(iv)) and 2.7, cov(v,v,x",2) > pp(r) = vT. Hence by Proposition 2.8(ii),
k = w. Now argue exactly as for Proposition 3.4. m

DEFINITION. Let k£ < p be two regular infinite cardinals, and 7 > &

be a cardinal. We let 6(k, 7, ) denote the least cardinal § > 7 such that
cov(f, pT, pT, k) <O for every cardinal p with kK < p < 6N p.

Clearly 0(k,7,u) < 7<F. Note that if kK = 7, then 0(k, 7, u) = 7. Also
note that if n is a cardinal such that 7 < n < p and <7 < n™*, then
0k, 7, 1) <.

DEFINITION. SSH (Shelah’s Strong Hypothesis) asserts that pp(A\) = At
for every singular cardinal A.

COROLLARY 3.6 (Shelah ([27] and [28, p. 59]). The following are equiv-
alent:

(i) SSH.
(ii) Given two uncountable cardinals X and p such that X > p = cf(u),
u(p, N) equals X if cf(N) > p, and At otherwise.
(iii) For every cardinal A > wy with cf(\) = w, u(wy, \) < AT,

Proof. (i)=-(ii): By Propositions 2.1, 3.4 and 3.5.
(if)=>(iii): Trivial.

(iii)=(ii): By Propositions 2.1 and 3.5.

(iv)=-(i): By Proposition 2.7. =

COROLLARY 3.7 (Silver [31] for (i)<(iii)). The following are equivalent:

(i) SCH.

(ii) Given two uncountable cardinals X\ and p such that X\ > p = cf(n)
and X > (0(w, 2%, ) u(p, \) equals X if cf(N) > p, and At oth-
erwise.

(iii) For every cardinal A > 2% with cf(\) = w, u(wy, A) < AT,

Proof. (i)=-(iii): Trivial.

(iii)=-(ii): Assume (iii) holds. Then by Propositions 2.7, 3.4 and 3.5,
u(p, 7) < 77 whenever p and T are two cardinals such that 7 > u = cf(u) >
w and 7 > 0(w, 2% 1), That (ii) holds now follows from Proposition 2.1.

(i))=(i): It easily follows from (ii) that u((cf(\))T,A) < AT for every
infinite cardinal A such that A > 2" u

PROPOSITION 3.8. Suppose SCH holds. Then there is a cardinal T > 280
such that for every cardinal X\ > 7+ and every reqular uncountable cardinal
< A u(p, \) equals X if cf(X) > p, and \T otherwise.

Proof. Let C be the class of all cardinals 7 > 280 such that u(p™,7) <
7+ for every infinite cardinal p < 7. Then clearly 6(w, 28, 1) < 7 for every
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7w € C and every regular uncountable cardinal u. Moreover, for any cardinal
7w > 2% with 7 ¢ C, there is an uncountable successor cardinal pu < 7w such
that u(p, \) > AT, where A\ = 77", Hence by Corollary 3.7, 7 is as desired
if and only if 7 € C.

To show that C # (), define o, for n < w by o9 = 2% and 0,41 =
Us<peo, wp™s0n). Put o = U, ., on- Suppose CNo=0. Then og<o1<- -,
so c¢f(c) = w. Let p < o be an infinite cardinal. Then cov(o, p*, pT, w1)
= o since u(p*, 0,) < o for any n < w such that p < o, and consequently
u(pt,0) < o™ =0t Hence 0 €C. m

4. Covering numbers and normal ideals on P, (\). Throughout
this section, k, p and X will denote three uncountable cardinals such that
cf(k) =r < p <A

Let A, ;. assert the existence of B € NS;A such that NSI’:’A\B = I,,\|B.
A, ;) has many interesting consequences. See e.g. [20] where it is shown that
A, .. implies that I:’/\ —> (I:,A,wl)? In this section we show that if A is
large enough, then A, ,, » holds just in case cov(X, u™, ut, k) = A.

LEMMA 4.1 (Matet—Péan—Shelah [24]).
cof (NS)! ) = cof (NS pu) - cov(A, i, ™, ).
LEMMA 4.2. Let A€ NS ,. Then E(NS,’;/\]A) > cov(\, ut, ut, k).

Proof. Select t : Py(A) — P.()\) so that Cf* C A. Fix a family G of
functions from P, (i) to Pk(\) such that |G| = E(NS”/\\CF”’)‘) and for any
h: Py(p) — Pe()), there is X € P.(G)\ {0} with C“mm st C or,
For g € G, set By = pnU|Jran(g). Note that |B,y| = p. For G 6 P (G )\{@}
define inductively Bg for n < wby Bg = U, By and Byt = BaUU{t(d) :
d € P,(Bg)}. Then set Bg = |, B¢ Note that |Bg| = p. Now fix D C A
with |D| < p. Pick h : P,(u) — Pi(X) so that D C (Jran(h). There must
be X € P,(G) \ {0} such that C“)‘ﬂﬂgex Cci C C’”)‘

For e € P,(u), define inductively s for n < w by s =eUw and

stH:seUU{gd g€ X andde P,(s;Np)}

U J{t®) : b € Pu(sg)}

Let us show by induction that s& C | J{Bg : G € P,(X)\ {0}). This clearly
holds for n = 0. Now suppose it holds for some n. Let b € P,(sf). If
b = 0, then clearly t(b) C |J{Bg : G € P,(X) \ {0}. Now assume b # (.
For 8 € b, pick Gg € P,(X) \ {0} so that 8 € Bg,. Set Q@ = s, G-
Note that Q € P,(X) \ {0}. Given g € b, it is easily seen that Bf, € Bq
for all n < w. Hence b € P,(Bg), and therefore t(b) C Bg. It readily
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follows that s | C U{BG G € P,(X)\ {0}}. Put z. = U, 55 Then
Ze € C”)‘ NN , hence z, € C"H‘ It follows that h(e) C z., since
e€ P, (ze Nw).

Finally,

gEX

D Jfh(e) e € Po(u)y < ({ze e € Pu(w)}
C (J{(Bo: G € Py(X)\ {0}}.
Thus cov(\, u*, p, k) < |G| < cof (NS \|A). m
The following is immediate from the proof of Proposition 3.5 in [24].

LEMMA 4.3. Let K be a family of functions from P,(\) to P.(\) with
the property that for any f : P,(u) — P.(n), one can find K € P,(K) \ {0}
and h : P,(\) — Pg(p) with f C h such that (\cx C,'j’/\ - CZ’A. Then
cof (N S,...) <|KJ.

LEMMA 4.4. Let A€ NS; . Then cof(NS“A]A) > cof (N Sy p1)-

Proof. By Lemma 1.1 there is t : B, (\) — P.()\) such that Cf’)‘ C A.
By the same lemma there is a family ) of functions from P, (u) to P.())
such that (a) |V] = cof(NS*,|C), and (b) for any B € (NS,’:’/\|C'f’)‘)*,
there is ¥ € Pu(¥) \ {0} with C;* N,y O3 C B. For y € Y, select
y:Py(\) — Pc(\) withy Cy. Set C={t}U{yg:y eV}

Given f : P,(u) — Pu(p), define h : B,(\) — Pq(u) as follows: h(e)
equals f(e) if e C p, and @ otherwise. There must be Y € P,()) \ {0} such
that C{* N ,ey Cy* € CF. We claim that C* N,y C2* € C1. Let
b € C’f’)‘ﬂﬂerCfA and e € Pyb). If e\ u 75 (0, then h(e) = 0 C b.
Otherwise h(e) = f(e) C b, since b belongs to C}" ﬂﬂ ”’ and therefore

er
to C;”’A. Hence b € C’ZA.
It now follows from Lemma 4.3 that

Of (N Sy.1) < |K| < cof (NS!,|C*) < cof (NSE | A). =
PROPOSITION 4.5. Let A € NS \. Then cof (NS} ,|A) = cof (NS ).
Proof. By Lemmas 4.1, 4.2 and 4.4. =
LEMMA 4.6 (Matet—Péan—Shelah [24]). If E(NS,’;/\) <, then NS,‘;/\|A

= I, A|A for some A € NS;/\.
PROPOSITION 4.7. The following are equivalent:

(i) cof(NSx,) <X =cov(\,ut, ut, k).
(ii) There is A € NS}, , such that NS”/\]A I A\|A.
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Proof. (i)=-(ii): By Lemmas 4.1 and 4.6.
(ii)=-(i): By Lemma 4.1 and Propositions 2.1((i) and (ii)) and 4.5. =

Note that if x < cf(A\) < A, then cov(A, (cf(N)T, (cf(X\))T, k) # A by
Propositions 2.1 and 2.2, and therefore by Proposition 4.7, N SZfE\A)\A #*
I z|A for every A € NSE . 7

There is a version of Proposition 4.7 for N.SS; ».

PROPOSITION 4.8. Suppose X is a reqular limit cardinal. Then the fol-
lowing are equivalent:

(i) cof(NSx,) < A = cov(\,vF, vt k) for every cardinal v with r <
v <A
(ii) There is C € NSy such that NSSeAC =1,,|C.

Proof. (i)=-(ii): Let Z be the set of all cardinals v with k < v < A
Clearly, NSS; x = U,c; NS} . For each v € Z, by Proposition 4.7 there is
A, € NS? | such that NS” ,|A, = I,; | Ay. Then

C={aeP\N):VwveanZ (a€ A))}
is as desired.
(ii)=(i): By Proposition 4.7. =
LEMMA 4.9 (Matet—Péan—Shelah [23]). Suppose k < & < . Then
NSli)\ = NSE,‘)\\D for some D € (NS,i)\)*.

PROPOSITION 4.10. Suppose X is a successor cardinal, say A\ = v™. Then
the following are equivalent:

(i) cof (NSku) < A.
(ii) There is C € NS}y such that NSSy A|C = I, 5|C.

Proof. (1)=-(ii): Let Z be the set of all ordinals 0 with v < § < A. Note
that NSSy x = Uscy ng,/\' Since by Proposition 2.1, cov(\, v, v, k) = A,
Proposition 4.7 yields A € NS} | such that NS |A = I, y|A. For each
60 € Z, by Lemma 4.9 there is Dg € NS,’;/\ such that NS,‘;/\ = NS,’;/\|D5.
Then C ={a€ A:Yo €anZ (a € Ds)} is as desired.

(ii)=(i): By Proposition 4.7. =

5. Various notions of compactness. In this section we review several
notions of compactness and consider their impact on cardinal arithmetic. We
start with mild ineffability.

DEFINITION. Let k and A be two cardinals such that w < cf(k) =k < A.
K is mildly A-ineffable if given t, : a — 2 for a € P, (), thereis g : A — 2
with the property that for any b € P,()), there is a € P,()\) such that b C a
and t,[b = gJb.
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PROPOSITION 5.1 (Carr [4]). Let k and X be two infinite cardinals such
that cf(k) = k < X. Then the following hold:

(i) Suppose k is mildly A-ineffable. Then k is mildly N -ineffable for
every cardinal X' with k < X < \.

(ii) For A\ = k, K is mildly A-ineffable if and only if it is weakly compact.

The following is essentially due to Di Prisco and Zwicker [6].

LEMMA 5.2. Let k and X be two infinite cardinals such that cf(k) = K
< A. Then the following are equivalent:

(i) & is mildly \-ineffable.

(i) Let (Qq : @ < A) be a sequence of partitions of Py (\) into fewer than
r pieces. Then there is h € [, Qa such that (¢, h(a) € I;/\ for
every e € P.(\) \ {0}.

Next we consider the uniform filter property UF;.

DEFINITION. Let 7 be a regular infinite cardinal. We say that UF, holds
if for any sequence (Q; : i < m) of partitions of 7 into countably many pieces,

there is h € [[,. Qi such that |(;c, h(i)| = 7 for any e € P,(m) \ {0}.

PROPOSITION 5.3. Let k < 7 be two reqular uncountable cardinals such
that x is mildly w-ineffable. Then UF, holds.

Proof. By Lemma 5.2. u
Let us now consider the transversal property PT (7, w1).

DEFINITION. For a regular infinite cardinal m, PT(m, w;) means that
for any size 7 family of countable sets without a transversal (i.e. a one-to-
one choice function), there exists a subfamily of size less than 7 without a
transversal.

The following is readily checked.

PROPOSITION 5.4. Let w be a regqular infinite cardinal such that UF,
holds. Then PT(m,wy) holds.

PROPOSITION 5.5 (Magidor—Shelah [18]).

(i) Let m < w241 be a regqular infinite cardinal. Then PT(m,wi) does

not hold.

(iii) It is consistent (relative to infinitely many supercompact cardinals)
that PT(w,241,w1) holds.

(iii) Let m be a regular infinite cardinal such that PT(m,wi) does not
hold. Then PT(wr41,w1) does not hold.

(iv) It is consistent (relative to infinitely many supercompact cardinals)
that PT(m,w1) holds for every reqular infinite cardinal w greater
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than the first cardinal fized point (i.e. the least cardinal k such that
K= wg).
PROPOSITION 5.6 (Shelah [28, p. 99]). Let A be a singular cardinal of
cofinality w such that PT(AT,wy) holds. Then cov(\, A\, wy,2) = AT,
Proof. By Proposition 2.6. =

COROLLARY 5.7. Let k be a regular uncountable cardinal such that
uw(pt, k) < KTT for every infinite cardinal p < k. Further, let A > k™ be a
cardinal such that PT(vT,w1) holds for every cardinal v such that kK < v < A
and cf(v) = w. Finally, let p < X be a regular uncountable cardinal. Then
the following hold:

(i) Suppose cf(N) > w. Then u(u,\) equals X if cf(X) > p, and AT

otherwise.

(i1) Suppose cf(A) = w. Then cov(\, p, p,w1) = A and u(p, \) = u(w, A).

Proof. (i) By Proposition 2.1 and Corollary 2.4 it suffices to show that
u(p, o) < o for every cardinal o with u-x™ < o < \. For u > k, this readily
follows from Propositions 2.7, 3.4, 3.5 and 5.6. Now suppose p < k < g < A.
Then by Propositions 2.1 and 2.9,

u(,ua U) < u(,u? K:) : U(H, U) < KTt.ot =0T,

(ii) We know from (i) that u(r,0) < ot for every regular uncountable
cardinal 7 < A and every cardinal o with 7- x* < ¢ < \. Hence by Propo-
sition 2.1,

covA ppywn) = | cov(o,ppywn) = A
pwrt<o<
It follows that
u(p, A) < u(wr, cov(, p, pywr)) = u(wr, A).
The proof is concluded by appealing to Proposition 2.9. In case u < k, we
get
u(wb >\) < u(wla ,u) ’ U(M» >‘) < u(wlv KV) ’ u(:uv )‘) < KT u(:uv )‘) = ’LL(,LL, )‘)
Otherwise,

w(wi, A) < u(wy, k) -u(k, p) - w(p, A) < & ut - u(p, A) = u(p, \). =

Finally, we consider the weak Rado conjecture wRC(o, 7).

DEFINITION. Given two uncountable cardinals o < 7, wRC(o, 7) asserts
the following. Let (T, <) be a tree of size m with the property that any
subtree of size less than o is special (i.e. is the union of countably many
antichains). Then T is not Baire (i.e. there is a sequence (D; : i < w)

of cofinal subsets of (7', <) such that (a) for any ¢ < w and any ¢t € Dj,
{t'eT:t<t'} C D and (b) ., Di =0).
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The following is easily verified.

PROPOSITION 5.8. Let w be a regular uncountable cardinal such that UF
holds. Then wRC(m,m) holds (in fact, any nonspecial tree of size m has a
nonspecial subtree of size less than ).

PROPOSITION 5.9.

(i) (Todorcevic [35]) Suppose wWRC(AF, AR0) holds, where X is a singu-
lar cardinal of cofinality w. Then Yo = \T.
(ii) (Todorcevic [34]) It is consistent (relative to a supercompact cardi-
nal) that wRC (w2, ) holds for every cardinal m > ws.
(iii) (Todorcevic [35]) Suppose WRC(we,7) holds for every cardinal
7 > wy. Then 280 < Ry.

6. Weakly \"-saturated ideals on P.()\). Throughout this section
and \ will denote two uncountable cardinals such that cf(k) = k < A.

LEMMA 6.1 (folklore). For every cardinal T, the following hold:

(i) There is a (normal) T-saturated ideal on P.(k) if and only if there
18 one on K.

(ii) Let o be a cardinal with k < o < \. If there is a (o-normal) (weakly)
T-saturated ideal on Pg(\), then there is a (normal) (weakly) T-
saturated ideal on Pyg(0).

Proof. (i) Define f : Kk — Py(k) and g : Pi(k) — k by f(a) = a and
g(a) = Ja. If J is a (normal) 7-saturated on k (respectively, on Py (k)),
then f(J) (respectively, g(J)) is a (normal) 7-saturated ideal on P, (k) (re-
spectively, on k).

(ii) Define p : Pi(\) — Pi(o) by p(a) = ano. If J is a (o-normal)
(weakly) 7-saturated ideal on P.(\), then p(J) is a (normal) (weakly) 7-
saturated ideal on Py (c). m

LEMMA 6.2.

(i) (Abe [2]) Suppose that cf(A) = X\ and there is a weakly normal ideal
on Py(XN). Then u(k,\) = .

(ii) (Usuba [38]) Suppose that cf(A) = A and there is a weakly \-satu-
rated ideal on P.(\). Then there is a weakly normal ideal on P (\).

PROPOSITION 6.3 (Usuba [38]). Suppose that cf(A) > k and there is a
weakly A-saturated ideal on P(\). Then u(k,\) = A.

Proof. In case A is regular the result is immediate from Lemma 6.2. Now
assume A is singular. By Lemmas 1.4(iii) and 6.1(ii) we may find a cardinal
T < X such that for any cardinal o with kK < o < A, there exists a weakly
T-saturated ideal on P(c). Hence by Lemma 6.2, u(k,v) = v for every
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regular cardinal v with x - 7 < v < A. The desired conclusion now follows
from Proposition 2.1.

DEFINITION. For a cardinal ¥, Af_,f y asserts the existence of a size x
subset A of P,;(\) such that |AN P(a)| < k for every a € P,()).

LEMMA 6.4. Let x > A be a cardinal such that Af;)\ holds. Then there is
[ Po(A) — Pg(x) such that (a) f is an isomorphism from (P.(\), C) onto
(ran(f),C), (b) AN f(a) = a for every a € Py(N\), and (¢) f~HX) € Iy
for every X € I .

Proof. Pick zo € Py(\) for A < a < x so that (i) zo # 2o for all
o # «, and (ii) {a : 2o C a}| < k for every a € Py()\). Now define
[ Pc(A) — Pi(x) by f(a) = aUx,, where z, = {a: 2o C a} if k is a
successor cardinal, and z, = {a : zo € Pgn,(a)} otherwise. m

The following is immediate from Lemma 6.4.

PRrROPOSITION 6.5. Let x > A be a cardinal such that Af;/\ holds, and
o be a cardinal. If there is a (normal) (weakly) o-saturated ideal on Py (N),
then there is a (A-normal) (weakly) o-saturated ideal on P, (x).

Let us remark this in passing:

PROPOSITION 6.6. Let J be a seminormal, weakly X\ -saturated ideal on
P.(\T). Then J is A" -saturated.

Proof. Suppose otherwise. Select A, € JT for a < AT so that AgN A, €
J for all 8 < a. For a < AT, pick a bijection i, : @ — |af, and set

Ey={ac P.(\"):VB€ana (i.(B) € a)},
Xo={ac P(A\"):3yecanlal (a € Ay N Ad)},
By ={a€ (AaNEy)\ Xo: € a}l.

Then clearly B, € J* for all a < A*. Moreover, Bg N B, = () whenever
B < a < AT. This is a contradiction. =

LEMMA 6.7 (Matet [22]). Suppose k is a limit cardinal and cf(\) < k.
Then Aé;\ holds.

PROPOSITION 6.8. Suppose that k is a limit cardinal, cf(\) < k and
there is a weakly AT -saturated ideal on Py(\). Then u(k,\) = AT,

Proof. By Propositions 6.3 and 6.5 and Lemma 6.7. =
Let us now consider the case when s is a successor cardinal.

LEMMA 6.9 (Matsubara [25]). Suppose k is a successor cardinal. Then
no ideal on Py () is weakly A-saturated.

Note that the result is optimal if A<% = \.
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PROPOSITION 6.10. Suppose k is a successor cardinal. Let x > X be a
cardinal such that AY , holds. Then no ideal on P ()) is weakly x-saturated.

Proof. By Proposition 6.5 and Lemma 6.9. m

LEMMA 6.11 (Shelah, see [24]). Suppose that cf(\) < k, and x > X is a
cardinal such that w(AT,x) < cov(\, A\, k,2). Then A%}A holds.

PROPOSITION 6.12. Suppose that k is a successor cardinal, cf(\) < K,
and x > X\ is a cardinal such that there exists a weakly x-saturated ideal
on P.(N\). Then u(AT,x) > cov(\ A\, k,2).

Proof. By Proposition 6.10 and Lemma 6.11. =

In particular, if x is a successor cardinal, cf(\) < k and there exists
a weakly At-saturated ideal on P.(\), then cov(), A, k,2) = AT. For more
concerning the case when x is a successor cardinal, see [22] and [38].

The following extends Abe’s result [2] that the existence of a xkT-satu-
rated ideal on P, (\) implies that SCH holds between 2<% and .

PROPOSITION 6.13. Let 7 and pu be two cardinals such that T < X and
w < p = cf(u). Suppose that ((w,k - 7,u))" < X and there exists a 7-
saturated ideal on Py()\). Then u(u, \) equals X if cf(X) > p, and \* other-
wise.

Proof. By Lemma 6.1 and Proposition 6.8, cov(v, v,wy,w) < vT for any
cardinal v such that §(w, s - 7, ) < v < X and cf(v) = w. Hence by Propo-
sitions 3.4 and 3.5, u(u, o) < ot for each cardinal o with pU6@(w, k-7, ) <
o < A. The desired conclusion easily follows. =

7. <k-saturated ideals on P.(\). Throughout this section, k and \
will denote two uncountable cardinals such that cf(k) = k < \.

Using a result of Shelah we will prove that if there is a 7-saturated ideal
on P, (A) for some 7 < k, then SSH holds between x and .

LEMMA 7.1 (Shelah [29]). Let 7 < k be a regular infinite cardinal. Sup-
pose there exists a T-saturated ideal on k. Then u(T,0) < K for every cardinal
o witht <o <k.

LEMMA 7.2. Let 7 and pu be two regular cardinals such that w < 7 < k <
w < \. Suppose there exists a T-saturated ideal on Pg(\). Then cov(\, p, p, T)
< AT

Proof. By Proposition 2.1 and Lemma 7.1, u(p™', k) = & for every cardi-
nal p with 7 < p < k. Moreover, by Lemmas 1.4 and 6.1 and Proposition 6.8,
cov(v,v,7",7) < u(k,v) = vt for every cardinal v such that k < v < X\ and
cf(v) = 7. The desired conclusion is now immediate from Proposition 3.5. m
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PROPOSITION 7.3. Suppose P.(\) carries a T-saturated ideal for some
cardinal T < k. Then for every reqular cardinal p such that k < pu < A,
u(p, \) equals X if cf(N\) > p, and At otherwise.

Proof. By Proposition 2.1 it suffices to show that u(x™, o) < ot when-
ever x and o are two cardinals such that kK <y < o < A. Now given such x
and o,

u(k,x) < xt <o <covio,xT,xT, k) <o

by Proposition 6.3 and Lemma 7.2. Hence by Propositions 2.1, 2.11, 6.3
and 6.8,
) =ot -

u(xt,0) <ulk,ot) =0 -u(k,0) =0t u

Next we consider some cases when Afg , holds.
LEMMA 7.4 (Solovay [32]).

(i) Suppose that for some cardinal T < Kk, K carries a T-saturated ideal.
Then k carries a normal T-saturated ideal.

(ii) Let 7 < k be a regular uncountable cardinal, and H be a normal
T-saturated ideal on k. Then for every cardinal v < Kk and every
F kX kK—v, there is A € H* such that

HF(a,B) i, € A and a < B} < T.

PROPOSITION 7.5. Let v and x be two cardinals such that w < v =
cf(v) < K < A < x. Suppose that k — [k, and there is fo : v — X for

a < x such that |{i < v : fo(i) = f3(i)}| < 7 whenever a < 3 < x. Then
AY | holds.

Proof. Select a bijection t : v x A — A. For a < x, set ao, = {t(4, fo(i)) :
i <v}.Now fix e C y with o.t.(e) = k. Define F': {(a, ) €Eexe:a < f} —
v by F(o, ) = the least j < v such that f,(i) # fg(i) whenever j <i < v.
There must be & < v and d C e such that |d| = k and F(«, 3) < k for every
(o, B) € dxdwith a < . For a € d, put by, = {t(3, fa(i)) : k < i < v}. Then
clearly b, Nbg = 0 for any (v, 5) € dxd with o < 5. Hence ||, ¢, Ga| =K. =

ace

DEFINITION. ADS) asserts the existence of a sequence (a, : @ < A%)
such that (a) a, is a cofinal subset of A of order type cf(\), and (b) for any
B < AT, there is gg : 3 — X such that

(aa \ gs(a)) N (ay \ gs(7)) =0
whenever o < v < (.

Assuming cf(\) < k, ADS, clearly implies Aét\, but the converse need
not hold:

PROPOSITION 7.6. Suppose cf(N\) < k and there is a cf(\)-saturated ideal
on P.(X). Then ADS) does not hold.
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Proof. Let {as : a < A1) be as in the definition of ADS)y. For < AT,
pick hg € [],.paa so that the sequence (aq \ hg(a) : o < ) consists of
pairwise disjoint sets. By Proposition 6.5 and Lemmas 1.4 and 6.7 there is
a cf(\)-saturated ideal J on P,(AT). Given o < AT, set

AS ={zeP.(\):a<Jrand hya(a) =&}
for all £ € aq. There must be eq € Peg(x)(aa) such that e, A% € J*. Put

o = Uea- Now let o < v < AT, Pick € (Uge,, 4 SN (Ucee, A ¢). Then

for o € {a,~}, as \ns C ag\hux( ), and therefore (aq \ 7a) N (av\%) = 0.
Contradiction. m

8. The square brackets partition relation on P,()\). Let x be a
regular uncountable cardinal with the tree property. It is known [21] that if
(a) {Pc(N)} — | l{)\])\<“ for any cardinal A > &, and (b) & is inaccessible,
then « is strongly compact. As will be shown below, (a) does not imply (b).
In fact, if x Cohen reals are added to a model where k is supercompact,
then in the generic extension {P,(\)} — [/ /\]w1 for every A > k. We first
establish a two-cardinal version of Lemma, 7.4 (ii).

Throughout the remainder of this section k and A will denote two un-
countable cardinals such that cf(k) =Kk < .

The following is a straightforward generalization of a result of Solovay
[32].

LEMMA 8.1. Let 7 and v be two cardinals with wq < 7 < v < K, and J
be a T-saturated ideal on Pg(\). Further, let g : Pi(\) X Po(X\) — v. Then
one can find E € J* and e € P-(v) so that for any a € E, {b € P.()\) :
g(a,b) € e} € J*.

LEMMA 8.2. Let J be a normal k-saturated on Pg(\). Further, let A€ J*
and g : A — Pg(\) be such that g(a) € Pany.|(a) for every a € A. Then one
can find D € J* N P(A) and x € P(\) such that ¢"D C P(x).

Proof. There must be B € J™ N P(A) and o < & such that |g(a)] = o
for every a € B. Fora € B, let g(a) = {7{ :i < o}. Fori <o and § < A, set
B! = {a € B :~¢ = §}. Clearly for every i < o and every E € J* N P(B),
there is 6 < A such that F N Bf € JT. Hence for each i < o, one can
find e; € P,(A) so that W; € J*, where W; = (Py(A) \ A) U U, BY. Put
C =jeo Wi and = |, €;- Then g(a) C x for every a € BNC.

LEMMA 8.3. Let x > A be a cardinal such that .A%v)\ holds, and f :

P.(\) — Pi(x) be the function defined in the proof of Lemma 6.4. Then for
any normal k-saturated ideal J on Py(X), f(J) is a normal ideal on P.(x).

Proof. Let J be a normal s-saturated ideal on P.(\). Set H = f(J).
Fix X € HY and h : X — AT such that h(z) € = for all z € X. Set
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Xo={z € X : h(x) < A} and X; = X \ Xo. Pick i € {0,1} so that
X; € Ht.

Case i = 0: There must be A € J™ N P(f~1(Xy)) such that ho f is
constant on A. Set Y = f”A. Then Y € H' N P(Xy) and h is constant
onY.

Case i = 1: Define g: f71(X1) = {za: A< a < x} by g(a) = Z(hof)(a)-
Then by Lemma 8.2 there are B € J* N P(f~1(X1)) and e € P4()) such
that ¢” B C P(e). Since |{a : zo C e}| < k, there must be C € J* N P(B)
such that ¢ is constant on C. Set T'= f”C. Then T € H™ N P(X;) and
moreover h is constant on 7. m

PROPOSITION 8.4. Let 7 and v be two cardinals with w1 < 7 < v < K,

and J be a seminormal T-saturated ideal on Py(X). Then J* — [I7,]2 .

Proof. Case cf(\) > k: Fix g : Ps(\) x Ps(\) — v and A € J*. By
Lemma 8.1 one can find £ € J* and e € P(v) such that for any a € E,
{b € P.()) : g(a,b) € e} € J*. By Proposition 6.3, there is D € I7, with
|D| = X. Set D = {d, : @ < A}. Inductively define a, € AN E for a < A so
that

(i) do U{a} C aq.
(ii) an \ ag # 0 for every € a.
(ili) g(ap,aq) € e for every f € aNaq.

Finally, let C' = {aq : @ < A\}. Then clearly C' € I:’)\HP(A). Moreover, if
a, € X are such that ag C aq, then 5 € aNa, and therefore g(ag, aq) € e.

Case cf(\) < k: By Lemmas 6.7 and 6.9, Aﬁ& holds, so by Lemmas 1.2
and 8.3 there is f : P;(\) — P,(A\T) such that (a) f is an isomorphism from
(P.()\), C) onto (ran(f),C), and (b) f(J) is a normal ideal on P, (AT). Now
fix A e J" and g : Pi(\) X Py(\) — v. Define k : P,(AT) x P,(A\") — v
so that for any (a,b) € Py(\) X Pc(N), k(f(a), f(b)) = g(a,b). By the first
part of the proof there are X € (f(J))" N P(f”A) and e € P-(v) such that
k(z,y) € e for every (z,y) € X x X with  C y. Set B = f~!(X). Then
B e JTNP(A) and g(a,b) € e for every (a,b) € Bx B witha Cb. m

PROPOSITION 8.5. Let J be an ideal on P.(\) and v < k be an infinite
cardinal. Further, let P be a v-cc forcing notion and G be P-generic over V.
In V|G|, let H be the set of all X C Pq(\) such that X N A =0 for some
A € J*. Then the following hold:

(i) Suppose J is T-saturated, where T is a regular uncountable cardinal
with v < 17 < k™. Then H is a T-saturated ideal on Pq(\).

(ii) Suppose J is prime and normal. Then H is normal. In fact, for any
f: Po(AN) — X with f(x) € x for every x € Py(\) \ {0}, there are
X € H* and e € P,(\) such that f(z) € e for all z € X.
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Proof. (i) This is a straightforward generalization of a result of Prikry,
Solovay and Kakuda (see Theorem 17.1 in [14]).

(ii) This is proved by a standard argument (see e.g. the proof of Lem-
ma 2.4 in [1]). =

COROLLARY 8.6. Suppose k is \-supercompact. Let 7 < k be a reqular
uncountable cardinal and P be a T-cc forcing notion. Further, let G be P-
generic over V. Then in V[G], there is a normal T-saturated ideal H on

PN,

9. Solovay’s result on the sup-function. Throughout this section k
and X denote two cardinals such that cf(k) = Kk < .

Solovay [33] established that if A is a regular cardinal, x is A-supercom-
pact and J is a normal prime ideal on P, (A), then the function a — Ja is
one-to-one on a set in J*. Assuming that A is a successor cardinal, Johnson
[13] sharpened Solovay’s result by proving that if « is A-Shelah, then the sup-
function is one-to-one on a set in N.Shy, ,. Abe [3] observed that Johnson’s
result is still valid in the case when A is a regular limit cardinal.

DEFINITION. NSh,,  is the set of all A C P, () for which one can find
ga : @ — a for a € A so that for every f : A — A, there is b € P,,(\) with
{a€e A:bCaand fb=g,lb} = 0.

K is A-Shelah if P.(X) ¢ NShy, ».

LEMMA 9.1.

(i) (Carr [4]) If K is A-Shelah, then it is mildly A-ineffable.

(ii) (Carr [4], Usuba [37]) If k is A-Shelah, then NShy y is a strongly

normal ideal on Pg(\).

LEMMA 9.2. Let p be a cardinal with k < p < A. Then the following
hold:

(i) (Essentially due to Johnson [13]) {a € P.()) : ot.(a N p) is not a

cardinal} € NShy, x.

(ii) (Abe [3]) {a € P;(\) : cf(lanp]) # lancf(p)|} € NShy x.

PROPOSITION 9.3 (Abe [3]). Suppose that k is A-Shelah and X is a reg-
ular cardinal. Then the function a — |Ja is injective on a set in NSh

Proof. The proof is similar to that of Theorem 2.1 in [13], using Lem-
ma 9.2 instead of Lemma 2.4 in [13]. =

What if x is A-Shelah and A is a singular cardinal? We first consider the
case when cf(\) > k.

PROPOSITION 9.4. Suppose k < cf(X) < X\ and K is A\-Shelah. Let (\; :
i < cf(N)) be a strictly increasing sequence of regular cardinals such that
Ao = cf(A) and | /\i = \. For a € P,(\), define k, € HiEamcf(A) i

i<cf(A
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by kqo(i) = U(a N N;). Then the function a — kg is one-to-one on a set in
NShy 5.

Proof. Put o = cf(\). Let A be the set of all a € P,(\) such that
(a) w Ca, (b) {\i 7 €anc} Ca, and (¢) {iq : @ € a} C a, where
io = the least 7 < o such that a € A;. Then clearly A € NS7 ,. Note
that (Ja = Ujcqne Mi for every a € A. By Proposition 9.3 one can find
B; € NSh’;}Ai for i < o so that the function b — (Jb is injective on B;.
For i < o, set C; = {a € P.(\) : an \; € B;}. It is simple to see that
Ci € NShY , foralli. Put D ={a € A:Viecano (a € C;)}. Note that
D e NSh* N .Now fix a,b € D with a # b. If aNo # bNo, then kq(0) # ky(0)
(and therefore Ua # U b). Otherwise, let j = the least k € a N o such that
aNAg #bN Ag. Then k(i) # ky(i) for any i € (aNo)\ j. =

Note that in the statement of Proposition 9.4, the range of the function
a — k, has size \.
It remains to deal with the case cf(\) < k.

DEFINITION. Let X be an infinite set. An w-Jdénsson function for X is
a function F' : “X — X such that F” “Y = X for every Y C X with
Y] = 1X].

LEMMA 9.5.

(i) (Erd6s-Hajnal [8]) For any infinite set X, there exists an w-Jonsson
function for X.

(ii) (Johnson [13]) Let p be a cardinal with k < p < X\, and F be an
w-Jonsson function for u. Then the set of all a € Pg(\) such that
w Ca and F[¥(aNp) is not an w-Jonsson function for a Ny lies in
NShy x.

Usuba [37] proved that if ¢f(\) < k and & is A-Shelah, then A< = AT,
The following is a refinement of this result.

PROPOSITION 9.6. Suppose that cf(A) < k and k is N\-Shelah. Let (\; :
i < cf(N\)) be an increasing sequence of reqular cardinals such that k < Ao
and U;ccepy Ai = A, and let (fo 1 a < AT) be a scale on [iccry Ai- For
a € P.(N), deﬁne ka € [Liccrny Ai by k(i) = U(a N Ai). Then the function
a — the least a such that —(fo <* ko) is injective on a set in NShy, |

Proof. For v < A, put z, = {v}. Inductively define z3 € P,.(\) for
A< B < A" sothat z3 ¢ {25 : § < B}. Define t : P.(\) — P.(\") by
t(a) = {a < AT : 24 € Pjgnyi(a)}. For i < cf()N), pick an w-Jénsson function
F; for \;. Now let A be the set of all a € P;(\) such that

(1) aNk is an inaccessible cardinal.
(2) ank > cf(N).
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(3) For each i < cf(\), o.t.(aN ;) is a regular cardinal and F;[“(aN\;)
is an w-Jénsson function for a N A;.

(4) Let o < A1 be such that z, € Pynx(a). Then (a) zor1 € Panw(a),
(b) ran(fo) € a, and (c) 24 € Panx(a) for every d € {6 < AT :
z5 C Zcx}-

(5) For any g € HKCf(/\)(a N \;), there is § < AT such that g <* f5 and
zZ5 € Parm(a)-

It is simple to see that A € NShy . Note that ANt(a) = a for every
a € A. Define h : A — A" by h(a) = [Jt(a). Let us first show that h is
one-to-one. Thus let ag,a; € A with h(ag) = h(a1). Put = t(ap) Nt(ar)
and o = h(ag) = h(ay).

CLAIM 1. Let 6 < o. Then there is o € x with 6 < «.

Proof of Claim 1. Inductively define a; for j < w so that (a) ag; €
t(ap) and a1 € t(ar), and (b) 6 < ap < a1 < g < --- . Then clearly
Uj€w Zan; € Pagrr(ao) and UjEw Zagjo1 € Paynk(ar). It follows that UjEw a;
€ x, which completes the proof of the claim.

CrAM 2. Letk < 2. Then |{i < cf(\) : U(zNX\i) < U(agNXi) }H < cf(N).
Proof of Claim 2. Suppose otherwise. Let
T={i<ctN):UlxnX) < U(ar N N)}.

Define g € [];c¢n)(ax N A) by: g(i) € (arx N A) \U(zN A;) if i € T, and
g(i1) = 0 otherwise. There must be § € t(ay) such that g <* fs. By Claim 1,
there is a € z with 6 < a. Then ran(f,) C ap Na; C x. But f5 <* fq, so
there is ¢ € T such that f,(¢) > g(i). This contradiction completes the proof
of Claim 2.

CramM 3. Letk < 2. Then ap, =z N A.

Proof of Claim 3. Let i < cf(X\) be such that [J(z N X\;) = U(ar N A).
Then o.t.(z N \;) = o.t.(ax N A;) since o.t.(a N A;) is a regular cardinal.
Moreover, F!" “(x N A;) € N\, and consequently N A; = ax N A;. The
desired conclusion is now immediate from Claim 2.

By Claim 3, ag = a1, which completes our proof of the injectivity of h. Let
us finally prove that for any a € A, h(a) = the least a such that =(f, <* k).
Thus fix a € A. We show that h(a) = {# < AT : fz <* kq}. Firstly,
let 8 < AT with fz <* k,. We may find g € Hi<cf()\)(a N A;) such that
{i < cf(X) : f3(i) > g(i)}| < cf(X). There is 6 € t(a) such that g <* fs.
Then clearly 8 < §, so # < h(a). Conversely, suppose ¢ < h(a). Pick £ € t(a)
with ¢ < &. Since ran(fe) C a, fe <* fe <* k, and hence fr <* k,. m
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10. S, ». Throughout this section x and \ will denote two uncountable
cardinals such that cf(k) = k < A.
DEFINITION. Sy \ = {a € P;(\) : |a| = [aNk|}.
Krueger [15] showed that it is consistent (relative to a supercompact
cardinal) that “there is a supercompact cardinal 7 such that
{a € P;(77) : [an 7| is not measurable} \ S, ,+ € NS, +7.

Moreover, he showed that it is consistent (relative to the same assump-
tion) that “there is an uncountable strongly compact cardinal 7 such that
P(t%)\ S; .+ € NS, .+”. We will show that these results are optimal in
the sense that if x is kT-compact, then

{a € Pi(k") : laN k| is not measurable} \ S, .+ € NS’S: n

DEFINITION. Let 0 < § < A. Then NShS , denotes the set of all B C
P, () such that one can find hy : b — bN 4§ for b € B with bN§ # 0 so that
for any u : A — ¢, there is a € P, () with hyla # ula for all b € B such that
aCband bNd # 0.

Note that NShé’/\ = NShy x.
LEmmA 10.1.

(i) NShy \ = ILsx.

(ii) Let 0 <1 <& <A Then NSh , C NSh{ ,
(i) Pk(N) ¢ NS’hi if and only if k is mildly A-ineffable.
(iv) (Carr [4]) If P.(\) ¢ NSh,M, then NShiy/\ =l
(v) Let2 <6 < k. ThenNSh,_W\—NSh2

Recall that if & is A-Shelah, then NSh?} % is a normal ideal on Py(A).
This can be generalized as follows.

LEMMA 10.2. Let & < 8 < \. Suppose Px(X) ¢ NShS, . Then NSh, , is
a 0-normal ideal on P (\).

Proof. 1t is simple to see that P(B) C NShi’A for every B € NShi’A

CLAIM. Suppose B, € NShi)\ for v < 0, and let C be the set of all
c€U,s{b € By : v €b} such that w C c. Then C € NShiM\

Proof of the claim. Pick f : C — 0 so that for any b € C, f(b) € b €
By For v < 6, select hy : b — bN 4 for b € By with bNd # 0 so that for
any u : A — 6, there is a € P,(\) with h)a # ula for all b € B, such that
aCband bNd # (. For b € C, define ky : b — bN 4§ by ky(0) = f(b) and
ky(1+¢) = h{:(b)(g). Now assume there is ¢t : A — § with the property that
for any d € P,()), there is b € C such that d C b and k[d = t]d. Define
u:A— dbyu(C) =t(1+(). Given a € P,(A), put d = aUw and select b € C
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so that d C b and ky[d = t[d. Then clearly a C b and b € By(g). Moreover,
for each ¢ € a,u(() = t(1 +() = k(1 + () = h( )(C). This contradiction
completes the proof of the claim.

Now let A € P(P,(\ ))\NSh‘S)\ and g : A — 6 be such that g(a) € ané
for every a € A. Since

{a cJg ') :we a} ¢ NShS ,,
<6

it follows from the claim that g~ 1({v}) ¢ NShi,)\ for some v < 4. m
LEMMA 10.3. Let k <J < A. Then {b € P.,(\) : |b| =[bNJ|} € NShi’A

Proof. Suppose to the contrary that B ¢ NShiA, where B = {b €
P.(\) b = [bNd|}. For b € B, select a one-to-one function hy : b — bN 4.
There must be u : A — § such that for any a € P,()), there is b € B such
that a € b and hyla = ula. Then u is one-to-one, a clear contradiction. =

PROPOSITION 10.4. Suppose A = £ and Py(A) & Ucsenr NShS
Then Pi(X) \ Sk € NS’S;)\

Proof. Since clearly NSS;\ = U,<scr NV Sg y» the result follows from
Lemmas 10.2 and 10.3. = -

LEMMA 10.5. Let k < 0 < A. Suppose H is a d-normal prime ideal on
Pi(A). Then NShS

Proof. Let B € H' and let hy : b — bNé for § € B’, where B’ = {b € B :
0 € b}. Define w : /\—>6$0thatforany04€)\

Xo=1{be B : hy(a) = u(a)}

lies in HT. Now given a € P,()), pick b € (., Xa With a C b. Then clearly
hyla = ula. Hence B ¢ NShK)\ "

aca

LEMMA 10.6 (Matet [19]). Suppose k is A\-compact. Let k < 6 < k*, and
let J be a normal prime ideal on k. Then there is a d-normal prime ideal H
on P;(X) such that (a) J={D Ck:{a € P;(\):U(aNk) € D} € H}, and
(b) {a € Pc(\) : |a| < f(U(ank))} € H for every f: k — k.

LEMMA 10.7 (Solovay, see [14, p. 55]). If k is a measurable cardinal,
then there exists a normal prime ideal J on k such that

{p < K :pis a measurable cardinal} € J.

ProrposiTioN 10.8. Suppose k is A-compact. Then for any f : k — K,
Ay ¢ Upcsanr NShiA, where Ay denotes the set of all a € P (\) such that
(a) aN K is a nonmeasurable infinite cardinal, and (b) |a| > f(a N k).
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Proof. By Lemmas 10.5-10.7. u

To conclude let us remark that a modification of the proof of Lemma 4.2
yields the following.

PROPOSITION 10.9. Let p be a cardinal with k < p < A. Then
E(NS;LMSH,)\) > cov(\, ut, ut K.
__ Proof. Select a family G of functions from P, () to Ps(\) so that |G| =
cof (NS \|Sk.») and for any h : P,(u) — P.()), there is X € P,(G) \ {0}
with Sex N (Nyex C;’)‘ C C;:’A. For g € G, let By = pUJran(g). Now fix
D C X\ with [D] < p. Pick h : P,(n) — Po(A\) and X € Py(G) \ {0} so
that D C Uran(h) and Scx N(,ex Co € Cp*. For e € Py(p), define
inductively sf, for n < w by sj = eUw and
Spy1 = Sy U sy U U{g(d) cg€ X and d € P,y(s;, Np)}.

Let ze = U, <, si- Then z. belongs to S,y N(,cx C;’)‘ and therefore

n<w “n-’
to C,’f’)‘. Hence,

DC| J{ze:ec P} S| J{By:ge X} m

QUESTION. Is it true that E(NSZ/JSW\) = E(NSZA) for every car-
dinal p with K < p < A?
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