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by
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Abstract. An open continuous map f from a space X onto a paracompact C-space
Y admits two disjoint closed sets Fy, F1 C X with f(Fy) = Y = f(F1), provided all
fibers of f are infinite and C*-embedded in X. Applications are given to the existence
of “disjoint” usco multiselections of set-valued l.s.c. mappings defined on paracompact
C-spaces, and to special type of factorizations of open continuous maps from metrizable
spaces onto paracompact C-spaces. This settles several open questions.

1. Introduction. All spaces in this paper are assumed to be completely
regular topological spaces. Following Kato and Levin [12], a continuous sur-
jective map f: X — Y is said to have the Bula property if there are disjoint
closed subsets Fy, F; C X such that f(Fy) =Y = f(F1). The pair (Fo, F1)
will be called a Bula pair for f. Bula [2] proved that every open contin-
uous map f from a compact Hausdorff space X onto a finite-dimensional
metrizable space Y has this property provided all fibers of f are dense in
themselves. On the other hand, there are open continuous maps between
compact metric spaces with all fibers dense in themselves, but without the
Bula property [4] (see, also, [12]).

Bula’s result [2] was generalized in [7] to Y countable-dimensional and X
either a compact Hausdorff space or a metrizable space. Levin and Rogers
[13] obtained a further generalization to the case of X compact metric and
Y a C-space. The question whether the compactness condition in Levin—
Rogers’ result [13] could be removed was raised in [11, Problem 1514]. In
this paper, we deal with this question by generalizing all these results from
a common point of view where Y is supposed to be only a paracompact
C-space rather than metrizable, and the fibers of f to be infinite rather
than dense in themselves. The following theorem will be proved.
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THEOREM 1.1. Let X be a space, Y a paracompact C-space, and f: X —Y
an open continuous surjection with all fibers infinite and C*-embedded in X .
Then f has the Bula property.

The C-space property was originally defined by W. Haver [9] for compact
metric spaces. Later on, Addis and Gresham [1] reformulated Haver’s defi-
nition for arbitrary spaces: A space X has property C (or X is a C-space)
if for every sequence {#;, : n < w} of open covers of X there exists a se-
quence {¥;, : n < w} of pairwise disjoint open families in X such that each
¥y, refines #,,, n < w, and | J{¥, : n < w} is a cover of X. It is well-known
that every finite-dimensional paracompact space, as well as every countable-
dimensional metrizable space, is a C-space [1], but there exists a compact
metric C-space which is not countable-dimensional [21]. Finally, let us re-
call that a subset A C X is C*-embedded in X if every bounded real-valued
continuous function on A is continuously extendable to the whole of X.

Theorem 1.1 has several interesting applications. In Section 4, relying
on the fact that the theorem involves no a priori restrictions on X, we
apply it to the graph of an L.s.c. set-valued mapping defined on a paracom-
pact C-space and having closed and infinite point-images in a completely
metrizable space. We show that any such mapping has a pair of “disjoint”
usco multiselections (see Corollaries 4.3 and 4.4), which provides a complete
affirmative solution to [11, Problem 1515] and sheds some light on [11, Prob-
lem 1516]. In Section 5, we consider open continuous maps with all fibers
dense in themselves, and apply Theorem 1.1 to show that every such map
from a complete metric space (X,d) onto a paracompact C-space Y can
be represented as the composition Py o g of a continuous surjective map
g: X —Y x[0,1] and the projection Py : Y x [0,1] — Y (see Theorem
5.1). This is a common generalization of [7, Theorem 1.1] and [13, Theorem
1.2], and provides a complete affirmative solution to [11, Problem 1512].

Finally, a word about the proof of Theorem 1.1 itself. It is based on an
application of Uspenskij’s selection theorem [23] that under the assumptions
of Theorem 1.1 there exists a continuous function ¢g : X — [0, 1] which is
nonconstant on each fiber of f (see Lemma 2.1). The proof is then accom-
plished in Section 3 relying on a “parametric” version of an idea in the proof
of [13, Theorem 1.3].

2. Bula property and fiber-constant maps. Suppose that (Fy, F})
is a Bula pair for a (continuous) map f : X — Y, where X is a normal space.
Then there exists a continuous function g : X — [0, 1] such that both g~—'(0)
and g~!(1) intersect each fiber of f. Indeed, take g : X — [0,1] such that
F; € g7'(i), i = 0,1. In this section, we demonstrate that the map f in
Theorem 1.1 has this property as well.
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LEMMA 2.1. Let X be a space, Y a paracompact C-space, and f: X —Y
an open continuous surjection with all fibers infinite and C*-embedded in X .
Then there exists a continuous function g : X — [0,1] with g=1(0) and
g~ 1(1) intersecting each fiber of f. In particular, gl f~'(y) is nonconstant
for everyy €Y.

For the proof of Lemma 2.1, we need several statements. We use C*(X)
to denote the Banach space of all continuous bounded functions on a space
X equipped with the sup-metric

d(g,h) =sup{|g(z) — h(x)| : z € X}, g¢,h e C*(X).
In fact, we will be mainly interested in the closed convex subset C'(X,I) of

C*(X) of all continuous functions from X to I = [0, 1].
The next proposition is well-known and easy to prove.

PROPOSITION 2.2. Let X be a space and A C X a C*-embedded subset.
Then the restriction map w4 : C(X,I) — C(A,I) is an open continuous
surjection.

For a nonempty subset A of a space X, let @x(A,I) be the set of all
members of C'(X,I) which are constant on A, and let O(A,I) = O4(A4,1).
Note that ©(A,1) is, in fact, homeomorphic to .

For spaces S and T, we will use @ : S ~» T to denote that @ is a
set-valued mapping, i.e. a map from S into the nonempty subsets of 7. A
mapping @ : S ~» T is lower semicontinuous, or l.s.c., if the set

I U)={s€S:D(s)NU # 0}
is open in S for every open U C T. A map g : S — T is a selection for
&S~ Tif g(s) € &(s) for every s € S. Finally, recall that a space Z is

C™ for some m > 0 if every continuous image of the k-dimensional sphere
S¥ (k <m) in Z is contractible in Z.

PROPOSITION 2.3. Let X be a space and A C X an infinite C*-embedded
subset. Then the set C(X,I)\ Ox(A,I) is C™ for every m > 0.

Proof. Consider the restriction map m4 : C(X,I) — C(A,I), and take a
continuous g : " — C(X,1)\Ox(A,1I) for some n > 0. Then, by Proposition
2.2, the composition 74 0 g : S* — C(A,I) \ O(A,I) is also continuous.
However, C'(A,I) is an infinite-dimensional closed convex subset of C*(A)
because A is infinite, while ©(A, ) is one-dimensional, being homeomorphic
to I. Thus, by [17, Lemma 2.1}, C(A4,1)\ ©(A,I) is C™ for all m > 0. Hence,
there exists a continuous extension £ : B"™1 — C(A, 1)\ O(A,I) of r40yg
over the (n + 1)-dimensional ball B"*!. Consider the set-valued mapping
@ : B!~ C(X,1) defined by &(t) = {g(t)} if t € S™ and &(t) = 7, (£())
otherwise. Since ¢ is a selection for 7121 o £]S™ and, by Proposition 2.2,
the restriction map 74 is open, the mapping @ is Ls.c. (see [15, Examples
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1.1* and 1.3*]). Also, @ is closed and convex-valued in C(X,I), hence in
the Banach space C*(X) as well. Then, by Michael’s selection theorem [15,
Theorem 3.2"], @ has a continuous selection h : B"** — C(X,I) which is,
in fact, a continuous extension of g over B"*!. Moreover, 74 (h(t)) = £(t) ¢
O(A,T) for all t € B"*!, which completes the proof. m

A function £ : X — R is lower (upper) semicontinuous if the set
{r e X :&(x) >r} (respectively, {z € X : {(x) < r})

is open in X for every r € R. Suppose that f: X — Y is a surjective map.
Then to any g : X — I we associate the functions inf[g, f],sup[g, f]: Y — I
defined for y € Y by

inflg, f](y) = inf{g(x) : x € fH(y)},
suplg, f](y) = sup{g(x) : z € [} (y)}-
Finally, we define a function var[g, f] : X — I by

var[g, f](y) = suplg, fl(y) — inflg, f](y), yeY.

Observe that g : X — I is nonconstant on each fiber of f if and only if
var[g, f] is positive-valued. The following property is well-known [10] (see
also [5, 1.7.16)).

PROPOSITION 2.4 ([10]). Let X and Y be spaces, f : X — Y an open
continuous surjection, and g € C(X,I). Then suplg, f] is lower semicon-
tinuous, while inf(g, f] is upper semicontinuous. In particular, varlg, f] is
lower semicontinuous.

Finally, a set-valued mapping @ : S ~» T has an open (closed) graph if
its graph
Graph(®) = {(s,t) € Sx T : t € &(s)}

is open (respectively, closed) in S x T'.

PROPOSITION 2.5. Let X and Y be spaces, and let f : X — Y be an

open continuous surjection. Then the set-valued mapping © : Y ~~ C(X,])
defined by O(y) = Ox(f~1(y),I), y €Y, has a closed graph.

Proof. Choose y € Y and g ¢ O(y). Then, var[g, f](y) > 2§ for some
0 > 0. By Proposition 2.4, there exists a neighbourhood V of y such that
var[g, f](z) > 26 for every z € V. Let Bi(g) = {h € C(X,1I) : d(g,h) < &},
the open d-neighbourhood of g in C(X,I). Then V x B4(g) is an open set
in Y x C(X,1) disjoint from Graph(©). Indeed, take z € V and h € B¢(g).
Since var|g, f](z) > 29, there are z,t € f~!(z) such that |g(x) — g(t)| > 24.
Since h € B(g), we have |h(z) — g(z)| < § and |h(t) — g(t)| < J. Hence,
h(z) # h(t), which implies that var[h, f](z) > 0. That is, h ¢ O(z). =
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Proof of Lemma 2.1. Define @ : Y ~ C(X,I) by &(y) = C(X,I) \ O(y),
y € Y, where © is as in Proposition 2.5. Then, by Proposition 2.5, @ has
an open graph, while, by Proposition 2.3, each @(y), y € Y, is C™ for all
m > 0. Since Y is a paracompact C-space, by Uspenskij’s selection theorem
[23, Theorem 1.3], ¢ has a continuous selection ¢ : Y — C(X,I). Define
g: X —Ibyg(z)=[p(f(z))](x), z € X. Since f and ¢ are continuous, so
is g (see the proof of [8, Theorem 6.1]). Since g/ f~(y) = v(y)[f~*(y) and
o(y) ¢ O(y) for every y € Y, g is as required. =

3. Proof of Theorem 1.1. Suppose that X, Y and f are as in The-
orem 1.1. By Lemma 2.1, there exists a function ¢ € C(X,I) such that
inflg, fl(y) < suplg, f](y) for every y € Y. By Proposition 2.4, inf[g, f]
is upper semicontinuous and sup|g, f] is lower semicontinuous. Since Y is
paracompact, there are continuous functions ~y,v1 : Y — I such that

inflg, f](y) <0(y) <n(y) <suplg, fl(y), yeV

(see, e.g., [5, 5.5.20]). Let a; = ;0 f: X — 1,7 =0,1. Then

(3.1) inflg, f](f(z)) < ap(z) < au(z) < sup[g, f](f(x)) for every z € X.

Next, define a continuous function £ : X x I — R by

t — ap(x)

Uz, t) = ——————,
0= @)~ a0@)

Since ¢(x, ap(x)) = 0 and £(z,a1(z)) = 1, and since £[{x} x [ is increasing,
we have

(3.2) (({x} x [ao(x),aq(z)]) =[0,1] for every z € X.

Finally, define a continuous function h : X — R by h(z) = ¢(z, g(z)), z € X.
According to (3.1) and (3.2), for every y € Y,

W= (=00, 01) N f7Hy) # 0 # f7H(y) N AT H([L, +00)).

Thus, Fy = h~1((—00,0]) and F}; = h~1([1, +00)) are as required. The proof
of Theorem 1.1 is complete.

(x,t) € X x L.

4. Bula pairs and multiselections. In this section, we present several
applications of Theorem 1.1 to multiselections of 1.s.c. mappings. Recall that
a set-valued mapping ¢ : Y ~» Z is called a multiselection for @ : Y ~» Z if
o(y) C D(y) for every y € Y.

COROLLARY 4.1. Let Y be a paracompact C-space, Z a normal space,
and @ :Y ~ Z an l.s.c. mapping such that each ®(y), y € Y, is infinite and
closed in Z. Then there exists a closed-graph mapping 6 :' Y ~~ Z such that

P(y) NO(y) # 0 # D(y) \ O(y) for everyy €Y.
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Proof. Let X = Graph(®), and let f : X — Y be the projection. Then
f is an open continuous map (because @ is l.s.c.) with all fibers infinite.
Also, each fiber of f is C*-embedded in X. Indeed, take y € Y and a
continuous function g : f~1(y) — L. Since f~(y) = {y} x ®(y), we may
define a continuous function go : ¢(y) — I by go(z) = g(y,2), z € D(y).
Since Z is normal, gy has a continuous extension hg : Z — I. Finally, define
h: X — I by h(t,z) = ho(z) for every t € Y and z € &(t). Then h is a
continuous extension of g. Thus, by Theorem 1.1, there are disjoint closed
subsets Fp, F1 C X such that f(Fy) =Y = f(F1). Finally, take a closed set
F CY x Z with FN X = Fy, and define 6 : Y ~» Z by Graph(f) = F. This
0 is as required. m

To prepare for our next application, we need the following simple obser-
vation about l.s.c. multiselections of l.s.c. mappings.

PROPOSITION 4.2. LetY be a paracompact space, Z a space, ® :Y ~» Z
an l.s.c. closed-valued mapping, and ¥ :' Y ~» Z an open-graph mapping
with @(y) N (y) # O for every y € Y. Then there exists a closed-valued
l.s.c. mapping ¢ :'Y ~~ Z such that p(y) C ®(y) N¥(y) for everyy € Y.

Proof. Since @ is l.s.c. and ¥ has an open graph, for every y € Y there
are open sets V, C Y and W, C Z such that y € V, C &~1(W,) and
Vy x W, C Graph(¥). Whenever y € Y, define a mapping ¢, : V, ~ Z by
wy(t) = @(t) N Wy, t € V,,. According to [15, Propositions 2.3 and 2.4], each
@y, y €Y, is Ls.c. Since Y is paracompact, there exists a locally finite open
cover % of Y and a map p: % — Y such that U C V), U € % . Finally,
define a mapping ¢ : Y ~» Z by

o) = J{epn(y) : U andy e U}, yev.
This ¢ is as required. =

A mapping ¢ : Y ~ Z is called upper semicontinuous, or u.s.c., if the
set

o*(U) ={y €Y : d(y) C U}

is open in Y for every open U C Z. We say that a pair ¢, ¢ : Y ~ Z
is a Michael pair for @ : Y ~» Z if ¢ is compact-valued and ls.c., ¢ is
compact-valued and u.s.c., and ¢(y) C ¢¥(y) C @(y) for every y € Y.

The following result provides a complete affirmative solution to [11, Prob-
lem 1515].

COROLLARY 4.3. Let (Z, p) be a metric space, Y a paracompact C-space,
and @ ;'Y ~~ Z an l.s.c. mapping such that each ®(y), y € Y, is infinite
and p-complete. Then @ has a Michael pair (p,v) : Y ~» Z such that &(y) \

V(y) # O for everyy €Y.
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Proof. By Corollary 4.1, there is a closed-graph mapping 6 : Y ~~ Z
such that @(y) N6(y) # 0 # P(y) \ O(y) for every y € Y. Define ¥ : Y ~~ Z
by Graph(¥) = (Y x Z) \ Graph(€). Then, by the properties of 6, we have
D(y) N (y) # 0 for every y € Y. Also, @ has closed and p-complete values.
Hence, by Proposition 4.2, there exists a closed-valued 1.s.c. mapping Py :
Y ~» Z such that $g(y) C &(y) N¥(y) for every y € Y. Then Py also has
p-complete values and, by a result of [16], it has a Michael pair (¢, ). This
(p, 1) is as required. =

We conclude this section with the following further application of The-
orem 1.1 that sheds some light on [11, Problem 1516].

COROLLARY 4.4. Let (Z,p) be a metric space, Y a paracompact C-space,
and @ :Y ~ Z an l.s.c. mapping such that each ®(y), y € Y, is infinite and
p-complete. Then @ has Michael pairs (i, ;) : Y ~ Z, i = 0,1, such that

Yo(y) N1(y) =0 for everyy €Y.

Proof. According to Corollary 4.3, @ has a Michael pair (pg, %) : Y ~ Z
such that @(y) \ ¢¥o(y) # 0 for every y € Y. Note that 1)y has a closed-graph,
being u.s.c. Then, just in the proof of Corollary 4.3, there exists a Michael
pair (¢1,1¢1) : Y ~» Z for @ such that ¢1(y) C @(y) \ Yo(y), y € Y. These
(pi, i), 1 = 0,1, are as required. m

5. Open maps looking like projections. A continuous map f: X —
Y has dimension < k if all fibers of f have dimension < k. A continuous
map f: X — Y is light if it is 0-dimensional.

Suppose that f : X — Y is a surjective map. A subset F' C X will be
called a section for f if f(F) =Y. In particular, we shall say that a section
F for f is open (closed) if F is an open (respectively, closed) subset of X.
Let £2(f) and .#(f) be the sets of all open (respectively, closed) sections
for f.

In this section, we prove the following factorization theorem which is a
partial generalization of [7, Theorem 1.1]. It provides a complete affirmative
solution to [11, Problem 1512].

THEOREM 5.1. Let (X, d) a metric space, Y a paracompact C-space, and
f: X =Y an open continuous surjection with each fiber dense in itself and
d-complete. Then for every U € (2(f) there exists H € % (f) with H C U,
a continuous surjective map g : X — Y x 1, and a copy € C 1 of the Cantor
set such that

(a) f=Pyog, where Py : Y x1 —Y is the projection.
(b) g(H) =Y x1 and each g1 (y,c)N H, (y,c) € Y x €, is compact and
0-dimensional.
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In particular, He = HN g~ (Y x €) € .Z(f) and f]Hg is a light map with
compact fibers.

To prepare for the proof of Theorem 5.1, we need several statements.

PROPOSITION 5.2. Let (X,d) be a metric space, Y a paracompact C'-
space, and f: X — Y an open continuous surjection with each fiber dense
in itself and d-complete. Then for every U € 2(f) there are disjoint open
sections Uy, Uy € 2(f) such that U; C U, i =0, 1.

Proof. Endow U with the compatible metric

1 1
p(x,y)Zd(x,y)+ d( - $,y€U.

2, X\U) dy, X\U)|

Next, define an l.s.c. mapping @ : Y ~ U by &(y) = f1(y) NU, y € Y.
Then each &(y), y € Y, is infinite and p-complete in U because each fiber of
f is dense in itself and d-complete. Hence, by Corollary 4.4, @ has compact-
valued u.s.c. multiselections g, : Y ~» U such that 1g(y) N1 (y) = 0 for
every y € Y. In fact, ¥g and 11 are compact-valued and u.s.c. as mappings
from Y into the subsets of X. Hence, each F; = |J{¢i(y) :y € Y}, i=0,1,
is a closed subset of X, with F; C U and f(F;) =Y. Since Fy N Fy = 0,
we can take disjoint open sets Uy, U; C X such that F; ¢ U; C U; C U,
1=0,1. m

For convenience, all metrics on metrizable spaces other than the real line
will be implicitly assumed to be bounded by 1. Let (X, d) be a metric space
and A C X a nonempty subset. Whenever ¢ > 0, let

BY(A)={z € X :d(z, A) < }.
For every such A C X we define
tdg(A) = sup{diam4(C) : C' C A is connected},
§(A) = inf{e > 0: A c BL(S) for some finite S C A}.
Finally, for a surjective map f: X — Y and a section U € £2(f), let
tda(U, f) = sup{tda(f ' (y) NU) : y € Y},
meshy(U, f) = sup{d(f~1(y)NU):y €Y}
LEMMA 5.3. Let (X,d) be a metric space, Y a paracompact C-space,

and f: X —'Y an open continuous surjection. Then, for every e > 0, each
G € 2(f) contains an U € 2(f) with meshy(U, f) < e and tdg(U, f) < e.

Proof. Let e > 0 and G € Q(f). For any y € Y and n < w, take an open
subset W' C G such that y € f(W}) and diamy(W}') < e- 2-(+1) Since f
is open, each family %, = {f(W;') : y € Y}, n < w, is an open cover of Y.
Since Y is a paracompact C-space, there now exists a sequence {¥;, : n < w}
of pairwise disjoint open families of Y such that each ¥, refines #;,, n < w,
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and ¥ = | J{7, : n < w} is a locally finite cover of Y. For convenience, for
every n < w, define amap p, : %, — Y by V C f(W;Ln(V)), V € ¥, and set

Up, vy = fHV)N W) vy~ We are going to show that

U:U{Upn(V) Ve, and n <w}

is as required. Since ¥ is a cover of Y, U is a section for f, and clearly it
is open. For any y € Y, set ¥, = {V € ¥ : y € V}. Then ¥, is finite and
|7, N 7] < 1 for every n < w because each family 7, n < w, is pairwise
disjoint. Hence, we can enumerate the elements of %, as {V;, : k € K(y)} so
that Vi € ¥, k € K(y), where K(y) = {n < w : “// N ¥, # 0}. Next, set

Uk = Upk(Vk)’ ke K(y) Since

(5.1) diamg(Uy) < e-2~* ) for every k € K(y),

f~Yy)NU c B4(S) for every finite set S C f~1(y) NU with SN U}, # () for
all k € K(y). Thus, §(f~*(y) NU) < &, which implies that meshy(U, f) < e.

To show finally that tdy(U, f) < e, take a nonempty connected subset
C C f~Y(y)NU and points z, z € C. Since C is connected and C' C [ J{Uy :
k € K(y)}, there is a sequence ki, ..., ky, of distinct elements of K (y) such
that « € Uy,, z € Uy,,, and Uy, NUy; # 0 if and only if [i — j| < 1 (see [5,
6.3.1]). Therefore, by (5.1),

d(z,z) < Zdiamd(Uk Z diamgy(Uy)

i=1 keK(y
< Z g.2 (kD) . 22 (k+1) =e.
keEK (y)

Consequently, diamy(C') < e, which completes the proof. m

A partially ordered set (7', <) is called a tree if the set {s € T : s < t}
is well-ordered for every ¢t € T. Here, “s < t” means that s < ¢ and s # t.
A chain 1 in a tree (T, <) is a subset n C T" which is linearly ordered by <.
A maximal chain 7 in T is called a branch in T. Let A(T') denote the set of
all branches in T'. Following Nyikos [18], for every t € T, we set

(5.2) Ut)={peAB(T):teps}

and Z(T) = {U(t) : t € T}. It is well-known that % (T) is a base for a
non-Archimedean topology on Z(T) (see [18, Theorem 2.10]). In fact, one
can easily see that s < ¢ if and only if U(t) C U(s), while s and ¢ are
incomparable if and only if U(s) N U(t) = . We will refer to B(T) as a
branch space if it is endowed with this topology.
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For a tree (T, <), let T'(0) be the set of all minimal elements of T'. Given
an ordinal «, if T'(3) is defined for every 8 < «, then we let

Tla = {T(8): 8 < a},

and we will use T'(«) to denote the minimal elements of 7"\ (T'[«r). The set
T(«) is called the ath level of T. The height of T is the least ordinal « such
that T'Ta = T. In particular, we will say that T is an a-tree if its height
is . Finally, we can also define the height of an element ¢t € T, denoted by
ht(t), which is the unique ordinal « such that ¢ € T'(«).

In fact, we will be mainly interested in w-trees, and the following real-
ization of the Cantor set as a branch space. Let S be a set with at least two
elements, S™ be the set of all maps t : n — S (i.e., the nth power of S), and
let

S = L_J{S”‘*'1 ‘n < wh.

Whenever t € S<¢ let dom(t) be the domain of t. Consider the partial order
=< on S<¥ defined for s,t € S<¥ by s <t if and only if

dom(s) C dom(t) and t[dom(s)=s.

Then, (S<¥, <) is an w-tree whose branch space %(S<“) is the Baire
space S“. In particular, #(2<%¥) is the Cantor set 2%.

By Proposition 5.2 and Lemma 5.3, using induction on the levels of the
tree (2<¥, <), we get the following immediate consequence.

COROLLARY 5.4. Let (X,d), Y, f: X — Y and U € Q(f) be as in
Theorem 5.1. Then there exists a map h : 2<% — Q(f) such that, for any
distinct s, t € 2<%,

(a) h(t) C h(s) C U if s <t,
(b) h(s)Nh(t) =0 if s and t are incomparable,
(c) meshy(h(t), f) < 2720 and tdg(h(t), f) < 27O,

We first prove the following special case of Theorem 5.1.

LEMMA 5.5. Let (X,d),Y, f: X =Y and U € 2(f) be as in Theorem
5.1. Then there exists H € F(f) with H C U and a surjective light map
{: H—Y x & with compact fibers such that f[H = Py o {. In particular,
fTH is also a light map with compact fibers.

Proof. Let h : 2<% — 2(f) be as in Corollary 5.4. For any n < w,
consider the nth level of the tree (2<%, <), which is, in fact, 2"*1. Set H,, =
h(2"Y), n < w, and H = N{H, : n < w}. By Corollary 5.4(a), H,+1 C
H, C U for every n < w because each level of 2<% is finite. Hence, H is a
closed subset of X, with H C U.

Let us see that H is a section for f. Indeed, pick y € Y and a branch

B € B(2<%). Then each Hy(y) = h(t) N f~(y), t € 3, is a nonempty subset

= —
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of f71(y) (because h(t) € £2(f)) such that H;(y) C Hs(y) for s < t (by
Corollary 5.4(a)) and limycg 6(H(y)) = 0 (by Corollary 5.4(c)). Hence, by
[7, Lemma 3.2], Hg(y) = ({H:(y) : t € B} is a nonempty compact subset
of X. Clearly, Hz(y) C HN f~!(y), which completes the verification that H
is a section for f.

In fact, this defines a compact-valued mapping ¢ : Y x #B(2<%) ~» H by
letting ¢(y, 8) = Hs(y) = N{h(t) N f~(y) : t € B} for (y,8) € Y x B(2<).
Since ¢(y,8) C f~l(y) for (y,8) € Y x %B(2<¥), the mapping ¢ is the
inverse /=1 of a surjective single-valued map ¢ : H — Y x Z(2<%). Also,
{(z) = (y,B) if and only if z € ¢(y,3) C f~(y), hence fI|H = Py o /.

To show that ¢ is continuous and light, take an open set V C Y and
t € 2<¥ and let U(t) be as in (5.2). Then h(t) is an open set in X such
that, by Corollary 5.4(b), £~1(y, ) = ¢(y,3) C h(t) if and only if t € 3
(i.e., B € U(t)). Consequently, £~1(V x U(t)) = f~1(V) N h(t) N H is open
in H. Finally, take a nonempty connected subset C' C £~1(y, 3) = o(y,3)
for some y € Y and a branch 3 € %(2<%). Then C C h(t) N f~(y) for
every t € 3, and therefore, by Corollary 5.4(c), diamy(C') = 0. Hence, C is
a singleton, which implies that ¢=!(y, 3) is 0-dimensional, being compact.

To show finally that f[H is a light map with compact fibers, pick y € Y
and observe that £(f~!(y)NH) is perfect. Indeed, take a branch 3 € Z(2<%)
and a neighbourhood W of £=1(y, 3) in X. Then, by [7, Lemma 3.2], there
exists t € B with Hy(y) = h(t) N f~1(y) € W. In this case, {1 (y,7) C W
for every v € U(t), where U(t) is as in (5.2). Namely, v € U(¢) implies that
t € , and therefore (=1 (y,v) C Hy(y) C W. Thus, £](f~*(y) N H) is perfect
and f~1(y)NH = (71 ({y} x B(2<¥)) is compact because so is Z(2<%). Since
PB(2<¥) is zero-dimensional and ¢ is a light map, according to the classical
Hurewicz theorem (see [6]), this also implies that dim(f~'(y) N H) = 0,
which completes the proof. m

Proof of Theorem 5.1. We repeat the arguments of [2, Theorem 1].
Briefly, let (X,d), Y, f: X — Y and U € (f) be as in Theorem 5.1.
By Lemma 5.5, there exists H € % (f) with H C U and a continuous sur-
jective map £ : H — Y x € such that f[H is a light map with compact
fibers, and f[|H = Py o £. Take a continuous surjective map p : € — I such
that the set

D={tcl:|p7'(t)>1}

is countable. Also, let Py : Y X € — € be the projection. Then, using the
Tietze—Urysohn theorem, extend p o Py o £ to a continuous map u : X — I.
In this way, we have

u(fH(y)NH)=1 foreveryycY.
Then we can define our g : X — Y x I by g(x) = (f(z),u(z)), z € X. As
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for the second part of Theorem 5.1, take a copy € of the Cantor set in I'\ D,
which is possible because D is countable. Then, by the properties of p, we
have g~ (Y x {c}) N H = (=YY x {c}) for every c € €. Hence, Lemma 5.5
completes the proof. m

We finish this paper with some applications of Theorem 5.1. For a space
X, let Z(X) be the set of all nonempty closed subsets of X. Recall that the
Vietoris topology Ty on % (X) is generated by all collections of the form

(7/>:{SE?(X):SCU”f/andSﬂV;é@WheneverVG”f/},

where ¥ runs over the finite families of open subsets of X. In what follows,
any subset 2 C .7 (X) will carry the relative Vietoris topology 1y as a
subspace of (Z(X),7y). In fact, we will be mainly interested in the subset

F(f)={He7(X): f(H)=Y}
of all closed sections of a surjective map f: X — Y.

COROLLARY 5.6. Let (X, d) be a metric space, Y a paracompact C-space,
and f: X — 'Y an open continuous surjection with each fiber dense in itself
and d-complete. Then the set

ZL(f)={H € Z(f): fIH is a light map with compact fibers}
is dense in F(f) with respect to the Vietoris topology Ty .

Proof. Take a closed section F' € Z(f) and a finite family % of open
subsets of X with F' € (%). Then U = |J% is an open section for f, so, by
Theorem 5.1, it contains a closed section H C U such that f[H is a light
map with compact fibers. Take a finite set S € (%), and then set Z = HUS.
Clearly, Z € Z(f) N (%), which completes the proof. =

PRroPOSITION 5.7. Whenever Y is a metrizable space, there ezists a
closed 0-dimensional subset A C'Y x € such that Py(A) =Y, where Py :
Y x € =Y s the projection.

Proof. We follow the idea of [22, Lemma 4.1]. Fix a 0-dimensional metriz-
able space M and a perfect surjective map h: M — Y. By [19, Proposition
9.1], there exists a continuous map ¢g: M — @, where @ is the Hilbert cube,
such that the diagonal map h A g: M — Y x @Q is an embedding. Next,
take a Milyutin map p: € — (@, i.e. a surjective continuous map admit-
ting an averaging operator between the function spaces C(€) = C*(¢) and
C(Q) = C*(Q) (see [20]). According to [3], there exists a compact-valued
L.s.c. mapping ¢: @ ~ € such that p(z) C p~1(z) for all z € Q. By Michael’s
0-dimensional selection theorem [14], there is a continuous map ¢: M — €
with £(z) € ¢(g(x)) for any x € M. Then h Al embeds M as a closed subset
A of Y x €. Obviously, A is 0O-dimensional and Py (4A) =Y. n
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COROLLARY 5.8. Let X be a metrizable space, Y a metrizable C-space,
and f : X —Y an open continuous perfect surjection with each fiber dense
wn itself. Then the set

Folf) = {H € Z(f)  dim(H) = 0}
is dense in F (f) with respect to the Vietoris topology Ty .

Proof. Take a closed section F' € .Z(f), and a finite family % of open
subsets of X with F' € (%). Then U = |J % is an open section for f, so, by
Theorem 5.1, there exists H € .#(f) with H C U, a continuous surjective
map g : X — Y X1, and a copy € C I of the Cantor set such that f = Py og,
g(H) =Y xTand f[(HNg 'Y x @)) is a light map. By Proposition 5.7,
Y x € contains a closed 0-dimensional set A with Py (A) =Y. Finally, take
B = HnNg '(A), which is a closed section for f because Py (A) =Y. Since
f is perfect, so is g. Hence, g[ B is a perfect light map, and according to the
classical Hurewicz theorem, dim(B) = 0. Then Z = BU S € %y(f) N (%)
for some (every) finite set S € (%). »

Let us remark that Corollary 5.8 is related to a result of Levin and
Rogers [13, Theorem 1.2] asserting that under the additional assumption of
compactness of X the set .Zy(f) is a dense Gg-subset of .Z (f) with respect
to the Vietoris topology. Indeed, the Gs-property of Z#y(f) for a compact
metric space X follows by routine arguments, regardless of the properties
of Y.
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