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Proper actions of locally compact groups
on equivariant absolute extensors

by

Sergey Antonyan (México)

Abstract. Let G be a locally compact Hausdorff group. We study equivariant abso-
lute (neighborhood) extensors (G-AE’s and G-ANE’s) in the category G-M of all proper
G-spaces that are metrizable by a G-invariant metric. We first solve the linearization
problem for proper group actions by proving that each X ∈ G-M admits an equivariant
embedding in a Banach G-space L such that L\{0} is a proper G-space and L\{0} ∈ G-AE.
This implies that in G-M the notions of G-A(N)E and G-A(N)R coincide. Our embedding
result is applied to prove that if a G-space X is a G-ANE (resp., a G-AE) such that all
the orbits in X are metrizable, then the orbit space X/G is an ANE (resp., an AE if, in
addition, G is almost connected). Furthermore, we prove that if X ∈ G-M then for any
closed embedding X/G ↪→ B in a metrizable space B, there exists a closed G-embedding
X ↪→ Z (a lifting) in a G-space Z ∈ G-M such that Z/G is a neighborhood of X/G (resp.,
Z/G = B whenever G is almost connected). If a proper G-space X has metrizable orbits
and a metrizable orbit space then it is metrizable (by a G-invariant metric).

1. Introduction. In order to extend the theory of compact transfor-
mation groups to locally compact ones, in 1961 R. Palais [42] introduced
the fundamental concept of a proper action of an arbitrary locally compact
group G on a completely regular Hausdorff space X. Among other important
results he established, under the assumption that G is a Lie group, the re-
markable fact of existence of a slice at every point x ∈ X; this means that the
orbit G(x) is a G-equivariant neighborhood retract of X. In general, when
G is not a Lie group, it is no longer true that a slice exists at each point
of X (see [7]). However, for arbitrary locally compact (non-Lie) groups, an
approximate version of Palais’ slice theorem holds true [14, Theorem 3.5].

We recall that an action of a locally compact Hausdorff group G on
a completely regular Hausdorff space X is said to be proper [42, Defini-
tion 1.2.2] if every point x ∈ X has a neighborhood Vx such that for any point
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y∈X there exists a neighborhood Vy with the property that the set 〈Vx, Vy〉=
{g ∈ G | gVx ∩ Vy 6= ∅} has compact closure in G. In this case X is called
a proper G-space. Clearly, if G is compact, then every G-space is proper.

In this paper, in particular, we are interested in extending some funda-
mental results of the equivariant theory of retracts from the case of com-
pact group actions to the case of proper actions of arbitrary locally compact
groups.

The passage to the locally compact (non-Lie) case is nontrivial and is
based on the above mentioned approximate slice theorem from [14]. It turns
out that for purposes of the equivariant theory of retracts the approximate
slice theorem is needed rather than the “exact” slice theorem.

Based on this theorem, we first establish in Section 3 two equivariant
embedding results which solve the linearization problem for proper actions
of locally compact groups. Namely, Theorem 3.1 states that every invariantly
metrizable proper G-space X embedds equivariantly into a Banach G-space
L such that L \ {0} is a proper G-space and a G-AE. This embedding,
in general, is not closed. However, Theorem 3.2 states that X admits an
equivariant closed embedding in a proper G-AE space of the form E \ D,
where D is an invariant closed linear subspace of a normed linear G-space
E, and D is a Z-set in E (see Remark 3.3). An immediate corollary is that
an invariantly metrizable proper G-space is a G-A(N)R iff it is a G-A(N)E
(see Corollary 3.10).

The first embedding results for proper G-spaces are due to Palais [42].
He proved that if G is a matrix group and X a finite-dimensional separable
metrizable proper G-space having only finitely many orbit types, then X
admits a G-equivariant embedding in a linear G-space L of finite dimension.
In the same paper of Palais it is proved that if G is any Lie group and
X a separable metrizable proper G-space, then X admits a G-equivariant
embedding in a real Hilbert G-space L, where the action is by means of
linear orthogonal operators. However, in his constructions Palais did not
care about the proper part of the ambient G-space L. In [24] E. Elfving
improved this result of Palais by proving that if, in addition, G is a linear
Lie group and X is locally compact, then the relevant G-embedding X ↪→ L
may be arranged to be closed and such that the G-action is proper on some
invariant neighborhood of X in L.

In Section 7 we prove Theorem 7.1 which is the most general (in fact,
final) result about preservation of equivariant extension properties by the
orbit space functor. Its particular case (Corollary 7.2) states that if G is
a locally compact group and X any G-ANE in which all the orbits are
metrizable, then the orbit space X/G is an ordinary ANE. If, in addition,
G is almost connected and X a G-AE, then X/G is an AE. The very first
result of this sort (see Theorem 2.6 below) was established in [6] for actions
of compact metrizable groups on metrizable spaces. Recently it was widely
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applied in the study of the topology of Banach–Mazur compacta (see [9],
[11] and [13]). Other applications can be found in [6], [18] and [45].

The proof of Theorem 7.1 is based on the results of Sections 4–6 which
are also of independent interest. In Section 4 we first prove Theorem 4.1, a
particular case of Theorem 7.1 when X is an invariantly metrizable proper
G-space. Based on this result, in Section 5 we prove Theorem 5.1, devoted
to equivariant liftings of closed embeddings. Its particular case states that if
G is a locally compact (resp., almost connected) group and X an invariantly
metrizable proper G-space, then for every closed embedding X/G ↪→ B in
a metrizable space B, there exists an equivariant closed embedding X ↪→ Z
(a lifting of X/G ↪→ B) in an invariantly metrizable proper G-space Z such
that Z/G is a neighborhood of X/G in B (resp., Z/G = B). This result is
an important component of the proof of Theorem 7.1.

Theorem 6.1 of Section 6, which is another ingredient of the proof of The-
orem 7.1, generalizes a well known result of B. A. Pasynkov [43, Theorem 2]
and V. V. Filippov [28, Theorem] to the case of noncompact group actions.
It asserts that if G is a locally compact group, then each proper G-space
with metrizable orbits and metrizable orbit space is necessarily metrizable
(by a G-invariant metric).

In Section 8 we prove some auxiliary algebraic results about almost con-
nected groups and their maximal compact subgroups which we have used in
the preceding sections.

2. Preliminaries. Throughout the paper the letter G will denote a
locally compact Hausdorff group unless otherwise stated; by e we shall denote
the unity of G.

All topological spaces and topological groups are assumed to be com-
pletely regular and Hausdorff. The basic ideas and facts of the theory of
G-spaces and topological transformation groups can be found in Bredon
[21] and in Palais [41]. Our basic references on proper group actions are
Palais [42], Koszul [37] and Abels [1], [2]. For the equivariant theory of re-
tracts the reader can see, for instance, [4]–[6] and [14].

For the convenience of the reader we recall, however, some definitions
and facts.

By a G-space we mean a topological space X together with a fixed con-
tinuous action G×X → X of a topological group G on X. By gx we denote
the image of the pair (g, x) ∈ G×X under the action.

If Y is another G-space, a continuous map f : X → Y is called a G-map
or an equivariant map if f(gx) = gf(x) for every x ∈ X and g ∈ G. If G
acts trivially on Y then we use the term “invariant map”.

By a normed linear G-space (resp., a Banach G-space) we mean a G-
space L, where L is a normed linear space (resp., a Banach space) on which
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G acts by means of linear isometries, i.e., g(λx + µy) = λ(gx) + µ(gy) and
‖gx‖ = ‖x‖ for all g ∈ G, x, y ∈ L and λ, µ ∈ R.

If X is a G-space and H a subgroup of G then, for a subset S ⊂ X,
H(S) denotes the H-saturation of S, i.e., H(S) = {hs | h ∈ H, s ∈ S}. In
particular, H(x) denotes the H-orbit {hx ∈ X | h ∈ H} of x. The quotient
space of all H-orbits is called the H-orbit space and denoted by X/H.

If H(S) = S, then S is said to be an H-invariant set. A G-invariant set
will simply be called an invariant set.

For a closed subgroup H ⊂ G, we will denote by G/H the G-space of
cosets {gH | g ∈ G} under the action induced by left translations.

If X is a G-space and H a closed normal subgroup of G, then the H-
orbit space X/H will always be regarded as a G/H-space endowed with
the following action of G/H: (gH) ∗ H(x) = H(gx) for gH ∈ G/H and
H(x) ∈ X/H.

For any x ∈ X, the subgroup Gx = {g ∈ G | gx = x} is called the
stabilizer (or stationary subgroup) at x. For a subgroup H ⊂ G, the set
XH = {x ∈ X | H ⊂ Gx} is called the H-fixed point set of X.

A compatible metric ρ on a G-space X is called invariant or G-invariant
if ρ(gx, gy) = ρ(x, y) for all g ∈ G and x, y ∈ X.

A locally compact group G is called almost connected if the space of
connected components of G is compact. Such a group has a maximal compact
subgroup K, i.e., every compact subgroup of G is conjugate to a subgroup
of K [1, Theorem A.5]. The corresponding classical theorem on Lie groups
can be found in [30, Ch. XV, Theorem 3.1].

Let X be a G-space. Two subsets U and V in X are called thin relative
to each other [42, Definition 1.1.1] if the set 〈U, V 〉 = {g ∈ G | gU ∩ V 6= ∅}
(called the transporter from U to V ) has compact closure in G. A subset U
of a G-space X is called small if every point in X has a neighborhood thin
relative to U . A G-space X is called proper (in the sense of Palais) if every
point in X has a small neighborhood.

Clearly, if G is compact, then every G-space is proper. Furthermore, if
G acts properly on a compact space, then G has to be compact as well. If
G is discrete and X is locally compact, the notion of a proper action is the
same as the classical notion of a properly discontinuous action. When G = R,
the additive group of the reals, proper G-spaces are precisely the dispersive
dynamical systems with regular orbit space (see [20, Ch. IV]).

Each orbit in a proper G-space is closed, and each stabilizer is com-
pact [42, Proposition 1.1.4]. It is easy to check the following two statements:
(1) the product of two G-spaces is proper whenever one of them is; (2) the
inverse image of a proper G-space under a G-map is again a proper
G-space.
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Important examples of proper G-spaces are the coset spaces G/H with
H a compact subgroup of a locally compact group G. Other interesting
examples can be found in [1], [2], [9], [24], [25], [33] and [37].

In the present paper we are especially interested in the class G-M of
all metrizable proper G-spaces that admit a compatible G-invariant metric;
we call them invariantly metrizable G-spaces. It is well-known that, for G
a compact group, the class G-M coincides with the class of all metrizable
G-spaces (see [41, Proposition 1.1.12]). A fundamental result of R. Palais [42,
Theorem 4.3.4] states that if G is a Lie group, then G-M includes all sepa-
rable metrizable proper G-spaces. The question of whether the separability
can be omitted in this result of Palais still remains open (even for G = R
and G = Z). We refer to [17] for a further discussion of this interesting
problem.

Another important subclass of G-M is formed by the twisted products
G×K S, where G is a locally compact metrizable group, K a compact sub-
group of G, and S a metrizable K-space (see [12, Lemma 1.1]). It is known
from [1, Main Theorem] that if G is almost connected, then each X ∈ G-M
has the form G×K S, where K is a maximal compact subgroup of G, and S
is a K-space.

Let us recall that if K is a closed subgroup of G, and S is a K-space,
then G ×K S is the orbit space of the K-space G × S on which K acts by
k(g, s) = (gk−1, ks). Furthermore, there is a natural action of G on G×K S
given by g′[g, s] = [g′g, s], where g′ ∈ G and [g, s] denotes the K-orbit of
(g, s) in G×S. The twisted products are of particular interest in the theory
of transformation groups (see [21, Ch. II, § 2]).

A G-space Y is called an equivariant neighborhood extensor for a given
G-space X (notation: Y ∈ G-ANE(X)) if, for any closed invariant subset
A ⊂ X and any G-map f : A→ Y , there exist an invariant neighborhood U
of A in X and a G-map ψ : U → Y such that ψ|A = f . If, in addition, one
can always take U = X, then we say that Y is an equivariant extensor for
X (notation: Y ∈ G-AE(X)). The map ψ is called a G-extension of f .

A G-space Y is called an equivariant absolute neighborhood extensor for
the classG-M (notation: Y ∈ G-ANE) if Y ∈ G-ANE(X) for anyX ∈ G-M.

Similarly, if Y ∈ G-AE(X) for any X ∈ G-M, then Y is called an
equivariant absolute extensor for the class G-M (notation: Y ∈ G-AE).

A G-space Y ∈ G-M is called a G-equivariant absolute neighborhood
retract (for the class G-M) (notation: Y ∈ G-ANR), provided that for any
closed G-embedding Y ↪→ X in a G-space X ∈ G-M, there exists a G-
retraction r : U → Y , where U is an invariant neighborhood of Y in X. If, in
addition, one can always take U = X, then we say that Y is a G-equivariant
absolute retract (notation: Y ∈ G-AR).
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We note that, in general, a metrizable G-ANE space Y need not be a
G-ANR, because it may not belong to the class G-M. But if Y ∈ G-M and
Y ∈ G-ANE, then clearly Y ∈ G-ANR. The converse is also true: for G
almost connected this was proved in [10, Remark 5], and the general case is
handled in Corollary 3.10 of Section 3.

Let us recall the well known definition of a slice [42, p. 305]:

Definition 2.1. Let X be a G-space and H a closed subgroup of G. An
H-invariant subset S ⊂ X is called an H-slice in X if G(S) is open in X and
there exists a G-equivariant map f : G(S) → G/H such that S=f−1(eH).
The saturation G(S) is called a tubular set.

If G(S) = X, then we say that S is a global H-slice of X.

One of the most powerful results in the theory of topological transforma-
tion groups states (see [42, Proposition 2.3.1]) that if X is a proper G-space
with G a Lie group, then for any x ∈ X, there exists a Gx-slice S in X with
x ∈ S. This is no longer true when G is not a Lie group (see [7]). Generalizing
the case of Lie group actions, in [14] the following approximate version of
Palais’ Slice Theorem [42, Proposition 2.3.1] for non-Lie group actions was
proved, which plays a key role in the proof of Theorem 6.1:

Theorem 2.2 (Approximate Slice Theorem [14]). Let G be a locally com-
pact group, X a proper G-space, and x ∈ X. Then for any neighborhood O
of x in X, there exist a compact large subgroup K ⊂ G with Gx ⊂ K and a
K-slice S such that x ∈ S ⊂ O.

For G compact this theorem was proved in [7]. A version of it, without
requiring K to be a large subgroup, was obtained in [2].

We recall that a closed subgroup H ⊂ G is called large if there exists a
closed normal subgroup N ⊂ G such that N ⊂ H and G/N is a Lie group.

The quotient space G/H is metrizable for every large subgroup H ⊂G;
this follows from the evident homeomorphism G/H ∼= G/N

H/N (see [14, Propo-
sition 4.2]). We shall use this fact in the proof of Theorem 6.1.

Furthermore, it was established in [14] that for a compact subgroup H ⊂
G the following properties are equivalent: (1) H is a large subgroup; (2) G/H
is a metrizable G-ANE space; (3) G/H is locally contractible; (4) G/H is G-
homeomorphic to a smooth G-manifold on which G acts by diffeomorphisms
(see also [7], [10]).

Observe that every maximal compact subgroupK of an almost connected
group G is large. Indeed, Glushkov [29, Theorem 8] proved that each neigh-
borhood of the unity of G contains a compact normal subgroup N such that
G/N is a Lie group. By maximality of K one has N ⊂ K, as required.

Lemma 2.3 ([1]). Let H be a compact subgroup of G, X a proper G-
space, and f : X → G/H a G-map. Let S = f−1(eH). Then the map
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ξ : G ×H S → X defined by ξ([g, s]) = gs is a G-homeomorphism, and
ξf = p, where the G-map p : G×H S → G/H is given by p([g, s]) = gH for
any [g, s] ∈ G×H S.

Proposition 2.4 ([10]). Let G be an almost connected group. Then for
a closed subgroup H ⊂ G, the following conditions are equivalent :

(1) H is a maximal compact subgroup of G;
(2) G/H is a metrizable G-AE(X) for every paracompact proper G-space

X whose orbit space X/G is paracompact.

Lemma 2.5. Let H be a maximal compact subgroup of G. Assume that
A is a closed invariant subset of a G-space X ∈ G-M, and S is a global
H-slice of A. Then there exists a global H-slice S̃ in X such that S̃ ∩A = S.

Proof. Let f : A→ G/H be a G-map with f−1(eH) = S. Since X ∈ G-
M, the orbit space X/G is metrizable, and hence paracompact. Conse-
quently, Proposition 2.4(2) yields a G-extension F : X → G/H. It is easy to
see that S̃ = F−1(eH) is the desired global H-slice.

Theorem 2.6 ([6], [10]). Let G be a compact group, H a closed normal
subgroup of G, and X a G-AR (respectively , a G-ANR). Then X/H is a
G/H-AR (respectively , a G/H-ANR).

We refer to [6, Theorem 8] and [10, Theorem 1] for the details.

3. Equivariant embeddings into proper G-AE spaces. Recall that
the acting group G is always assumed to be locally compact unless otherwise
stated.

In this section we are going to prove the following two equivariant em-
bedding results which solve the linearization problem for proper actions of
locally compact groups:

Theorem 3.1. For each G-space X ∈ G-M, there exist a Banach G-
space L and a G-embedding f : X ↪→ L \ {0} such that L \ {0} is a proper
G-space and L \ {0} ∈ H-AE for any closed subgroup H of G.

For purposes of the equivariant theory of retracts and equivariant shape
theory it is important to have a G-embedding f as in the previous theorem
which, in addition, is a closed map. This is achieved in the following

Theorem 3.2. For each G-space X ∈ G-M, there exist a Banach G-
space L, a normed linear space N , and a closed G-embedding f : X ↪→
(L\{0})×N such that (L\{0})×N is a proper G-space and (L\{0})×N ∈ H-
AE for any closed subgroup H of G.

Remark 3.3. One can observe that in contrast to Theorem 3.1, in The-
orem 3.2 the “nonproper part” of the ambient G-space E = L ×N is not a
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point, but an entire G-invariant linear subspace D = {0} × N of E. How-
ever, D is a Z-set in E, i.e., for every ε > 0 there exists a continuous map
f : E → E \ D such that ‖f(x) − x‖ < ε for all x ∈ E. Indeed, since L is
infinite-dimensional (as L \ {0} ∈ AE), the one-point set {0} is a Z-set in it,
which implies immediately that D is a Z-set in E.

We notice that in [35] M. Kankaanrinta has proved that if G is a Lie
group then every smooth proper G-manifold admits a smooth G-embedding
as a closed submanifold of some Hilbert G-space.

Below we shall give a sequence of propositions and lemmas culminating
in the proofs of Theorems 3.1 and 3.2.

In what follows we denote by B(x, r) the open ball of radius r centered
at the point x of a given metric space.

In this section we shall repeatedly use the following condition (some sort
of uniform properness) on a normed linear G-space X:

(An) for any nonzero points x, y ∈ X, the balls B(x, ‖x‖/n) and
B(y, ‖x‖/n), n ≥ 1, are relatively thin.

To give a typical example of a normed linear G-space that satisfies (An), we
first recall that a continuous function f : X → R defined on a G-space X is
called G-uniform if for each ε > 0 there is a neighborhood U of the unity of
G such that |f(gx)− f(x)| < ε for all x ∈ X and g ∈ U .

For a proper G-space X we denote by P(X) the linear space of all G-
uniform bounded functions f : X → R whose support supp f = {x ∈ X |
f(x) 6= 0} is a small subset of X. We endow P(X) with the sup-norm and
the following G-action:

(g, f) 7→ gf, (gf)(x) = f(g−1x), x ∈ X.

It is easy to see that P(X) is a normed linear G-space. It will play a central
role in our further constructions.

The following result is implicit in the proof of [3, Proposition 3.1]:

Proposition 3.4. Let X be a proper G-space. Then the G-space P(X)
satisfies condition (A4).

Proof. Let f, h ∈ P(X) \ {0}. To show that the open balls B(f, ‖f‖/4)
and B(h, ‖f‖/4) are relatively thin, fix a small set U in X such that h(x) = 0
whenever x ∈ X \ U . Choose x0 ∈ X such that |f(x0)| > 3‖f‖/4. Since the
transporter 〈{x0}, U〉 has a compact closure in G, it suffices to show that

〈B(f, ‖f‖/4), B(h, ‖f‖/4)〉 ⊂ 〈{x0}, U〉.

To see this, let g ∈ 〈B(f, ‖f‖/4), B(h, ‖f‖/4)〉. Then there is h′ ∈
B(h, ‖f‖/4) such that g−1h′ ∈ B(f, ‖f‖/4). This implies that |h′(gx0)| ≥
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|f(x0)| − ‖f‖/4 and |h(gx0)| ≥ |h′(gx0)| − ‖f‖/4. Thus,

|h(gx0)| ≥ |f(x0)| −
‖f‖
4
− ‖f‖

4
>

3‖f‖
4
− ‖f‖

4
− ‖f‖

4
=
‖f‖
4

> 0.

It follows that gx0 ∈ U , i.e., g ∈ 〈{x0}, U〉, as required.

Proposition 3.5. Let Z be a normed linear G-space that contains a
dense G-invariant linear subspace X satisfying condition (An) for some
n ≥ 1. Then Z \ {0} is a proper G-space.

Proof. For any x ∈ X and r > 0, we denote by B̃(x, r) the open ball in
Z centered at x of radius r.

Fix z ∈ Z \ {0}. Since X is dense in Z, one can choose x ∈ X such that
‖x−z‖ < ‖z‖/(n+1). Then ‖z‖/(n+1) < ‖x‖/n, and hence z ∈ B̃(x, ‖x‖/n).

We claim that B̃(x, ‖x‖/n) is a small set in Z \ {0}. Indeed, for any z′ ∈
Z \ {0}, choose y ∈ X such that ‖y − z′‖ < ‖x‖/n. Then z′ ∈ B̃(y, ‖x‖/n).

Let us check that B̃(x, ‖x‖/n) and B̃(y, ‖x‖/n) are relatively thin. As-
sume that g belongs to the transporter 〈B̃(x, ‖x‖/n), B̃(y, ‖x‖/n)〉. Then
gB̃(x, ‖x‖/n) ∩ B̃(y, ‖x‖/n) 6= ∅. Since X \ {0} is dense in Z \ {0} we infer
that

(3.1) (X \ {0}) ∩ gB̃(x, ‖x‖/n) ∩ B̃(y, ‖x‖/n) 6= ∅.
But

(X \ {0}) ∩ gB̃(x, ‖x‖/n) = gB(x, ‖x‖/n),

(X \ {0}) ∩ B̃(y, ‖x‖/n) = B(y, ‖x‖/n).

Hence, (3.1) reads

gB(x, ‖x‖/n) ∩B(y, ‖x‖/n) 6= ∅,
showing that g ∈ 〈B(x, ‖x‖/n), B(y, ‖x‖/n)〉. Thus, we have proved that

〈B̃(x, ‖x‖/n), B̃(y, ‖x‖/n)〉 ⊂ 〈B(x, ‖x‖/n), B(y, ‖x‖/n)〉.
It remains to observe that 〈B(x, ‖x‖/n), B(y, ‖x‖/n)〉 has a compact closure
in G, by hypothesis.

Below we shall consider the following situation. Let G be any group and
{Ei | i ∈ I} a family of normed linear G-spaces. Denote by E the σ-product
of {Ei | i ∈ I}, i.e., E = {v = (vi) ∈

∏
i∈I Ei | vi 6= 0 for finitely many

i ∈ I}. We consider the following norm on E:

‖v‖ =
∑
i∈I
‖vi‖, where v = (vi) ∈ E.

Proposition 3.6. Let {Ei | i ∈ I} be a family of normed linear G-
spaces such that each Ei satisfies condition (A4). Then the σ-product E of
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{Ei | i ∈ I}, endowed with the diagonal action of G, becomes a normed linear
G-space that satisfies condition (A8).

Proof. To check the continuity of the action of G on E, let ε > 0, u ∈ E
and h ∈ G. Assume that i1, . . . , im are all the indices such that uik 6= 0. By
continuity of the action of G on Eik , k = 1, . . . ,m, one can find a neighbor-
hood O of h in G such that

‖guik − huik‖ < ε/2m for all g ∈ O and k = 1, . . . ,m.

This yields

‖gu− hu‖ =
∑
i∈I
‖gui − hui‖ =

m∑
k=1

‖guik − huik‖ <
m∑
k=1

ε/2m = ε/2

for all g ∈ O.
On the other hand, the action of G on E is isometric, i.e., ‖gv‖ = ‖v‖

for all v ∈ E and g ∈ G.
Consequently, for every g ∈ O and v ∈ B(u, ε/2) one has

‖gv − hu‖ ≤ ‖gv − gu‖+ ‖gu− hu‖
= ‖v − u‖+ ‖gu− hu‖ < ε/2 + ε/2 = ε,

as required.
Now let us check (A8) in E. Fix v = (vi) ∈ E. Assume that i1, . . . , im

are all the indices such that vik 6= 0. Let us check that for every u ∈ E,

(3.2)
〈
B(v, ‖v‖/8), B(u, ‖v‖/8)

〉
⊂

m⋃
k=1

〈
B(vik , ‖vik‖/4), B(uik , ‖vik‖/4)

〉
.

Indeed, let g ∈ 〈B(v, ‖v‖/8), B(u, ‖v‖/8)〉. Then
gB(v, ‖v‖/8) ∩B(u, ‖v‖/8) 6= ∅.

Consequently, there exists z ∈ E with ‖z−v‖ < ‖v‖/8 such that ||gz−u‖ <
||v||/8. These inequalities imply that

m∑
k=1

‖zik − vik‖ <
m∑
k=1

‖vik‖/8,

m∑
k=1

‖gzik − uik‖ <
m∑
k=1

‖vik‖/8.

Summing up these two inequalities we obtain
m∑
k=1

(‖zik − vik‖+ ‖gzik − uik‖) <
m∑
k=1

‖vik‖/4.

Hence, there exists an index 1 ≤ j ≤ m (depending on g) such that

‖zij − vij‖+ ‖gzij − uij‖ < ‖vij‖/4.
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In particular,

‖zij − vij‖ < ‖vij‖/4 and ‖gzij − uij‖ < ‖vij‖/4,

which means that gzij ∈ gB(vij , ‖vij‖/4) ∩B(uij , ‖vij‖/4). Thus,

gB(vij , ‖vij‖/4) ∩B(uij , ‖vij‖/4) 6= ∅,

yielding
g ∈ 〈B(vij , ‖vij‖/4), B(uij , ‖vij‖/4)〉,

as required. Thus (3.2) holds.
Since every Ei satisfies condition (A4), each transporter 〈B(vik , ‖vik‖/4),

B(uik , ‖vik‖/4)〉, k = 1, . . . ,m, has a compact closure in G. By (3.2), so does
〈B(v, ‖v‖/8), B(u, ‖v‖/8)〉, which means that B(v, ‖v‖/8) and B(u, ‖v‖/8)
are relatively thin.

Corollary 3.7. Let {Ei | i ∈ I} and E be as in Proposition 3.6, and
let Ẽ be the completion of E. Then Ẽ \ {0} is a proper G-space.

Proof. Since the action of G on E is isometric, it can be uniquely ex-
tended to an isometric action of G on Ẽ. Let us check the continuity of this
action.

Indeed, let (g0, x0) ∈ G× Ẽ and ε > 0. Choose v0 ∈ E with ‖v0 − x0‖ <
ε/4. By continuity of the action on E, there exists a neighborhood O of g0
in G such that ‖gv0 − g0v0‖ < ε/4. On the other hand,

‖gx− gx0‖ = ‖x− x0‖, ‖gx0 − gv0‖ = ‖x0 − v0‖,
‖g0v0 − g0x0‖ = ‖v0 − x0‖.

Hence

‖gx− g0x0‖ ≤ ‖gx− gx0‖+ ‖gx0 − gv0‖+ ‖gv0 − g0v0‖
+ ‖g0v0 − g0x0‖

= ‖x− x0‖+ ‖x0 − v0‖+ ‖gv0 − g0v0‖+ ‖v0 − x0‖
< ε/4 + ε/4 + ε/4 + ε/4 = ε

whenever g ∈ O and ‖x − x0‖ < ε/4. This proves the continuity of the
action of G on Ẽ, and hence Ẽ is a normed linear G-space. Now it follows
immediately from Propositions 3.5 and 3.6 that Ẽ\{0} is a proper G-space.

Proposition 3.8. Let E be a Banach G-space such that for each compact
subgroup H ⊂ G, the H-fixed point set EH is infinite-dimensional. Then
E \ {0} is a G-AE.

Proof. We aim at applying the following result of Abels [2, Theorem 4.4]:
a G-space T is a G-AE if T is a K-AE for each compact subgroup K ⊂ G.
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In our case T = E\{0}. In order to show that for each compact subgroup
K ⊂ G, E \ {0} is a K-AE, we will apply the following generalization of the
James–Segal Theorem [34, Proposition 4.1]:

Theorem (see [16]). Let K be a compact group and T a K-ANR. Then
T is a K-AR if and only if for every closed subgroup H ⊂ K the set of
H-fixed points TH = {t ∈ T |ht = t, ∀h ∈ H} is contractible.

We continue with the proof of Proposition 3.8. By completeness of E,
the equivariant Dugundji extension theorem, as proved in [4], shows that E
is a K-AR. Hence, E \ {0} is a K-ANR.

Let H ⊂ K be any closed subgroup. Since EH is an infinite-dimensional
normed linear space, according to a result of Klee [36], EH \ {0} is homeo-
morphic to EH , and hence is contractible.

Since (E \ {0})H = EH \ {0} we infer that (E \ {0})H is contractible,
as required. Now the above theorem of [16] implies that E \ {0} is a K-AR,
which completes the proof.

Proof of Theorem 3.1. First we assume that G is not compact. It is
established in the proof of [3, Theorem 3.9] that then there exist normed
linear G-spaces {Ei | i ∈ I} satisfying condition (A4) and a G-embedding
ϕ : X ↪→ E \ {0}, where E is the σ-product of {Ei | i ∈ I}. Recall that the
G-spaces Ei in question are all normed linear G-spaces of the form P(Yi),
considered in Proposition 3.4.

By Corollary 3.7, the completion L of E is a Banach G-space and L\{0}
is a proper G-space. Then the composition f = jϕ,

X
ϕ
↪→ E \ {0}

j
↪→ L \ {0},

is the desired G-embedding, where j : E \ {0} ↪→ L \ {0} is the natural
inclusion.

Now we pass to the property L \ {0} ∈ H-AE for any closed subgroup H
of G. It is established in the proof of [3, Theorem 3.9] that for each compact
subgroup K ⊂ G, the K-fixed point set EK is an infinite-dimensional closed
subspace of E. This implies that LK is also an infinite-dimensional closed
subspace of L. Now it follows from Proposition 3.8 that L \ {0} ∈ H-AE.
This completes the proof in the case of G noncompact.

Next we assume that G is compact. It is known (see [5, Theorem 1])
that X can be G-embedded in L \ {0} for some Banach G-space L (possibly
finite-dimensional). Take an arbitrary infinite-dimensional Banach space Z
(say, Z = `2, the Hilbert space) with the trivial action of G. Then the
map l 7→ (l, 0), l ∈ L, is a G-embedding of L into E = L × Z, which
is an infinite-dimensional Banach G-space. As a result, X is G-embedded
in E \ {0}. By compactness of G, E \ {0} is a proper G-space. On the
other hand, EK = LK × Z for any compact subgroup K ⊂ H, implying
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that EK is an infinite-dimensional Banach space. Now Proposition 3.8 yields
E \ {0} ∈ H-AE.

For the proof of Theorem 3.2 we shall need the following lemma proved
in [3]:

Lemma 3.9. Let f : X → M be a G-map between two proper G-spaces
and let p : X → X/G be the orbit map. Then the image of the diagonal
map ϕ : X → M × (X/G), ϕ(x) = (f(x), p(x)), is a closed invariant subset
of M × (X/G) endowed with the diagonal G-action, where X/G is equipped
with the trivial G-action.

Proof of Theorem 3.2. Let j : X ↪→ L \ {0} be the G-embedding from
Theorem 3.1 and let p : X → X/G be the orbit map. Then the diagonal
product of j and p is a topological embedding

ϕ : X ↪→ (L \ {0})× (X/G)

(see e.g. [26, Theorem 2.3.20]). Clearly ϕ is equivariant.
Next, it follows from Lemma 3.9 that ϕ is a closed embedding. Thus,

one can think of X as a closed invariant subset of (L \ {0}) × (X/G). But
X/G is metrizable (see Section 2), and hence, according to the Arens–Eells
embedding theorem (see e.g. [19, Ch. II, Corollary 1.1]), one can embed X/G
into a normed linear space N as a closed subset.

This generates a closed equivariant embedding of (L \ {0})× (X/G) into
(L \ {0})×N . As a result we get an equivariant closed embedding of X into
(L \ {0}) × N . Since the product of a proper G-space with any G-space is
again a proper G-space we see that (L \ {0})×N is a proper G-space.

By Theorem 3.1, L\{0} ∈ H-AE for any closed subgroup H of G. By the
Dugundji extension theorem [23], N ∈ AE, and hence N endowed with the
trivial H-action is an H-AE (see e.g. [3, Lemma 3.12]). Since the product of
two H-AE spaces is again an H-AE space (this is quite easy to check), we
conclude that (L \ {0})×N ∈ H-AE.

The following result, in a particular case when G is almost connected,
was obtained in [10, Remark 5]; the case when G is a Lie group is treated
also in [3] and [27]:

Corollary 3.10. Let X ∈ G-M. Then X is a G-ANE (respectively ,
a G-AE) if and only if X is a G-ANR (respectively , a G-AR).

Proof. We consider the “G-AR” case only; the “G-ANR” case is quite
similar.

As we noticed in Section 2, if X ∈ G-M and X is a G-AE, then clearly
X is a G-AR. Now suppose that X is a G-AR. Then by Theorem 3.2, one
can think of X as a closed invariant subset of a G-space L ∈ G-M which is
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a G-AE. Since X is a G-AR, it is an equivariant retract of L, which implies
immediately that X is a G-AE.

Corollary 3.11. Let X be a G-ANR (respectively , a G-AR) and H ⊂ G
a closed subgroup. Then X is an H-ANR (respectively , an H-AR).

Proof. We consider the “G-AR” case only; the “G-ANR” case is quite
similar.

By Theorem 3.2, one can think of X as a closed invariant subset of a
proper G-space (L \ {0})×N with L and N as in Theorem 3.2. Since X is
a G-AR, it is a G-equivariant retract (and, in particular, an H-equivariant
retract) of (L \ {0})×N . Since (L \ {0})×N ∈ H-AR we infer that X ∈ H-
AR.

4. Orbit spaces of G-AR spaces. In this section we shall prove the
following special case of Theorem 7.1 which is an essential step in the proof
of the latter:

Theorem 4.1. Let G be a locally compact group and X ∈ G-AR. Assume
that H is an almost connected normal subgroup of G. Then X/H is a G/H-
AE.

We note that almost connectedness of H is essential in this theorem.
Indeed, let G = R, X = R, and H = Z. Then the translation action is a
proper action of G on X, and by [2, Theorem 4.4], X is a G-AE. However,
X/H, being a circle, is not an AE.

Theorem 4.1 just extends Theorem 2.6 to the case of arbitrary locally
compact proper group actions. For its proof we need several auxiliary results.

Proposition 4.2. Let G be an almost connected group, K a maximal
compact subgroup of G, and S a K-space. Then the twisted product G×K S
is a G-AE if and only if S is a K-AE.

Proof. To proove the “if” part, let Z ∈ G-M, C be a closed G-invariant
subset of Z, and f : C → G×KS a G-map. It is well known and easy to check
that f−1(S) is a globalK-slice of C (see e.g. [41, Corollary 1.7.8]). By Lemma
2.5, there is a globalK-slice Y in Z such that Y ∩C = f−1(S). Consequently,
f−1(S) is a closed K-invariant subset of the metrizable K-space Y . Since S
is a K-AE, there exists a K-extension f1 : Y → S of the K-map f |f−1(S) :
f−1(S) → S. Then f1 induces a G-map F : Z = G(Y ) → G ×H S by
F (gy) = gf1(y), where g ∈ G and y ∈ Y (see [22, Ch. I, Proposition 4.3]). If
c ∈ C, then c = gb for some g ∈ G and b ∈ f−1(S), and hence

F (c) = F (gb) = gf1(b) = gf(b) = f(gb) = f(c).

Thus, F extends f , and the proof of the “if” part is complete.
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The “only if” part follows from two facts. The first, [15, Proposition 3.5],
states that G×K S is a G-AE if and only if it is a K-AE (remember that a
maximal compact subgroup is large, as observed in Section 2). The second
fact is that the global K-slice S is a K-equivariant retract of G ×K S; this
follows from a result of Abels [1, Theorem 2.1] according to which G ×K S
is K-homeomorphic to a product T × S endowed with the diagonal action
of K, where T is a finite-dimensional linear K-space. In this case the map
(t, s) 7→ (0, s) is a K-equivariant retraction of T ×S onto {0}×S, which, in
turn, is K-homeomorphic to S.

Lemma 4.3 ([15]). Let G be a locally compact group, H a closed normal
subgroup of G, and K a compact subgroup of G. Then the map

f : KH/H → K/(K ∩H)
defined by

f(kH) = k(K ∩H), where k ∈ K and kH ∈ KH/H,
is a topological isomorphism.

Proposition 4.4. Let G be a locally compact group, H a closed normal
subgroup of G, K a compact subgroup of G, and S a K-space. Then one has
the following G/H-homeomorphism:

(4.1) (G×K S)/H ∼=
G

H
×KH/H

S

K ∩H
.

Proof. Using the topological isomorphism KH/H ∼= K/(K ∩ H) from
Lemma 4.3, we shall consider the (K ∩ H)-orbit space S/(K ∩ H) as a
KH/H-space. Specifically, the group KH/H acts on S/(K ∩H) according
to the rule

(kH) ∗ (K ∩H)(s) = (K ∩H)(ks)

for k ∈ K and (K ∩H)(s) ∈ S/(K ∩H).
The required canonical G/H-homeomorphism

f : (G×K S)/H → G

H
×KH/H

S

K ∩H
is given by f(H([g, s])) = [gH, s̃], where H([g, s]) denotes the H-orbit of
[g, s] in the G-space G×K S, s̃ stands for the (K ∩H)-orbit of s in the K-
space S, and [gH, s̃] denotes the KH/H-orbit of (gH, s̃) in the KH/H-space
G
H ×

S
K∩H . It is easy to verify that f is as desired.

Proof of Theorem 4.1. Case 1. Assume that G is almost connected. Since
X ∈ G-M, by [1, Main Theorem], X admits a global K-slice S, where K is
a maximal compact subgroup of G. Hence, by Lemma 2.3, X = G×K S. By
Proposition 4.4, one has the G/H-homeomorphism
(4.2) X/H ∼= G/H ×K′ S/H ′,
where H ′ = K ∩H and K ′ = KH/H.
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Since by Corollary 3.10, X ∈ G-AE, it follows from Proposition 4.2 that
S is aK-AE. Hence, Theorem 2.6 shows that S/H ′ is aK/(K∩H)-AE. Since
the groupK ′ acts on S/H ′ via the topological isomorphismK ′ ∼= K/(K∩H),
we infer that S/H ′ is a K ′-AE.

Next, by Theorem 8.6 (see Appendix) the group K ′, being the image of
K under the natural homomorphism π : G → G/H, is a maximal compact
subgroup of G/H. Hence, Proposition 4.2 shows that G/H ×K′ S/H ′ is a
G/H-AE. It remains to invoke the formula (4.2).

Case 2. Assume that G is arbitrary locally compact. According to [2,
Theorem 4.4], it suffices to show that X/H is a K-AE for any compact
subgroupK of G/H. Consider the natural homomorphism π : G→ G/H. By
Proposition 8.3 (see Appendix), the groupM = π−1(K) is almost connected.

Since X ∈ G-AR it follows that X ∈ M -AR (see Corollary 3.11). Hence
X/H is an M/H-AE by Case 1. Since M/H = K, we infer that X ∈ K-AE,
as required.

Recall that the “G-ANR” case of Theorem 4.1 was established earlier in
[15, Theorem 1.1]; here is its exact formulation:

Theorem 4.5. Let G be a locally compact group, X ∈ G-ANR, and H
a closed normal subgroup of G. Then X/H is a G/H-ANE.

Remark 4.6. Theorem 4.1 is not valid in the category of compact (non-
metrizable) G-spaces even if G is a finite group. Here is a simple counterex-
ample.

Consider the antipodal action of the cyclic groupG = Z2 on the Tikhonov
cube Iτ of an uncountable weight τ , where I = [−1, 1]. Since I is a G-AE for
normal G-spaces, we infer that Iτ is a G-AR for compact G-spaces. However,
Iτ/G is not an AR for compact spaces. This follows from the following result
of Shchepin [44]: if X is a nonmetrizable AR in the category of compact
Hausdorff spaces, then it is homeomorphic to a Tikhonov cube Iτ if and
only if X is homogeneous with respect to character (i.e., all the points have
the same character in X). Now suppose that Iτ/G is an AR for compact
spaces. Since obviously Iτ/G is homogeneous with respect to character, it
should be homeomorphic to Iτ . But this is impossible, because, unlike the
cube Iτ , the orbit space Iτ/G contains a point whose complement is not
contractible. In fact, let θ be the point of Iτ with all coordinates 0. Then
the orbit projection

p : Iτ \ {θ} → (Iτ \ {θ})/G
is a two-sheet covering. Since Iτ \{θ} is contractible, the fundamental group
of (Iτ \ {θ})/G is G = Z2. Thus (Iτ/G) \ {θ} = (Iτ \ {θ})/G is not con-
tractible, which implies that Iτ/G is not homeomorphic to a Tikhonov cube.
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5. Equivariant lifting of closed embeddings. The following result
for G compact was established in [8]. As in that case, Theorem 4.1 is equiv-
alent to Theorem 5.1 below. In this section we proof the implication Theo-
rem 4.1 ⇒ Theorem 5.1, while the converse is proved in Section 7.

Theorem 5.1. Let H be an almost connected normal subgroup of G.
Suppose that A ∈ G-M and f : A/H ↪→ B is a G/H-equivariant closed
embedding into a G/H-space B ∈ G/H-M. Then there exist a G-space Z ∈
G-M and a G-equivariant closed embedding φ : A ↪→ Z such that Z/H = B
and q ◦ φ = f ◦ p, where p : A → A/H and q : Z → Z/H are the H-orbit
maps.

Proof. According to Theorem 3.2, it can be assumed that A is a closed
invariant subset of a G-AE space L ∈ G-M. Then A/H is a closed invariant
subset of the G/H-space L/H.

Z

q

��

A?
_φoo � � //

p

��

L

r
��

B
F

22A/H? _
foo � � // L/H

Now, by Theorem 4.1, L/H ∈ G/H-AE. Therefore, there exists a G/H-
equivariant extension F : B → L/H of the G/H-map f−1 : f(A/H) →
A/H ↪→ L/H. Let r : L → L/H be the H-orbit projection. Denote by Z
the fiber product of the maps F and r, i.e.,

Z = {(b, x) ∈ B × L | F (b) = r(x)}.
We consider the diagonal action of G on Z, i.e., g(b, x) = (gb, gx) for g ∈ G
and (b, x) ∈ Z. Let h : Z/H → B be defined by h(q(b, x)) = b, where
q : Z → Z/H is the H-orbit projection and (b, x) ∈ Z. It is clear that h
is a well-defined G/H-equivariant map. It can easily be shown (and is well
known, see [31, Ch. 4, Proposition 4.1]) that h is a homeomorphism.

On the other hand, B × L is a proper G-space because L is. Moreover,
since B and L admit G-invariant metrics, so does B×L. Thus B×L ∈ G-M,
which implies that Z ∈ G-M.

It remains to define the G-equivariant embedding φ : A ↪→ Z by the
formula φ(a) = (f(p(a)), a) for a ∈ A.

Theorem 5.2. Let H be any closed normal subgroup of G. Suppose that
A ∈ G-M and f : A/H ↪→ B is a G/H-equivariant closed embedding into a
G/H-space B ∈ G/H-M. Then there exist a G-space Z ∈ G-M and a G-
equivariant closed embedding φ : A ↪→ Z such that Z/H is a G/H-invariant
neighborhood of A/H in B and q ◦ φ = f ◦ p, where p : A → A/H and
q : Z → Z/H are the H-orbit maps.
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The proof of this theorem is quite similar to the one of Theorem 5.1; one
has only to refer to Theorem 4.5 instead of Theorem 4.1.

The following special case of Theorems 5.1 and 5.2 when H = G, for
closed embeddings in a paracompact space, is worth singling out:

Corollary 5.3. Let G be a locally compact (respectively , almost con-
nected) group. Suppose that A ∈ G-M and f : A/G ↪→ B is a closed em-
bedding into a paracompact space B. Then there exist a paracompact proper
G-space Z and a G-equivariant closed embedding φ : A ↪→ Z such that Z/G is
a closed neighborhood of A/G in B (respectively , Z/G = B) and q◦φ = f ◦p,
where p : A→ A/G and q : Z → Z/G are the orbit maps.

Proof. Since A/G is metrizable, there exists an embedding i of A/G in
the Banach space Y of all continuous bounded real-valued functions over
A/G (see e.g. [19, Ch. II, Proposition 1.1]).

Z

q

��

A?
_ϕoo � � j //

p

��

W

r

��
B

F

22U?
_foo A/G? _

foo � � i // V
� � i // Y

By the Dugundji extension theorem [23], Y is an AR. Consequently, by a
result of E. Michael [39], Y is an AE for all paracompact spaces. This implies
that f−1 : f(A/G) → A/G ↪→ Y extends to a continuous map F : B → Y .
Next, by Theorem 5.2 (resp., Theorem 5.1), there exists a neighborhood V
of A/G in Y (resp., V = Y ) such that the closed embedding i : A/G ↪→ V
admits a G-equivariant lifting j : A ↪→W to a G-space W ∈ G-M.

Choose a closed neighborhood U of A/G in B such that F (U) ⊂ V (resp.,
U = B). As in the proof of Theorem 5.1, denote by Z the fiber product of
F : U → V and r : W → V , i.e.,

Z = {(u,w) ∈ U ×W | F (u) = r(w)}.

Then proceeding as in the proof of Theorem 5.1, we can show that Z is the
required proper G-space. It is paracompact because Z/G = U is (see [2,
Theorem 1.12]).

Remark 5.4. If A is not metrizable, Corollary 5.3 may fail to be true
even if G is finite and A and B are compact. Indeed, consider the antipodal
action of G = Z2 on the Tikhonov cube Iτ of an uncountable weight τ ,
where I = [−1, 1]. Then no embedding i : Iτ/G ↪→ Iτ can be lifted to a
G-embedding j : Iτ ↪→ Z where Z is a compact G-space with Z/G = Iτ .
Indeed, assume otherwise. Then, since Iτ is a G-AE for compact G-spaces,
there exists a G-retraction r : Z → Iτ . Clearly, r induces a retraction q :
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Iτ = Z/G → Iτ/G, which implies that Iτ/G is an absolute retract for
compact spaces, contradicting Remark 4.6.

6. Metrizability of proper G-spaces

Theorem 6.1. Let G be a locally compact group and X a proper G-space
such that all the orbits in X, as well as the orbit space X/G, are metrizable.
Then X is metrizable. Moreover , there exists a compatible G-invariant metric
on X.

Notice that for G compact metrizable this was proved by B. A. Pasynkov
[43, Theorem 2], and for G any compact group by V. V. Filippov [28, The-
orem (b)]:

Theorem 6.2 (V. V. Filippov). Let G be a compact group and X a
G-space such that all the orbits in X, as well as the orbit space X/G, are
metrizable. Then X is metrizable.

Proof. A simple combination of the Nagata–Smirnov metrization theo-
rem [26, Theorem 4.4.7] and V. V. Filippov’s result [28, Theorem (b)].

Our proof of Theorem 6.1 is based on the following three lemmas:

Lemma 6.3. Let G be a topological group, and H and N subgroups of
G such that N ⊂ H. If H/N and G/H have countable open bases at each
point , so does G/N .

Proof. This is proved in [32, p. 47] for N being the trivial subgroup of G.
That proof can easily be adapted to the general case. For the convenience of
the reader we provide the details below.

By homogeneity it suffices to show that G/N has a countable open base
at eN ∈ G/N .

For any A ⊂ G we denote by Ã the image of A under the natural projec-
tion G→ G/N . Since the projection is a G-map, one has g̃A = gÃ for every
g ∈ G. This yields B̃A = BÃ for every B ⊂ G.

Let {Wn}∞n=1 be a sequence of symmetric neighborhoods of e in G such
that W 2

n+1 ⊂Wn for each n and such that {W̃n ∩ H̃}∞n=1 is an open base at
eN for the space H̃.

Let ϕ denote the natural map G → G/H. Suppose that {ϕ(Un)}∞n=1 is
an open base at eH in G/H, where the Un are neighborhoods of e in G. For
n = 1, 2, . . . , we put

Pn =
(
G̃ \Wn+1(H̃ \ W̃n)

)
∩ (UnH̃).

Let us prove that Pn is a neighborhood of eN in G̃. In fact, it suffices to
show that eN /∈Wn+1(H̃ \ W̃n).
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To this end, let us prove that the neighborhood W̃n+1 of eN does not
meet Wn+1(H̃ \ W̃n). Assume otherwise. Then xN = whN with x ∈ Wn+1,
w ∈Wn+1, h ∈ H and hN /∈ W̃n. This yields x = whn for some n ∈ N , and
hence w−1x = hn. But w−1x ∈ Wn+1Wn+1 ⊂ Wn, yielding w−1xN ∈ W̃n.
Hence, hN = hnN = w−1xN ∈ W̃n, a contradiction.

Next we define
Qn = P1 ∩ · · · ∩ Pn.

Clearly, every Qn is a neighborhood of eN in G̃. We claim that {Qn}∞n=1 is
an open base at eN in G̃. To prove this, let Y be any neighborhood of e
in G. One has to find a k such that Qk ⊂ Ỹ .

First we choose a neighborhood V of e in G such that V 2 ⊂ Y . Then
there are m such that W̃m ∩ H̃ ⊂ Ṽ ∩ H̃ and k > m such that ϕ(Uk) ⊂
ϕ(V ∩ Wm+1). This implies that UkH ⊂ (V ∩ Wm+1)H, which, in turn,
yields UkH̃ ⊂ (V ∩Wm+1)H̃.

Then we have

Qk ⊂ Pk ∩ Pm ⊂ (UkH̃) ∩
(
G̃ \Wm+1(H̃ \ W̃m)

)
⊂ (V ∩Wm+1)H̃ ∩

(
G̃ \

(
(V ∩Wm+1)(H̃ \ W̃m)

))
.

Since

G̃ \ ((V ∩Wm+1)(H̃ \ W̃m)) = (V ∩Wm+1)(G̃ \ H̃) ∪ (V ∩Wm+1)W̃m,

we get

Qk ⊂ (V ∩Wm+1)H̃ ∩
(
(V ∩Wm+1)(G̃ \ H̃) ∪ (V ∩Wm+1)W̃m

)
= (V ∩Wm+1)H̃ ∩ (V ∩Wm+1)W̃m = (V ∩Wm+1)(H̃ ∩ W̃m)

⊂ (V ∩Wm+1)(Ṽ ∩ H̃) ⊂ V Ṽ = Ṽ 2 ⊂ Ỹ ,
as required.

Lemma 6.4. Let G be a any topological group, H a subgroup of G, and N
a compact subgroup of H. Suppose that G/H and H/N are both metrizable.
Then so is G/N . Moreover , there exists a G-invariant metric on G/N .

Proof. By Lemma 6.3, G/N has a countable open base at each point.
By compactness of N , this implies that G/N is metrizable by a G-invariant
metric (see [38, Theorem 1]).

Lemma 6.5. Let G be a locally compact group and H its compact subgroup
such that G/H is metric. Then for each metrizable H-space S the twisted
product G×H S is metrizable.

Proof. On G ×H S consider the H-action restricted from the G-action.
We claim that G×HS

H is homeomorphic to G/H×S
H , where H acts on G/H×S

by h(xH, s) = (hxH, hs).
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Indeed, for any [g, s] ∈ G×H S denote by [g, s]H its H-orbit. Analogously
for any (gH, s) ∈ G/H × S denote by (gH, s)H its H-orbit. Then it is easy
to see that the map

ϕ :
G×H S

H
→ G/H × S

H
, ϕ([g, s]H) = (g−1H, s)H ,

is the desired homeomorphism.
Since H is compact and S is metrizable, so is G/H×S

H . As G×HS
H is hom-

eomorphic to G/H×S
H , it is metrizable as well. According to Theorem 6.2, it

remains to prove that each H-orbit in G×H S is metrizable. We will prove
that, in fact, each G-orbit in G×H S is metrizable. Indeed, since G×H S is
a proper G-space, for each x ∈ G ×H S the orbit G(x) is homeomorphic to
G/Gx (see [42, Proposition 1.1.5]).

Thus we only have to prove that G(x) = G/Gx is metrizable for any
x = [g, s] ∈ G ×H S. Observe that G(x) = G(y), where y = [e, s]. It is
clear that Gy = Hy, and so we have to show the metrizability of G/Hy. To
this end, observe that H/Hy is metric because it is homeomorphic to the
H-orbit H(y) of the metrizable H-space S. It remains to apply Lemma 6.4
with N = Hy.

Proof of Theorem 6.1. Since X/G is paracompact, it follows from [2,
Theorem 1.12] that X is paracompact as well. Now, to prove that X is
metrizable, it suffices to show that it is locally metrizable (see e.g., [19,
Ch. II, Theorem 4.1]).

According to Approximate Slice Theorem 2.2, each point of X has a
tubular neighborhood G(S), where S is an H-slice for some compact large
subgroup H ⊂ G. By Lemma 2.3, G(S) is G-homeomorphic to G×HS. Since
H is a large subgroup, G/H is metrizable (see Section 2).

We claim that S is metrizable. Indeed, each H-orbit H(s) with s ∈ S
is metrizable because H(s) is a subspace of G(s), which is metrizable by
hypothesis. On the other hand, S/H ∼= (G ×H S)/G, which is metrizable
since (G ×H S)/G ∼= G(S)/G is a subspace of the metrizable space X/G.
Now Theorem 6.2 shows that S is metrizable.

Hence, Lemma 6.5 implies that G ×H S is also metrizable. Thus G(S),
and hence X, is metrizable. This proves the first part of the theorem.

The second part follows from [17, Theorem B], where it is proved that
a metrizable proper G-space with a paracompact orbit space admits a G-
invariant metric.

7. Orbit spaces of arbitrary G-A(N)E spaces. In this section we
shall strengthen Theorems 4.1 and 4.5 in two directions; it turns out that
the assumptions of metrizability and properness of X can be dropped.
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Theorem 7.1. Let G be a locally compact group and X any G-ANE
(respectively , any G-AE). Assume that H is a closed (respectively , almost
connected) normal subgroup of G such that all the H-orbits in X are metriz-
able. Then X/H is a G/H-ANE (respectively , a G/H-AE).

Proof. Let B ∈ G/H-M. Let L be a closed G/H-invariant subset of B
and let s : L → X/H be a G/H-map. Define A ⊂ L × X to be the fiber
product of s and t, where t : X → X/H is the H-orbit map. Then A is
a G-invariant subspace of L × X endowed with the diagonal action of G,
and we have A/H = L (see [31, Ch. 4, Proposition 4.1]). Since the H-orbit
of each a = (l, x) ∈ A lies in the metrizable space L × H(x), we conclude
that H(a) is also metrizable. So, all H-orbits of the G-space A, as well as its
H-orbit space A/H = L, are metrizable. By Theorem 6.1, A is metrizable.
Now applying Theorem 5.2 (respectively, Theorem 5.1) we get a G-space
Z ∈ G-M with Z/H a G/H-invariant neighborhood of L in B (respectively,
with Z/H = B) such that A is a closed G-invariant subspace of Z.

Let ψ : A→ X be the restriction of the projection L×X → X. SinceX ∈
G-ANE (respectively, X ∈ G-AE), there exist a G-invariant neighborhood
U of A in Z (respectively, U = Z) and a G-extension α : U → X of the
G-map ψ. It is easy to see that the induced G/H-map β : U/H → X/H is
the desired G/H-extension of s.

This theorem is the most general (in fact, final) result about preservation
of equivariant extension properties by the orbit space functor. Its particular
case for H = G was proved in [14, Theorem 6.4]. The case of an almost
connected group G and a phase spaceX withX/G paracompact was handled
in [10]. The very first orbit space theorem was established in [6] for the
actions of compact metrizable groups on metrizable spaces. Recently, this
result was widely applied in the study of the topology of the Banach–Mazur
compacta (see [9], [11], [13]). Other applications can be found in [6], [18]
and [45].

The following specific case of Theorem 7.1 when H = G is worth singling
out:

Corollary 7.2. Let G be a locally compact (respectively , an almost
connected) group and X any G-ANE (respectively , any G-AE). Assume
that all the orbits in X are metrizable. Then X/G is an ANE (respectively ,
an AE).

We conclude this section with the following finite-dimensional analogue
of Theorem 7.1.

Given a nonnegative integer n, denote by G-M(n) the subclass of G-M
that consists of all G-spacesX ∈ G-M with dimX/G ≤ n, where dim stands
for the covering dimension.
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Recall that if Y ∈ G-ANE(X) for any X ∈ G-M(n), n ≥ 0, then we say
that Y is a G-ANE(n). Respectively, if Y ∈ G-AE(X) for any X ∈ G-M(n),
n ≥ 0, then we say that Y is a G-AE(n).

Theorem 7.3. Let G be a locally compact group and X any G-ANE(n)
(respectively , any G-AE(n)), n ≥ 0. Assume that H is a closed (respectively ,
almost connected) normal subgroup of G such that all the H-orbits in X are
metrizable. Then X/H is a G/H-ANE(n) (respectively , G/H-AE(n)).

The proof of this theorem is quite similar to the one of Theorem 7.1. The
additional condition on the dimension of the orbit space holds because the
relation Z/H = B implies Z/G = B/(G/H) (here we use the notation of
the proof of Theorem 7.1).

Remark 7.4. The metrizability condition for the H-orbits of X in The-
orems 7.1 and 7.3, as well as in Corollary 7.2, is evidently satisfied when X
is metrizable. Moreover, if H is metrizable, then each H-orbit H(x), x ∈ X,
is also metrizable. This follows from the fact that H(x) is homeomorphic to
the quotient space H/Hx, where Hx = {h ∈ H | hx = x} (see [42, Proposi-
tion 1.1.5]), and metrizability of H implies that of H/Hx (see e.g. [40, Ch. I,
§1.23]).

8. Appendix: Almost connected groups and maximal compact
subgroups. In this section we shall establish some properties of almost
connected groups and their maximal compact subgroups which we have used
in Section 4.

Recall that a locally compact group G is called almost connected if the
space of connected components of G is compact. Such a group has a maximal
compact subgroup K, i.e., every compact subgroup of G is conjugate to a
subgroup of K [1, Theorem A.5]. The corresponding classical theorem on Lie
groups can be found in [30, Ch. XV, Theorem 3.1].

In what follows we shall use, without explicit reference, the well known
fact that a locally compact subgroup of any topological group is a closed
subset.

Proposition 8.1. Let G be an almost connected group and H a closed
normal subgroup of G. Then G/H is also almost connected.

Proof. Consider the following commutative diagram:

G
π−→ G/G0yp yq

G/H
η−→ G/H

(G/H)0
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where G0 and (G/H)0 are the connected components of G and G/H, re-
spectively, and π, p and η are the natural homomorphisms.

The map q is defined as follows:

q
(
gG0

)
= 〈gH〉

where 〈gH〉 stands for the coset of gH ∈ G/H with respect to the subgroup
(G/H)0 ⊂ G/H. The map q is well defined, because if g0 ∈ G0 then

q
(
gg0G0

)
= 〈gg0H〉 = 〈gH · g0H〉 = 〈gH〉 · 〈g0H〉.

Observe that g0H ∈ p(G0), and since p(G0) is connected, we infer that
p(G0) ⊂ (G/H)0. Thus g0H ∈ (G/H)0, which yields 〈gH〉 · 〈g0H〉 = 〈gH〉.

Thus, G/H
(G/H)0

, being the continuous image of the compact group G/G0,
is itself compact.

Proposition 8.2. Let G be any topological group and H a normal sub-
group of G. Then the connected component H0 of H is a normal subgroup of
G.

Proof. Fix g ∈ G. Then gH0g
−1 ⊂ gHg−1 = H. Since gH0g

−1 is
homeomorphic to H0, it is connected, and hence contained in H0. Thus
gH0g

−1 ⊂ H0. Now replacing g by g−1 we get g−1H0g ⊂ H0, which is
equivalent to H0 ⊂ gH0g

−1. Consequently, gH0g
−1 = H0, as required.

Proposition 8.3. Let G be a locally compact group and H an almost
connected normal subgroup of G such that G/H is compact. Then G is also
almost connected.

Proof. Let G0 and H0 be the connected components of G and H, respec-
tively. Clearly, H0 ⊂ G0 and H/H0 is compact. By Proposition 8.2, H0 is a
normal subgroup of G. Consider the natural homomorphism

π : G/H0 →
G/H0

H/H0

and observe that the groups G/H and G/H0

H/H0
are topologically isomorphic.

Since the fibers of π are all homeomorphic to H/H0, and hence are compact,
we conclude that G/H0 is compact (see [26, Theorem 3.7.24]).

Then G/G0, being the continuous image of the compact group G/H0

under the natural homomorphism p : G/H0 → G/G0 (remember that H0 ⊂
G0), is itself a compact group. Thus G is almost connected, as required.

Proposition 8.4. Let K be a maximal compact subgroup of G, and N
a compact normal subgroup of G such that N ⊂ K. Then K ′ = K/N is a
maximal compact subgroup of G/N .

Proof. Observe that K ′ is the image of K under the natural homomor-
phism p : G→ G/N , so K ′ is a compact subgroup of G/N . Compactness of
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N implies that p is a perfect map. Since compactness is an inverse invariant
of a perfect map (see [26, Theorem 3.7.24]) we infer that, for every compact
subgroup H ′ of G/N , the inverse image H = p−1(H ′) is a compact subgroup
of G.

Next, as K is a maximal compact subgroup of G, there exists g ∈ G such
that gHg−1 ⊂ K. This yields p(gHg−1) ⊂ p(K). Since p is a homomorphism,

p(gHg−1) = p(g)p(H)p(g)−1 = p(g)H ′p(g)−1.

Hence p(g)H ′p(g)−1 ⊂ K ′, as required.
Theorem 8.5. Let G be an almost connected group and H an almost

connected normal subgroup of G. Assume that G/H is compact. Then G =
KH for every maximal compact subgroup K of G.

Proof. Case 1. Assume that, in addition, H is connected. Let K be a
maximal compact subgroup of G. Since G is almost connected, by a result of
Glushkov [29, Theorem 8], there exists a compact normal subgroup N ⊂ K
such that G/N is a Lie group. Consider the following commutative diagram:

G
π−→ G/Hyp yq

G/N
η−→ G/H

HN/H

where π, p and q are the natural homomorphisms and η is defined from the
commutativity of the diagram.

Observe that in the case of Lie groups the assertion is proved in [30,
p. 186, Theorem 3.7] and we are going to apply it to the Lie group G/N and
its closed connected normal subgroup HN/N = p(H).

Indeed, the quotient group G/N
HN/N is compact since it is topologically

isomorphic to G/H
HN/H (this is easy to check), which is just the image of the

compact group G/H under the continuous homomorphism q. Now applying
[30, p. 186, Theorem 3.7] we get

G/N = (HN/N) · (K/N).

Here we have used the fact that K/N is a maximal compact subgroup of
G/N (see Proposition 8.4). But since N ⊂ K we see that (HN/N)·(K/N) =
HK/N . Thus G/N = HK/N , yielding G = HK, as required.

Case 2. Assume that H is an arbitrary almost connected closed normal
subgroup of G. According to the previous case,

(8.1) G = G0 ·K
where G0 is the connected component of G. Let H0 be the connected com-
ponent of H. Clearly, H0 is a normal closed subgroup of G0.
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We are going to apply Case 1 to G0 and H0.
So, let us first show that G0/H0 is compact. Consider the natural contin-

uous epimorphism p : G → G/H. Since p is constant on all the cosets gH0,
g ∈ G, it induces a continuous epimorphism π : G/H0 → G/H. The fibers of
π are homeomorphic to its kernel, which is the quotient group H/H0. Now,
since G/H and all the fibers of π are compact, the group G/H0 is also com-
pact (see [26, Theorem 3.7.24]). Since G0/H0 is a closed subgroup of G/H0,
we conclude that G0/H0 is compact too.

Hence, Case 1 is applicable to the pair (G0, H0), and so G0 = L ·H0 for
any maximal compact subgroup of L of G0. But observe that L ⊂ gKg−1

for some g ∈ G, so we get

(8.2) G0 = L ·H0 ⊂ (gKg−1) ·H0 ⊂ (gKg−1) ·H ⊂ gKHg−1.

Since G0 is a normal subgroup, this is equivalent to the inclusion

(8.3) G0 ⊂ KH.
Now, (8.1) and (8.3) imply that

G = G0K ⊂ KHK = KKH = KH,

as required.

Theorem 8.6. Let G be an almost connected group, H an almost con-
nected normal subgroup of G, and K a maximal compact subgroup of G.
Then the image of K under the natural homomorphism π : G → G/H is a
maximal compact subgroup of G/H.

Proof. Case 1. First we assume that H is connected. Let M be any
compact subgroup of G/H and let M ′ = π−1(M).

We claim that M ′ is almost connected. Indeed, denote by M ′0 the con-
nected component of M ′. Since H is connected and H ⊂ M ′ we see that
H ⊂ M ′0. Hence, the natural homomorphism p : M ′ → M ′/M ′0 factorizes
through M :

M ′
p //

π

��

M ′/M ′0

M

σ

;;v
v

v
v

v

i.e., p = σπ, where σ is a continuous homomorphism. Hence M ′/M ′0 is the
image of the compact group M under the continuous homomorphism σ, and
hence is compact. This shows that M ′ is almost connected.

Consequently, according to Theorem 8.5, M ′ = L · H for any maximal
compact subgroup L of M ′. Since L ⊂ gKg−1 for some g ∈ G, we infer that

M ′ ⊂ (gKg−1) ·H = gK ·Hg−1.
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This yields
M = π(M ′) ⊂ π(g)π(K)π(g)−1,

which means exactly that π(K) is a maximal compact subgroup of G/H.

Case 2. Let H be any almost connected group. Observe that, by Propo-
sition 8.2, the connected component H0 of H is a normal subgroup of G.
Consider the natural epimorphisms

G
λ→ G/H0

µ→ G/H.

According to Case 1, λ(K) is a maximal compact subgroup ofG/H0. Further,
by Proposition 8.1, G/H0 is an almost connected group and H/H0 is its
compact normal subgroup. Now according to Proposition 8.4, µ

(
λ(K)

)
is a

maximal compact subgroup of G/H0

H/H0
. It remains to observe thatG/H = G/H0

H/H0

and π(K) = µ(λ(K)).
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