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Abstract. For every α < ω1 we establish the existence of a separable Banach space
whose Szlenk index is ωαω+1 and which is universal for all separable Banach spaces whose
Szlenk index does not exceed ωαω. In order to prove that result we provide an intrinsic
characterization of which Banach spaces embed into a space admitting an FDD with
Tsirelson type upper estimates.

1. Introduction. The added structure and rich theory of coordinate
systems can be of significant help when studying Banach spaces. Because
of this, it is often the case that Banach spaces are studied in the context
of being a subspace or quotient of some space with a coordinate system.
Two early results in this area are that every separable Banach space is the
quotient of `1 and also every separable Banach space may be embedded as a
subspace of C[0, 1]. Both `1 and C[0, 1] have bases, and so in particular every
separable Banach space is a quotient of a Banach space with a basis and may
be embedded as a subspace of a Banach space with a basis. However, one
often has a Banach space with a particular property, and one wishes that
the coordinate system has some associated property. An important step in
this direction was made by Zippin [21] who proved the following two ma-
jor results: every separable reflexive Banach space may be embedded as a
subspace of a space with a shrinking and boundedly complete basis, and ev-
ery Banach space with separable dual may be embedded in a Banach space
with a shrinking basis. Further results in this area give intrinsic characteri-
zations of when a space may be embedded as a subspace of a reflexive space
with unconditional basis [9], or a reflexive space with an asymptotic `p FDD
[16]. These are only a portion of the recent results in this area. These new
characterizations are all based on the relatively recent tool of weakly null
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trees. In particular, this has been used effectively to study Banach spaces
of Szlenk index ω0 (cf. [7], [11], [13], [14], and [15]). An important result
in particular for us is the characterization of subspaces of reflexive spaces
with an FDD satisfying subsequential V -upper block estimates and subse-
quential U -lower block estimates where V is an unconditional, block stable,
and right dominant basic sequence and U is an unconditional, block stable,
and left dominant basic sequence [17]. This characterization when applied to
Tsirelson spaces was shown to have strong applications to the Szlenk index of
reflexive spaces [18]. Our main result adds to this theory with the following
theorem which extends the results in [17] and [18] to spaces with separable
dual. The notions and concepts used will be introduced in the next section.

Theorem 1.1. Let X∗ be separable and V = (vi) be a normalized , 1-
unconditional , block stable, right dominant , and shrinking basic sequence.
Then the following are equivalent.

(1) X has subsequential V -upper tree estimates.
(2) X is a quotient of a space Z with Z∗ separable and Z has subsequen-

tial V -upper tree estimates.
(3) X is a quotient of a space Z with a shrinking FDD satisfying subse-

quential V -upper block estimates.
(4) There exists a w∗-to-w∗ continuous embedding of X∗ into Z∗, a space

with boundedly complete FDD (F ∗i ) (so Z =
⊕
Fi defines Z∗) satis-

fying subsequential V ∗-lower block estimates.
(5) X is isomorphic to a subspace of a space Z with a shrinking FDD

satisfying subsequential V -upper block estimates.

Using our characterization, we are able to achieve the following univer-
sality result:

Theorem 1.2. Let V = (vi) be a normalized , 1-unconditional , shrink-
ing , block stable, and right dominant basic sequence. There is a Banach
space Z with a shrinking FDD (Fi) satisfying subsequential V -upper block
estimates such that if a Banach space X with separable dual satisfies subse-
quential V -upper tree estimates, then X embeds into Z.

We will apply Theorems 1.1 and 1.2 for the case that V is the canonical
basis of Tα,c, the Tsirelson space of order α and parameter c, which will al-
low us to prove some new results for the Szlenk index. As shown in [18], the
Szlenk index is closely related to a space having subsequential Tα,c-upper
tree estimates for some 0 < c < 1. In particular, for each α < ω1 if a Banach
space X with separable dual has Szlenk index at most ωαω, then X satis-
fies subsequential Tα,c-upper tree estimates for some c ∈ (0, 1). In [18] the
converse is also shown in the case that X is reflexive. Our characterization
allows us to extend this to the class of spaces with separable dual. We give
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the following theorem.

Theorem 1.3. Let α < ω1. For a space X with separable dual , the
following are equivalent :

(i) X has Szlenk index at most ωαω.
(ii) X satisfies subsequential Tα,c-upper tree estimates for some c ∈

(0, 1).
(iii) X embeds into a space Z with an FDD (Ei) which satisfies subse-

quential Tα,c-upper block estimates in Z for some c ∈ (0, 1).

Note that the implication (iii)⇒(i) shows that the space Z in (iii) also
has Szlenk index at most ωαω. In particular, since the unit vector basis
of Tα,c satisfies subsequential Tα,c-upper block estimates, the same is true
for Tα,c. The above structure theorem then says that the Tsirelson spaces
Tα,c form a sort of upper envelope for the class of spaces with separable dual
and with Szlenk index at most ωαω.

We are able to combine the previous two theorems using ideas in [18] to
prove the following universality result.

Theorem 1.4. For each α < ω1 there exists a Banach space Z with a
shrinking FDD and Szlenk index at most ωαω+1 such that Z is universal for
the collection of spaces with separable dual and Szlenk index at most ωαω.

In particular, the universal space Z will be of the form (
∑

n∈NXn)`2 ,
where Xn has an FDD satisfying subsequential Tα,n/(n+1)-upper block esti-
mates and Xn is universal for all Banach spaces with separable dual which
satisfy subsequential Tα,n/(n+1)-upper tree estimates.

Theorem 1.4 represents a quantitative version of a result first shown
by Dodos and Ferenczi [5], which states that for every α < ω1 there is a
Banach space with separable dual which is universal for all separable Banach
spaces whose Szlenk index does not exceed α. As well as finding a bound
on the Szlenk index of this universal space, we also express, as mentioned
above, the topological property of having a certain Szlenk index in terms of
norm estimates in which the Tsirelson spaces play an essential role. While
the proofs in [5] use methods of descriptive set theory first developed by
Bossard [1], in the context of Banach spaces, our proofs will rely on concepts
like infinite asymptotic games, trees and branches as introduced in [13] and
[15] (see also Rosendal’s excellent paper on the subject [19]).

2. Definitions and lemmas. Our main result characterizes subspaces
and quotients of spaces having a shrinking FDD with subsequential V -upper
block estimates, where V is an unconditional, right dominant, block stable,
and shrinking basic sequence. The case when V = Tα,c is a Tsirelson space is
intimately related to the Szlenk index, and has become an important prop-
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erty in the fertile area between descriptive set theory and the classification of
Banach spaces [18]. For α < ω1 and c ∈ (0, 1), the definition of the Tsirelson
space Tα,c of order α and parameter c, and the properties of Tα,c relevant
for us can also be found in [18].

For basic notions like (shrinking and boundedly complete) FDDs and
their projection constants and blockings we refer to [17]. If Z is a Banach
space with an FDD E = (Ei), we denote by c00(

⊕
Ei) the dense linear

subspace of Z spanned by (Ei) and its closure by [Ei] = [Ei]Z . We denote
the closure of c00(

⊕
E∗i ) inside Z∗ by Z(∗). If (Ei) is shrinking it follows

that Z(∗) = Z∗, and if (Ei) is boundedly complete, then Z(∗) is the predual
of Z. If A ⊂ N is finite or cofinite, we denote the natural projection onto
the closed span of (Ei : i ∈ A) by PEA , i.e. PEA : Z → Z,

PEA

( ∞∑
i=1

xi

)
=
∑
i∈A

xi whenever xi ∈ Ei for i ∈ N so that
∞∑
i=1

xi ∈ Z.

Let us also recall the following notion from [17].

Definition 2.1. Let Z be a Banach space with an FDD (En), let V =
(vi) be a normalized 1-unconditional basis, and let 1 ≤ C <∞. We say that
(En) satisfies subsequential C-V -upper block estimates if every normalized
block sequence (zi) of (En) in Z is C-dominated by (vmi), where mi =
min suppE(zi) for all i ∈ N. We say that (En) satisfies subsequential C-V -
lower block estimates if every normalized block sequence (zi) of (En) in Z
C-dominates (vmi), where mi = min suppE(zi) for all i ∈ N. We say that
(En) satisfies subsequential V -upper (or lower) block estimates if it satisfies
subsequential C-V -upper (or lower) block estimates for some 1 ≤ C <∞.

Note that if (Ei) satisfies subsequential C-V -upper block estimates
and (zi) is a normalized block sequence with max suppE(zi−1) < ki ≤
min suppE(zi) for all i > 1, then (zi) is C-dominated by (vki) (and a similar
remark holds for lower estimates). This follows easily if we replace zi by
(εeki + zi)/‖εeki + zi‖ where eki ∈ SEki and letting ε→ 0.

Subsequential V -upper block estimates and subsequential V -lower block
estimates are dual properties, as shown in the following proposition from [17].

Proposition 2.2 ([17, Proposition 2.14]). Assume that Z has an FDD
(Ei), and let V = (vi) be a 1-unconditional normalized basic sequence with
biorthogonal functionals V ∗ = (v∗i ). The following statements are equivalent :

(a) (Ei) satisfies subsequential V -upper block estimates in Z.
(b) (E∗i ) satisfies subsequential V ∗-lower block estimates in Z(∗).

Moreover , if (Ei) is bimonotone in Z, then the equivalence holds true if
one replaces, for some C ≥ 1, V -upper estimates by C-V -upper estimates
in (a) and V ∗-lower block estimates by C-V ∗-lower block estimates in (b).
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It is important to note that if a Banach space Z has an FDD (En) which
satisfies subsequential V -upper block estimates where V = (vi) is weakly
null, then (En) is shrinking. Indeed, any normalized block sequence of (En)
is then dominated by a weakly null sequence, and is thus weakly null. Thus
if V is weakly null, a necessary condition for a Banach space X to be isomor-
phic to a quotient or subspace of a Banach space with an FDD satisfying
subsequential V -upper block estimates is that X have separable dual. This is
important as spaces with separable dual may be analyzed using weakly null
trees. In this paper we will need in particular weakly null even trees (see [17]).

In order to index weakly null even trees, we define

T even
∞ = {(n1, . . . , n2`) : n1 < · · · < n2` are in N and ` ∈ N}.

Definition 2.3. If X is a Banach space, an indexed family (xα)α∈T even
∞

⊂ X is called an even tree. Sequences of the form (xn1,...,n2`−1,k)
∞
k=n2`−1+1

are called nodes. This should not be confused with the more standard ter-
minology where a node would refer to an individual member of the tree.
Sequences of the form (xn1,...,n2`

)∞`=1 are called branches. A normalized tree,
i.e. one with ‖xα‖ = 1 for all α ∈ T even

∞ , is called weakly null if every node
is a weakly null sequence.

If T ′ ⊂ T even
∞ is closed under taking restrictions so that for each α ∈

T ′∪{∅} and for each m ∈ N the set {n ∈ N : (α,m, n) ∈ T ′} is either empty
or has infinite size, and moreover the latter occurs for infinitely many values
of m, then we call (xα)α∈T ′ a full subtree of (xα)α∈T even

∞ . Note that (xα)α∈T ′
could then be relabeled to a family indexed by T even

∞ , and note that the
branches of (xα)α∈T ′ are branches of (xα)α∈T even

∞ , and the nodes of (xα)α∈T ′
are subsequences of certain nodes of (xα)α∈T even

∞ .
In the case that X has an FDD (Ei), we say that a normalized tree is

a block tree (with respect to (Ei)) if every node is a block sequence with
respect to (Ei). Note that every weakly null tree has a full subtree which
is a perturbation of a block tree, and if (Ei) is shrinking, then every block
tree is weakly null.

This motivates the following coordinate free definition.

Definition 2.4. Let X be a Banach space, V = (vi) be a normalized
1-unconditional basis, and 1 ≤ C <∞. We say that X satisfies subsequential
C-V -upper tree estimates if every weakly null even tree (xα)α∈T even

∞ in X has
a branch (xn1,...,n2`

)∞`=1 which is C-dominated by (vn2`−1
)∞`=1.

We say that X satisfies subsequential V -upper tree estimates if it satisfies
subsequential C-V -upper tree estimates for some 1 ≤ C <∞.

If X is a subspace of a dual space, we say that X satisfies subsequential
C-V -lower w∗ tree estimates if every w∗ null even tree (xα)α∈T even

∞ in X has
a branch (xn1,...,n2`

)∞`=1 which C-dominates (vn2`−1
)∞`=1.
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We have a property of trees and a property of FDDs, and our goal is to
show how they are related. Zippin’s theorem allows us to embed a Banach
space with separable dual into a space with shrinking FDD. Our next step
will be to pass information about trees in the space to information about
δ̄-skipped blocks of the FDD, which we define here.

Definition 2.5. Let E = (Ei) be an FDD for a Banach space Y and let
δ̄ = (δi) with δi ↓ 0. A sequence (yi) ⊂ SY is called a δ̄-skipped block with
respect to (Ei) if there exist integers 1 = k0 < k1 < · · · so that for all i ∈ N,

‖PE(ki−1,ki)
yi − yi‖ < δi.

The following proposition is an adaptation of Proposition 2.18 in [17] for
the case of (Ei) shrinking, but not necessarily boundedly complete and for
the case where X is a w∗ closed subspace of a dual space. We will need to
first recall some notation introduced in [17].

Given a Banach space X, we let U(X) ⊂ (N × SX)ω denote the set of
all sequences (ki, xi), where k1 < k2 < · · · are positive integers, and (xi) is
a sequence in SX . We equip U(X) with the relative topology of (N× SX)ω

which is given the product topology of the discrete topologies of N and SX .
Given A ⊂ U(X) and ε > 0, we let

Aε = {((`i, yi) : i ∈ N) ∈ U(X) : ∃((ki, xi) : i ∈ N) ∈ A
ki ≤ `i, ‖xi − yi‖ < ε2−i ∀i ∈ N},

and we let A be the closure of A in U(X).
Given A ⊂ U(X), we say that an even tree (xα)α∈T even

∞ in X has a branch
in A if there exist n1 <n2 < · · · in N such that ((n2i−1, x(n1,n2,...,n2i)) : i∈N)
∈ A.

Let Z be a Banach space with an FDD (Ei) and assume that Z con-
tains X. Let C be the projection constant of (Ei) in Z. For each m ∈ N
we set Zm =

⊕
i>mEi. Given ε > 0, we consider the following game be-

tween players S (subspace chooser) and P (point chooser). The game has
an infinite sequence of moves; on the nth move (n ∈ N) S picks kn,mn ∈ N
and P responds by picking xn ∈ SX with d(xn, Zmn) < ε′ · 2−n, where
ε′ = min{ε, 1}. S wins the game if the sequence (ki, xi) the players generate
ends up in A5Cε, otherwise P is declared the winner. We will refer to this
as the (A, ε)-game. Note that the definition of S winning is slightly differ-
ent from the one given in [17]. This is because of the extra complication of
dealing with the nonreflexive case.

Proposition 2.6. Let X be an infinite-dimensional closed subspace of
a space Z with an FDD (Ei). Let A ⊂ U(X). If (Ei) is shrinking , or if Z is
a dual space with (Ei) boundedly complete and X w∗ closed in Z, then the
following are equivalent.



Banach spaces of bounded Szlenk index II 167

(a) For all ε > 0 there exists (Ki) ⊂ N with K1 < K2 < · · · , δ =
(δi) ⊂ (0, 1) with δi ↘ 0, and a blocking F = (Fi) of (Ei) such
that if (xi) ⊂ SX is a δ-skipped block sequence of (Fn) in Z with
||xi − PF(ri−1,ri)

xi|| < δi for all i ∈ N, where 1 ≤ r0 < r1 < r2 < · · · ,
then (Kri−1 , xi) ∈ Aε.

(b) For all ε > 0, S has a winning strategy for the (A, ε)-game.

If (Ei) is shrinking , then (a) and (b) are equivalent to

(c) for all ε > 0 every normalized , weakly null even tree in X has a
branch in Aε.

If Z is a dual space with (Ei) boundedly complete and X w∗ closed in Z,
then (a) and (b) are equivalent to

(d) for all ε > 0 every normalized , w∗ null even tree in X has a branch
in Aε.

Proof. The proofs of the implications (b)⇒(a)⇒(d)⇒(b) shown in the
reflexive case [17, Proposition 2.18] still hold in the nonreflexive case when
Z is a dual space with (Ei) boundedly complete and X w∗ closed in Z:
we use w∗ compactness of BX , and the fact that (Ei) is biorthogonal to a
shrinking FDD of a predual of Z (instead of weak compactness of BX and
the shrinking property of (Ei) as in [17]).

For the case in which (Ei) is shrinking, the proofs of the implications
(b)⇒(a)⇒(c) shown for the reflexive case still work. The proof for the im-
plication (c)⇒(b) requires some adaptation which we provide here.

We start with a preliminary result: Let Zm =
⊕

i>mEi as before, and
let C be the projection constant of (Ei) in Z. Then for every η > 0 with
(1 + C)η < 1 and for every sequence (zi) ⊂ SX with d(zi, Zi) < η for
all i ∈ N, there is a subsequence (xi) of (zi) and a weakly null sequence
(yi) ⊂ SX such that ‖xi− yi‖ < 2(1 +C)η for all i ∈ N. Indeed, we can pass
to a weakly Cauchy subsequence (xi) of (zi) such that

(1) ‖PE[1,n](xi − xj)‖ < η2−j ∀n ∈ N and i > j ≥ n.

As d(xi, Zi)<η, we have ‖PE[1,i]xi‖<Cη for all i∈N. Since (Ei) is shrinking,
(PE(i,∞)xi) is weakly null, and so for each n ∈ N there exists (a(n)

i )K(n)
i=n =

(ai)Ki=n ⊂ [0, 1] such that
∑K

i=n ai = 1 and ‖
∑K

i=n aiP
E
(i,∞)xi‖ < η. Set

yn =
xn −

∑
aixi

‖xn −
∑
aixi‖

.

We have∥∥∥ K∑
i=n

aixi

∥∥∥ ≤ K∑
i=n

ai‖PE[1,i]xi‖+
∥∥∥ K∑
i=n

aiP
E
(i,∞)xi

∥∥∥< K∑
i=n

aiCη + η = (1+C)η,
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which implies that ‖xn − yn‖ < 2(1 + C)η. We also have

‖P[1,n]yn‖ ≤ 2
∥∥∥P[1,n]

(
xn −

∑
aixi

)∥∥∥ ≤ 2
∑

ai‖P[1,n](xn − xi)‖ < 2η2−n,

which tends to zero as n→∞. Hence (yn) ⊂ SX is weakly null as (Ei) is
shrinking.

We now continue with the proof of the implication (c)⇒(b). Assume
that S does not have a winning strategy for the (A, ε) game for some ε > 0.
As this game is closed and hence determined [12], there exists a winning
strategy φ for the point chooser. The function φ takes values in SX : if
(ki), (mi) ∈ [N]ω are the choices by player S and if zn = φ(k1,m1, . . . , kn,mn)
for all n ∈ N, then d(zi, Zmi) < ε2−i for all i ∈ N and (ki, zi) 6∈ A5Cε. We
can, of course, assume that (1 +C)ε < 1. For each α ∈ T even

∞ set zα = φ(α).
Then (zα)α∈T even

∞ is a normalized even tree in X no branch of which is
in A5Cε. Its nodes (zi) = (z(k1,...,k2`−1,i))i>k2`−1

satisfy d(zi, Zi) < ε2−` for
all i > k2`−1. By repeated applications of our preliminary observation we
can find a full subtree (xα)α∈T even

∞ of (zα)α∈T even
∞ and a weakly null even

tree (yα)α∈T even
∞ such that ‖xα − yα‖ < 2(1 + C)ε2−` for all ` ∈ N and

α = (k1, . . . , k2`) ∈ T even
∞ . Since no branch of (xα)α∈T even

∞ is in A5Cε, it
follows that no branch of (yα)α∈T even

∞ is in ACε. Thus (c) fails.

Remark. We will be applying Proposition 2.6 for A = {(ni, xi)∞i=1 |
(vni) dominates (xi)} where (vi) is a 1-unconditional basic sequence. We
will also be repeatedly applying the technique of blocking FDDs. For this
reason it is important that properties of δ̄-skipped blocks are preserved by
blockings. This follows at once from the following simple observation: As-
sume that (Ei) is an FDD with projection constant K, and (Hi) is a blocking
of (Ei). Then a δ̄-skipped block of (Hi) is a 2Kδ̄-skipped block of (Ei).

We will be concerned with a space X which satisfies subsequential V -
upper tree estimates. However, the nature of our proofs requires us to work
with X∗ as well. This is because some of the blocking techniques which we
use depend on the FDD being boundedly complete. Before stating a duality
result on upper tree estimates, we need the following definition: A basic
sequence V = (vi) is C-right dominant (respectively, C-left dominant) if for
all sequences m1 < m2 < · · · and n1 < n2 < · · · of positive integers with
mi ≤ ni for all i ∈ N the sequence (vmi) is C-dominated by (respectively,
C-dominates) (vni). We say that (vi) is right dominant or left dominant if
for some C ≥ 1 it is C-right dominant or C-left dominant, respectively.

Lemma 2.7. Let X be a Banach space with separable dual , and let V =
(vi) be a normalized , 1-unconditional , right dominant basis. If X satisfies
subsequential V -upper tree estimates, then X∗ satisfies subsequential V ∗-
lower w∗ tree estimates.
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Proof. X has separable dual, so by [4, Corollary 8] there exists a space
Z with a shrinking and bimonotone FDD (Fi) for which there is a quotient
map Q : Z → X. After renorming X we may assume that it has the quotient
norm ‖x‖ = infQy=x ‖y‖ for all x ∈ X. This shows that Q∗ is an isometric
embedding of X∗ into Z∗. Furthermore, (F ∗i ) is a boundedly complete FDD
for Z∗ as (Fi) is shrinking.

We next show that if (xi) ⊂ SX∗ is w∗ null, then there is a subsequence
(x′i) of (xi) and a weakly null sequence (yi) ⊂ SX such that x′i(yi) > 3/4 for
all i ∈ N.

The sequence (Q∗xi) is w∗ null in Z∗ as Q∗ is w∗-to-w∗ continuous.
Hence there is a subsequence (x′i) of (xi) such that ‖PF ∗[1,i)Q

∗x′i‖ < 1/4 for
all i. As (Fi) is bimonotone, there exists (zi) ⊂ SZ such that ‖PF[1,i)zi‖ = 0
and Q∗x′i(zi) > 3/4. Note that ‖Q(zi)‖ > 3/4 for all i, and the sequence
(zi) is coordinatewise null and hence weakly null as (Fi) is shrinking. It
follows that yi = Q(zi)/‖Q(zi)‖ defines a weakly null sequence in SX with
x′i(yi) > 3/4 for all i.

Now let (xα)α∈T even
∞ ⊂ SX∗ be a w∗ null tree. By repeated applications

of the above result, there is a full subtree (x′α) of (xα) and a weakly null
tree (yα) in X such that x′α(yα) > 3/4 for all α ∈ T even

∞ . Passing to further
subtrees if necessary, we can also assume that for k < ` in N and for α =
(n1, . . . , n2k), β = (n1, . . . , n2`) in T even

∞ we have max{|x′α(yβ)|, |x′β(yα)|}
< 4−`.

Let (n2k−1, y(n1,...,n2k))
∞
k=1 be a branch of the weakly null tree (yα)α∈T even

∞
such that (vn2k−1

)∞k=1 C-dominates (y(n1,...,n2k))
∞
k=1 for some C ≥ 1. Let

(ai) ∈ c00 be such that ‖
∑
aiv
∗
i ‖ = 1. There exists (bi) ∈ c00 such that

‖
∑
bivi‖ = 1 and

∑
aibi = 1 as (vi) is bimonotone. Furthermore, sign(ai) =

sign(bi) as (vi) is 1-unconditional. We have

1 =
∥∥∥ ∞∑
i=1

aiv
∗
i

∥∥∥ =
∞∑
i=1

aibi ≤
4
3

∞∑
i=1

aibix
′
(n1,...,n2i)

(y(n1,...,n2i))

≤ 4
3

( ∞∑
k=1

akx
′
(n1,...,n2k)

)( ∞∑
`=1

b`y(n1,...,n2`)

)
+

4
3

∞∑
k=1

∑
6̀=k
|x′(n1,...,n2k)

(y(n1,...,n2`))|

≤ 4
3

( ∞∑
k=1

akx
′
(n1,...,n2k)

)( ∞∑
`

b`y(n1,...,n2`)

)
+

2
3

< C
4
3

∥∥∥ ∞∑
k=1

akx
′
(n1,...,n2k)

∥∥∥+
2
3
.
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Hence (x′(n1,...,n2k)
)∞k=1 4C-dominates (v∗n2k−1

)∞k=1. Finally, the branch
(n2k−1, x

′
(n1,...,n2k)

) corresponds to a branch (m2k−1, x(m1,...,m2k)) in the orig-
inal tree with ni ≤ mi for all i ∈ N. Since (vi) is right dominant, (v∗i ) is left
dominant, and hence (x(m1,...,m2k)) dominates (v∗m2k−1

). Thus X∗ satisfies
subsequential V ∗-lower w∗ tree estimates.

Proposition 2.6 allows us to pass from information about trees to infor-
mation about δ̄-skipped blocks of an FDD (En). To go from information
about δ̄-skipped blocks to blocks in general, we will renorm the FDD (En)
to form a new space.

Let Z be a space with an FDD E = (En) and let V = (vi) be a normalized
1-unconditional basic sequence. The space ZV = ZV (E) is defined to be the
completion of c00(

⊕
En) with respect to the following norm ‖ · ‖ZV :

‖z‖ZV = max
k∈N, 1≤n0<n1<···<nk

∥∥∥ k∑
j=1

‖PE[nj−1,nj)
(z)‖Z · vnj−1

∥∥∥
V

for z ∈ c00(Ei).

We note that if ‖ · ‖ and ‖ · ‖′ are equivalent norms on Z then the corre-
sponding norms ‖ ·‖ZV and ‖ ·‖′

ZV
are equivalent on c00(

⊕
En). This allows

us, when examining the space ZV , to assume that (En) is bimonotone in Z.
The following proposition from [17] is what makes the space ZV essential
for us. Recall that in [17] a basic sequence is called C-block stable for some
C ≥ 1 if any two normalized block bases (xi) and (yi) with

max(supp(xi) ∪ supp(yi)) < min(supp(xi+1) ∪ supp(yi+1)) for all i ∈ N
are C-equivalent. We say that (vi) is block stable if it is C-block stable for
some constant C. This property has been considered before in various forms
and under different names. In particular, it has been called the blocking
principle [2] and the shift property [3] (see [6] for alternative forms).

The following proposition recalls some properties of ZV which were
shown in [17].

Proposition 2.8 ([17, Corollary 3.2, Lemmas 3.3 and 3.5]). Let V =
(vi) be a normalized , 1-unconditional , and C-block stable basic sequence. If
Z is a Banach space with an FDD (Ei), then (Ei) satisfies 2C-V -lower block
estimates in ZV (E).

If the basis (vi) is boundedly complete then (Ei) is a boundedly complete
FDD for ZV (E).

If the basis (vi) is shrinking and (Ei) is shrinking in Z, then (Ei) is a
shrinking FDD for ZV (E).

In proving our main theorem we will show that if X satisfies subsequen-
tial V -upper tree estimates then it is isomorphic to a subspace of some
ZV (E) and to a quotient of some ZV (F ).
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3. Proofs of the main results

Proof of Theorem 1.1. (1)⇒(4). (vi) isD-right dominant for someD≥1,
from which we can easily deduce that (v∗i ) is D-left dominant. By [4, Corol-
lary 8] there exists a space Z with a shrinking and bimonotone FDD (Ei)
for which there is a quotient map Q : Z → X. The map Q∗ : X∗ → Z∗ is an
into isomorphism. After renorming X if necessary, we can assume that X
has the quotient norm induced by Q, and so Q∗ is an isometric embedding.
By Lemma 2.7, X∗ satisfies subsequential C-V ∗-lower w∗ tree estimates for
some C ≥ 1. As Q∗X∗ ⊂ Z∗ is w∗ closed, we may apply Proposition 2.6
with A = {(ni, xi)∞i=1 ∈ (N × SQ∗X∗)ω | (xi) C-dominates (vni)} and ε > 0
such that Aε ⊂ {(ni, xi)∞i=1 ∈ (N × SQ∗X∗)ω | (xi) 2CD-dominates (vni)}.
This gives sequences (Ki) ∈ [N]ω and δ̄ = (δi) ⊂ (0, 1) and a blocking (Fi)
of (E∗i ) such that if (xi) ⊂ SQ∗X∗ and ‖xi − PF(ri−1,ri)

(xi)‖ < 2δi for some
(ri) ∈ [N]ω then (Kri−1 , xi) ∈ Aε. Hence, the sequence (xi) 2CD-dominates
(vKri−1

).
We choose a blocking G = (Gi) of (Fi) defined by Gi =

∑mi
j=mi−1+1 Fj for

some (mi) ∈ [N]ω such that there exists (en) ⊂ SQ∗X∗ with ‖en−PGn (en)‖ <
δn/2 for all n ∈ N.

In order to continue we need a result from [13] which is based on an
argument due to W. B. Johnson [8]. [13, Corollary 4.4] was stated for re-
flexive spaces. Here we state it for w∗ closed subspaces of dual spaces with a
boundedly complete FDD: the proof is easily seen to work in this situation.
Also note that conditions (d) and (e) which were not stated in [13] follow
easily from the proof.

Proposition 3.1 ([13, Lemma 4.3 and Corollary 4.4]). Let Y be a w∗

closed subspace of a dual Banach space Z with a boundedly complete FDD
A = (Ai) having projection constant K. Let η̄ = (ηi) ⊂ (0, 1) with ηi ↓ 0.
Then there exists (Ni)∞i=1 ∈ [N]ω such that the following holds. Given (ki)∞i=0

∈ [N]ω and x ∈ SY , there exists xi ∈ Y and ti ∈ (Nki−1−1, Nki−1
) for all

i ∈ N with N0 = 0 and t0 = 0 such that

(a) x =
∑∞

i=1 xi,

and for all i ∈ N we have

(b) either ‖xi‖ < ηi or ‖xi − PA(ti−1,ti)
xi‖ < ηi‖xi‖,

(c) ‖xi − PA(ti−1,ti)
x‖ < ηi,

(d) ‖xi‖ < K + 1,
(e) ‖PAti x‖ < ηi.

We apply Proposition 3.1 with Y = Q∗X∗, A = G and η̄ = δ̄, which
gives a sequence (Ni) ∈ [N]ω. We set Hj =

⊕Nj
i=Nj−1+1Gi for each j ∈ N. To
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make notation easier we let V ∗M = (v∗Mi
) be the subsequence of (v∗i ) defined

by Mi = KmNi
.

Fix x ∈ SQ∗X∗ and a sequence (ni)∞i=0 ∈ [N]ω. The proof in [17, Theorem
4.1(a)] shows∥∥∥ ∞∑

i=1

‖PH[ni−1,ni)
(x)‖Z∗ · v∗Mni−1

∥∥∥
V ∗
≤ 4D2C(1 + 2∆+ 2) + 2 + 3∆,

where ∆ =
∑∞

i=1 δi. Thus the norms ‖ · ‖Z∗ and ‖ · ‖
(Z∗)V

∗
M

are equivalent on
Q∗X∗. As the norm on each Hj is unchanged, a coordinatewise null sequence
in Q∗X∗ ⊂ Z∗ will still be coordinatewise null in (Z∗)V

∗
M . Hence the map

Q∗ : X∗ → (Z∗)V
∗
M is still w∗-to-w∗ continuous.

The space (Z∗)V
∗
M has a boundedly complete FDD (Hj) which satisfies

subsequential V ∗M -lower block estimates by Proposition 2.8. We can now fill
in the FDD as in [17, Lemma 2.13]. We let BMj = Hj for all j ∈ N, and
Bj = R for each j 6∈ (Mi). For x = (xj) ∈ c00(Bj) we define

‖x‖ =
∥∥∥∑
j∈N

xMj

∥∥∥
(Z∗)V

∗
M

+
∑
j 6∈M
|xj |.

We let Y be the completion of c00(
⊕
Bj) under this norm. Then Y is clearly

isometrically isomorphic to (Z∗)V
∗
M⊕`1 or (Z∗)V

∗
M⊕`n1 for some n ∈ N0. Thus

the natural embedding of (Z∗)V
∗
M into Y is w∗-to-w∗ continuous. Hence there

is a w∗-to-w∗ continuous embedding of X∗ into Y. Finally, as (Hj) satisfies
subsequential V ∗M -lower block estimates in (Z∗)V

∗
M , it is not hard to deduce

that (Bj) satisfies subsequential V ∗-lower block estimates in Y .
(4)⇒(3). This is clear because if (F ∗i ) is a boundedly complete FDD of

Z∗ then (Fi) is a shrinking FDD of Z and a w∗-to-w∗ continuous embedding
T : X∗ → Z∗ must be the dual of some quotient map Q : Z → X. Also, (F ∗i )
having subsequential V ∗ lower block estimates is equivalent to (Fi) having
subsequential V -upper block estimates due to Proposition 2.2.

(3)⇒(1). Let (Fi) be a bimonotone shrinking FDD which satisfies sub-
sequential V -upper block estimates, and Q : Z → X be a quotient map.
There exists C > 0 such that BX ⊂ Q(CBZ). We will need the following
lemma.

Lemma 3.2. Let X and Z be Banach spaces, F = (Fi) be a bimonotone
FDD for Z, and Q : Z → X be a quotient map. If (xi) ⊂ SX is weakly null
and Q(CBZ) ⊇ BX for some C > 0 then for all ε > 0 and n ∈ N there exist
N ∈ N and z ∈ 2CBZ such that P[1,n]z = 0 and ‖Qz − xN‖ < ε.

Proof. Let zi ∈ CBZ be such that Qzi = xi. After passing to a subse-
quence (zki) and perturbing we may assume instead that PF[1,n]zki = z0 for
some z0 ∈ CBZ , and that ‖Qzki − xki‖ < ε/3. As (xki) is weakly null, zero
must be in the closure of the convex hull of (xki). Hence there is some finite
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sequence (ai)mi=2 ⊂ [0, 1] such that ‖
∑m

i=2 aixki‖ < ε/3 and
∑m

i=2 ai = 1.
Let z = zk1 −

∑m
i=2 aizki . Then z ∈ 2CBZ , PF[1,n]z = 0, and

‖Qz − xk1‖ =
∥∥∥Qzk1 − xk1 − m∑

i=2

aiQzki

∥∥∥
≤ ‖Qzk1 − xk1‖+

m∑
i=2

ai‖Qzki − xki‖+
∥∥∥ m∑
i=2

aixki

∥∥∥ < ε.

Continuation of proof of Theorem 1.1. Let (xt)t∈T even
∞ ⊂ SX be a weakly

null even tree in X, and let η ∈ (0, 1). By Lemma 3.2 we may pass to a full
subtree (x′t)t∈T even

∞ of (xt) such that there exists a block tree (zt)t∈T even
∞ ⊂

2CBZ such that ‖Q(zt) − x′t‖ < η2−` for all ` ∈ N and t = (k1, . . . , k2`) ∈
T even
∞ . Now choose 1 = k1 < k2 < · · · such that max supp(z(k1,...,k2i)) <
k2i+1 < min supp(z(k1,...,k2i+2)) for all i ∈ N. Then (z(k1,...,k2i)) is dominated
by (vk2i−1

), and hence (x′(k1,...,k2i)) is dominated by (vk2i−1
) provided η was

chosen sufficiently small. Finally, the branch (k2i−1, x
′
(k1,...,k2i)

) corresponds
to a branch (`2i−1, x(`1,...,`2i)) in the original tree with ki ≤ `i for all i ∈ N.
Since (vi) is right dominant, it follows that (x(`1,...,`2i)) is dominated by
(v`2i−1

). Thus X satisfies subsequential V -upper tree estimates.
(2)⇒(1). We assume that X is a quotient of a space Z with separable

dual such that Z satisfies subsequential V -upper tree estimates. By the
implication (1)⇒(3) applied to Z, Z is the quotient of a space Y with a
shrinking FDD satisfying subsequential V -upper block estimates. X is then
also a quotient of Y , so by the implication (3)⇒(1), X satisfies subsequential
V -upper tree estimates.

(1)⇒(5). Our proof will be based on the proof of [17, Theorem 4.1(b)].
By Zippin’s theorem we may assume, after renorming X if necessary, that
there exists a Banach space Z with a shrinking, bimonotone FDD (Fj) and
an isometric embedding i : X ↪→ Z. Also, by [4, Corollary 8] we know that
there exists a Banach space W with a shrinking FDD (Ej) and a quotient
map Q : W � X. Thus we have a quotient map i∗ : [F ∗j ] = Z∗ � X∗ and
an embedding Q∗ : X∗ ↪→ [E∗j ] = W ∗. We can assume, after renorming W
if necessary, that Q∗ is an isometric embedding. Note that (F ∗j ) and (E∗j )
are boundedly complete FDDs of Z∗ and W ∗, respectively, and X∗ has the
quotient norm induced by i∗. Let K be the projection constant of (Ej) in W .

By Lemma 2.7, X∗ satisfies subsequential C-V ∗-lower w∗ tree estimates
for some C ≥ 1. Choose D ≥ 1 such that (vi) is D-right dominant. Since
Q∗X∗ is w∗ closed in W ∗, we can apply Proposition 2.6 as in the proof of
the implication (1)⇒(4): after blocking (E∗j ), we find sequences (Ki) ∈ [N]ω

and δ̄ = (δi) ⊂ (0, 1) with δi ↓ 0 such that if (xi) ⊂ SQ∗X∗ is a 2Kδ̄-
skipped block of (E∗j ) with ‖xi − PE

∗

(ri−1,ri)
xi‖ < 2Kδi for all i ∈ N, where
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1 ≤ r0 < r1 < r2 < · · · , then (v∗Kri−1
) is 2CD-dominated by (xi), and

moreover, using standard perturbation arguments and making δ̄ smaller if
necessary, we can assume that if (wi) ⊂ W ∗ satisfies ‖xi − wi‖ < δi for
all i ∈ N, then (wi) is a basic sequence equivalent to (xi) with projection
constant at most 2K. We can also assume that ∆ =

∑∞
i=1 δi < 1/7.

Choose a sequence (εi) ⊂ (0, 1) with εi ↓ 0 and 3K(K + 1)
∑∞

j=i εj < δ2i
for all i ∈ N. After blocking (E∗j ) if necessary, we can assume that for any
subsequent blocking D of E∗ there is a sequence (ei) in SQ∗X∗ such that
‖ei − PDi (ei)‖ < εi/2K for all i ∈ N.

Using Johnson and Zippin’s blocking lemma [10] we may assume, after
further blocking our FDDs (F ∗j ) and (E∗j ) if necessary, that given k < `,
if z∗ ∈

⊕
j∈(k,`) F

∗
j , then ‖PE∗[1,k)Q

∗i∗z∗‖ < εk and ‖PE∗[`,∞)Q
∗i∗z∗‖ < ε`,

and moreover the same holds if one passes to any blocking of (F ∗j ) and
the corresponding blocking of (E∗j ). Note that although the conditions of
the Johnson–Zippin lemma are not satisfied here, the proof is easily seen
to apply because our FDDs are boundedly complete, and the map Q∗i∗ is
w∗-to-w∗ continuous.

We now continue as in the proof of [17, Theorem 4.1(b)]: we replace F ∗j
by the quotient space F̃j = i∗(F ∗j ), we let Z̃ be the completion of c00(F̃j)
with respect to the norm ||| · ||| as defined in [17] and obtain a quotient map
ι̃ : Z̃ → X∗. We note that the results corresponding to [17, Proposition
4.9(b),(c)] are valid here as their proof does not require reflexivity (part (a)
is not required, and indeed neither valid, here).

Finally, we find a blocking (G̃j) of (F̃j) and a subsequence V ∗N = (v∗ni)
of (v∗i ) such that ι̃ is still a quotient map of Z̃V

∗
N (G̃) onto X∗ and it is still

w∗-to-w∗ continuous (note that (G̃j) is boundedly complete in Z̃V
∗
N (G̃) by

Proposition 2.8). Since (G̃j) satisfies subsequential V ∗N -lower block estimates
in Z̃V

∗
N (G̃), statement (5) will then follow by duality (after filling the FDD

as in the proof of the implication (1)⇒(4)). To find suitable G̃ and (ni) we
now follow the proof of [17, Theorem 4.1(b)] verbatim. The only comment
we need to make is that [17, Lemma 4.10] is valid since we are working with
boundedly complete FDDs and w∗-to-w∗ continuous maps.

Finally, since the missing implications (5)⇒(1) and (3)⇒(2) are trivial,
we finished the proof of the theorem.

The proof of the following result is an adaptation of the proof of Theo-
rem 5.1 in [17] to the nonreflexive case.

Corollary 3.3. Let V = (vi) be a 1-unconditional , shrinking , block
stable, and right dominant normalized basic sequence. There is a Banach
space Y with a shrinking FDD (Ei) satisfying subsequential V -upper block
estimates such that if a Banach space X with separable dual has subsequen-
tial V -upper tree estimates, then X embeds into Y .
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Proof. By Schechtman’s result [20] there exists a spaceW with a bimono-
tone FDD E = (Ei) with the property that any space X with bimonotone
FDD F = (Fi) naturally almost isometrically embeds into W , i.e. for any
ε > 0 there is a (1 + ε)-embedding T : X → W and a sequence (ki) ∈ [N]ω

such that T (Fi) = Eki , and moreover
∑

i P
E
ki

is a norm-1 projection of W .
Since V ∗ is boundedly complete it follows from Proposition 2.8 that

the sequence (E∗i ) is a boundedly complete FDD of the space (W (∗))V
∗
. It

follows that (Ei) is a shrinking FDD of the space Y = ((W (∗))V
∗
)(∗) and

that Y ∗ = (W (∗))V
∗
. We denote by ‖ · ‖W , ‖ · ‖W (∗) , ‖ · ‖Y , ‖ · ‖Y ∗ the norms

in W , W (∗), Y and Y ∗, respectively.
By Proposition 2.8, (E∗i ) satisfies subsequential V ∗-lower block estimates

in (W (∗))V
∗
, and, thus, by Proposition 2.2, (Ei) satisfies subsequential V -

upper block estimates in Y (recall that Y (∗) = Y ∗ = (W (∗))V
∗
).

We now have to show that a space X with separable dual and with sub-
sequential V -upper tree estimates embeds in Y . By Theorem 1.1 we can
assume that X has a shrinking, bimonotone FDD (Fi) satisfying subsequen-
tial V -upper block estimates. By our choice of W we can assume that X is
the complemented subspace of W generated by a subsequence (Eki) of (Ei).
We need to show that on X the norms ‖ · ‖W and ‖ · ‖Y are equivalent.

Let C ≥ 1 be chosen so that (vi) is C-block stable and C-right dom-
inant (thus (v∗i ) is C-block stable and C-left dominant) and such that
(E∗ki) satisfies subsequential C-V ∗-lower block estimates in X∗. Let w∗ ∈
c00(

⊕
F ∗i ) = c00(

⊕
E∗ki). Clearly, we have ‖w∗‖W (∗) ≤ ‖w∗‖Y ∗ . Choose

1 ≤ m0 < m1 < · · · such that

‖w∗‖Y ∗ =
∥∥∥ ∞∑
i=1

‖PE∗[mi−1,mi)
(w∗)‖W (∗)v∗mi−1

∥∥∥
V ∗
.

We can assume that m0 = 1 and that PE
∗

[mi−1,mi)
(w∗) 6= 0 for i ∈ N.

Since w∗ ∈ c00(
⊕
E∗ki), we can choose j1 < j2 < · · · such that kji =

min suppPE
∗

[mi−1,mi)
(w∗) and deduce

‖w∗‖Y ∗ =
∥∥∥ ∞∑
i=1

‖PE∗[mi−1,mi)
(w∗)‖W (∗)v∗mi−1

∥∥∥
V ∗

≤ C
∥∥∥ ∞∑
i=1

‖PE∗[mi−1,mi)
(w∗)‖W (∗)v∗kji

∥∥∥
V ∗

≤ C2
∥∥∥ ∞∑
i=1

‖PF ∗[ji,ji+1)(w
∗)‖W (∗)v∗ji

∥∥∥
V ∗
≤ C3‖w∗‖W (∗) .

This proves that ‖ · ‖W (∗) and ‖ · ‖Y ∗ are equivalent on c00(
⊕
E∗ki). Since

X is 1-complemented in W , and X∗ is 1-complemented in W (∗), and since
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∑
i P

E∗
ki

is still a norm-1 projection from Y ∗ onto c00(
⊕

(Eki))
Y ∗

, it follows
for any w ∈ c00(

⊕
Eki) that (1/C3)‖w‖W ≤ ‖w‖Y ≤ ‖w‖W , which finishes

the proof of our claim.

As an application of Theorem 1.1 we extend structural and universality
results on classes of bounded Szlenk index from the reflexive case studied
in [18] to the nonreflexive case.

Corollary 3.4. Let α < ω1. For a space X with separable dual , the
following are equivalent :

(i) X has Szlenk index at most ωαω.
(ii) X satisfies subsequential Tα,c-upper tree estimates for some c ∈

(0, 1).
(iii) X embeds into a space Z with an FDD (Ei) which satisfies subse-

quential Tα,c-upper block estimates in Z for some c ∈ (0, 1).

Proof. The implication (i)⇒(ii) is proved in Corollary 19 and Theorem
21 of [18] (the reflexivity assumption there is not used for the relevant impli-
cation). The implication (iii)⇒(i) follows from [18, Proposition 17]. Finally,
(ii)⇒(iii) follows from the implication (1)⇒(5) of Theorem 1.1.

Corollary 3.5. For each α < ω1 there exists a Banach space Zα with
a shrinking FDD and Szlenk index at most ωαω+1 such that Zα is universal
for the collection of spaces with separable dual and Szlenk index at most ωαω.

Proof. By Corollary 3.3 for all n ∈ N there exists a Banach spaceXn with
an FDD satisfying subsequential Tα,n/(n+1)-upper block estimates which is
universal for all Banach spaces with separable dual which satisfy subsequen-
tial Tα,n/(n+1)-upper tree estimates. Let Zα = (

⊕
Xn)`2 . The space Zα is

universal for the collection of spaces with separable dual and Szlenk index
at most ωαω by Corollary 3.4. The Szlenk index of Zα is at most ωαω+1 as
proven in [18].

Acknowledgments. Research of the second and third authors was sup-
ported by the National Science Foundation. This paper forms a portion of
the doctoral dissertation of the first author which is being prepared at Texas
A&M University under the direction of the third author.

References

[1] B. Bossard, An ordinal version of some applications of the classical interpolation
theorem, Fund. Math. 152 (1997), 55–74.

[2] P. G. Casazza, W. B. Johnson and L. Tzafriri, On Tsirelson’s space, Israel J. Math.
47 (1984), 81–98.

[3] P. G. Casazza and N. Kalton, Unconditional bases and unconditional finite-dimen-
sional decompositions in Banach spaces, ibid. 95 (1996), 349–373.



Banach spaces of bounded Szlenk index II 177

[4] W. J. Davis, T. Figiel, W. B. Johnson and A. Pe lczyński, Factoring weakly compact
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