Uncountable ω-limit sets with isolated points

by

Chris Good (Birmingham), Brian E. Raines (Waco, TX) and Rolf Suabedissen (Oxford)

Abstract

We give two examples of tent maps with uncountable (as it happens, post-critical) ω-limit sets, which have isolated points, with interesting structures. Such ω-limit sets must be of the form $C \cup R$, where C is a Cantor set and R is a scattered set. Firstly, it is known that there is a restriction on the topological structure of countable ω-limit sets for finite-to-one maps satisfying at least some weak form of expansivity. We show that this restriction does not hold if the ω-limit set is uncountable. Secondly, we give an example of an ω-limit set of the form $C \cup R$ for which the Cantor set C is minimal.

1. Introduction. Let X be a space and $F: X \rightarrow X$ be continuous. For $x \in X$, the ω-limit set of x is the set

$$
\omega(x)=\bigcap_{n \in \mathbb{N}} \overline{\left\{F^{j}(x): j \geq n\right\}} .
$$

The topological structure of the ω-limit set of x is an indication of the complexity of the orbit of x, and as such the topological structure and dynamical features of ω-limit sets is the subject of much study, [1], [2], [4], [7], [8], [10], [11], [14]. Of particular interest is the case where $X=[0,1]$ and f is a unimodal map with critical point c. In this setting we consider the ω-limit set of the critical point, $\omega(c)$. Typically (in the sense of Lebesgue measure) the orbit of c is dense, and so $\omega(c)=[0,1]$, [6], but $\omega(c)$ can be much more complicated.

If the ω-limit set of a point (in particular, the critical point) of a unimodal map with large enough gradient is not dense, then it is totally disconnected. By definition, these sets are compact and strongly invariant (i.e. $f(\omega(c))=$ $\omega(c))$. So it is common to think of such ω-limit sets as periodic orbits or invariant Cantor sets. However, there are many more varieties. For instance a sort of in-between case is when the ω-limit set is infinite yet contains

[^0]isolated points. Suppose that A is an infinite, totally disconnected, compact subset of $[0,1]$. We can get an idea of the topological structure of A by considering its iterated derived set.

Let X be any non-empty topological space and let A be a subset of X. The Cantor-Bendixson derivative A^{\prime} of A is the set of all limit points of A. Inductively, we can define the iterated Cantor-Bendixson derivatives of X by

$$
\begin{aligned}
X^{(0)} & =X \\
X^{(\alpha+1)} & =\left(X^{(\alpha)}\right)^{\prime}, \\
X^{(\lambda)} & =\bigcap_{\alpha<\lambda} X^{(\alpha)} \quad \text { if } \lambda \text { is a limit ordinal. }
\end{aligned}
$$

Clearly for some ordinal $\gamma, X^{(\gamma)}=X^{(\gamma+1)}$. If this set is non-empty, then it is called the perfect kernel, and if it is empty, then X is said to be scattered. In the scattered case, a point of X has a well-defined Cantor-Bendixson rank, often called the scattered height or limit type of x, defined by $\operatorname{lt}(x)=\alpha$ if and only if $x \in X^{(\alpha)} \backslash X^{(\alpha+1)}$. The α th level L_{α} of X (or, more formally, L_{α}^{X}) is then the set of all points of limit type α. Clearly L_{α} is the set of isolated points of $X^{(\alpha)}$.

Since the collection of $X^{(\alpha)}$ s forms a decreasing sequence of closed subsets of X, if X is a compact scattered space, then it has a non-empty finite top level $X^{(\gamma)}=L_{\gamma}$.

We endow an ordinal (regarded as the set of its own predecessors) with the interval topology generated by its natural order. With this topology every ordinal is a scattered space.

The standard set-theoretic notation for the first infinite ordinal, i.e. the set of all natural numbers, is ω. The ordinal $\omega+1$, then, is the set of all ordinals less than or equal to ω, so $\omega+1$ is the set consisting of ω together with all natural numbers. Then $\omega+1$ with its order topology is homeomorphic to the convergent sequence $S_{0}=\{0\} \cup\{1 / n: 0<n \in \mathbb{N}\}$ with the usual topology inherited from the real line. In fact, every countable ordinal is homeomorphic to a subset of \mathbb{Q}. The next limit ordinal is $\omega+\omega=$ $\omega \cdot 2$. The space $\omega \cdot 2+1$ consists of all ordinals less than or equal to $\omega \cdot 2$, i.e. all natural numbers, ω, the ordinals $\omega+n$ for each $n \in \mathbb{N}$, and the limit ordinal $\omega \cdot 2$. The set $\omega \cdot 2+1$ with its order topology is homeomorphic to two disjoint copies of S_{0}. For each $n \in \mathbb{N}$, the ordinals n and $\omega+n(0<n)$ have scattered height 0 . On the other hand, ω and $\omega \cdot 2$ have scattered height 1 , corresponding to the fact that 0 is a limit of isolated points in S_{0} but is not a limit of limit points in S_{0}. The ordinal space $\omega^{2}+1$ consists of all ordinals less than or equal to ω^{2} (namely: 0 ; the successor ordinals n and $\omega \cdot n+j$ for each $j, n \in \mathbb{N}$; the limit ordinals $\omega \cdot n$ for each $n \in \mathbb{N}$; and the limit
ordinal ω^{2}). With its natural order topology, $\omega^{2}+1$ is homeomorphic to the subset of the real line $S=\{0\} \cup \bigcup_{n \in \mathbb{N}} S_{n}$ defined in the Introduction. In this case, the ordinals $\omega \cdot n, n \in \mathbb{N}$, which have scattered height 1 , correspond to the points $1 / n$, which are limits of isolated points $1 / n+1 / k$ but not of limit points. The ordinal ω^{2} has scattered height 2 and corresponds to the point 0 , which is a limit of the limit points $1 / n$.

In general, the ordinal space $\omega^{\alpha} \cdot n+1$ consists of n copies of the space $\omega^{\alpha}+1$, which itself consist of a single point with limit type α as well as countably many points of every limit type β with $\beta<\alpha$. It is a standard topological fact that every countable, compact Hausdorff space X is not only scattered, but homeomorphic to a countable successor ordinal of the form $\omega^{\alpha} \cdot n+1$ for some countable ordinal α. Of course every countable compact metric space is also homeomorphic to a subset of the rationals and, in this context, we can interpret the statement that $X \simeq \omega^{\alpha} \cdot n+1$ as notation to indicate that X is homeomorphic to a compact subset of the rationals with n points of highest limit type α. For more on scattered spaces, see section G of [12].

If f is a unimodal map of the interval, then the ω-limit set of the critical point is a subset of $[0,1]$. In this case, $\omega(c)$ is a subset of $[0,1]$, the perfect kernel exists and γ is countable. Moreover, this "final level" of A contains no isolated points and is either empty or a Cantor set.

We show in [10] that if A is a scattered ω-limit set of a finite-to-one map on a compact metric space, with a weak form of expansivity, then the height of A is a countable ordinal not equal to a limit ordinal or the successor of a limit ordinal, i.e. the empty perfect kernel cannot occur at a limit ordinal. This result applies, for example to locally eventually onto unimodal maps of the interval, such as tent maps with gradient greater than $\sqrt{2}$. Conversely, given a compact scattered subset A of the interval with height not equal to a limit ordinal or the successor of a limit ordinal, there is a tent map for which the ω-limit set of the critical point is homeomorphic to A.

In this paper we address the case of non-scattered, i.e. uncountable, ω-limit sets that nevertheless have isolated points. Specifically, we build an ω-limit set of a tent map such that the perfect kernel for A occurs at a limit height (in fact, height ω). This demonstrates that the restriction on the height of scattered ω-limit sets [10] is not valid for uncountable ω-limit sets with isolated points. In this example the Cantor set perfect kernel contains a fixed point and is hence not minimal. Therefore, in response to a question of the referee, we construct a tent map with a critical point whose ω-limit set is the union of a minimal Cantor set and a scattered part (consisting of isolated points) that is dense in the ω-limit set. In such cases the scattered part is always a dense subset of the ω-limit set.
2. The construction of a perfect kernel at level ω. In this section we construct a particular unimodal map, f, with critical point c such that $\omega(c)$ is an infinite set with isolated points that violates the limit height restriction on scattered ω-limit sets. We make extensive use of symbolic dynamics and itineraries. For background definitions and results see [5] or [9].

We begin by constructing a kneading sequence that "encodes" a Cantor set, $C \subseteq\{0,1\}^{\mathbb{N}}$, in the sense that $\omega(c)$ is made up of all the points with itineraries in C. (As usual, $\{0,1\}^{\mathbb{N}}$ has the product topology, so that two sequences are close if they agree on a long initial segment.) Inside this Cantor set we designate a countable collection of sets, Δ_{n}, each of which is countable and has limit height n such that the sets Δ_{n} accumulate on a finite collection of points in C. Then we use this countable collection of subsets of C to encode another kneading sequence that also encodes C but now with homeomorphic copies of $\Delta_{n}, \Delta_{n}^{*}$, that are not in the Cantor set, but accumulate on the same finite subset of C. Since these sets are not in C we will see that the ω-limit set of this new kneading sequence is of the form $C \cup R$ where $R=\bigcup_{n \in \mathbb{N}} \Delta_{n}^{*}$, C is the largest Cantor set in $\omega(c)$, and for each n there are points in R with limit type n but the points in $\omega(c)$ with limit type ω are in C.

Let $\{0,1\}^{<\mathbb{N}}=\bigcup_{n \in \mathbb{N}}\{0,1\}^{n}$ be the collection of all finite words in the alphabet $\{0,1\}$. Let

$$
A=10^{5} 1
$$

and for every $n>5$ let

$$
B_{n, 0}=10^{3} 1^{2 n} 0^{3} 1 \quad \text { and } \quad B_{n, 1}=10^{3} 1^{2 n+1} 0^{3} 1
$$

For every $\gamma=\left(\gamma_{0}, \gamma_{1}, \ldots, \gamma_{k}\right) \in\{0,1\}^{<\mathbb{N}}$ and $n>5$ let

$$
C_{n, \gamma}=B_{n, \gamma_{0}} B_{n, \gamma_{1}} \ldots B_{n, \gamma_{k}}
$$

Extend this definition to all $\gamma \in\{0,1\}^{\mathbb{N}}$ in the obvious way. Notice that the set

$$
\Gamma_{n}^{*}=\left\{C_{n, \gamma}\right\}_{\gamma \in\{0,1\}^{\mathbb{N}}}
$$

is a Cantor set in $\{0,1\}^{\mathbb{N}}$. Let

$$
\Gamma_{n}=\overline{\bigcup_{m \in \mathbb{N}} \sigma^{m}\left(\Gamma_{n}^{*}\right)}
$$

where σ is the shift map. Then

$$
\overline{\bigcup_{n \in \mathbb{N}} \Gamma_{n}}=\bigcup_{n \in \mathbb{N}} \Gamma_{n} \cup\left\{\sigma^{j}\left(1^{k} 0^{3} 110^{3} 1^{\infty}\right): 0 \leq k, j \leq 8\right\} \cup\left\{1^{\infty}\right\}
$$

which is a Cantor set. The advantage of considering a countable collection of Cantor sets comes later in the paper.

Let $\mathcal{L}=\left\{B_{m, 0}: m>5\right\} \cup\left\{10^{4}\right\}$. Let Σ be the set of all finite length words made up of words from \mathcal{L}. Let Σ_{∞} be the set of all infinite length
words of that form, and let

$$
\bar{\Sigma}=\overline{\bigcup_{n \in \mathbb{N}} \sigma^{n}\left(\Sigma_{\infty}\right)}
$$

It is easy to see that $\bar{\Sigma} \subseteq\{0,1\}^{\infty}$ is a Cantor set. Since Σ is a collection of finite length words, it is countable. Let $\left(R_{i}\right)_{i \in \mathbb{N}}$ be some enumeration of Σ. Enumerate $\{0,1\}^{<\mathbb{N}}$ by

$$
\left\{\gamma_{j}=\left(\gamma_{j, 0}, \gamma_{j, 1}, \ldots, \gamma_{j, k}\right)\right\}_{j=1}^{\infty}=\{0,1\}^{<\mathbb{N}}
$$

Let $\mathcal{S}=\left\{1^{n} 0 C_{n, \gamma_{j}}: n, j \in \mathbb{N}, n>5\right\}$, and, since \mathcal{S} is countable, let $\left\{S_{m}\right\}_{m \in \mathbb{N}}$ be an enumeration of \mathcal{S}. Define $k(m)$ to be the unique n such that $S_{m}=$ $1^{n} 0 C_{n, j}$ for some $j \in \mathbb{N}$. Let

$$
T_{m}=\left(10^{4}\right)^{m} R_{m}\left(10^{4}\right)^{m} S_{m} B_{k(m), 0}^{m}
$$

Finally, define a kneading sequence by

$$
S=A A T_{1} T_{2} T_{3} \ldots
$$

It is easy to check that S is the kneading sequence of a tent map, f (see [9, Lemma III.1.6]).

Theorem 2.1. Let f be the tent map with kneading sequence S and critical point c_{f}. Then $x \in \omega\left(c_{f}\right)$ if and only if the itinerary of $x, I(x)$, is a shift of one of the following:
(1) $U \in \bar{\Sigma}$,
(2) $\left(10^{4}\right)^{K} 1^{t} 0 U_{t}$ where $U_{n} \in \Gamma_{n}$ and $K \in \mathbb{N}$,
(3) $\left(10^{4}\right)^{K} 1^{\infty}$ where $K \in \mathbb{N}$,
(4) $1^{K} 010^{3} 1^{\infty}$ where $K \in \mathbb{N}$.

Moreover, $\omega\left(c_{f}\right)$ is a Cantor set.
We will call the collection of all such itineraries \mathcal{I}_{S}.
Proof. Notice that $x \in \omega\left(c_{f}\right)$ if, and only if every initial segment of the itinerary of x occurs infinitely often in S. So we see that if the itinerary of x is of one of the forms above then $x \in \omega\left(c_{f}\right)$. So suppose that $x \in \omega\left(c_{f}\right)$. We will show that the itinerary of $x, I(x)$, is one of the sequences listed above.

Either every initial segment of I of $I(x)$ occurs across the boundary between T_{m} and T_{m+1} for infinitely many m, or it occurs inside T_{m} for infinitely many m.

In the first case, I actually occurs in $B_{k(m), 0}^{m}\left(10^{4}\right)^{m+1}$ for large enough m, and hence $I(x)$ is of type (1). In the second case, for infinitely many m, I occurs in words of the form
(a) $\left(10^{4}\right)^{m} R_{m}\left(10^{4}\right)^{m}$,
(b) $\left(10^{4}\right)^{m} 1^{k(m)} 0 C_{k(m), \gamma_{j}}$, or
(c) $C_{k(m), \gamma_{j}} B_{k(m), 0}^{m}$.

By the definition of $\bar{\Sigma}$, (a) implies that $I(x)$ is of type (1). Notice that (c) is a special case of (b), so we consider (b). As $m \rightarrow \infty, j \rightarrow \infty$ but $k(m)$ can either remain fixed or increase. If $k(m)$ is fixed, $I(x)$ is of type (2). If $k(m)$ increases, $I(x)$ is either of type (3) or (4).

Finally, to see that $\omega\left(c_{f}\right)$ is a Cantor set, we show that it has no isolated points. Let $x \in \omega\left(c_{f}\right)$. Since $\bar{\Sigma}$ is a Cantor set, if x has itinerary of type (1), then x is not isolated. The same is true for type (2) since Γ_{t} is a Cantor set for all $t \in \mathbb{N}$. If x has itinerary of type (3) or (4) then it is a limit of points with itinerary of type (2).

For each positive integer $r>5$, there is a subset $\Delta_{r} \subseteq \Gamma_{r}$ which is countable and has a single point, $B_{r, 0}^{\infty}$, with limit type r such that for every $x \in \Delta_{r}$ there is an integer k with $\sigma^{k}(x)=B_{r, 0}^{\infty}$. In fact, Δ_{r} is homeomorphic to the ordinal $\omega^{r}+1$. So if $h: \Delta_{r} \rightarrow \omega^{r}+1$ is the homeomorphism we see that whenever $h(x)=\alpha$ then x and α must have the same limit type. So we use $\omega^{r}+1$ to index

$$
\Delta_{r}=\left\{x_{r, \alpha}\right\}_{\alpha \in \omega^{r}+1}
$$

For each $r>5$ and for each $\alpha \in \omega^{r}+1$ there is an infinite word $\delta_{r, \alpha} \in\{0,1\}^{\mathbb{N}}$ such that $x_{r, \alpha}=C_{r, \delta_{r, \alpha}}$ in the above notation. Let $\left(W_{r, n}\right)_{n \in \mathbb{N}}$ enumerate all of the finite words in points of Δ_{r}.

In order to alter the previous kneading sequence to obtain one with postcritical ω-limit set with the topological structure that we are after, we will insert the finite words that make up each Δ_{r} carefully into S in such a way that we can see a homeomorphic copy of each Δ_{r} isolated from the Cantor set but limiting to one point in Γ_{r} with limit type r. For each $r \in \mathbb{N}$, let p_{r} be the r th prime number. We will insert a copy of each finite word of Δ_{r} sandwiched between the words

$$
B_{p_{r}^{n}, 0}=10^{3} 1^{2 p_{r}^{n}} 0^{3} 1 \quad \text { and } \quad B_{n, 0}^{p_{r}^{n}}=\left(10^{3} 1^{2 n} 0^{3} 1\right)^{p_{r}^{n}}
$$

But we need to do this in such a way that we still have $B_{p_{r}^{n}, 0} B_{n, 0}^{p_{r}^{n}}$ occurring in the kneading sequence infinitely often. To accomplish this, for each $r \in \mathbb{N}$ let $\left(R_{r, n}\right)_{n \in \mathbb{N}} \subseteq\left(R_{m}\right)_{m \in \mathbb{N}}=\Sigma$ be chosen such that
(1) $R_{r, n}$ contains the word $B_{p_{r}^{n}, 0} B_{n, 0}^{p_{r}^{n}}$,
(2) $\left(R_{r, n}\right)_{n \in \mathbb{N}} \cap\left(R_{r^{\prime}, n}\right)_{n \in \mathbb{N}}=\emptyset$ for all $r \neq r^{\prime}$,
(3) each $R_{r, n}$ occurs infinitely often as a subword of terms in

$$
\left(R_{i}\right)_{i \in \mathbb{N}} \backslash\left[\bigcup_{k \in \mathbb{N}}\left(R_{k, n}\right)_{n \in \mathbb{N}}\right]
$$

Let $U_{r, n}$ be the word in $R_{r, n}$ before the first occurrence of $B_{p_{r}^{n}, 0} B_{n, 0}^{p_{r}^{n}}$, and let $U_{r, n}^{\prime}$ be the word in $R_{r, n}$ that occurs after the first occurrence of $B_{p_{r}^{n}, 0} B_{n, 0}^{p_{r}^{n}}$
in $R_{r, n}$. So

$$
R_{r, n}=U_{r, n} B_{p_{r}^{n}, 0} B_{n, 0}^{p_{n}^{n}} U_{r, n}^{\prime} .
$$

We alter each $R_{r, n}$ by inserting

$$
10^{3} p^{p_{r}^{n}} 0 W_{r, n}
$$

in between $B_{p_{r}^{n}, 0} B_{n, 0}^{p_{n}^{n}}$ and define

$$
R_{m}^{\prime}= \begin{cases}U_{r, n} B_{p_{r}^{n}, 0} 10^{3} 1^{p_{r}^{n}} 0 W_{r, n} B_{n, 0}^{p_{n}^{n}} U_{r, n}^{\prime} & \text { if } R_{m}=R_{r, n}, \\ R_{m}, & \text { otherwise. }\end{cases}
$$

Just as before, for each $m \in \mathbb{N}$ let

$$
T_{m}^{\prime}=\left(10^{4}\right)^{m} R_{m}^{\prime}\left(10^{4}\right)^{m} S_{m} B_{k(m), 0}^{m}
$$

where the $S_{m} \mathrm{~s}$ and $k(m)$ s are defined as above. Let

$$
S^{\prime}=A A T_{1}^{\prime} T_{2}^{\prime} T_{3}^{\prime} \ldots
$$

Again, it is easy to check that S^{\prime} is the kneading sequence of a tent map, g.
Theorem 2.2. Let g be the tent map with kneading sequence S^{\prime} and critical point c_{g}. Then $x \in \omega\left(c_{g}\right)$ if and only if the itinerary of $x, I(x)$, is a shift of one of the following:
(1) U where $U \in \mathcal{I}_{S}$,
(2) $1^{k} 0 x_{r, \alpha}$ for $k \in \mathbb{N}, r>5, \alpha \in \omega^{r}+1$.

Moreover, $\omega\left(c_{g}\right)=C \cup P$ where C is the largest Cantor set in $\omega\left(c_{g}\right)$ and $P=\bigcup_{r>5} P_{r}$ where P_{r} contains points with limit type r but not any points with higher limit type.

Proof. Clearly, if $x \in[0,1]$ and the itinerary of x is in \mathcal{I}_{S} then $x \in \omega\left(c_{g}\right)$, because we ensured that every word that occurred infinitely often in S still occurs infinitely often in S^{\prime}. The new points in $\omega\left(c_{g}\right)$ must occur due to the changed R_{m}^{\prime} s. Note that r and n depend on m and as $m \rightarrow \infty$, we have $p_{r}^{n} \rightarrow \infty$, which can occur in two ways: either the p_{r} s are the same prime but with increasing powers in n, or the $p_{r} \mathrm{~S}$ are an increasing sequence of primes.

This implies that every initial segment of $I(x)$ occurs in infinitely many R_{m}^{\prime} s which are of the form

$$
U_{r, n} B_{p_{r}^{n}, 0} 10^{3} 1^{p_{r}^{n}} 0 W_{r, n} B_{n, 0}^{p_{r}^{n}} U_{r, n}^{\prime} .
$$

Since $p_{r}^{n} \rightarrow \infty$, it follows that $\left|B_{p_{r}^{n}, 0}\right| \rightarrow \infty$ and $\left|W_{r, n}\right| \rightarrow \infty$. So every initial segment of $I(x)$ occurs infinitely often in one of:
(1) $U_{r, n} B_{p_{r}^{n}, 0}$,
(2) $B_{p_{r}^{n}, 0} 10^{3} 1_{r}^{n}$,
(3) $1^{p_{r}^{t}} 0 W_{r, n}$,
(4) $W_{r, n} B_{n, 0}^{p_{n}^{n}}$, or
(5) $B_{n, 0}^{p_{r}^{n}} U_{r, n}^{\prime}$.

Notice that (3) is the only possibly new form of an allowed initial segment. Recall that the words $W_{r, n}$ are finite subwords that describe Δ_{r}. Thus $I(x)=$ $1^{k} 0 x_{r, \alpha}$ for some $k \in \mathbb{N}, r>5$ and $\alpha \in \omega^{r}+1$.

For each $r>5$, let $P_{r}=\left\{x \in \omega\left(c_{g}\right): I(x)=1^{k} 0 x_{r, \alpha}, k>r, \alpha \in \omega^{r}+1\right\}$ and let $C=\omega\left(c_{g}\right) \backslash \bigcup_{r>5} P_{r}$. Since $1^{k} 0 x_{r, \alpha} \in \mathcal{I}_{S}$ if and only if $k \leq r$, we see that the $P_{r} \mathrm{~s}$ contain all of the points of $\omega\left(c_{g}\right)$ with itineraries that are not in \mathcal{I}_{S}. So C is a Cantor set that contains every point with itinerary that was an itinerary of some point in $\omega\left(c_{f}\right)$. If $x \in P_{r}$ then $I(x)=1^{k} 0 x_{r, \alpha}$ with $k>r$ and $\alpha \in \omega^{r}+1$. Let $V_{r, k}$ be the set of all points in $\omega\left(c_{g}\right)$ with itineraries that start with $1^{k} 010^{3} 1^{2 r} 0^{3}$ or $1^{k} 010^{3} 1^{2 r+1} 0^{3}$. Each $V_{r, k}$ is a subset of P_{r} that is homeomorphic to $\omega^{r}+1$ and is open in $\omega\left(c_{g}\right)$ because it is a cylinder set. So we see that C is the largest Cantor set in $\omega\left(c_{g}\right)$, and that each P_{r} contains points with limit type r and none with higher limit type.

Thus we have constructed an ω-limit set with isolated points that violates the restriction on ω-limit sets given in [10]. Notice that the specific construction we employed used subsets of the Cantor set with limit height n for each n but without anything of limit type ω. It is easy to see that the technique can be altered to allow the subsets Δ_{r} have any limit type structure. Thus for every countable ordinal γ, there exists a tent map such that $\omega(c)$ is uncountable and its perfect kernel occurs at level γ.

3. An uncountable ω-limit set with a minimal perfect kernel and

 a dense set of isolated points. In this section we address a question of the referee by constructing the following example.Example 3.1. There is a tent map h with critical point c_{h} such that $\omega\left(c_{h}\right)=C \cup R$ where C is a minimal Cantor set and R is a scattered set. Moreover, the set R is dense in $\omega\left(c_{h}\right)$.

To begin, we let K^{\prime} be the kneading sequence of a tent map $f:[0,1] \rightarrow$ $[0,1]$ with critical point c_{f} such that $\omega\left(c_{f}\right)$ is minimal. An example of such a kneading sequence can be found in [7]; other examples are provided by strange adding machines [8], [13]. Consider the inverse limit of f, and let $\operatorname{Fd}(f)$ be the set of folding points in $\varliminf_{\rightleftarrows}\{[0,1], f\}$, [14]. It is known that $\operatorname{Fd}(f)=\left.\lim _{\rightleftarrows} \omega_{f}\left(c_{f}\right) f\right|_{\omega_{f}\left(c_{f}\right)}$. Let

$$
\widehat{x}=\left(x_{1}, x_{2}, \ldots\right) \in \operatorname{Fd}(f) \backslash \bigcup_{n \in \mathbb{N}} \pi_{n}^{-1}\left(c_{f}\right)
$$

be such that

$$
x_{1} \notin \bigcup_{n \in \mathbb{N}} f^{-n}\left(c_{f}\right)
$$

Then x_{1} has a unique itinerary made up of 0 s and 1 s which we denote by $I_{f}\left(x_{1}\right)$, and \widehat{x} has a unique symbolic representation, $\mathcal{I}_{f}(\widehat{x}) \in\{0,1\}^{\mathbb{Z}}$, where

$$
\mathcal{I}_{f}(\widehat{x})=\left(\ldots, i_{f}\left(x_{3}\right), i_{f}\left(x_{2}\right), i_{f}\left(x_{1}\right) \cdot i_{f}\left(f\left(x_{1}\right)\right), i_{f}\left(f^{2}\left(x_{1}\right)\right), i_{f}\left(f^{3}\left(x_{1}\right)\right), \ldots\right)
$$

and $i_{f}(z)=0$ if $z<c_{f}$ but $i_{f}(z)=1$ otherwise.
Let $V=\left(V^{-} . V^{+}\right)$denote $\mathcal{I}_{f}(\widehat{x})$ and, for each $n \in \mathbb{N}$, let $V_{n}^{-} \cdot V_{n}^{+}$be the central segment of V of "diameter" $2 n$. Notice that $V_{n}^{-} \cdot V_{n}^{+}$is a central segment of the full itinerary of x_{n}. Since $\left.\widehat{x} \in \lim \omega_{f}\left(c_{f}\right) f\right|_{\omega_{f}\left(c_{f}\right)}$, we see that $x_{n} \in \omega_{f}\left(c_{f}\right)$. Thus each $V_{n}^{-} \cdot V_{n}^{+}$occurs infinitely often in K^{\prime} and we can write

$$
K^{\prime}=W_{1} V_{m_{1}}^{-} V_{m_{1}}^{+} W_{2} V_{m_{2}}^{-} V_{m_{2}}^{+} W_{3} V_{m_{3}}^{-} V_{m_{3}}^{+} \ldots
$$

where each W_{i} is a word in 0 and 1 , and both $\left|W_{i}\right| \rightarrow \infty$ and $m_{i} \rightarrow \infty$ as $i \rightarrow \infty$.

Now, by our assumptions on f, we know that $\omega_{f}\left(c_{f}\right)$ is minimal. In particular, the orientation reversing fixed point, p, with itinerary 1^{∞} is not in $\omega_{f}\left(c_{f}\right)$. This implies that there is some least $N \in \mathbb{N}$ such that 1^{N} does not occur in K^{\prime}. Let

$$
B=101^{N} 01
$$

and let

$$
K=W_{1} V_{m_{1}}^{-} B V_{m_{1}}^{+} W_{2} V_{m_{2}}^{-} V_{m_{2}}^{+} W_{3} V_{m_{3}}^{-} B V_{m_{3}}^{+} \ldots
$$

Specifically, in K^{\prime}, replace every odd occurrence

$$
V_{m_{2 i-1}}^{-} V_{m_{2 i-1}}^{+}
$$

with

$$
V_{m_{2 i-1}}^{-} B V_{m_{2 i-1}}^{+}
$$

It is easy to check that K is shift maximal and primary (see, for example, [10] for the terminology) and is therefore the kneading sequence of a tent map, h, with critical point c_{h}. Let $x \in \omega\left(c_{h}\right)$. By construction, there are three possibilities for the itinerary of x :
(1) $\mathcal{I}_{h}(x)=\mathcal{I}_{f}(y)$ for some $y \in \omega\left(c_{f}\right)$,
(2) $\mathcal{I}_{h}(x)$ contains B, in which case $\mathcal{I}_{h}(x)=\sigma^{m}\left(V_{n}^{-}\right) B V^{+}$for some $m<n$, (3) $\mathcal{I}_{h}(x)=\sigma^{k}\left(B V^{+}\right)$.

Points of type (1) give rise to a minimal Cantor set C on which h acts in conjugate fashion to the action of f on $\omega\left(c_{f}\right)$. Points of type (2) are isolated, since every itinerary containing a B terminates with $B V^{+}$(hence, any initial segment of the itinerary that contains B defines an open set that contains just this point). Points of type (3) are either isolated (in particular when $k<3$, so that the itinerary contains 1^{N}, which is always followed by $01 V^{+}$) or contained in C. Hence $\omega\left(c_{h}\right)=C \cup R$, where C is a minimal Cantor set and R is a collection of isolated points.

Since the only points of $\omega\left(c_{h}\right)$ that are not isolated are in C, by compactness there is at least one point $z \in C$ that is a limit point of a sequence $\left(x_{k}\right)$ of isolated points, where (without loss) the itinerary of x_{k} is $V_{n_{k}}^{-} B V^{+}$. Since C is minimal, for any $y \in C$ and any $\varepsilon>0$ there is some $m>0$ such that $\left|h^{m}(z)-y\right|<\varepsilon$. This is equivalent to saying that the itineraries of $h^{m}(z)$ and y agree for m^{\prime} terms for some $m^{\prime} \in \mathbb{N}$. But then whenever k is chosen so that $n_{k}>m+m^{\prime}$, the itineraries of $h^{m}\left(x_{k}\right), z$ and y will agree for the first m^{\prime} terms. Since its itinerary contains B, it follows that $h^{m}\left(x_{k}\right)$ is isolated, and hence the isolated points of $\omega\left(c_{h}\right)$ are dense. As the referee points out, the scattered part of such an ω-limit set with a minimal perfect kernel will always form a dense set. In fact, this holds for any continuous function on a compact metric space and follows from Sharkovskii's property of ω-limit sets (weak incompressibility): if F is a proper, non-empty closed subset of
 Now if $W=C \cup R$, where C is a Cantor set and R is a scattered subset of W, then either $\bar{R}=W$, in which case we are done, or $\overline{f(W-\bar{R})}$ meets \bar{R}. If C is a minimal Cantor set then $\overline{f(W-\bar{R})}$ is a non-empty subset of C, so that $C \cap \bar{R}$ is non-empty. But $C \cap \bar{R}$ is a closed, forward invariant subset of the minimal Cantor set C, and is therefore equal to C and indeed R is dense. This shows the following.

Proposition 3.2. Let $f: X \rightarrow X$ be a continuous function on the compact metric space X. If $\omega(x)=C \cup R$, where C is a minimal Cantor set and R is a scattered subset of $\omega(x)$, then R is dense in $\omega(x)$.

References

[1] L. Alsedà, M. Chas, and J. Smítal, On the structure of the ω-limit sets for continuous maps of the interval, Int. J. Bifur. Chaos Appl. Sci. Engrg. 9 (1999), 1719-1729.
[2] F. Balibrea and C. La Paz, A characterization of the ω-limit sets of interval maps, Acta Math. Hungar. 88 (2000), 291-300.
[3] L. Block and J. Keesling, A characterization of adding machine maps, Topology Appl. 140 (2004), 151-161.
[4] A. Blokh, A. M. Bruckner, P. D. Humke, and J. Smítal, The space of ω-limit sets of a continuous map of the interval, Trans. Amer. Math. Soc. 348 (1996), 1357-1372.
[5] K. M. Brucks and H. Bruin, Topics from One-Dimensional Dynamics, London Math. Soc. Student Texts 62, Cambridge Univ. Press, Cambridge, 2004.
[6] K. Brucks and M. Misiurewicz, The trajectory of the turning point is dense for almost all tent maps, Ergodic Theory Dynam. Systems 16 (1996), 1173-1183.
[7] H. Bruin, Minimal Cantor systems and unimodal maps, J. Difference Equ. Appl. 9 (2003), 305-318.
[8] -, Non-invertibility of Fibonacci-like unimodal maps restricted to their critical omega-limit sets, preprint, 2008, 19 pp.
[9] P. Collet and J.-P. Eckmann, Iterated Maps on the Interval as Dynamical Systems, Progr. Phys. 1, Birkhäuser, Boston, MA, 1980.
[10] C. Good, R. Knight, and B. Raines, Nonhyperbolic one-dimensional invariant sets with a countably infinite collection of inhomogeneities, Fund. Math. 192 (2006), 267-289.
[11] C. Good and B. E. Raines, Continuum many tent map inverse limits with homeomorphic postcritical ω-limit sets, ibid. 191 (2006), 1-21.
[12] K. P. Hart, J.-i. Nagata, and J. E. Vaughan (eds.), Encyclopedia of General Topology, Elsevier, Amsterdam, 2004.
[13] L. Jones, Kneading sequence structure of strange adding machines, Topology. Appl., to appear.
[14] B. E. Raines, Inhomogeneities in non-hyperbolic one-dimensional invariant sets, Fund. Math. 182 (2004), 241-268.

School of Mathematics and Statistics
University of Birmingham
Birmingham, B15 2TT, UK
E-mail: c.good@bham.ac.uk
Mathematical Institute
University of Oxford
Oxford, OX1 3LB, UK
E-mail: suabedis@maths.ox.ac.uk

Department of Mathematics
Baylor University
Waco, TX 76798-7328, U.S.A.
E-mail: brian_raines@baylor.edu

Received 11 November 2008;
in revised form 9 June 2009

[^0]: 2000 Mathematics Subject Classification: 37B45, 37E05, 54F15, 54H20.
 Key words and phrases: omega limit set, limit type, attractor, invariant set, unimodal, interval map.

