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Symmetries of spatial graphs and Simon invariants

by

Ryo Nikkuni and Kouki Taniyama (Tokyo)

Abstract. An ordered and oriented 2-component link L in the 3-sphere is said to be
achiral if it is ambient isotopic to its mirror image ignoring the orientation and ordering
of the components. Kirk–Livingston showed that if L is achiral then the linking number
of L is not congruent to 2 modulo 4. In this paper we study orientation-preserving or
reversing symmetries of 2-component links, spatial complete graphs on 5 vertices and
spatial complete bipartite graphs on 3 + 3 vertices in detail, and determine necessary
conditions on linking numbers and Simon invariants for such links and spatial graphs to
be symmetric.

1. Introduction. Throughout this paper we work in the piecewise lin-
ear category. Let L = J1 ∪ J2 be an ordered and oriented 2-component link
in the unit 3-sphere S3. Unless otherwise stated, the links in this paper will
be ordered and oriented. A link L is said to be component preserving achi-
ral (CPA) if there exists an orientation-reversing self-homeomorphism ϕ of
S3 such that ϕ(J1) = J1 and ϕ(J2) = J2, and component switching achiral
(CSA) if there exists an orientation-reversing self-homeomorphism ϕ of S3

such that ϕ(J1) = J2 and ϕ(J2) = J1 [3]. If L is either CPA or CSA, then
L is said to be achiral. Note that L may be both CPA and CSA (a trivial
link, for example). The following was shown by Kirk–Livingston.

Theorem 1.1 ([4, 6.1. Corollary]). If L is achiral then lk(L) is not
congruent to 2 modulo 4, where lk denotes the linking number.

See also [7, Theorem 5.1] for an elementary proof of Theorem 1.1. Note
that for any odd integer n there exists a 2-component link of linking number
n which is both CPA and CSA; see Fig. 1.1 (cf. [7, §5]). In [7], Livingston
gave an example of a CSA link with linking number 4 (a cabling of the Hopf
link) and stated open problems: to find an achiral link of linking number
4m for any integer m, and to find a CPA link of linking number 4m for any
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integer m. For the latter, Kidwell showed the following.

Theorem 1.2 ([3, Theorem 4]). A 2-component link of nonzero even
linking number cannot be CPA.

Kidwell also gave an example of a CSA link of linking number 4m for any
odd integer m [3, §3]. But as far as the authors know, a CSA link of linking
number 4m for any nonzero even integer m has not been exhibited yet.

To give a complete answer to Livingston’s problem, we will present a new
family of achiral links. For an integer m and ε1, ε2 ∈ {−1, 1}, let L(m, ε1, ε2)
be a 2-component link of linking number 4m+ (ε1 + ε2)/2 as illustrated in

ε2

ε1

−2m −2m

2m
2m

L(m, ε1, ε2)

+1 −1= =

Fig. 1.2
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Fig. 1.2. Note that L(0, ε,−ε) is trivial for ε = ±1. Therefore L(0, ε,−ε)
is both a CPA and CSA link of linking number 0. Moreover, we have the
following.

Theorem 1.3.

(1) For any integer m and ε1, ε2 ∈ {−1, 1}, L(m, ε1, ε2) is CSA.
(2) For any integer m and ε = ±1, L(m, ε, ε) is CPA.

Proof. In Fig. 1.2, we may suppose that a regular diagram of L(m, ε1, ε2)
on the standard 2-sphere S2 in S3 is such that the crossing of sign ε1 is on
the north pole and that of sign ε2 is on the south pole.

(1) A π/2 rotation of S2 around the earth’s axis maps L(m, ε1, ε2) onto
its mirror image. Thus we have the assertion.

(2) The π rotation of S2 around an axis through the equator interchanges
the components of L(m, ε, ε). Then by composing it with a π/2 rotation of
S2 around the earth’s axis, we see that L(m, ε, ε) is mapped onto its mirror
image preserving the components. Thus we have the result.

The following corollary shows that Theorems 1.1 and 1.2 give the best
possible necessary conditions on the linking number for a 2-component link
to be CPA or to be CSA.

Corollary 1.4.

(1) For any integer m and ε = ±1, L(m, ε, ε) is both a CPA and CSA
link of linking number 4m+ ε.

(2) For any integer m and ε = ±1, L(m, ε,−ε) is a CSA link of linking
number 4m.

Remark 1.5. A further step in the investigation of the achirality of 2-
component links is to take the invertibility of each component into account,
as follows. For a 2-component link L = J1 ∪ J2, assume that there exists a
self-homeomorphism ϕ of S3 such that ϕ(L) = L. Then the candidates for
(ϕ(J1), ϕ(J2)) are (1) (J1, J2), (2) (J2, J1), (3) (−J1,−J2), (4) (−J2,−J1),
(5) (−J1, J2), (6) (J1,−J2), (7) (−J2, J1), (8) (J2,−J1). When lk(L) 6= 0,
by observing the change of the sign of lk(L) it can be seen that the first
four cases may occur only if ϕ is orientation-preserving, and the last four
only if ϕ is orientation-reversing, where L is CPA in case (5) or (6), and
CSA in case (7) or (8). The first four cases can be realized by a (2, 2n)-torus
link simultaneously for any integer n, so these symmetries do not depend on
the linking number. On the other hand, since L(m, ε1, ε2) is invertible, only
Theorems 1.1 and 1.2 are restrictions on the linking number for the latter
four cases.

Next, let us consider finite graphs which are embedded in S3. An embed-
ding f of a finite graph G into S3 is called a spatial embedding of G or simply
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a spatial graph. Two spatial embeddings f and g of G are said to be ambient
isotopic if there exists an orientation-preserving self-homeomorphism ϕ of
S3 such that ϕ ◦ f = g. In [21], the second author introduced the notion
of (spatial graph-)homology as a fundamental equivalence relation on spatial
graphs which is weaker than ambient isotopy. It is known that a homology is
generated by Delta moves and ambient isotopies [9, Theorem 1.3], where a
Delta move is a local deformation of a spatial graph as illustrated in Fig. 1.3.
Linking numbers of constituent 2-component links are typical homological
invariants of spatial graphs. In particular, two k-component links are ho-
mologous if and only if they have the same pairwise linking numbers [10,
Theorem 1.1].

Fig. 1.3

On the other hand, let K5 and K3,3 be a complete graph on five ver-
tices and a complete bipartite graph on 3 + 3 vertices respectively, known
as obstructions in Kuratowski’s graph planarity criterion [6]. For a spatial
embedding f of K5 or K3,3, the Simon invariant L(f) is defined [21, §4],
which is an odd integer valued homological invariant calculated from the
regular diagram of f , like the linking number. We give a precise definition
of L(f) in the next section. It is known that two spatial embeddings of a
graph are homologous if and only if they have the same Wu invariant [22],
or equivalently, their corresponding constituent 2-component links have the
same linking number and their corresponding spatial subgraphs which are
homeomorphic to K5 or K3,3 have the same Simon invariant [17]. Thus, link-
ing numbers and Simon invariants play a primary role in classifying spatial
graphs up to homology. We remark here that both the linking number and
the Simon invariant come from the Wu invariant as special cases; see [22,
§2] for details.

Our main purpose in this paper is to reveal the relationship between
orientation-preserving or reversing symmetries of spatial embeddings of K5

and K3,3 and their Simon invariants in addition to the case of 2-component
links and their linking numbers. A study of symmetries of spatial graphs is
not only a fundamental problem in low dimensional topology as a general-
ization of achirality of knots and links but also an important research theme
from the standpoint of application to macromolecular chemistry, which is
called molecular topology [23], [16], [1], [2]. Actually, both K5 and K3,3 have
been realized chemically as underlying molecule graphs for some chemical
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compounds [14], [12], [24], [5]. We refer the reader to [15] for a pioneer work
on symmetries of spatial embeddings of K5 and K3,3.

From now on we assume that G is K5 or K3,3. Let Aut(G) be the
automorphism group of G. We regard each automorphism of G as a self-
homeomorphism of G. For a spatial embedding f of G and an automorphism
σ of G, we say that f is σ-symmetric (resp. rigidly σ-symmetric) if there
exists a self-homeomorphism (resp. periodic self-homeomorphism) ϕ of S3

such that f ◦ σ = ϕ ◦ f . In particular, if ϕ is orientation-reversing then we
say that f is σ-achiral (resp. rigidly σ-achiral). In the first author’s prelim-
inary report [11], it was shown that for any odd integer n there exist an
automorphism σ of G and a σ-achiral spatial embedding f of G such that
L(f) = n. Then it is natural to ask the following question.

Question 1.6. For an automorphism σ of G and an odd integer n, does
there exist a σ-symmetric spatial embedding f of G such that L(f) = n?

For an automorphism σ of G and an odd integer n, we say that the pair
(σ, n) is realizable if there exists a σ-symmetric spatial embedding f of G
such that L(f) = n. Then the following proposition holds.

Proposition 1.7. Let σ and τ be two automorphisms of G which are
conjugate in Aut(G), and n an odd integer. Then (σ, n) is realizable if and
only if (τ, n) is realizable.

Therefore it is sufficient to consider only conjugacy classes in Aut(G).
Note that we may identify Aut(G) with a subgroup of the symmetric group
Sm of degree m, where m is the number of vertices of G. If G is K3,3, we
assume that the vertices corresponding to 1, 2 and 3 are adjacent to the
vertices corresponding to 4, 5 and 6. Then we have the following.

Proposition 1.8.

(1) Representatives for all conjugacy classes in Aut(K5) are

id, (1 2), (1 2 3), (1 2 3 4), (1 2 3 4 5), (1 2)(3 4), (1 2)(3 4 5).

(2) Representatives for all conjugacy classes in Aut(K3,3) are

id, (1 2), (1 2 3), (1 4 2 5 3 6), (1 2)(4 5), (1 2)(4 5 6),
(1 2 3)(4 5 6), (1 4 2 5)(3 6), (1 4)(2 5)(3 6).

Now we state our main theorems.

Theorem 1.9. Let G be K5 and n an odd integer. Then we have the
following :

(1) ((1 2 3), n) is realizable if and only if n ≡ ±1 mod 6.
(2) ((1 2 3 4 5), n) is realizable.
(3) ((1 2)(3 4), n) is realizable.
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(4) ((1 2 3 4), n) is realizable.
(5) ((1 2), n) is realizable if and only if n = ±1.
(6) ((1 2)(3 4 5), n) is realizable if and only if n = ±1.

Theorem 1.10. Let G be K3,3 and n an odd integer. Then we have the
following :

(1) ((1 2 3), n) is realizable if and only if n ≡ ±1 mod 6.
(2) ((1 2)(4 5), n) is realizable.
(3) ((1 2 3)(4 5 6), n) is realizable.
(4) ((1 4)(2 5)(3 6), n) is realizable.
(5) ((1 4 2 5 3 6), n) is realizable.
(6) ((1 4 2 5)(3 6), n) is realizable.
(7) ((1 2), n) is realizable if and only if n = ±1.
(8) ((1 2)(4 5 6), n) is realizable if and only if n = ±1.

Furthermore, each realizable pair (σ, n) may be realized by a rigidly
σ-symmetric spatial embedding of G. By combining Theorems 1.9 and 1.10
with Propositions 1.7 and 1.8, we can give a complete answer to Question
1.6. We can also determine when (σ, n) is realized by a σ-achiral spatial
embedding of G as follows.

Theorem 1.11.

(1) Let σ be an automorphism of K5, and n an odd integer. Suppose
that (σ, n) is realizable. Then (σ, n) is realized by a σ-achiral spatial
embedding of K5 if and only if σ is conjugate to (1 2 3 4), (1 2) or
(1 2)(3 4 5).

(2) Let σ be an automorphism of K3,3, and n an odd integer. Suppose
that (σ, n) is realizable. Then (σ, n) is realized by a σ-achiral spatial
embedding of K3,3 if and only if σ is conjugate to (1 4 2 5)(3 6), (1 2)
or (1 2)(4 5 6).

Actually, we will show that a realizable pair (σ, n) in Theorem 1.9(1)–(3)
and Theorem 1.10(1)–(5) can only be realized by an orientation-preserving
self-homeomorphism of S3, and a realizable pair (σ, n) in Theorem 1.9(4)–(6)
and Theorem 1.10(6)–(8) can only be realized by an orientation-reversing
self-homeomorphism on S3.

In the next section we give a precise definition of the Simon invariant.
In Section 3, we prove some propositions including Propositions 1.7 and 1.8
that are needed later. The proofs of Theorems 1.9, 1.10 and 1.11 are given
in Section 4.

2. Simon invariant. Let G be K5 or K3,3 where the vertices have a
fixed numbering. In this section we review the Simon invariant of spatial
embeddings of G. We give an orientation to each edge of G as illustrated
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in Fig. 2.1, according to the numbering of the vertices. For an unordered
pair x, y of disjoint edges of K5, we define the sign ε(x, y) by ε(ei, ej) = 1,
ε(dk, dl) = −1 and ε(ei, dk) = −1. For an unordered pair x, y of disjoint
edges of K3,3, we also define the sign ε(x, y) by ε(ci, cj) = 1, ε(bk, bl) = 1
and ε(ci, bk) = 1 if ci and bk are parallel in Fig. 2.1, and −1 if they are
anti-parallel. For a spatial embedding f of G, we fix a regular diagram of f

d1

d2 d3

d4

d5

K5 K3,3

e1

e2

e3

e4

e5 c1

c2

c3 c4
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2 3
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Fig. 2.1

and denote the sum of the signs of the crossing points between f(x) and
f(y) by l(f(x), f(y)), where x, y is an unordered pair of disjoint edges of G.
Now we define an integer L(f) by

L(f) =
∑

(x,y)

ε(x, y)l(f(x), f(y)),

where the summation is taken over all unordered pairs of disjoint edges
of G. This integer L(f) is called the Simon invariant of f . Actually, this
is an odd integer valued ambient isotopy invariant [21, Theorem 4.1] up to
the numbering of the vertices. In particular, for a different numbering of
the vertices, the value of the Simon invariant may be different. The Simon
invariant can also be described from a cohomological viewpoint as follows.
See [22, Examples 2.4 and 2.5] for details. Let C2(X) be the configuration
space of ordered pairs of points of a topological space X, namely

C2(X) = {(x, y) ∈ X ×X | x 6= y} .
Let ι be the involution on C2(X) defined by ι(x, y) = (y, x). Then we call
the integral cohomology group of Ker(1 + ι]) the skew-symmetric integral
cohomology group of the pair (C2(X), ι) and denote it by H∗(C2(X), ι). It
is known that H2(C2(R3), ι) ∼= Z [25] and H2(C2(G), ι) ∼= Z. We denote
a generator of H2(C2(R3), ι) by Σ. Let f : G → S3 \ {(0, 0, 0, 1)} be a
spatial embedding of G, regarded as an embedding into R3. This embedding
f naturally induces an equivariant embedding f ×f : C2(G)→ C2(R3) with
respect to the action ι and therefore induces a homomorphism

(f × f)∗ : H2(C2(R3), ι)→ H2(C2(G), ι).
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Then the Simon invariant L(f) coincides with (f × f)∗(Σ) up to sign. Thus
the absolute value |L(f)| is an ambient isotopy invariant independent of the
numbering of the vertices.

The Simon invariant L(f) is also closely related to the constituent knots
of f . Let Γ (G) be the set of all cycles of G, where a cycle is a subgraph of
G which is homeomorphic to a circle. We say that a cycle is a k-cycle if it
contains exactly k edges. Let ω : Γ (G)→ Z be the map defined by

ω(γ) =





1 if γ is a 5-cycle,
−1 if γ is a 4-cycle,
0 if γ is a 3-cycle,

for G = K5, and

ω(γ) =
{

1 if γ is a 6-cycle,
−1 if γ is a 4-cycle,

for G = K3,3. For a spatial embedding f of G, we define an integer αω(f)
by

αω(f) =
∑

γ∈Γ (G)

ω(γ)a2(f(γ)),

where a2(J) is the second coefficient of the Conway polynomial of a knot J .
This integer αω(f) is called the α-invariant of f [20]. In [9], Motohashi and
the second author showed that if L(f) = 2j − 1 then

αω(f) =
j(j − 1)

2
.

This implies that

αω(f) =
L(f)2 − 1

8
(2.1)

for a spatial embedding f of G. Then we have the following.

Lemma 2.1. Let G = K5 or K3,3, and let f be a spatial embedding of G.
Then αω(f) is a multliple of 3 if and only if L(f) ≡ ±1 mod 6.

Proof. It is easy to check that m ≡ ±1 mod 6 if and only if m2 ≡
1 mod 6. Therefore L(f) ≡ ±1 mod 6 if and only if L(f)2 − 1 is a multiple
of 6. By (2.1) we have L(f)2 − 1 = 8αω(f). Since 8αω(f) is a multiple of 6
if and only if αω(f) is a multiple of 3, we have the desired conclusion.

3. Conjugacy classes in Aut(G) and Simon invariants. In this
section we discuss the relationship between conjugacy classes in Aut(G)
and Simon invariants.

Lemma 3.1. Let G = K5 or K3,3. For an automorphism σ of G and an
odd integer n, if (σ, n) is realizable then (σ,−n) is realizable.
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Proof. Let ρ be the orientation-reversing self-homeomorphism of S3 de-
fined by ρ(x1, x2, x3, x4) = (x1, x2, x3,−x4), and f a spatial embedding of G.
We call ρ ◦ f the mirror image embedding of f and denote it by f !. If
(σ, n) is realized by f , there exists a self-homeomorphism ϕ of S3 such that
f ◦ σ = ϕ ◦ f . Then the following diagram is commutative:

G

σ

��

f // S3

ϕ

��

ρ // S3

ρ◦ϕ◦ρ−1

��
G

f // S3
ρ // S3

Thus, f ! is σ-symmetric. By the definition of the Simon invariant, we can
see that L(f !) = −L(f) = −n. Therefore (σ,−n) is realizable.

Lemma 3.2. Let G = K5 or K3,3, and f a spatial embedding of G. Then
L(f ◦ ξ) = ±L(f) for any automorphism ξ of G.

Proof. The automorphism ξ naturally induces an equivariant homeo-
morphism ξ× ξ : C2(G)→ C2(G) with respect to the action ι and therefore
induces an isomorphism

(ξ × ξ)∗ : H2(C2(G), ι)
∼=→ H2(C2(G), ι).

Then we have

L(f ◦ ξ) = ((f ◦ ξ)× (f ◦ ξ))∗(Σ) = (ξ × ξ)∗((f × f)∗(Σ)) = (ξ × ξ)∗(L(f)),

where Σ is a suitable generator of H2(C2(R3), ι); see the following commu-
tative diagram:

H2(C2(G), ι)

H2(C2(G), ι)

(ξ×ξ)∗ ∼=

OO

H2(C2(R3), ι)
(f×f)∗
oo

((f◦ξ)×(f◦ξ))∗
hhQQQQQQQQQQQQ

Since H2(C2(G), ι) ∼= Z, we have the desired conclusion.

Proof of Proposition 1.7. Assume that there exist a spatial embedding f
of G, a self-homeomorphism ϕ of S3 and an automorphism ξ of G such that
f ◦ σ = ϕ ◦ f and τ = ξ−1σξ. Then the following diagram is commutative:

G

τ

��

ξ // G

σ

��

f // S3

ϕ

��
G

ξ // G
f // S3

Hence, f ◦ ξ is τ -symmetric. Thus, by Lemma 3.2, L(f ◦ ξ) = ±L(f) = ±n.
If L(f ◦ ξ) = n, then (τ, n) is realizable. If L(f ◦ ξ) = −n, then (τ, n) is also
realizable by Lemma 3.1.
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Proof of Proposition 1.8. (1) We may identify Aut(K5) with the sym-
metric group of degree 5. It is not hard to see that all conjugacy classes in
Aut(K5) are classified as follows:

(i) id,
(ii) (i j) for {i, j} ⊂ {1, 2, 3, 4, 5},

(iii) (i j k) for {i, j, k} ⊂ {1, 2, 3, 4, 5},
(iv) (i j k l) for {i, j, k, l} ⊂ {1, 2, 3, 4, 5},
(v) (i j k l m) for {i, j, k, l,m} = {1, 2, 3, 4, 5},
(vi) (i j)(k l) for {i, j} ⊂ {1, 2, 3, 4, 5} and {k, l} ⊂ {1, 2, 3, 4, 5} \{i, j},

(vii) (i j)(k l m) for {i, j} ⊂ {1, 2, 3, 4, 5} and {k, l,m} = {1, 2, 3, 4, 5} \
{i, j}.

Hence we have the desired representatives. We omit the details.
(2) In a similar way, we may identify Aut(K3,3) with a subgroup of S6 of

order 10 (note that Aut(K3,3) has a structure of the wreath product S2[S3]).
It is not hard to see that all conjugacy classes in Aut(K3,3) are classified as
follows:

(i) id,
(ii) (i j) for {i, j} ⊂ {1, 2, 3} or {i, j} ⊂ {4, 5, 6},
(iii) (i j k) for {i, j, k} = {1, 2, 3} or {4, 5, 6},
(iv) (i l j m k n) for {i, j, k} = {1, 2, 3} and {l,m, n} = {4, 5, 6},
(v) (i j)(l m) for {i, j} ⊂ {1, 2, 3} and {l,m} ⊂ {4, 5, 6},
(vi) (i j)(l m n) for {i, j} ⊂ {1, 2, 3} and {l,m, n} = {4, 5, 6}, or

{i, j} ⊂ {4, 5, 6} and {l,m, n} = {1, 2, 3},
(vii) (i j k)(l m n) for {i, j, k} = {1, 2, 3} and {l,m, n} = {4, 5, 6},
(viii) (i l j m)(k n) for {i, j} ⊂ {1, 2, 3}, {l,m} ⊂ {4, 5, 6} and k ∈

{1, 2, 3} \ {i, j}, n ∈ {4, 5, 6} \ {l,m},
(ix) (i l)(j m)(k n) for {i, j, k} = {1, 2, 3} and {l,m, n} = {4, 5, 6}.

Hence we have the desired representatives. We also omit the details.

Remark 3.3. We can decide the sign of L(f) in Lemma 3.2 as follows.
Let D2(G) be the union of s × t where (s, t) varies over all pairs of dis-
joint edges of G. It is known that D2(G) is homotopy equivalent to C2(G),
equivariantly with respect to the action ι [22, Proposition 1.4]. Moreover,
D2(K5) and D2(K3,3) are homeomorphic to the closed connected orientable
surfaces of genus 6 and 4, respectively [13]. Then, for an automorphism σ
of G, L(f ◦σ) = L(f) (resp. L(f ◦σ) = −L(f)) if and only if (σ×σ)|D2(G) is
orientation-preserving (resp. orientation-reversing). Note that if two auto-
morphisms σ and τ are conjugate and (σ×σ)|D2(G) is orientation-preserving
(resp. orientation-reversing), then (τ×τ)|D2(G) is also orientation-preserving
(resp. orientation-reversing). As a consequence, (σ×σ)|D2(K5) is orientation-
reversing if and only if σ is conjugate to (1 2 3 4), (1 2) or (1 2)(3 4 5),
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and (σ × σ)|D2(K3,3) is orientation-reversing if and only if σ is conjugate to
(1 4 2 5)(3 6), (1 2) or (1 2)(4 5 6) by a direct observation how the oriented
2-cells of D2(G) are mapped (or we may check that by a direct calculation
of the Simon invariants under two different numberings of the vertices that
differ by an automorphism of G). In only these cases, it may happen that
L(f ◦ σ) = −L(f).

4. Proofs of main theorems. For the proofs of Theorems 1.9 and 1.10,
we need two results which have been proved as consequences of 3-manifold
topology. The following is a direct corollary of [19, Theorem 2].

Theorem 4.1. Let G = K5 or K3,3, σ an automorphism of G, and f a
σ-symmetric spatial embedding of G. Then there exist a spatial embedding g
of G which is homologous to f and a periodic self-homeomorphism ϕ of S3

such that g ◦ σ = ϕ ◦ g.

The following is well known as Smith’s theorem.

Theorem 4.2 ([18]). Let ϕ be an orientation-reversing periodic self-
homeomorphism of S3. Then the fixed point set Fix(ϕ) is homeomorphic to
S0 or S2.

In the following proofs we denote the image of the vertex with label i
under the spatial embedding also by i, so long as no confusion arises.

2m2m

−
2m

−
2m

1 1

2 23 3

4 4
55

fm,+(K5)fm,−(K5)

Fig. 4.1

Proof of Theorem 1.9. (3) & (4) Let fm,± be the spatial embeddings
of K5 as in Fig. 4.1. By calculation we have L(fm,±) = 4m ± 1, which
may be any odd number for a suitable choice of m and ±1. A π/2 rotation
around the axis through the vertex 5, the middle point of the edge 1 3 and
the middle point of the edge 2 4 maps fm,±(K5) onto its mirror image.
Therefore fm,± is (1 2 3 4)-symmetric. Thus ((1 2 3 4), n) is realizable for
any odd integer n. A π rotation maps fm,±(K5) onto itself and hence fm,±



230 R. Nikkuni and K. Taniyama

is (1 3)(2 4)-symmetric. Therefore ((1 3)(2 4), n) is realizable for any odd
integer n. Since (1 2)(3 4) is conjugate to (1 3)(2 4), Proposition 1.7 implies
((1 2)(3 4), n) is realizable for any odd integer n.

(2) Let fm be the spatial embedding of K5 as in Fig. 4.2. Note that
L(fm) = 2m + 1, which may be any odd number. Observe that fm(K5) is
contained in an unknotted Möbius strip in S3 containing m full twists. Then
by considering a suitable ambient isotopy of S3 that preserves the Möbius
strip setwise we conclude that fm is (1 2 3 4 5)-symmetric.

1

2

3

4 5

fm(K5)

m full twists

Fig. 4.2

(1)(“if”) Let fm,± be the spatial embedding of K5 as in Fig. 4.3. Note
that L(fm,±) = 6m±1. A 2π/3 rotation around the axis through the vertices
4 and 5 maps fm,±(K5) onto itself and so fm,± is (1 2 3)-symmetric.

2m

2m

2m

1

2 3

45
2m

2 m

2m

1

2 3

45

fm,+(K5)fm,−(K5)

Fig. 4.3

(5)(“if”) & (6)(“if”) Let f± be the spatial embedding of K5 as in Fig. 4.4.
Note that L(f±) = ±1. By considering the reflection of S3 with respect to the
2-sphere containing the cycle [3 4 5], we see that f± is (1 2)-symmetric. Then
by composing this reflection and a 2π/3 rotation around the axis through
the vertices 1 and 2, we find that f± is (1 2)(3 4 5)-symmetric.
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1

12

3

4

5

2

3

4

5

f+(K5)f−(K5)

Fig. 4.4

(1)(“only if”) Suppose that f is a (1 2 3)-symmetric spatial embedding
of K5. We will show that αω(f) is a multiple of 3. Then by Lemma 2.1 we
have the result. There exist twelve 5-cycles and fifteen 4-cycles in K5. By
the permutation (1 2 3) they are divided into the following nine orbits:

[1 2 3 4 5] 7→ [2 3 1 4 5] 7→ [3 1 2 4 5] 7→ [1 2 3 4 5],

[1 2 3 5 4] 7→ [2 3 1 5 4] 7→ [3 1 2 5 4] 7→ [1 2 3 5 4],

[1 4 2 5 3] 7→ [2 4 3 5 1] 7→ [3 4 1 5 2] 7→ [1 4 2 5 3],

[1 5 2 4 3] 7→ [2 5 3 4 1] 7→ [3 5 1 4 2] 7→ [1 5 2 4 3],

[1 2 3 4] 7→ [2 3 1 4] 7→ [3 1 2 4] 7→ [1 2 3 4],

[1 2 3 5] 7→ [2 3 1 5] 7→ [3 1 2 5] 7→ [1 2 3 5],

[1 2 4 5] 7→ [2 3 4 5] 7→ [3 1 4 5] 7→ [1 2 4 5],

[1 2 5 4] 7→ [2 3 5 4] 7→ [3 1 5 4] 7→ [1 2 5 4],

[1 4 2 5] 7→ [2 4 3 5] 7→ [3 4 1 5] 7→ [1 4 2 5].

Note that each orbit contains exactly three cycles and these cycles are
mapped onto the same knot under f . Therefore they have the same a2

and we have the desired conclusion.
(5)(“only if”) Suppose that f is a (1 2)-symmetric spatial embedding of

K5. Then by Theorem 4.1 there exist a (1 2)-symmetric spatial embedding
g of K5 which is homologous to f and a periodic self-homeomorphism ϕ of
S3 such that g ◦ (1 2) = ϕ ◦ g. As pointed out in Remark 3.3, it follows
that L(g ◦ (1 2)) = −L(g). Thus L(ϕ ◦ g) = L(g ◦ (1 2)) = −L(f), so ϕ
is orientation-reversing. Then by Theorem 4.2, Fix(ϕ) is homeomorphic to
S0 or S2. Since Fix(ϕ) contains at least three points g(3), g(4) and g(5),
it is homeomorphic to S2. Then Fix(ϕ) ∩ g(K5) is the union of the 3-cycle
g([3 4 5]) and the middle point of the edge g(1 2). By considering the regular
projection which is almost perpendicular to Fix(ϕ) and observing that the
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signs of the crossings by the dotted lines in Fig. 4.5 are not counted in the
Simon invariant we deduce that L(g) = ±1. Since f and g are homologous
it follows that L(f) = L(g) = ±1.

Fix(ϕ)3
4

5

i

j

Fig. 4.5

(6)(“only if”) Note that the cube of (1 2)(3 4 5) equals (1 2). Therefore
(1 2)(3 4 5)-symmetric spatial embeddings of K5 are (1 2)-symmetric. Then
we have the result by (5)(“only if”).

Proof of Theorem 1.10. (2) & (6) Let fm,± be the spatial embeddings
of K3,3 as in Fig. 4.6. Note that L(fm,±) = 4m± 1, which may be any odd
number. A π/2 rotation maps fm,±(K3,3) onto its mirror image. Therefore
fm,± is (1 4 2 5)(3 6)-symmetric. Also, a π rotation maps fm,±(K3,3) maps
onto itself and hence fm,± is (1 2)(4 5)-symmetric.

2m2m

−
2m

−
2m

11

22
3

3

4 4

55 6

6

fm,+(K3,3)fm,−(K3,3)

Fig. 4.6

(3) & (4) & (5) Let fm be the spatial embedding of K3,3 as in Fig.
4.7. Note that L(fm) = 2m + 1. Observe that fm(K3,3) is contained in
an unknotted Möbius strip in S3 containing 2m + 1 half twists. Then by
considering a suitable ambient isotopy of S3 that preserves the Möbius strip
setwise we see that fm is (1 4 2 5 3 6)-symmetric. Note that the square of
(1 4 2 5 3 6) is (1 2 3)(4 5 6). Therefore fm is (1 2 3)(4 5 6)-symmetric. It is
also easy to see that fm is (1 5)(2 6)(3 4)-symmetric. Since (1 5)(2 6)(3 4)
is conjugate to (1 4)(2 5)(3 6) we have the result.
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2m + 1

1 2

3

4

5 6

fm(K3,3)

Fig. 4.7

(1)(“if”) Let fm,± be the spatial embedding of K3,3 as in Fig. 4.8. Note
that L(fm,±) = 6m±1. A 2π/3 rotation around the axis through the vertices
5, 4 and 6 maps fm,±(K3,3) onto itself, so fm,± is (1 2 3)-symmetric.

−
2m

−
2m

−2m
−2m−2m −2m

1 1

2
23

3

4 4
5 5

6 6

fm,+(K3,3)fm,−(K3,3)

Fig. 4.8

(7)(“if”) & (8)(“if”) Let f± be the spatial embedding of K3,3 as in
Fig. 4.9. Note that L(f±) = ±1. By considering the reflection of S3 with
respect to the 2-sphere containing the vertices 3, 4, 5 and 6, we find that f±
is (1 2)-symmetric. Then by composing this reflection and a 2π/3 rotation
around the axis through the vertices 1, 2 and 3, we conclude that f± is
(1 2)(4 5 6)-symmetric.

1

2

3
4

5

6

1

2

34
5

6

f+(K3,3)f−(K3,3)

Fig. 4.9
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(1)(“only if”) Suppose that f is a (1 2 3)-symmetric spatial embedding
of K3,3. We will show that αω(f) a multiple of 3. Then by Lemma 2.1 we
have the result. There exist six 6-cycles and nine 4-cycles in K3,3. By the
permutation (1 2 3) they are divided into the following five orbits:

[1 4 2 5 3 6] 7→ [2 4 3 5 1 6] 7→ [3 4 1 5 2 6] 7→ [1 4 2 5 3 6],
[1 6 2 5 3 4] 7→ [2 6 3 5 1 4] 7→ [3 6 1 5 2 4] 7→ [1 6 2 5 3 4],

[1 4 2 5] 7→ [2 4 3 5] 7→ [3 4 1 5] 7→ [1 4 2 5],
[1 5 2 6] 7→ [2 5 3 6] 7→ [3 5 1 6] 7→ [1 5 2 6],
[1 6 2 4] 7→ [2 6 3 4] 7→ [3 6 1 4] 7→ [1 6 2 4].

Note that each orbit contains exactly three cycles and they are mapped onto
the same knot under f . Therefore they have the same a2 and we have the
desired conclusion.

(7)(“only if”) Suppose that f is a (1 2)-symmetric spatial embedding of
K3,3. Then by Theorem 4.1 there exist a (1 2)-symmetric spatial embedding
g of K3,3 which is homologous to f and a periodic self-homeomorphism ϕ of
S3 such that g◦(1 2) = ϕ◦g. By the same reason as in the proof of Theorem
1.9(5)(“only if”), ϕ is orientation-reversing. Then by Theorem 4.2, Fix(ϕ) is
homeomorphic to S0 or S2. Since Fix(ϕ) contains at least four points g(3),
g(4), g(5) and g(6), it is homeomorphic to S2. Then Fix(ϕ) ∩ g(K3,3) is the
induced subgraph of the vertices g(3), g(4), g(5) and g(6). By considering
the regular projection which is almost perpendicular to Fix(ϕ) and by the
same reason as in the proof of Theorem 1.9(5)(“only if”), we deduce that
L(g) = ±1 (see Fig. 4.10). Since f and g are homologous it follows that
L(f) = L(g) = ±1.

Fix(ϕ)
3

4
5

6

i

j

Fig. 4.10

(8)(“only if”) Note that the cube of (1 2)(4 5 6) equals (1 2). Therefore
(1 2)(4 5 6)-symmetric spatial embeddings of K3,3 are (1 2)-symmetric. Then
we have the result by (7)(“only if”).
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Proof of Theorem 1.11. Let G be K5 or K3,3. For a spatial embedding
f of G and a self-homeomorphism ϕ of S3 we have L(ϕ ◦ f) = L(f) if ϕ is
orientation-preserving and L(ϕ◦f) = −L(f) if ϕ is orientation-reversing. By
combining this fact with Lemma 3.2 and Remark 3.3, we have the result.

Remark 4.3. (1) All symmetries shown by various examples in this pa-
per are realized by periodic self-homeomorphisms of S3. Hence all symmetric
spatial graphs in this paper are rigidly symmetric.

(2) There are alternative proofs of the “only if” parts of Theorems 1.9(1)
and 1.10(1), based on Theorem 4.1 and the Smith conjecture [8], just as the
proofs of Theorems 1.9(5) & (6) and 1.10(7) & (8) given above are based
on Theorems 4.1 and 4.2. However, as we said before, the latter theorems
are consequences of deep results of 3-manifold topology. The proofs of the
“only if” parts of Theorems 1.9(1) and 1.10(1) given above are elementary.
To find elementary proofs of the “only if” parts of Theorems 1.9(5), (6) and
Theorem 1.10(7), (8) is an open problem.
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