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Splitting stationary sets in Pκλ for λ with small cofinality

by

Toshimichi Usuba (Bonn)

Abstract. For a regular uncountable cardinal κ and a cardinal λ with cf(λ) < κ < λ,
we investigate the consistency strength of the existence of a stationary set in Pκλ which
cannot be split into λ+ many pairwise disjoint stationary subsets. To do this, we introduce
a new notion for ideals, which is a variation of normality of ideals. We also prove that
there is a stationary set S in Pκλ such that every stationary subset of S can be split into
λ+ many pairwise disjoint stationary subsets.

1. Introduction. Let κ be a regular uncountable cardinal and λ be a
cardinal with λ ≥ κ. Splitting a stationary set in Pκλ into pairwise disjoint
stationary subsets is a classical problem of combinatorics on Pκλ.

Definition 1.1. For a stationary set S in Pκλ and a cardinal µ, we say
that Sp(S, µ) holds if S can be split into µ many pairwise disjoint stationary
subsets. NSp(S, µ) is the negation of Sp(S, µ).

More generally, we define the following:

Definition 1.2. Let I be an ideal over a set A, and let µ be a cardinal.
We say that I is weakly µ-saturated if µ many pairwise disjoint I-positive
sets do not exist.

NSp(S, µ) is equivalent to the weak µ-saturation property of NSκλ|S, the
non-stationary ideal over Pκλ restricted to S.

This problem is connected to the saturation property of NSκλ, because
for a stationary set S in Pκλ and a cardinal µ ≤ λ, it is known that the
following are equivalent:

(1) NSκλ|S is µ-saturated.
(2) NSp(S, µ) holds.

Hence, if λ<κ = λ, this problem can be translated into the local saturation
property of NSκλ. Furthermore, since every λ+-saturated normal ideal over
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Pκλ is precipitous, we can use the precipitousness to investigate a stationary
set S with NSp(S, λ), and it turns out that the existence of such a stationary
set has a very large consistency strength.

On the other hand, if cf(λ) < κ, then every stationary set in Pκλ has
cardinality at least λ+. Hence we can consider the possibility of splitting
into λ+ many stationary subsets. But we do not know if, for a stationary
set S in Pκλ, λ+-saturation of NSκλ|S, or even precipitousness, follows from
NSp(S, λ+). Hence we cannot apply the saturation property and the precip-
itousness of NSκλ to investigate the properties of NSp(S, λ+).

In this paper, where cf(λ)<κ, we will investigate the consistency strength
of the existence of a stationary set S in Pκλ such that NSp(S, λ+) holds,
and of the existence of a weakly λ+-saturated normal ideal over Pκλ. We will
introduce a variation of normality of ideals, α-semi-weak normality, which
will be the main tool used in this paper. This method was already used in
Abe [1] and Burke [4] under some large cardinal assumptions. We prove that
such assumptions can be dropped completely. Using this method, we prove
the following:

Theorem 1.3. Let cf(λ) < κ. Suppose that there exists a weakly λ+-
saturated normal ideal over Pκλ. Then the following hold :

(1) Every stationary subset of {α < λ+ : cf(α) < κ} is reflecting , that
is, for every stationary subset E of {α < λ+ : cf(α) < κ} there exists
γ < λ+ such that E ∩ γ is stationary in γ.

(2) There is no good scale for λ.

The existence of a good scale is a very weak principle. The above theorem
tells us that the existence of a stationary set S such that NSp(S, λ+) holds
is a very strong property, close to the λ+-saturation of NSκλ|S.

Foreman–Magidor [9] and Shioya [16] showed that Sp(Pκλ, λ+) holds for
λ with cf(λ) < κ. Using the argument in the proof of Theorem 1.3, we will
improve and refine this result to the following:

Theorem 1.4. Let cf(λ) < κ. Let S = {x ∈ Pκλ : cf(|x|) 6= cf(λ)}.
Then there is no weakly λ+-saturated normal ideal I over Pκλ with S ∈ I∗.
In particular , the following holds:

(1) Sp(T, λ+) holds for every stationary subset T of S.
(2) If κ is the successor cardinal of a cardinal µ with cf(µ) 6= cf(λ) then

Sp(T, λ+) holds for every stationary set T in Pκλ.

Theorem 1.5. Let cf(λ) < κ. There exists a stationary set S in Pκλ
such that there is no weakly λ+-saturated normal ideal I over Pκλ with
S ∈ I∗. In particular , Sp(T, λ+) holds for every stationary subset T of S.
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Theorem 1.4 is also a refinement of the theorem of Burke and Cummings
in [5]: They proved that there is no λ+-saturated normal ideal I over Pκλ
such that {x ∈ Pκλ : cf(|x|) 6= cf(λ)} ∈ I∗.

A rough outline of this paper is as follows: In Section 3, we introduce
semi-weak normality of ideals. In Section 4, we consider basic properties of
an ideal which is semi-weakly normal and has the weak saturation property.
Using these observations, we prove Theorem 1.3. Section 5 brings the proof
of Theorem 1.4, and Section 6, of Theorem 1.5. In Section 7, we show some
results which are related to semi-weak normality and weak saturation of
ideals.

2. Preliminaries. We refer the reader to Kanamori [11] for general
background and basic notation.

Throughout this paper, κ denotes a regular uncountable cardinal, and λ
denotes a cardinal with λ ≥ κ. Except in Sections 3 and 7, λ will denote a
singular cardinal with cf(λ) < κ.

For ordinals α < β, [α, β) denotes the interval {γ : α ≤ γ < β}.
For a set X of ordinals without the maximum element, let lim(X) =

{α < sup(X) : sup(X ∩ α) = α}.
For a regular cardinal µ and an ordinal δ with δ < µ, Eµδ (respectively

Eµ<δ) denotes {α < µ : cf(α) = δ} (respectively {α < µ : cf(α) < δ}).
For an ordinal γ with uncountable cofinality and S ⊆ γ, S is stationary

in γ if S intersects any club set in γ.
In this paper, an ideal means a non-principal proper ideal over an infinite

set. An ideal over Pκλ means a κ-complete fine proper ideal over Pκλ. For
an ideal I over A, I∗ denotes the dual filter of I and I+ = P(A) \ I. An
element of I+ is called an I-positive set. For an ideal I over A and X ∈ I+,
I|X is the restriction of I to X, that is, I|X = {Y ∈ P(A) : X ∩ Y ∈ I}.

A set C ⊆ Pκλ is closed if for every γ < κ and ⊆-increasing sequence
〈xξ : ξ < γ〉 in C,

⋃
ξ<γ xξ ∈ C. A set C ⊆ Pκλ is unbounded if ∀x ∈ Pκλ

∃y ∈ C (x ⊆ y). A closed and unbounded set is called club. A set S ⊆ Pκλ
is stationary if it intersects every club set. The following is well-known:

Fact 2.1. For S ⊆ Pκλ, the following are equivalent :

(1) S is stationary in Pκλ.
(2) For every f : [λ]<ω → λ, there exists x ∈ S such that x ∩ κ ∈ κ and

f“[x]<ω ⊆ x.
Moreover , if κ = ω1 then (1) and (2) are equivalent to

(3) For every f : [λ]<ω → λ, there exists x ∈ S such that f“[x]<ω ⊆ x.
NSκλ denotes the non-stationary ideal over Pκλ. That is, NSκλ = {X ⊆

Pκλ : X is non-stationary}.



268 T. Usuba

Recall that, for an ideal I over A and a cardinal µ, we say that I is
weakly µ-saturated if µ many pairwise disjoint I-positive sets do not exist.
The items in the following note are easy to prove.

Note 2.2.

(1) Every µ-saturated ideal is weakly µ-saturated.
(2) For ideals I and J over A, if I is weakly µ-saturated and I ⊆ J then

J is also weakly µ-saturated.
(3) If µ is a singular cardinal and I is weakly µ-saturated , then there exist

a regular δ < µ and X ∈ I+ such that I|X is weakly δ-saturated.
(4) If I is a normal ideal over Pκλ and µ ≤ λ, then the µ-saturation of

I is equivalent to I being weakly µ-saturated.
(5) For a stationary set S in Pκλ, NSκλ|S is weakly µ-saturated if and

only if NSp(S, µ) holds.

We will need Shelah’s pcf theory. Here we present some basic notations
and facts from that theory. These can be found in Abraham–Magidor [2],
Cummings [6], Eisworth [8], and Shelah [14].

Let λ be a singular cardinal, and let ~λ = 〈λi : i < cf(λ)〉 be a strictly
increasing sequence of regular cardinals with limit λ. We let Π~λ denote the
set

{f : f is a function from cf(λ) to λ and f(i) ∈ λi for all i < cf(λ)}.

We define binary relations <∗ and ≤∗ on Π~λ by

f <∗ g ⇔ {i < cf(λ) : f(i) < g(i)} is cobounded,
f ≤∗ g ⇔ {i < cf(λ) : f(i) ≤ g(i)} is cobounded.

A pair 〈~λ, ~f 〉 is a scale for λ if:

(1) ~λ = 〈λi : i < cf(λ)〉 is a strictly increasing sequence of regular
cardinals with limit λ.

(2) ~f = 〈fξ : ξ < λ+〉 is a <∗-increasing <∗-cofinal sequence in Π~λ.

The following is an important fact of pcf theory:

Fact 2.3. If λ is a singular cardinal then there exists a scale for λ.

Let 〈~λ, ~f 〉 be a scale for λ. Let α < λ+ and let 〈gξ : ξ < α〉 be a
<∗-increasing sequence in Π~λ. Then f ∈ Π~λ is an exact upper bound (eub)
for 〈gξ : ξ < α〉 if:

(1) gξ <∗ f for all ξ < α.
(2) For every g ∈ Π~µ, if g <∗ f then there exists ξ < α such that g ≤∗ gξ.
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An eub for 〈gξ : ξ < α〉 is a least upper bound, and hence is unique modulo
the bounded ideal, that is, if f and f ′ are eub for the sequence then {i <
cf(λ) : f(i) = f ′(i)} is cobounded.

For a limit ordinal α < λ+, we say that α is good for ~f if there exists
an unbounded set a in α and i∗ < cf(λ) such that 〈fξ(j) : ξ ∈ a〉 is strictly
increasing for all j with i∗ < j < cf(λ).

Fact 2.4. For a limit ordinal α < λ+ with cf(α) > cf(λ), the following
are equivalent :

(1) α is good for ~f .
(2) ~f |α has an eub f such that {i<cf(λ) : cf(f(i))=cf(α)} is cobounded.
The following fact follows from the combination of Lemmas 15 and 16 of

Kojman [12].

Fact 2.5 (Kojman [12], Shelah). Let γ < λ+ be an ordinal , and let ν
be a regular cardinal with cf(λ) < ν < cf(γ). If {α < γ : cf(α) = ν, α is
good for ~f } is stationary in γ, then ~f |γ has an eub f such that {i < cf(λ) :
cf(f(i)) > ν} is cobounded.

A scale 〈~λ, ~f 〉 is called a good scale if there exists a club C in λ+ such
that every point of C with cofinality greater than cf(λ) is good for ~f . It is
known that the existence of a good scale is a very weak assumption.

For a strictly increasing sequence of regular cardinals ~λ and a set a, we
define the function χ

~λ
a ∈ Π~λ by χ

~λ
a(i) = sup(a ∩ λi) if sup(a ∩ λi) < λi,

and χ
~λ
a(i) = 0 otherwise. When ~λ is clear from the context, we omit the

superscript and write simply χa.
Let θ denote a sufficiently large regular cardinal. The following fact will

be used:

Fact 2.6. Let M ≺ 〈Hθ,∈〉 be such that κ ∈M and M ∩ κ ∈ κ. For all
a ∈M , if |a| < κ then a ⊆M .

For M ≺ 〈Hθ,∈〉 and a limit ordinal α, we say that M is internally
approachable of length α if there exists an increasing sequence 〈Mξ : ξ < α〉
such that

⋃
ξ<αMξ = M , Mξ ≺ 〈Hθ,∈〉 for all ξ < α and 〈Mξ : ξ ≤ η〉 ∈

Mη+1 for all η < α.

Fact 2.7. Let µ < κ be a regular cardinal and R ⊆ Hθ. Then the set
{M∩λ : |M | < κ,M ≺ 〈Hθ,∈, R〉,M is internally approachable of length µ}
is stationary in Pκλ.

3. Semi-weakly normal ideals. We introduce a variation of normality
of ideals, α-semi-weak normality. This can be seen as a variation of the
semi-weak normality of ideals in Abe [1]. Recall that an ideal I over Pκλ
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is semi-weakly normal if for every X ∈ I+ and every f : X → λ with
f(x) < sup(x), there exists α < λ such that {x ∈ X : f(x) ≤ α} ∈ I+. We
extend this notion to any ideals.

Definition 3.1. Let I be an ideal over A, and let α be an ordinal.
A function f on A into the ordinals is called an α-least function for I if f
fulfills the following conditions:

(1) {x ∈ A : β < f(x)} ∈ I∗ for all β < α.
(2) For all functions g on A, if {x ∈ A : β < g(x)} ∈ I∗ for all β < α,

then {x ∈ A : f(x) ≤ g(x)} ∈ I∗.
We say that I is α-semi-weakly normal (α-s.w.n. for short) if I has an α-least
function.

Note that in the presence of (1), (2) is equivalent to the following:

(2)′ For all X ∈ I+ and all functions g on X, if ∀x ∈ X (g(x) < f(x))
then there exists β < α such that {x ∈ X : g(x) ≤ β} ∈ I+.

Hence an ideal I over Pκλ is semi-weakly normal if and only if the as-
signment x 7→ sup(x) is a λ-least function for I.

Note 3.2.

(1) If f is an α-least function for I, then {x ∈ A : f(x) ≤ α} ∈ I∗.
(2) An α-least function for I is unique modulo I, that is, if f and g are

α-least functions for I, then {x ∈ A : f(x) = g(x)} ∈ I∗.
(3) If f is an α-least function for I and X ∈ I+ then f is also an α-least

function for I|X.

Note that, under some assumptions, there exists a normal ideal over Pκλ
which is not λ+-s.w.n. See Proposition 7.4. In spite of this, for any normal
ideal I over Pκλ and all α, we can find an α-s.w.n. normal ideal J such that
I ⊆ J . The following proposition is the main result of this section.

Proposition 3.3. Let I be a normal ideal over Pκλ. Let F be a set of
functions from Pκλ to the ordinals. Then there exists a normal ideal J over
Pκλ extending I and a function f∗ on Pκλ satisfying the following :

(1) {x ∈ Pκλ : f(x) ≤ f∗(x)} ∈ J∗ for all f ∈ F .
(2) For all functions g on Pκλ and X ∈ J+, if ∀x ∈ X (g(x) < f∗(x))

then there exists f ∈ F such that {x ∈ X : g(x) ≤ f(x)} ∈ J+.

In particular , f∗ is a least upper bound of F modulo J .

Proof. This argument is inspired by Burke’s proofs in [3] and [4].
Let α = sup{sup(range(f)) : f ∈ F}. Let γ = |α|λ<κ . Fix an enumeration

〈fξ : ξ < γ〉 of F . Let 〈gξ : ξ < γ〉 be an enumeration of all functions from
Pκλ to α + 1. We assume that g0 is the constant function on Pκλ with
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value α. Let 〈Cξ : ξ < γ〉 be an enumeration of I∗, and let T = {x ∈ Pκγ :
0 ∈ x ∧ ∀ξ ∈ x (x ∩ λ ∈ Cξ)}.

Claim 3.4. T is stationary in Pκγ.
Proof of Claim. It is enough to show that for every f : [γ]<ω → γ we

can find x ∈ T such that x ∩ κ ∈ x and f“[x]<ω ⊆ x. Fix a sufficiently large
regular cardinal θ and choose M ≺ 〈Hθ,∈, κ, λ, γ, f, I, 〈Cξ : ξ < γ〉 . . . 〉
with |M | = λ ⊆ M . Fix a bijection π : λ → M ∩ γ. Then, because I is
normal, we know the set X = {x ∈ Pκλ : x ∩ κ ∈ κ, 0 ∈ x, π“x ∩ λ = x,
f“[π“x]<ω ⊆ π“x, ∀ξ ∈ π“x (x ∈ Cξ)} is in I∗. Take x ∈ X. Then π“x ∈ Pκγ
is the required set. Claim

Take x ∈ T . Consider the set ax = {gξ(x∩λ) : ξ ∈ x, ∀η ∈ x (fη(x∩λ) ≤
gξ(x ∩ λ))}. Then ax is non-empty because 0 ∈ x. Let ξx ∈ x be such that
gξx(x ∩ λ) is the least element of ax. Since T is stationary in Pκγ, by the
normality of NSκγ , there exists ξ∗ < γ such that T = {x ∈ T : ξ∗ = ξx}
is stationary. Let J be the projection of NSκγ |T to Pκλ, that is, X ∈ J ⇔
{x ∈ T : x∩ λ ∈ X} is non-stationary in Pκγ. It is easy to check that J is a
normal ideal over Pκλ.

Claim 3.5. I ⊆ J .
Proof of Claim. It is enough to show that I∗ ⊆ J∗. Take Cξ ∈ I∗. Then

{x ∈ T : ξ /∈ x} is non-stationary, hence {x ∈ T : x ∩ λ /∈ Cξ} is non-
stationary. This shows that Cξ ∈ J∗. Claim

Finally, we show that J and gξ∗ are the required pair. Let η < γ and
we first check that {x ∈ Pκλ : gξ∗(x) ≥ fη(x)} ∈ J∗. For all x ∈ T with
η ∈ x, we have fη(x ∩ λ) ≤ gξx(x ∩ λ) = gξ∗(x ∩ λ). This shows that
{x ∈ T : gξ∗(x ∩ λ) < fη(x ∩ λ)} is non-stationary, hence we have {x ∈
Pκλ : gξ∗(x) ≥ fη(x)} ∈ J∗. Now take X ∈ J+ and a function g such that
∀x ∈ X (g(x) < gξ∗(x)). We may assume that the range of g is contained in
α + 1, hence there exists ζ < γ such that gζ = g. Since X ∈ J+, {x ∈ T :
x∩λ ∈ X, ζ ∈ x} is stationary. Let x ∈ T be such that x∩λ ∈ X and ζ ∈ x.
Then gζ(x ∩ λ) = g(x ∩ λ) < gξ∗(x ∩ λ) = gξx(x ∩ λ). By the minimality of
gξx(x∩ λ), g(x∩ λ) < fηx(x∩ λ) for some ηx ∈ x. Thus, by the normality of
NSκγ , there exists η < γ such that {x ∈ T : x∩λ ∈ X, g(x∩λ) ≤ fη(x∩λ)}
is stationary. Then {x ∈ X : g(x) ≤ fη(x)} ∈ J+, as required.

Corollary 3.6. For any normal ideal I over Pκλ and any ordinal α,
there exists an α-s.w.n. normal ideal over Pκλ extending I.

Proof. For β < α, let fβ : Pκλ → {β} be the constant function with
value β. By the previous proposition, we can find a normal ideal J over Pκλ
extending I and f : Pκλ → Ord such that f is a least upper bound of the
fβ ’s modulo J . Clearly f is an α-least function for J .
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The previous proposition can be adapted for non-normal ideals in the
following way. The following proposition will not be used until Section 7.

Proposition 3.7. Let I be a κ-complete ideal over A. Let F be a set
of functions from A to the ordinals. Then there exist an ideal J over A
extending I and a function f∗ on A satisfying the following :

(1) J is κ-complete.
(2) {a ∈ A : f(a) ≤ f∗(a)} ∈ J∗ for all f ∈ F .
(3) For all functions g on A and X ∈ J+, if ∀a ∈ X (g(a) < f∗(a)) then

there exists f ∈ F such that {a ∈ X : g(a) ≤ f(a)} ∈ J+.

Proof. Let α=sup{sup(range(f)) : f ∈F} and γ= |α||A|. Let 〈fξ : ξ < γ〉
be an enumeration of F and 〈gξ : ξ < γ〉 an enumeration of all functions from
A to α+ 1. As before we assume that g0 is the constant function from A to
{α}. Let 〈Cξ : ξ < γ〉 be an enumeration of the members of I∗. Take x ∈ Pκγ
with 0 ∈ x. Since I is κ-complete and |x| < κ, we have

⋂
ξ∈xCξ ∈ I∗. Fix

sx ∈
⋂
ξ∈xCξ. Now let bx = {gξ(sx) : ξ ∈ x, ∀η ∈ x (fη(sx) ≤ gξ(sx))}. Let

ξx ∈ x be such that gξx(sx) is the least element of bx. By Fodor’s lemma,
there exists ξ∗ < γ such that T = {x ∈ Pκγ : ξx = ξ∗} is stationary in Pκγ.
Define J ⊆ P(A) by X ∈ J if and only if {x ∈ T : sx ∈ X} is non-stationary.
It is easy to show that J is an ideal over A extending I, and J is κ-complete.
Furthermore, gξ∗ is the required function.

Hence every maximal σ-complete ideal over A is α-s.w.n. for all α.

Corollary 3.8. Let I be a κ-complete ideal over A and let α be an
ordinal. Then there exists a κ-complete α-s.w.n. ideal J over A extending I.

Next we introduce a strong form of α-semi-weak normality of ideals. This
is an analogue of weak normality in Abe [1].

Definition 3.9. For an ideal I over A and an ordinal α, we say that
I is α-weakly normal if I has an α-least function f satisfying the following:
For all X ∈ I+ and for all functions g on X, if ∀x ∈ X (g(x) < f(x)) then
there exists β < α such that {x ∈ X : g(x) ≤ β} ∈ (I|X)∗.

Note that, since an α-least function is unique modulo I, if I is α-weakly
normal then any α-least function for I witnesses the α-weak normality of I.

The next proposition shows the connection between weak saturation and
weak normality of ideals; it is an analogue of Lemma 1.1 in [1].

Proposition 3.10. Let α be a limit ordinal and let I be an α-s.w.n. ideal
over A. Then I is α-weakly normal if and only if I is weakly cf(α)-saturated.

Proof. Suppose that I is weakly cf(α)-saturated. Let f be any α-least
function for I. To show that I is α-weakly normal, take X ∈ I+ and let
g : X → α + 1 be such that ∀x ∈ X (g(x) < f(x)). Suppose that {x ∈ X :
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g(x) > β} ∈ I+ for all β < α. For β < α, since {x ∈ X : f(x) > g(x) > β}
∈ I+, there exists γ < α such that β < γ and {x ∈ X : β < g(x) ≤ γ} ∈ I+.
Using this observation, we can define a strictly increasing sequence 〈βξ : ξ <
cf(α)〉 in α such that Xξ = {x ∈ X : βξ < g(x) ≤ βξ+1} ∈ I+. Then the
Xξ’s are cf(α) many pairwise disjoint I-positive sets, contradicting that I is
weakly cf(α)-saturated.

For the converse, suppose that I is not cf(α)-saturated. Take cf(α) many
pairwise disjoint I-positive sets 〈Yξ : ξ < cf(α)〉. Let 〈γξ : ξ < cf(α)〉 be a
strictly increasing sequence of limit α. Since {x ∈ A : f(x) > β} ∈ I∗ for all
β < α, we may assume that ∀x ∈ Yξ (f(x) > γξ). Let Y =

⋃
ξ<cf(α) Yξ and

define the function g on Y by g(x) = γξ ⇔ x ∈ Yξ. Then it is easy to see
that there is no β < α such that {x ∈ Y : g(x) ≤ β} ∈ (I|Y )∗, hence I is
not α-weakly normal.

4. Basic properties of λ+-weakly normal ideals over Pκλ. In this
section, we will observe some basic properties of λ+-weakly normal ideals
over Pκλ with cf(λ) < κ. Using them we will prove Theorem 1.3.

Throughout this section, we assume cf(λ) < κ. Let I be a normal ideal
over Pκλ that is λ+-weakly normal, and let hI : Pκλ→ Ord be a witness.

Proposition 4.1. {x ∈ Pκλ : hI(x) < λ+} ∈ I∗.

Proof. Suppose otherwise; then X = {x ∈ Pκλ : hI(x) = λ+} ∈ I+ by
Note 3.2(1). Fix a scale 〈~λ, ~f 〉 for λ. For each x ∈ X, choose ξx < λ+ = hI(x)
such that χx <∗ fξx . Then, by the λ+-weak normality of I, there exists
ξ∗ < λ+ such that {x ∈ X : ξx ≤ ξ∗} ∈ I+. Since every I-positive set is
unbounded, we can find x ∈ X such that ξx ≤ ξ∗ and fξ∗ <∗ χx. Then
fξ∗ <

∗ χx <
∗ fξx , hence ξx > ξ∗. This is a contradiction.

Proposition 4.2. For every club C in λ+, {x ∈ Pκλ : hI(x) ∈ C} ∈ I∗.

Proof. LetX = {x ∈ Pκλ : hI(x) /∈ C} and supposeX ∈ I+. We define f
onX by f(x) = sup(hI(x)∩C). Then f(x) ∈ C and f(x) < hI(x). By the λ+-
weak normality of I, there exists α < λ+ such that {x ∈ X : f(x) ≤ α} ∈ I+.
Choose β ∈ C \ (α + 1). Then {x ∈ Pκλ : hI(x) > β} ∈ I∗, hence there
exists x ∈ X such that sup(hI(x) ∩ C) ≤ α < β ∈ C ∩ hI(x). This is a
contradiction.

Note that we need only the λ+-semi-weak normality of I to prove Propo-
sitions 4.1 and 4.2. From now on we will assume that hI(x) is a limit ordinal
less than λ+.

The proposition below will be used in Section 6 but not in Section 5.

Proposition 4.3. Let E be a stationary subset of Eλ+

<κ. Then {x ∈ Pκλ :
E ∩ hI(x) is stationary in hI(x)} ∈ I∗. Thus E is reflecting.
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Proof. Suppose otherwise, and let X = {x ∈ Pκλ : E ∩ hI(x) is non-
stationary in hI(x)} ∈ I+. For each x ∈ X, let cx be a club in hI(x) such
that E ∩ cx = ∅ and ot(cx) = cf(hI(x)). By induction on ξ < λ+, we
will define a strictly increasing sequence 〈αξ : ξ < λ+〉 so that {x ∈ X :
[αξ, αξ+1)∩ cx 6= ∅} ∈ (I|X)∗ for all ξ < λ+. Suppose 〈αη : η < ξ〉 is defined
and {x ∈ X : [αη, αη+1) ∩ cx 6= ∅} ∈ (I|X)∗ for all η < ξ with η + 1 < ξ.
If ξ is limit, then let αξ = sup{αη : η < ξ}. Suppose ξ = ζ + 1. We define
a function g on {x ∈ X : αζ < hI(x)} by g(x) = min(cx \ αζ) + 1. Note
that {x ∈ X : αζ < hI(x)} ∈ (I|X)∗. Hence, by the λ+-weak normality of I,
there exists αξ < λ+ such that {x ∈ X : g(x) ≤ αξ} ∈ (I|X)∗. Then clearly
{x ∈ X : [αζ , αξ) ∩ cx 6= ∅} ∈ (I|X)∗.

Let C = Lim{αξ : ξ < λ+}. Then C is a club set in λ+. Since E is
stationary, we have E ∩ C 6= ∅. Let α ∈ E ∩ C. Since E ⊆ Eλ

+

<κ, we can
take a ⊆ λ+ such that sup{αξ : ξ ∈ a} = α and ot(a) = cf(α) < κ. For
each ξ ∈ a, let Xξ = {x ∈ X : [αξ, αξ+1) ∩ cx 6= ∅} ∈ (I|X)∗. Since I is
κ-complete, we have

⋂
ξ∈aXξ ∈ (I|X)∗. Take x ∈

⋂
ξ∈aXξ with hI(x) > α.

Then, since [αξ, αξ+1) ∩ cx 6= ∅ for all ξ ∈ a, cx is a club in hI(x), and
hI(x) > α, we have α = sup{αξ : ξ ∈ a} ∈ cx. Then α ∈ E ∩ cx, which is a
contradiction.

We do not need the normality of ideals to prove the previous proposition,
but we need it in the next one.

Proposition 4.4. {x ∈ Pκλ : cf(hI(x)) > ot(x)} ∈ I∗.

Proof. Notice that {x ∈ Pκλ : ot(x) is not regular} ∈ I∗ because {x ∈
Pκλ : sup(x) = λ} is cobounded.

Suppose to the contrary {x ∈ Pκλ : cf(hI(x)) < ot(x)} ∈ I+. Then, by
the normality of I, there exists γ < λ such that X = {x ∈ Pκλ : cf(hI(x)) =
ot(x ∩ γ)} ∈ I+. For each x ∈ X, fix an unbounded set bx ⊆ hI(x) with
ot(bx) = cf(hI(x)) = ot(x ∩ γ). As in the proof of Proposition 4.3, we can
construct a strictly increasing sequence 〈αξ : ξ < γ〉 such that {x ∈ X :
[αξ, αξ+1) ∩ bx 6= ∅} ∈ (I|X)∗ for all ξ < γ. Let α = sup{αξ : ξ < γ} < λ+.

Since I is normal and γ < λ, Y = {x ∈ X : hI(x) > α, ∀ξ ∈ x ∩
γ ([αξ, αξ+1) ∩ bx 6= ∅)} is in (I|X)∗. Take x ∈ Y . Then, since ot(bx) =
ot(x∩γ), we have sup{αξ : ξ ∈ x∩γ} = sup(bx) = hI(x). However, sup{αξ :
ξ ∈ x ∩ γ} ≤ α < hI(x). This is a contradiction.

Lemma 4.5. Let 〈~λ, ~f 〉 be a scale for λ. Let X be the set of all x ∈ Pκλ
such that for all f ∈ Π~λ, if f is an eub for ~f |hI(x) then {i < cf(λ) :
f(i) ∩ x is unbounded in f(i)} is cobounded in cf(λ). Then X ∈ I∗.

Proof. Suppose otherwise, and let Y = Pκλ \X ∈ I+. For each x ∈ Y ,
let fx be an eub for ~f |hI(x) such that ax = {i < cf(λ) : fx(i)∩x is bounded
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in fx(i)} is unbounded. Define gx ∈ Π~λ by gx(i) = sup(x∩ fx(i)) if fx(i)∩x
is bounded in fx(i), and gx(i) = 0 otherwise. Then gx <

∗ fx, hence there
exists ξx < hI(x) such that gx ≤∗ fξx .

By the λ+-weak normality of I, there exists ξ∗ < λ+ such that {x ∈ Y :
ξx ≤ ξ∗} ∈ I+. Then there exists x ∈ Y such that ξx ≤ ξ∗ < hI(x) and
range(fξ∗) ⊆ x. Note that fξ∗ <∗ fx because hI(x) is limit. Choose i < cf(λ)
such that sup(x ∩ fx(i)) = gx(i) < fξx(i) ≤ fξ∗(i) < fx(i). Since fξ∗(i) ∈ x,
we have fξ∗(i) ≤ sup(x ∩ fx(i)) < fξ∗(i). This is a contradiction.

Proposition 4.6. Let 〈~λ, ~f 〉 be a scale for λ. Then {x ∈ Pκλ : hI(x) is
not good for ~f } ∈ I∗.

Proof. Let X be as in the last lemma. Let Z = {x ∈ X : cf(hI(x)) >
ot(x) > cf(λ)}. Then Z ∈ I∗ by Proposition 4.4. Let x ∈ Z. We claim that
hI(x) is not good. Suppose otherwise. Then by Fact 2.4 and cf(hI(x)) >
ot(x) > cf(λ), there exists an eub f for ~f |hI(x) such that {i < cf(λ) :
cf(f(i)) = cf(hI(x))} is cobounded. On the other hand, {i < cf(λ) : cf(f(i))
≤ ot(x)} is cobounded by x ∈ X. Since ot(x) < cf(hI(x)), this is a contra-
diction.

Proposition 4.6 will not be used in later sections. Combining Proposi-
tions 4.4 and 4.6, we have the following:

Proposition 4.7. Suppose that there exists a normal λ+-weakly normal
ideal over Pκλ. Then there exists no good scale for λ.

Corollary 4.8. Suppose that there exists a weakly λ+-saturated normal
ideal over Pκλ. Then every stationary subset of Eλ+

<κ is reflecting , and there
is no good scale for λ.

Proof. Let J be a weakly λ+-saturated normal ideal over Pκλ. By Corol-
lary 3.6, there exists a λ+-s.w.n. normal ideal I extending J . By Note 2.2(2),
I is weakly λ+-saturated. Thus I is a λ+-weakly normal ideal by Proposi-
tion 3.10, and the assertion follows from Proposition 4.3 and 4.7.

5. Splitting stationary subsets of {x ∈ Pκλ : cf(|x|) 6= cf(λ)}. In
this section, we will prove Theorem 1.4. As in Section 4, throughout this
section we assume that cf(λ) < κ.

Proposition 5.1. Let S = {x ∈ Pκλ : cf(|x|) 6= cf(λ)}. Then there is
no weakly λ+-saturated normal ideal I over Pκλ such that S ∈ I∗.

Proof. Suppose that such an ideal exists. Then, by Corollary 3.6, there
exists a λ+-s.w.n. normal ideal I extending our weakly λ+-saturated normal
ideal over Pκλ. Therefore, by Note 2.2(2) and Proposition 3.10, I is a normal
λ+-weakly normal ideal with S ∈ I∗. Note that cf(λ)+ < κ: If cf(λ)+ = κ
then {x ∈ Pκλ : |x| = cf(λ)} would be cobounded, which contradicts S ∈ I∗.
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Since {x ∈ Pκλ : sup(x) = λ} is cobounded, the set {x ∈ Pκλ : cf(ot(x)) =
cf(λ)} is cobounded. Thus {x ∈ Pκλ : ot(x) > |x|} ∈ I∗. Fix a scale 〈~λ, ~f 〉
for λ. Define X = {x ∈ S : cf(hI(x)) > ot(x) > |x| > cf(λ),∀f (f is an eub
for ~f |hI(x) ⇒ {i < cf(λ) : f(i) ∩ x is unbounded in f(i)} is cobounded)}.
Then X ∈ I∗ by Proposition 4.4 and Lemma 4.5.

Define Y = {x ∈ X : ∀α ∈ x (ot(x ∩ α) > cf(λ) is regular ⇒ {β <
hI(x) : cf(β) = ot(x ∩ α), β is good} is stationary in hI(x)}.

Claim 5.2. Y ∈ I∗.
Proof of Claim. Suppose not. Using the normality of I, there exists α∗ < λ

such that Z = {x ∈ X : ot(x ∩ α∗) is regular, ot(x ∩ α∗) > cf(λ), {β <
hI(x) : cf(β) = ot(x ∩ α∗), β is good} is not stationary in hI(x)} ∈ I+.

Subclaim 5.3. α∗ is regular with cf(λ) < α∗ < λ.

Proof of Subclaim. It is easy to check that cf(λ) < α∗ < λ. Suppose
that cf(α∗) < α∗. Fix a cofinal map π : cf(α∗) → α∗. Then {x ∈ Pκλ :
π“(x ∩ cf(α∗)) is cofinal in sup(x ∩ α∗)} contains a club. Hence there is
x ∈ Z such that ot(x ∩ α∗) is not regular. This is a contradiction. Subclaim

For each x ∈ Z, fix a club cx in hI(x) such that cx∩{β < hI(x) : cf(β) =
ot(x ∩ α∗), β is good} = ∅ and ot(cx) = cf(hI(x)). We will find x ∈ Z and
β ∈ cx such that cf(β) = ot(x∩ α∗) and β is good, which is a contradiction.
Let θ be a sufficiently large regular cardinal. By the λ+-weak normality of I,
we can build an increasing continuous sequence 〈Mξ : ξ < α∗〉 satisfying the
following. For all ξ < α∗:

(1) |Mξ| < α∗, Mξ ∩ α∗ ∈ α∗, Mξ ≺ 〈Hθ,∈〉, and α∗, 〈~λ, ~f 〉 ∈Mξ.
(2) 〈Mη : η ≤ ξ〉 ∈Mξ+1.
(3) Zξ = {x ∈ Z : [sup(Mξ ∩ λ+), sup(Mξ+1 ∩ λ+)) ∩ cx 6= ∅} ∈ (I|Z)∗.

Finally, let Mα∗ =
⋃
ξ<α∗ Mξ. Note that, by a standard argument, for each

ξ ≤ α∗ with cf(ξ) > cf(λ), sup(Mξ ∩ λ+) is good for ~f (see Cummings
[5]). Since I is normal and α∗ < λ, we have 4ξ<α∗Zξ = {x ∈ Pκλ : ∀ξ ∈
x∩α∗ (x ∈ Zξ)} ∈ (I|Z)∗. Take x ∈ 4ξ<α∗Zξ. Let α = sup(x∩α∗). Clearly α
is limit. Then, since [sup(Mξ∩λ+), sup(Mξ+1∩λ+))∩cx 6= ∅ for all ξ ∈ x∩α∗
and ot(x ∩ α∗) ≤ ot(x) < cf(hI(x)) = ot(cx), we have β = sup(M∗α ∩ λ+) =
sup{sup(Mξ ∩ λ+) : ξ ∈ x ∩ α∗} ∈ cx. Moreover cf(β) = ot(x ∩ α∗) > cf(λ),
and hence β is good for ~f , as required. Claim

Fix x ∈ Y . Since ot(x) > |x| > cf(λ), there is α ∈ x with ot(x ∩ α) =
cf(λ)+. Hence {β < hI(x) : cf(β) = cf(λ)+, β is good for ~f } is stationary
as x ∈ Y . Therefore by Fact 2.5, ~f |hI(x) has an eub f , say. Since x ∈ Y ,
{β < hI(x) : cf(β) = ν, β is good for ~f } is stationary for all regular ν ≤ |x|
with ν > cf(λ). By Fact 2.5 and the uniqueness of an eub, {i < cf(λ) :
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cf(f(i)) > ν} is cobounded for all regular ν ≤ |x|. On the other hand,
{i < cf(λ) : cf(f(i)) ≤ |x|} is cobounded as x ∈ X. Therefore |x| is singular,
and hence {i < cf(λ) : cf(f(i)) < |x|} is cobounded. Since cf(|x|) 6= cf(λ),
there is ν < |x| such that {i < cf(λ) : cf(f(i)) < ν} is unbounded. This is a
contradiction.

Corollary 5.4. Let S = {x ∈ Pκλ : cf(|x|) 6= cf(λ)}. Then Sp(T, λ+)
for every stationary subset T of S. In particular , if κ = µ+ with cf(µ) 6=
cf(λ), then Sp(T, λ+) for every stationary subset T of Pκλ.

6. Splitting stationary subsets of some definable set. In this sec-
tion we prove Theorem 1.5. As in the previous section, we assume that
cf(λ) < κ. Let θ be a sufficiently large regular cardinal, and let ∆ be a
well-ordering on Hθ. LetM = 〈Hθ,∈, ∆, κ, λ〉.

We define a canonical function that is λ+-least for all λ+-weakly normal
ideals. Using this function, we prove Theorem 1.5.

Definition 6.1. Define h∗ : Pκλ → λ+ + 1 by h∗(x) = sup{sup(M ∩
λ+) : M ≺M, M ∩ λ = x}.

Note 6.2.
(1) h∗(x) is 0 or a limit ordinal.
(2) {x ∈ Pκλ : h∗(x) is a limit ordinal > α} contains a club for all

α < λ+.

We prove that h∗(x) < λ+ for all x ∈ Pκλ such that x ∩ κ ∈ κ.
Lemma 6.3. Let x ∈ Pκλ be such that x ∩ κ ∈ κ and let 〈~λ, ~f 〉 be

the ∆-least scale for λ. Then h∗(x) ≤ min{ξ : χx ≤∗ fξ}. In particular ,
{x ∈ Pκλ : h∗(x) < λ+} contains a club.

Proof. Suppose to the contrary ξ < h∗(x) and χx ≤∗ fξ for some ξ < λ+.
Then there exists M ≺M such that M ∩λ = x and sup(M ∩λ+) > ξ. Take
η ∈ M ∩ λ+ \ ξ. Then χx ≤∗ fξ ≤∗ fη, hence there exists i < cf(λ) such
that sup(x ∩ λi) ≤ fξ(i) ≤ fη(i). But since η ∈ M and M ∩ κ ∈ κ, we have
fη(i) ∈ M ∩ λi. Therefore fη(i) < sup(M ∩ λi) = sup(x ∩ λi), which is a
contradiction.

Proposition 6.4. Let I be a normal λ+-weakly normal ideal , and let hI
be a λ+-least function for I. Then {x ∈ Pκλ : hI(x) = h∗(x)} ∈ I∗, that is,
h∗ is a λ+-least function for I.

Proof. We have {x ∈ Pκλ : hI(x) ≤ h∗(x)} ∈ I∗ by Note 6.2(2). It
remains to show that {x ∈ Pκλ : h∗(x) ≤ hI(x)} ∈ I∗.

Let 〈~λ, ~f 〉 be the ∆-least scale for λ. Let 〈Eξ : ξ < λ〉 be the ∆-least
sequence of pairwise disjoint stationary subsets of Eλ+

ω . By Proposition 4.3
and the normality of I, S = {x ∈ Pκλ : x ∩ κ ∈ κ, ∀ξ ∈ x (Eξ ∩ hI(x) is
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stationary in hI(x))} ∈ I∗. We claim that S ⊆ {x ∈ Pκλ : h∗(x) ≤ hI(x)}.
Suppose to the contrary hI(x) < h∗(x) for some x ∈ S. Fix M ≺ M
such that M ∩ λ = x and hI(x) < sup(M ∩ λ+) ≤ h∗(x). We know that
〈Eξ : ξ < λ〉, 〈λi : i < cf(λ)〉 ∈ M . Fix α ∈ M ∩ λ+ with hI(x) < α. For
each β < α, let aβ = {ξ < λ : Eξ ∩ β is stationary in β}. Note that, since
|aβ| ≤ cf(β) < λ, there exists i < cf(λ) such that sup(aβ ∩ λj) < λj for all
j > i. Let ξβ < λ+ be the minimal ξ < λ+ such that χaβ <

∗ fξ. Since the
sequence 〈ξβ : β < α〉 is definable in M , we have 〈ξβ : β < α〉 ∈ M . Let
ξ∗ = sup{ξβ : β < α} ∈M . Since α < λ+, we know ξ∗ < λ+. Then, because
hI(x) < α, we have χahI (x) <

∗ fξhI (x)
≤∗ fξ∗ . Thus there exists i < cf(λ)

such that sup(ahI(x) ∩ λi) < fξ∗(i). Since fξ∗ ∈M , we have fξ∗(i) ∈M and
fξ∗(i) < sup(M ∩λi) = sup(x∩λi). Hence sup(ahI(x)∩λi) < sup(x∩λi). On
the other hand, x ⊆ ahI(x) by the choice of x. In particular, sup(x ∩ λi) ≤
sup(ahI(x) ∩ λi). This is a contradiction.

We can show the following, which obviously implies Theorem 1.5.

Proposition 6.5. Let S = {x ∈ Pκλ : cf(h∗(x)) < ot(x)}.

(1) S is stationary in Pκλ.
(2) There is no weakly λ+-saturated normal ideal I with S ∈ I∗.
(3) Sp(T, λ+) holds for any stationary subset T of S.

(3) follows from (2), which in turn follows from Propositions 4.4, 6.4, and
the proof of Proposition 5.1. (1) follows from Fact 2.7 and the propositions
and fact below.

Proposition 6.6. Let M ≺ M be such that |M | < κ and M ∩ κ ∈ κ.
Let 〈~λ, ~f 〉 ∈ M be the ∆-least scale for λ. If χM∩λ ≤∗ fsup(M∩λ+), then
h∗(M ∩ λ) = sup(M ∩ λ+).

Proof. It follows from the definition of h∗ that sup(M∩λ+) ≤ h∗(M∩λ),
and sup(M ∩ λ+) ≥ h∗(M ∩ λ) follows from Lemma 6.3.

The following fact is just Lemma 12 in Foreman–Magidor [9].

Fact 6.7. Let 〈~λ, ~f 〉 be a scale for λ. Suppose κ > ω1. Let M ≺ M be
such that 〈~λ, ~f 〉 ∈M , |M | < κ, M ∩κ ∈ κ and M is internally approachable
of length α with cf(α) 6= cf(λ). Then χM∩λ ≤∗ fsup(M∩λ+).

Proposition 6.8. Suppose cf(λ) = ω. Let E be a stationary subset of
Eλ

+

ω . Let 〈~λ, ~f 〉 be a scale for λ. Then {x ∈ Pω1λ
+ : sup(x) ∈ E,χx ≤∗

fsup(x)} is stationary in Pω1λ
+.

Note that Shelah [15] proved a strong version of the above proposition
under additional assumptions. Now we will give a proof of Proposition 6.8,
which is based on Shelah’s argument in [15].
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To show Proposition 6.8, it is enough to show that for every f : [λ+]<ω →
λ+ there exists x ∈ Pω1λ

+ such that x is closed under f , sup(x) ∈ E, and
χx ≤∗ fsup(x). Now fix a function f : [λ+]<ω → λ+.

We recall some well-known notions. A tree is a poset 〈T,⊆〉 such that
T ⊆ <ωλ+ is closed under initial segments. For a tree T and s ∈ T , let
SucT (s) be the set of immediate successors of s in T . An element s ∈ T
is called the stem of T , denoted by Stm(T ), if ∀s′ ∈ T (s ⊆ s′ ∨ s′ ⊆ s)
and |SucT (s)| 6= 1. A tree T is perfect if |SucT (s)| = λ+ for all s ∈ T with
Stm(T ) ⊆ s.

Definition 6.9. For a tree T and a regular uncountable cardinal µ < λ,
we say that T is bounded in µ if there exists γ < µ such that sup(Clf (s)∩µ)
< γ for every s ∈ T . Here Clf (s) is the closure of range(s) under f .

First we prove the following.

Lemma 6.10. For every perfect tree T and every regular uncountable
cardinal µ < λ, there exists a perfect subtree T ′ ⊆ T such that T ′ is bounded
in µ and Stm(T ) = Stm(T ′).

Proof. Let T and µ be as above. First we define a two-player game G(γ)
for γ < µ.

Player I : α0 α1 · · · αi · · ·
Player II : β0 β1 · · · βi · · ·

Players choose ordinals less than λ+ alternately with αi ≤ βi for all
i < ω. Player II wins if Stm(T )_〈βi : i < n〉 ∈ T and sup(Clf (Stm(T )_〈βi :
i < n〉) ∩ µ) ≤ γ for all n < ω. Otherwise I wins.

Clearly the game G(γ) is open, hence Player I has a winning strategy, or
else Player II has.

Claim 6.11. There exists γ < µ such that Player II has a winning strat-
egy in G(γ).

Proof of Claim. Fix a large regular cardinal θ. Choose N ≺ 〈Hθ,∈, T,
λ+, µ, f〉 such that N ∩ λ+ ∈ Eλ+

ω . Fix a ∈ [N ∩ λ+]ω such that sup(a) =
sup(N ∩ λ+). Let M0 be the Skolem hull of a under 〈Hθ,∈, T, λ+, µ, f〉, and
M1 be that of a∪{sup(M0∩µ)}. ThenM0 andM1 are countable elementary
submodels of 〈Hθ,∈, T, λ+, µ, f〉 such that M0 ⊆ M1, sup(M0 ∩ µ) ∈ M1,
and sup(M0 ∩ λ+) = sup(M1 ∩ λ+).

Let γ = sup(M0∩µ) ∈M1. We show that Player II in G(γ) has a winning
strategy. Suppose not. Then Player I has a winning strategy σ : <ωλ+ → λ+

in the game G(γ) with σ ∈M1. Define 〈αi, βi : i < ω〉 by induction on i < ω
such that:
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(1) αi ∈M1 ∩ λ+ and βi ∈M0 ∩ λ+.
(2) αi ≤ βi and αi = σ(〈βj : j < i〉).
(3) Stm(T )_〈βj : j < i〉 ∈ T .

Suppose αj and βj are defined for all j < i. Since β0, . . . , βi−1 ∈ M0 ⊆ M1,
we know αi = σ(〈β0, . . . , βi−1〉) ∈ M1. Now choose βi ∈ M0 ∩ λ+ such that
βi ≥ αi and βi ∈ SucT (Stm(T )_〈β0 . . . , βi−1〉). This is possible because
T, 〈β0 . . . , βi−1〉 ∈ M0, SucT (Stm(T )_〈β0 . . . , βi−1〉) is unbounded in λ+,
and sup(M0 ∩ λ+) = sup(M1 ∩ λ+).

Then Stm(T )_〈βi : i < n〉 ∈ T for all n ∈ ω, but since the βi’s are in M0

andM0∩λ+ is closed under f , we have Clf (Stm(T )_〈βi : i < n〉)∩µ ⊆M0∩µ
and sup(Clf (Stm(T )_〈βi : i < n〉) ∩ µ) < sup(M0 ∩ µ) = γ for all n < ω.
Thus Player I has followed the strategy σ but loses in this game. This is a
contradiction. Claim

Fix γ < µ such that Player II has a winning strategy in G(γ). Let σ :
<ωλ+ → λ+ be such a strategy. Let T ′ be the set of all s ∈ T such that
s ⊆ Stm(T ) or s = Stm(T )_〈σ(s′|i) : i < length(s′)〉 for some s′ ∈ <ωλ+.
It is easy to check that T ′ is a perfect subtree of T with Stm(T ) = Stm(T ′)
and sup(Clf (s) ∩ µ) ≤ γ for all s ∈ T ′. Thus T ′ is bounded in µ.

Now we start the proof of Proposition 6.8.

Proof of Proposition 6.8. Take a large regular cardinal θ. Since E is
a stationary subset of Eλ+

ω , we can find a sequence of countable models
〈Mi : i < ω〉 such that Mi ≺ 〈Hθ,∈, λ+, f, 〈~λ, ~f 〉 . . . 〉, Mi ∈ Mi+1 and
sup{sup(Mi∩λ+) : i < ω} ∈ E. Because eachMi is countable and cf(λ) = ω,
we know that ~λ ⊆ Mi and sup(Mi ∩ λn) < λn for all n < ω. Let M =⋃
i<ωMi and ξ = sup(M ∩ λ+) ∈ E. We will find x ∈ Pω1λ

+ such that
x ⊆M ∩ λ+, x is closed under f , sup(x) = ξ, and χx ≤∗ fξ. For each i < ω,
because Mi ∈Mi+1, there exists η ∈Mi+1 ∩ λ+ such that χMi ≤∗ fη. Since
sup(Mi+1 ∩ λ+) < ξ, we know that χMi <

∗ fξ. Let ni < ω be the minimal
with χMi(k) < fξ(k) for all k ≥ ni. Since M0 ⊆ M1 ⊆ · · · , the sequence
〈ni : i < ω〉 is increasing. If {ni : i < ω} is finite, then χM ≤∗ fξ. Hence
M ∩ λ+ is the required set. So we may assume that 〈ni : i < ω〉 is a strictly
increasing sequence.

Lemma 6.10 allows us to define an ordinal αi and a perfect tree Ti ∈Mi

by induction on i < ω so that:

(1) sup(Mi ∩ λ+) < αi ∈Mi+1 ∩ λ+.
(2) Ti+1 ⊆ Ti.
(3) Ti is bounded in λk for all k < ni+1.
(4) 〈αj : j < i〉 = Stm(Ti).
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Let x be the closure of {αi : i < ω} under f . Since {αi : i < ω} ⊆ M and
M ∩λ+ is closed under f , we have x ⊆M ∩λ+. This implies that sup(x) = ξ
because supi<ω αi = supi<ω sup(Mi ∩ λ+) = ξ by (1). It remains to prove
χx ≤∗ fξ. Fix k > n0. It is enough to show that χx(k) ≤ fξ(k). Take i < ω
with ni ≤ k < ni+1. For l < ω, let xl = Clf (〈αj : j < l〉). It is easy to see
that x =

⋃
l<ω xl. Note that χxl(k) < χMi(k) for all l < ω because (3) holds

in Mi and 〈αj : j < l〉 ∈ Ti (even though 〈αj : j < l〉 /∈ Mi for all i < l).
Therefore χx(k) = supl<ω χxl(k) < χMi(k) ≤ fξ(k).

To conclude this section, using the function h∗ and Proposition 6.8,
we show that NSω1λ is not λ++-saturated if cf(λ) = ω. This supplements
Foreman–Magidor’s theorem [9] that NSκλ is not λ++-saturated if ω2 ≤ κ
and cf(λ) < κ.

Proposition 6.12. Suppose cf(λ) = ω. Then NSω1λ is not λ++-satu-
rated , in fact we can find a family of stationary sets 〈Xξ : ξ < λ++〉 in
NSω1λ such that Xξ ∩Xη is not unbounded for ξ 6= η.

Proof. We use the argument in the proof of Theorem 13 in [9] with
Proposition 6.8.

By a theorem of Gitik and Shelah [10], NSλ+ |Eλ+

ω is not λ++-saturated,
where NSλ+ is the non-stationary ideal over λ+. So there exists a family
of stationary subsets of Eλ+

ω , 〈Eα : α < λ++〉, such that Eα ∩ Eβ is non-
stationary for α 6= β. By using a diagonal union, we may assume that Eα∩Eβ
is bounded in λ+ for each α 6= β. Let 〈~λ, ~f 〉 be a scale for λ. Let Xα =
{M ∩ λ : M ≺ M, |M | = ω, χM ≤∗ fsup(M∩λ+), sup(M ∩ λ+) ∈ Eα}. By
using Proposition 6.8, we know that Xα is stationary in Pω1λ

+. We claim
that 〈Xα : α < λ++〉 is the required family. Take α < β < λ++. Then there
exists γ < λ+ such that Eα∩Eβ ⊆ γ. Fix x ∈ Xα∩Xβ . It is enough to show
that χx <∗ fγ . TakeM and N that witness x ∈ Xα and x ∈ Xβ respectively.
Then sup(M ∩ λ+) = h∗(x) = sup(N ∩ λ+) ∈ Eα ∩ Eβ ⊆ γ by Proposition
6.6. Therefore χx = χM ≤ fsup(M∩λ+) <

∗ fγ .

7. Some related results. In this section, we will prove some results
which are related to semi-weak normality and weak normality.

The α-semi-weak normality of ideals can be characterized in the context
of generic ultrapowers. For an ideal I over A, let PI be the generic ultrapower
poset 〈I+,⊆I〉 associated to I, where X ⊆I Y if X \ Y ∈ I. For a (V,PI)-
generic G, let Ult(V,G) = 〈V ,∈∗〉 be the generic ultrapower of V by G, and
jG : V → V be the generic elementary embedding induced by G. Recall that
I is precipitous if Ult(V,G) is well-founded for all (V,PI)-generic G, and I
is nowhere precipitous if I|X is precipitous for no X ∈ I+.
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Lemma 7.1. For an ideal I over A and an ordinal α, the following are
equivalent :

(1) I is α-s.w.n.
(2) There exists a function f ∈ V on A such that for any (V,PI)-gene-

ric G, [f ]G is the supremum of {jG(β) : β < α} in the order ∈∗,
where [f ]G is the equivalence class of f modulo G.

The proof is straightforward. Note that we do not require that V is well-
founded, and that if I is maximal, then the (V,P)-generic filter is just the
dual filter of I.

In the above lemma, if f is the function that witnesses (2), then f is an α-
least function for I. The lemma below immediately follows from Lemma 7.1.

Lemma 7.2. If I is a precipitous ideal then for every X ∈ I+ and every
ordinal α there exists Y ∈ (I|X)+ such that I|Y is α-s.w.n.

The next proposition implies that if λ<κ = λ, then every normal ideal
over Pκλ is α-s.w.n. for any ordinal α.

Proposition 7.3. If α is an ordinal with cf(α) < λ+ or cf(α) > λ<κ,
then every normal ideal over Pκλ is α-s.w.n.

Proof. If cf(α) < κ or cf(α) > λ<κ, then it is easy to see that the constant
function with value α is an α-least function for any normal ideal over Pκλ.
Therefore we may assume that κ ≤ cf(α) < λ+. Fix a function g : λ → α
such that g“cf(α) is cofinal in α. Define f : Pκλ → α by f(x) = sup(g“x).
It is easy to check that f is an α-least function for any normal ideal over
Pκλ.

From the last proposition, we know that NSκλ is α-s.w.n. for every ordinal
α if λ<κ = λ. On the other hand, if λ<κ > λ then NSκλ is not λ<κ-s.w.n. in
general.

For an ideal I over A, the cardinals cof(I) and non(I) are defined by

cof(I) = min{|F| : F ⊆ I, ∀X ∈ I ∃Y ∈ F (X ⊆ Y )},(1)

non(I) = min{|X| : X ∈ I+}.(2)

In Matsubara–Shioya [13] it was proved that an ideal I is nowhere precipitous
if non(I) = cof(I). We improve their result in terms of semi-weak normality.

Proposition 7.4. Let I be an ideal over A. Suppose cof(I) = non(I).
Then for every X ∈ I+, I|X is not cof(I)-s.w.n. In particular , I is nowhere
precipitous.

Proof. Let µ = cof(I) = non(I). Note that if Y ⊆ A and |Y | < µ then
Y ∈ I.

Let X ∈ I+ and let f : A → µ + 1 be such that {x ∈ A : α < f(x)} ∈
(I|X)∗ for all α < µ. We will find Y ∈ (I|X)+ and a function g on Y such
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that ∀x ∈ Y (g(x) < f(x)) but {x ∈ Y : g(x) ≤ α} ∈ I for all α < µ, hence
f is not a µ-least function.

Fix F ⊆ I such that |F| = µ = cof(I) and ∀Y ∈ I ∃Z ∈ F (Y ⊆ Z).
Let 〈Xξ : ξ < µ〉 be an enumeration of F . By induction on ξ < µ we define
a sequence 〈xξ : ξ < µ〉 satisfying the following, for all ξ < µ:

(1) xξ ∈ X \Xξ.
(2) f(xξ) > ξ.
(3) ∀η < ξ (xη 6= xξ).

Suppose ξ < µ and 〈xη : η < ξ〉 are defined. Since {x ∈ X : f(x) > ξ} ∈
(I|X)∗ and Xξ ∪ {xη : η < ξ} ∈ I, there exists xξ ∈ X \ Xξ such that
f(xξ) > ξ and ∀η < ξ (xη 6= xξ).

Let Y = {xξ : ξ < µ}. By the induction hypothesis (1), Y is an I-positive
subset of X. Define the function g on Y by g(xξ) = ξ for all ξ < µ. Then
g(xξ) = ξ < f(xξ) for all ξ < µ. Let α < µ. Then {xξ : g(xξ) ≤ α} = {xξ :
ξ ≤ α}, hence |{xξ : g(xξ) ≤ α}| = |α| < µ. Therefore {xξ : g(xξ) ≤ α}
∈ I.

For an ordinal γ ≥ κ, let cf(κ, γ) denote the minimal size of unbounded
sets in Pκγ. Notice that |Pκλ| = λ<κ = cf(κ, λ) + 2<κ. Solovay [17] showed
that cf(κ, λ) = λ if cf(λ) ≥ κ and Pκλ carries a maximal ideal (that is,
κ is λ-compact). Abe [1] obtained the same result assuming that Pκλ carries
a weakly normal ideal and λ is regular. Here an ideal I over Pκλ is called
weakly normal if for every function f : Pκλ → λ such that f(x) < sup(x)
for all x ∈ Pκλ, there exists α < λ such that {x ∈ Pκλ : f(x) ≤ α} ∈ I∗.
Every weakly normal ideal over Pκλ is weakly cf(λ)-saturated, and he also
showed that if I is λ-saturated normal ideal over Pκλ and cf(λ) ≥ κ, then I
is weakly normal. Relevantly, Burke [4] showed that if cf(λ) ≥ κ, Pκλ carries
a weakly λ-saturated ideal, and there exists a large cardinal greater than λ
then cf(κ, λ) = λ. We prove that cf(κ, λ) = λ is implied by the existence of
a weakly λ-saturated ideal.

Proposition 7.5. Suppose that cf(λ) ≥ κ. If Pκλ carries a weakly λ-
saturated ideal , then cf(κ, λ) = λ. In particular , λ<κ = λ+ 2<κ.

Proof. Case 1: cf(λ) = λ. By [1], it is enough to show the existence of a
weakly normal ideal over Pκλ.

Since we are assuming the existence of a weakly λ-saturated ideal, Pκλ
carries a λ-weakly normal ideal I by Corollary 3.8 and Proposition 3.10. Let
hI be a λ-least function for I. Then {x ∈ Pκλ : hI(x) ≤ sup(x)} ∈ I∗, since
if not, then there exists α < λ such that {x ∈ Pκλ : sup(x) ≤ α} ∈ I+,
which is impossible. Now define an ideal J over Pκλ by X ∈ J if and only
if {x ∈ Pκλ : x ∩ hI(x) ∈ X} ∈ I. It is easy to check that J is a weakly
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λ-saturated ideal, and the function x 7→ sup(x) is a λ-least function of J .
Hence J is weakly normal.

Case 2: κ ≤ cf(λ) < λ. Let I be a weakly λ-saturated ideal over Pκλ.
Since λ is singular, by Note 2.2(3) there exist X ∈ I+ and µ < λ such that
I|X is weakly µ-saturated. Then for each regular γ with µ < γ < λ, the ideal
Iγ over Pκγ defined by Y ∈ Iγ ⇔ {x ∈ X : x ∩ γ ∈ Y } ∈ (I|X) is weakly
γ-saturated. Hence cf(κ, γ) = γ by Case 1. Then, because Pκλ =

⋃
δ<λ Pκδ,

we have cf(κ, λ) = λ.

A similar result holds when cf(λ) < κ.

Proposition 7.6. Suppose that cf(λ) < κ and there exists a weakly
λ+-saturated ideal over Pκλ. Then there exists δ < λ such that δ ≤ κcf(λ)

and cf(κ, λ) = λ+ + cf(κ, δ). In particular , λ<κ = λ+ + 2<κ.

Proof. By Corollary 3.8 and Proposition 3.10, there is a λ+-weakly nor-
mal ideal I over Pκλ. First we claim that {x∈Pκλ : cf(hI(x))≤κcf(λ)}∈I∗.
Take F ⊆ [λ]cf(λ) such that |F | = λ+. Take a 1-1 enumeration 〈dξ : ξ < λ+〉
of F . For each x ∈ Pκλ, let ex = {ξ < λ+ : dξ ( x}. Then clearly
|ex| ≤ κcf(λ). Thus it is enough to show that {x ∈ Pκλ : ex ∩ hI(x) is
unbounded in hI(x)} ∈ I∗. If not, then by the λ+-weak normality of I, there
exists ξ∗ < λ+ such that {x ∈ Pκλ : ex ∩hI(x) ⊆ ξ∗} ∈ I+. But then we can
pick x ∈ Pκλ such that ex ∩ hI(x) ⊆ ξ∗ and dξ∗ ( x, which is impossible.

Since {x ∈ Pκλ : hI(x) < λ+} ∈ I∗ and cf(λ) < κ, there exists a regular
δ < λ such that X = {x ∈ Pκλ : cf(hI(x)) ≤ δ} ∈ I+. By the previous
claim, we may assume that δ ≤ κcf(λ).

We will construct a sequence 〈cξ : ξ ∈ Eλ+

≤δ 〉 such that cξ ⊆ λ, ot(cξ) ≤
cf(ξ), and {x ∈ X : η ∈ chI(x)} ∈ (I|X)∗ for all η < λ. When such a se-
quence is constructed, then for each ξ ∈ Eλ+

≤δ fix Yξ ⊆ Pκcξ such that Yξ is
unbounded in Pκcξ and |Yξ| ≤ cf(κ, δ). Let Y =

⋃
{Yξ : ξ ∈ Eλ+

≤δ }. Then Y is
an unbounded set in Pκλ and |Y | = λ++cf(κ, δ), which completes the proof.

Fix 〈aξ : ξ < λ+〉 such that aξ ⊆ ξ is an unbounded set in ξ with ot(aξ) =
cf(ξ). As in the proof of Proposition 4.3 we can construct a strictly increasing
sequence 〈αη : η < λ〉 such that {x ∈ X : [αη, αη+1) ∩ ahI(x) 6= ∅} ∈ (I|X)∗

for all η < λ. Now define 〈cξ : ξ ∈ Eλ+

≤δ 〉 by cξ = {η < λ : [αη, αη+1)∩aξ 6= ∅}.
Since ot(aξ) = cf(ξ) and the αη’s are strictly increasing, we have ot(cξ) ≤
cf(ξ). Then clearly {x ∈ X : η ∈ chI(x)} ∈ (I|X)∗ for all η < λ.

We do not know whether cf(κ, λ) must be λ+ even if Pκλ carries a weakly
λ+-saturated ideal. On the other hand, cf(κ, λ) = λ+ must hold if Pκλ carries
a weakly λ-saturated ideal:

If Pκλ carries a weakly λ-saturated ideal, then, since λ is singular, there
exists δ < λ such that, for every regular µ with δ < µ < λ, Pκµ carries
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a weakly µ-saturated ideal. Then cf(κ, µ) = µ by Proposition 7.5. Hence
cf(κ, λ) = λ+ in view of Proposition 7.6.

Corollary 7.7. Suppose that Pκλ carries a weakly λ-saturated ideal.
Then

cf(κ, λ) =
{
λ if cf(λ) ≥ κ,
λ+ if cf(λ) < κ.

Finally, we give other characterizations of weak λ+-saturation of ideals,
which shows that λ+-weak normality of a normal ideal follows from weak
λ+-saturation.

Proposition 7.8. Suppose cf(λ) < κ. Let I be a normal ideal over Pκλ.
Then the following are equivalent :

(1) I is weakly λ+-saturated.
(2) The function h∗ in Definition 6.1 is a λ+-least function for any

normal ideal over Pκλ extending I.
(3) There exists a function f : Pκλ → λ+ such that f is a λ+-least

function for any normal ideal over Pκλ extending I.

In particular , every weakly λ+-saturated normal ideal over Pκλ is λ+-weakly
normal.

Proof. We prove (1)⇒(2)⇒(3)⇒(1).
(1)⇒(2). Let J be a normal ideal extending I. To show that h∗ is a

λ+-least function for J , it is enough to show that for all X ∈ J+ and all
functions g on X, if ∀x ∈ X (f(x) < h∗(x)) then {x ∈ X : f(x) ≤ β} ∈ J+

for some β < λ+. Since I is weakly λ+-saturated and I ⊆ J ⊆ J |X, J |X
is a weakly λ+-saturated normal ideal. Take a normal λ+-weakly normal
ideal J extending J |X. Then h∗ is a λ+-least function for J . Since X ∈ J∗,
there exists β < λ+ such that {x ∈ X : f(x) ≤ β} ∈ J

+. Then clearly
{x ∈ X : f(x) ≤ β} ∈ J+.

(2)⇒(3) is trivial.
(3)⇒(1). Let f be a function witnessing (3). Then f is a λ+-least func-

tion for I. To see that I is weakly λ+-saturated, since I is λ+-s.w.n., we
prove that for all X ∈ I+ and all functions g on X, if ∀x ∈ X (g(x) < f(x))
then there exists α < λ+ such that {x ∈ X : g(x) ≤ α} ∈ (I|X)∗. Sup-
pose not. Then Xα = {x ∈ X : g(x) > α} ∈ I+ for all α < λ∗. Notice
that Xα ⊇ Xβ for all α < β < λ+. Now we consider the filter F over Pκλ
generated by I∗ ∪ {Xα : α < λ+}, that is, for X ⊆ Pκλ, X ∈ F if and
only if Y0 ∩ · · · ∩ Yn ∩ Xα0 ∩ · · · ∩ Xαm ⊆ X for some Y0, . . . , Yn ∈ I∗ and
α0, . . . , αm < λ+. We claim that F is a normal filter. Notice that I∗ is a
filter and the Xα’s are ⊇-decreasing, so X ∈ F if and only if Y ∩Xα ⊆ X
for some Y ∈ I∗ and α < λ+. Hence it is easy to check that F is a proper
filter. Because I∗ ⊆ F , F is fine. To check that F is normal, take Zξ ∈ F
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(ξ < λ). Then for each ξ < λ, there exist Yξ ∈ I∗ and αξ < λ+ such that
Yξ ∩Xαξ ⊆ Zξ. Let α∗ = sup{αξ : ξ < λ} < λ+. Then Yξ ∩Xα∗ ⊆ Zξ for all
ξ < λ. Since I∗ is normal, we have 4ξ<λYξ ∈ I∗. Because Xα∗ ∈ F , we have
(4ξ<λYξ)∩Xα∗ ∈ F and (4ξ<λYξ)∩Xα∗ = 4ξ<λ(Yξ∩Xα∗) ⊆ 4ξ<λZξ ∈ F .
Therefore F is normal.

Let J be the dual ideal of F . Then J is normal, X ∈ J∗, and, by as-
sumption (3), f is a λ+-least function for J . However, since Xα = {x ∈ X :
g(x) > α} ∈ J∗, there is no α < λ+ such that {x ∈ X : g(x) < α} ∈ J+.
This is a contradiction.

8. Questions. There are some open questions. Let cf(λ) < κ.

(1) Is it consistent that Pκλ carries a normal ideal which is weakly
λ+-saturated but not λ+-saturated? Or not precipitous?

(2) Is it consistent that κ is a successor cardinal and Pκλ carries a weakly
λ+-saturated ideal?
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