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Abstract. We study differentiability of topological conjugacies between expanding
piecewise C1+ε interval maps. If these conjugacies are not C1, then their derivative van-
ishes Lebesgue almost everywhere. We show that in this case the Hausdorff dimension of
the set of points for which the derivative of the conjugacy does not exist lies strictly be-
tween zero and one. Moreover, by employing the thermodynamic formalism, we show that
this Hausdorff dimension can be determined explicitly in terms of the Lyapunov spectrum.
These results then give rise to a “rigidity dichotomy” for the type of conjugacies under
consideration.

1. Introduction and statement of results. In this paper we
study aspects of nondifferentiability for conjugacy maps between expand-
ing maps of the unit interval U into itself which have precisely d increas-
ing full inverse branches and each of these branches is a strictly contract-
ing C1+ε diffeomorphism on U , for some fixed ε > 0 and some fixed in-
teger d ≥ 2 (here, a map f : U → f(U) ⊂ R is said to be a C1+ε

diffeomorphism if there exists an extension f̃ of f to some open neigh-
bourhood of U which is a diffeomorphism such that f̃ ′|U is Hölder con-
tinuous with Hölder exponent equal to ε). Throughout, these expanding
maps will be referred to as expanding piecewise C1+ε maps. Clearly, each
map of this type is naturally semi-conjugate to the full shift Σ over the
alphabet A := {1, . . . , d}. Moreover, if S and T are two expanding piece-
wise C1+ε maps, then the following diagram commutes, where σ refers to
the usual shift map on Σ, and πS and πT denote the associated coding
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maps:
U πT←−−−− Σ

πS−−−−→ U

T

y yσ yS
U πT←−−−− Σ

πS−−−−→ U

The conjugacy map Θ : U → U between the two systems (U , S) and
(U , T ) is then given by T ◦Θ = Θ ◦S (see Figs. 1 and 4 for some examples),
and one immediately verifies that Θ is continuous. The first main task of
the paper will be to employ the thermodynamic formalism in order to give
a detailed fractal analysis of the following three sets:

D∼ = D∼(S, T ) := {ξ ∈ U : Θ′(ξ) does not exist in the generalised sense};
D∞ = D∞(S, T ) := {ξ ∈ U : Θ′(ξ) =∞};
D0 = D0(S, T ) := {ξ ∈ U : Θ′(ξ) = 0}.

Here, Θ′(ξ) exists in the generalised sense means that Θ′(ξ) either exists or
else is equal to infinity (at the boundary points we interpret these quantities
in terms of limits from the left or right, as appropriate). Note that we can
trivially write U = D∼ ∪D∞ ∪D0 ∪D where D := {ξ ∈ U : Θ′(ξ) ∈ (0,∞)}.
However, as we will see, either D = U or D = ∅.

The second main task of this paper will be to find a necessary and
sufficient condition for two expanding piecewise C1+ε systems to be rigid in
a certain sense.

To state our main results in greater detail, we first need to recall some
concepts from the thermodynamic formalism. Let ϕ,ψ : Σ → R<0 de-
note the Hölder continuous potential functions which are given for x =
(x1x2 . . .) ∈ Σ by

ϕ(x) := log (S−1
x1

)′(πS(σ(x))) and ψ(x) := log (T−1
x1

)′(πT (σ(x))),

where S−1
a and T−1

a denote the inverse branches of S and T associated with
a ∈ A. Also, let P denote the usual pressure function from the thermo-
dynamic formalism (see [17] for the definition of P ). Then there exists a
function β : R→ R given implicitly by the pressure equation

P (sϕ+ β(s)ψ) = 0 for all s ∈ R.
Note that β is well defined, since ψ < 0. With µs denoting the equilibrium
measure associated with the potential function sϕ+ β(s)ψ, we have

β′(s) :=
−
	
ϕdµs	
ψ dµs

< 0.

Therefore, β is strictly decreasing, and one also immediately verifies that
β(1) = 0 and β(0) = 1. If ϕ and ψ are cohomologically independent, that
is, if there are no nontrivial choices of b, c ∈ R and u ∈ C(Σ) such that
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bϕ + cψ = u ◦ σ − u (in this situation, we will also say that S and T are
cohomologically independent), then β is strictly convex (see e.g. [17]). In
this situation the mean value theorem for derivatives gives that there exists
a unique s0 ∈ (0, 1) such that β′(s0) = −1. Let β̃ : R → R be defined by
β̃(s) := β(s) + s. Note that β̃ is convex and has a unique minimum at s0.
Also, β̃(0) = β̃(1) = 1 and β̃(s0) = β̂(1), where β̂ denotes the (concave)
Legendre transform of β, given by β̂(s) := inft∈R(β(t) + st) for s ∈ R.
Finally, the level sets L(s) are defined by

L(s) :=
{
ξ ∈ U : lim

n→∞

Snϕ(π−1
S (ξ))

Snψ(π−1
T (ξ))

= s

}
,

where Snf :=
∑n−1

k=0 f ◦ σk denotes the nth Birkhoff sum. By standard
thermodynamic formalism (see e.g. [17]), we then have, for s in the closure
−β′(R) of the range of −β′,

dimH(L(s)) = β̂(s)/s =
1
s

inf
t∈R

(st+ β(t)) = inf
t∈R

(t+ β(t)/s),

whereas for s /∈ −β′(R) we have L(s) = ∅.
The first main result of this paper is now stated in the following theorem.

Theorem 1.1. Let S and T be two cohomologically independent expand-
ing piecewise C1+ε maps. Then

0 < dimH(D∼) = dimH(D∞) = dimH(L(1)) = β̃(s0) < 1.

Using the well known fact that both T and S have absolutely contin-
uous invariant measures with Cε densities (see e.g. [1, Theorem 2.1]), one
immediately verifies that either Θ′ = 0 Lebesgue almost everywhere or Θ is
C1+ε. The second main result of this paper is to give a refinement of this
dichotomy, and this is summarized in the following theorem.

Theorem 1.2. Let S and T be two expanding piecewise C1+ε maps.
Then

the conjugacy Θ is a C1+ε diffeomorphism ⇔ dimH(D∼) = 0.

More precisely , the following “rigidity dichotomy” holds.

(1) If S and T are cohomologically dependent , then Θ is a C1+ε diffeo-
morphism and hence absolutely continuous. Equivalently ,

D0 = D∞ = D∼ = ∅, and hence U = {ξ ∈ U : 0 < Θ′(ξ) <∞}.
(2) If S and T are cohomologically independent , then Θ is singular ,

that is, λ(D0) = 1. Moreover , Θ is Hölder continuous with Hölder
exponent equal to (supx∈R−β′(x))−1, and

0 < dimH(D∞) = dimH(D∼) < 1.
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The latter theorem is closely related to classical work by Shub and Sul-
livan [21] on the smoothness of conjugacies between expanding maps of the
unit circle S1 (see also e.g. [2, 9, 16, 22]). In [21] it was shown that if the
conjugacy between two Ck expanding maps is absolutely continuous, for
some k ≥ 2, then the conjugacy is necessarily Ck too (also cf. [18]). Let
us also mention a result by Cui [3] which states that the conjugacy map
between two expanding C1+ε circle endomorphisms is itself C1+ε, if it has
finite, nonzero derivative at some point in S1. So, to deduce Theorem 1.2
from Theorem 1.1, we need to adapt this result to the setting of interval
maps.

In the case of circle maps we can combine our result on interval maps
and the result of Cui to obtain a result for endomorphisms of S1. For this
one has to rewrite Theorem 1.1 in terms of orientation preserving expanding
C1+ε circle maps, and this then gives rise to the following result.

Corollary 1.3. For the conjugacy map Φ between a given pair (S1, U)
and (S1, V ) of expanding C1+ε endomorphisms of S1, the following state-
ments are equivalent.

(1) Φ is a C1+ε circle map;
(2) dimH({ξ ∈ S1 : Φ′(ξ) does not exist in the generalised sense}) = 0;
(3) dimH({ξ ∈ S1 : 0 < Φ′(ξ) <∞}) = 1;
(4) Φ is absolutely continuous;
(5) Φ is bi-Lipschitz.

A natural question to ask is how the quantities dimH(D∞(S, T )) and
dimH(D∼(S, T )) vary as S and T change. The next two results address this
question.

Proposition 1.4. For a Ck family of expanding maps, the Hausdorff
dimension of the set of nondifferentiability points has a Ck−2 dependence.

Proposition 1.5. There exists a pair of C2 endomorphisms of S1 for
which the set of nondifferentiability points for the associated conjugacy map
has arbitrarily small Hausdorff dimension.

The paper is organised as follows. In Sections 2 and 3 we give the proofs
of Theorems 1.1 and 1.2. Section 4 discusses two basic examples, and one of
these is then used in Section 5 for the proof of Proposition 1.5. In Section 5
we also give the proof of Proposition 1.4.

Remark 1.6. (1) Note that

D∼(S, T ) ∪ D∞(S, T ) = {ξ ∈ U : Θ is not differentiable at ξ},
and hence Theorem 1.1 in particular implies that if S and T are cohomo-
logically independent, then the Hausdorff dimension of the set of points for
which Θ is not differentiable is equal to β̃(s0).
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(2) There is also a variational formula for the Hausdorff dimension of D∼.
Namely, as we will see in Section 2.3,

dimH(D∼) = sup
{
h(µ)	
ϕdµ

:
	
ϕdµ	
ψ dµ

= 1
}
,

where the supremum ranges over all σ-invariant probability measures on Σ.
In particular, this variational formula shows that if we swap the roles of
ϕ and ψ, then this has no effect on the Hausdorff dimension of the set
of nondifferentiability. In other words, if instead of Θ we take the dual
conjugacy Θ̂, given by S ◦ Θ̂ = Θ̂ ◦ T , then the Hausdorff dimension of the
set of points at which Θ̂′ does not exist in the generalised sense coincides
with dimH(D∼), i.e.

dimH(D∼(S, T )) = dimH(D∼(T, S)).

(3) The conjugacy map Θ can also be viewed as the distribution function
of the measure mΘ := λ ◦Θ. This follows, since for ξ ∈ U we have

mΘ([0, ξ)) = λ([0, Θ(ξ))) = Θ(ξ).

Hence, the investigations in this paper can also be seen as a study of singular
distribution functions with support equal to U . Note that there are strong
parallels to the results in [12], where we used some of the outcomes of [13] to
give a fractal analysis of nondifferentiability for Minkowski’s question mark
function.

(4) Finally, let us mention that the statements in Theorems 1.1 and 1.2
can be generalised so that the derivative of Θ gets replaced by the s-Hölder
derivative ∆sΘ of Θ, given for s ∈ −β′(R) by

(∆sΘ)(ξ) := lim
η→ξ

|Θ(η)−Θ(ξ)|
|η − ξ|s

.

For this more general derivative the relevant sets are

D(s)
∼ = D(s)

∼ (S, T ) := {ξ ∈ U : (∆sΘ)(ξ) does not exist
in the generalised sense},

D(s)
∞ = D(s)

∞ (S, T ) := {ξ ∈ U : (∆sΘ)(ξ) =∞}.

Straightforward adaptations of the proofs in this paper then show that

dimH(D(s)
∼ ) = dimH(D(s)

∞ ) = dimH(L(s)).

In particular, this shows that on −β′(R) the Lyapunov spectrum s 7→ β̂(s)/s
coincides with the “spectrum of non-s-Hölder differentiability of Θ”. Note
that, by generalising results of [3, 7] and others, in [11] similar results were
obtained for certain classes of Cantor-like sets.
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2. Proof of Theorem 1.1

2.1. The geometry of the derivative of Θ. Let us first introduce some
notations which will be used throughout.

Definition. Let us say that x = (x1x2 . . .) ∈ Σ has an i-block of length
k at the nth level , for n, k ∈ N and i ∈ {1, d}, if xn+k+1 ∈ A\{i} and xn+m= i
for all m ∈ {1, . . . , k}. Moreover, we will say that x= (x1x2 . . .)∈Σ has a
strict i-block of length k at the nth level if additionally xn ∈ A \ {i}.

For ease of exposition, we define the function χ : Σ → R by χ := ψ − ϕ.
Also, let DΘ(ξ, η) denote the differential quotient for Θ at ξ and η, that is,

DΘ(ξ, η) :=
Θ(ξ)−Θ(η)

ξ − η
.

Moreover, we use ak to denote the word of length k ∈ N containing exclu-
sively the letter a ∈ A, and we let a denote the infinite word containing
exclusively the letter a ∈ A. Also, [x1 . . . xn] denotes the cylinder set associ-
ated with the finite word (x1, . . . , xn) ∈ An, that is,

[x1 . . . xn] := {(y1y2 . . .) ∈ Σ : yi = xi for all i = 1, . . . , n}.

Throughout, “�” means that the ratio of the left hand side to the right
hand side is uniformly bounded away from zero and infinity. Likewise, we
use “�” to denote that the expression on the left hand side is uniformly
bounded by the expression on the right hand side multiplied by some fixed
positive constant.

Let us begin our discussion of the geometry of the derivative of Θ with
the following crucial geometric observation.

Proposition 2.1. Let x = (x1x2 . . .), y = (y1y2 . . .) ∈ Σ satisfy y ∈
[x1 . . . xn−1] as well as xn = a and yn = b for some n ∈ N and a, b ∈ A
with |a − b| = 1 (note that for n = 1 we adopt the convention that x1 = a
and y1 = b). Moreover , assume that for some k, l ∈ N, the word x has an
i-block of length k at the nth level , and y has a j-block of length l at the nth
level. Here, i, j ∈ {1, d} are chosen such that if a < b then i = d and j = 1,
whereas if a > b then i = 1 and j = d. In this situation for ξ := πS(x) and
η := πS(y),

DΘ(ξ, η) � eSnχ(x) e
kψ((i)) + elψ((j))

ekϕ((i)) + elϕ((j))
.

Proof. We only consider the case a = b + 1 > b. The case a < b is
completely analogous and is left to the reader. In this situation, for some
p ∈ A \ {1} and q ∈ A \ {d}, the words x and y are of the form

x = (x1 . . . xn−1a1kp . . .) and y = (x1 . . . xn−1bdlq . . .).



Sets of nondifferentiability for conjugacies 167

Then consider the following cylinder sets:

I1 := πS([x1 . . . xn−1bdl+1]) I2 := πS([x1 . . . xn−1a1k+1]),
J1 := πS([x1 . . . xn−1bdl]) J2 := πS([x1 . . . xn−1a1k]).

One immediately verifies that

I1 ∪ I2 ⊂ [η, ξ] ⊂ J1 ∪ J2.

Moreover, with η′ := πT ((x1 . . . xn−1bd)) = πT ((x1 . . . xn−1a1)) we have,
using the bounded distortion property,

|Θ(ξ)−Θ(η)| = |Θ(ξ)−Θ(η′)|+ |Θ(η′)−Θ(η)| � eSnψ(x)(ekψ((d)) + elψ((1))).

Similarly, one obtains

|ξ − η| � diam(I1) + diam(I2) � diam(J1) + diam(J2)

� eSnϕ(x)(ekϕ((d)) + elϕ((1))).

Note that Proposition 2.1 does in particular contain all the cases in
which, for given x, y ∈ Σ, DΘ(πS(x), πS(y)) can significantly deviate from
exp(Snχ(x)). This is clarified by the following lemma, which addresses the
cases not covered by Proposition 2.1.

Lemma 2.2. Let x = (x1x2 . . .), y = (y1y2 . . .) ∈ Σ be such that y ∈
[x1 . . . xn−1] \ [x1 . . . xn] and either |xn − yn| > 1, or if |xn − yn| = 1 then
πS([x1 . . . xn+1]) ∩ πS([y1 . . . yn+1]) = ∅. For ξ := πS(x) and η := πS(y),

DΘ(ξ, η) � eSnχ(x).

Proof. We have either πS([x1 . . . xn]) ∩ πS([y1 . . . yn]) = ∅, and hence
there exists an interval separating these two sets, or if πS([x1 . . . xn]) ∩
πS([y1 . . . yn]) 6= ∅ then πS([x1 . . . xn+1]) ∩ πS([y1 . . . yn+1]) = ∅. Clearly, in
both cases there exist a, b ∈ A such that the interval Iab :=πS([x1 . . . xn−1ab])
separates the intervals πS([x1 . . . xn+1]) and πS([y1 . . . yn+1]). Using this, we
then obtain

eSnψ(x) � diam(Θ(Iab))� |Θ(ξ)−Θ(η)|
� diam(Θ(πS([x1 . . . xn−1])))� eSnψ(x),

and

eSnϕ(x) � diam(Iab)� |ξ − η| � diam(πs([x1 . . . xn−1]))� eSnϕ(x).

Lemma 2.3. If x = (x1x2 . . .) ∈ Σ has an i-block of length k at the nth
level , for some n, k ∈ N and i ∈ {1, d}, then for each η ∈ πs([x1 . . . xn] \
[x1 . . . xn+1]), with δ := −min{ψ((1)), ψ((d))} > 0 and ξ := πS(x),

DΘ(ξ, η)� eSnχ(x)e−δk.
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Proof. Trivially, |ξ − η| � exp(Snϕ(x)). As in the proof of the previous
lemma, one immediately verifies that

|Θ(ξ)−Θ(η)| � eSn+kψ(x) � eSnψ(x)e−δk.

By combining these observations, the result follows.

Lemma 2.4. Let x ∈ Σ and ξ := πS(x).

(1) If lim supn→∞ eSnχ(x) =∞, then lim supη→ξDΘ(ξ, η) =∞.
(2) If lim infn→∞ eSnχ(x) = 0, then lim infη→ξDΘ(ξ, η) = 0.

Proof. Let x = (x1x2 . . .) and assume without loss of generality that

ξ /∈ πS({(x1x2 . . .) ∈ Σ : ∃n ∈ N ∃i ∈ {1, d} ∀k ≥ n : xk = i}).

For n ∈ N, the left and right boundary points of πS([x1 . . . xn]) are given by
ξn := πS((x1 . . . xn1)) and ηn := πS((x1 . . . xnd)). By assumption we have
ξ /∈ {ξn, ηn : n ∈ N}. It then follows that

min{DΘ(ξ, ηn), DΘ(ξ, ξn)} ≤ DΘ(ξn, ηn) ≤ max{DΘ(ξ, ηn), DΘ(ξ, ξn)}.

Since DΘ(ξn, ηn) � eSnχ(ξ), the lemma follows.

We have the following immediate corollary.

Corollary 2.5. Let x ∈ Σ be such that

lim inf
n→∞

eSnχ(x) = 0 and lim sup
n→∞

eSnχ(x) =∞.

Then πS(x) ∈ D∼.

For the remainder of this section we restrict the discussion to the follow-
ing two cases:

(2.1)
Case 1: ψ((1))/ϕ((1)) < min{ψ((d))/ϕ((d)), 1};
Case 2: ψ((d))/ϕ((d)) < min{ψ((1))/ϕ((1)), 1}.

As we will see in Lemma 2.7, these two cases are in fact the only relevant
cases for the purposes in this paper. In fact, without loss of generality, we
will always assume that we are in the situation of Case 1. The discussion of
Case 2 is completely analogous (essentially, one has to interchange the roles
of 1 and d as well as of l and k), and will be left to the reader. Note that
Cases 1 and 2 include the cases

eχ((1)) > 1 > eχ((d)) and eχ((1)) < 1 < eχ((d)),

which are for instance fulfilled in the Salem examples (Example 1) briefly
discussed in Section 4.

On the basis of this assumption, we now make the following crucial
observation.
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Lemma 2.6. Assume that we are in Case 1 of (2.1). Then for all l ∈ N,

elψ((1)) + ekψ((d))

elϕ((1)) + ekϕ((d))
� eαk,

where α := χ((1))ϕ((d))/ϕ((1)) > 0. Moreover , if l = bkα/χ((1))c then

elψ((1)) + ekψ((d))

elϕ((1)) + ekϕ((d))
� eαk.

Here, brc denotes the smallest integer greater than or equal to r ∈ R.

Proof. First note that with α′ := ϕ((d))/ϕ((1)) the conditions in Case 1
immediately imply

eϕ((1)) < eψ((1)) and eψ((d)) < eα
′ψ((1)).

In particular, this implies that χ((1)) > 0. Then for all l ≥ α′k,

elψ((1)) + ekψ((d))

elϕ((1)) + ekϕ((d))
≤ elψ((1)) + ekα

′ψ((1))

ekϕ((d))
≤ 2

ekα
′ψ((1))

ekϕ((d))
= 2

ekα
′ψ((1))

ekα′ϕ((1))
= 2eαk.

If l ≤ α′k, then we obtain

elψ((1)) + ekψ((d))

elϕ((1)) + ekϕ((d))
≤ elψ((1)) + ekα

′ψ((1))

elϕ((1))

≤ 2
(
eψ((1))

eϕ((1))

)l
≤ 2
(
eψ((1))

eϕ((1))

)α′k
= 2eαk.

Finally, if l = bα′kc then

elψ((1)) + ekψ((d))

elϕ((1)) + ekϕ((d))
� elψ((1)) + ekψ((d))

2ekϕ((d))
� ekα

′ψ((1))

2ekα′ϕ((1))
� eαk.

The next observation explains why we can restrict the discussion to the
above two cases in (2.1). For this we define

D] := πS({x ∈ Σ : lim
n→∞

Snχ(x) = −∞}),

D∗] = D] \ πS({(x1x2 . . .) ∈ Σ : ∃n ∈ N ∃i ∈ {1, d} ∀k ≥ n : xk = i}).
Lemma 2.7. If we are in neither of the two cases in (2.1), then

D∼ ∩ D∗] = ∅.
Proof. Let x = (x1x2 . . .) ∈ Σ be such that ξ := πS(x) ∈ D∗] . Assume

that x has a strict j-block of length k at the nth level, j ∈ {1, d}. We have
to distinguish two cases. The first is

ψ((1))
ϕ((1))

≥ 1 and
ψ((d))
ϕ((d))

≥ 1.

Then eψ((i)) ≤ eϕ((i)) for i ∈ {1, d}, and clearly elψ((1))+ekψ((d))

elϕ((1))+ekϕ((d)) ≤ 1 for all
k, l ∈ N. By combining this observation with Proposition 2.1 and Lemma 2.2,
it follows that ξ ∈ D0, and hence ξ /∈ D∼.
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The second case is
ψ((1))
ϕ((1))

=
ψ((d))
ϕ((d))

< 1.

As in the proof of Lemma 2.6, it then follows that for each i ∈ {1, d} \ {j}
and for all l, k ∈ N, we have

elψ((i)) + ekψ((j))

elϕ((i)) + ekϕ((j))
≤ 2ekχ((j)).

Therefore, for each η ∈ πS([x1 . . . xn−1] \ [x1 . . . xn]) we have

DΘ(ξ, η)� eSn+kχ(x).

Using this observation and Lemma 2.2, we find that the derivative of Θ at
ξ is equal to 0, and hence ξ /∈ D∼.

Proposition 2.8. Assume that we are in Case 1 of (2.1) and let x =
(x1x2 . . .) ∈ Σ be such that ξ := πS(x) ∈ D∗] . Then ξ ∈ D∼ if and only if
there exist strictly increasing sequences (nm)m∈N and (km)m∈N of positive
integers such that x has a strict d-block of length km at the nmth level for
each m ∈ N, and

eSnmχ(x)+kmα � 1 for all m ∈ N.

Proof. By Lemma 2.4 there exists a sequence (ηn)n∈N such that

lim
n→∞

DΘ(ξ, ηn) = 0.

Now, for the “if” part, assume that ξ has strict d-blocks as specified in
the proposition. For each m ∈ N, choose η′m in the interval πS([x1 . . .
xnm(xnm+1 + 1)1lma]), where a ∈ A \ {1} and lm := kmα/χ((1)). Com-
bining Proposition 2.1, the second part of Lemma 2.6, and the fact that
exp(Snmχ(x) + kmα)� 1, we then obtain, for all m ∈ N,

DΘ(ξ, η′m) � eSnmχ(x) e
kmψ((d)) + elmψ((1))

ekmϕ((d)) + elmϕ((1))
� eSnmχ(x)+kmα � 1.

Combining this with the observation at the beginning of the proof, it follows
that ξ ∈ D∼.

For the “only if” part, let x = (x1x2 . . .) ∈ Σ with ξ := πS(x) ∈ D∼∩D∗] .
Then there exists a sequence (ηm)m∈N in U and a strictly increasing sequence
(nm)m∈N in N such that ηm ∈ πS([x1 . . . xnm ]) for all m ∈ N and

lim inf
m→∞

DΘ(ξ, ηm) > 0.

Using Proposition 2.1 and Lemma 2.6, it follows that if x has a d-block of
length km at the nmth level, then for all l,m ∈ N,

DΘ(ξ, ηm)� eSnmχ(x) e
lψ((1)) + ekmψ((d))

elϕ((1)) + ekmϕ((d))
� eSnmχ(x)+αkm .
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Since lim infm→∞DΘ(ξ, ηm) > 0, it follows that

lim inf
m→∞

eSnmχ(x)+αkm > 0,

and therefore eSnmχ(x)+αkm � 1 for all m ∈ N.

2.2. The upper bound. We start by observing that

lim sup
n→∞

eSnχ > 0 ⇒ lim sup
n→∞

Snϕ
Snψ

≥ 1.

This implies that

dimH({lim sup
n→∞

eSnχ > 0}) ≤ dimH

({
lim sup
n→∞

Snϕ
Snψ

≥ 1
})

= β̂(1).

Here, the final equality holds since the Lyapunov dimension spectrum s 7→
β̂(s)/s is decreasing in a neighbourhood of 1. Since the sets D∞ and D∼ ∩
{lim supn→∞ eSnχ > 0} are contained in {lim supn→∞ eSnχ > 0}, the ob-
servation above gives the upper bound β̂(1) for the Hausdorff dimension of
each of these two sets.

Since limn→∞ exp(Snχ(x)) = 0 implies πS(x) ∈ D∗] , except for the count-
able set of end points of all refinements of the Markov partition, it is sufficient
to show that

dimH(D∼ ∩ D∗] ) ≤ β̂(1).

This part of the proof is inspired by the arguments given in [11]. First note
that it is sufficient to show that

dimH(D∼ ∩ D∗] ) ≤ β̃(s) for all s ≤ 1.

In a nutshell, the idea is to show that for each s ≤ 1 there is a suitable cover-
ing of D∼∩D∗] which will then be used to deduce that the β̃(s)-dimensional
Hausdorff measure of D∼ ∩ D∗] is finite.

If we are in neither of the two cases of (2.1), we have D∼ ∩ D∗] = ∅ by
Lemma 2.7. Hence for ease of exposition, throughout the remaining part of
this section we will again assume that we are in Case 1 of (2.1). Clearly,
the considerations for Case 2 are completely analogous, and will therefore
be omitted. Let us first introduce the stopping time τt with respect to χ on
π−1
S (D∗] ) by

τt(x) := inf{k ∈ N : Skχ(x) < −t} for all t > 0, x ∈ π−1
S (D∗] ).

For each n ∈ N fix a partition Cn of π−1
S (D∗] ) consisting of cylinder sets [ω]

with the following property:

|Sτn(x)χ(x) + n| � 1 for all x ∈ [ω].

Moreover, for ε > 0 we define

Cn(ε) := {[ωdnε ] : [ω] ∈ Cn},
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where nε is given by nε := bn(1− ε)/αc. For s ∈ (0, 1) we choose ε > 0 such
that

(1− ε)β̃(s) > (−χ((1))/ϕ((1)))β(s).

This is possible, since on the one hand we have β̃(s) − β(s) = s > 0
and hence β̃(s) > β(s) for all s ∈ (0, 1). On the other hand, the fact
that ψ < 0 immediately implies that −χ((1))/ϕ((1)) < 1. Recall that we
are assuming that Case 1 of (2.1) holds, and therefore −χ((1))/ϕ((1)) =
1− ψ((1))/ϕ((1)) > 0. It then follows that∑
n∈N

∑
C∈Cn(ε)

(diam(C))eβ(s) �
∑
n∈N

∑
C∈Cn(ε)

esupx∈C
eβ(s)Sτn(x)+nεϕ(x)

�
∑
n∈N

en(1−ε)eβ(s)ϕ((d))/α
∑
C∈Cn

e
eβ(s) supx∈C Sτn(x)ϕ(x)

�
∑
n∈N

en(1−ε)eβ(s)ϕ((d))/α+nβ(s)
∑
C∈Cn

esupx∈C Sτn(x)(eβ(s)ϕ(x)+β(s)χ(x))

�
∑
n∈N

(e(1−ε)eβ(s)ϕ((d))/α+β(s))n <∞.

Here we have used the Gibbs property∑
C∈Cn

esupx∈C Sτn(x)(eβ(s)ϕ(x)+β(s)χ(x)) =
∑
C∈Cn

esupx∈C Sτn(x)(sϕ(x)+β(s)ψ(x)) � 1

of the Gibbs measure µs and the fact that

(1− ε)β̃(s)ϕ((d))/α+ β(s) = (1− ε)β̃(s)ϕ((1))/χ((1)) + β(s) < 0.

Thus, for the limsup-set

C∞(ε) := {ξ ∈ U : ξ ∈ πS(Cn(ε)) for infinitely many n ∈ N}
we now have

dimH(C∞(ε)) ≤ min
s∈(0,1)

β̃(s) = β̂(1).

Hence, it remains to show that

D∼ ∩ D∗] ⊂ C∞(ε) for all ε > 0.

For this, let x ∈ Σ be such that ξ := πS(x) ∈ D∼ ∩D∗] . By Proposition 2.8,
there exist strictly increasing sequences (nm)m∈N and (km)m∈N of positive
integers such that x has a d-block of length km at the nmth level and

eSnmχ(x)+kmα � 1 for each m ∈ N.
By setting `(nm) := bSnmχ(x)c, it follows exp(km) � exp(−`(nm)/α).
Hence, for each ε > 0 and for each m sufficiently large, we have km ≥
−`(nm)(1− ε)/α. It follows that ξ ∈ C∞(ε), which finishes the proof of the
upper bound.
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2.3. The lower bound. In this section we show that the Hausdorff di-
mension of each of the sets D∼ and D∞ is bounded below by β̃(s0). Clearly,
combining this with the results of the previous section will then complete
the proof of Theorem 1.1. Let us begin by showing that

dimH(D∼) ≥ β̃(s0).

Recall that µs refers to the equilibrium measure for the potential sϕ+β(s)ψ,
and that s0 is chosen so that

β′(s0) = −
	
ϕdµs0	
ψ dµs0

= −1.

This implies that

0 =
�
ψ dµs0 −

�
ϕdµs0 =

�
χdµs0 .

By the variational principle, we have

h(µs0) + s0
�
ϕdµs0 + β(s0)

�
ψ dµs0 = 0,

and hence
h(µs0)
−
	
ϕdµs0

= β(s0) + s0 = β̃(s0).

Since we are in the expanding case, we can use Young’s formula (see [14, 23])
to deduce that dimH(πS(µs0)) = β̃(s0). The lower bound for the Hausdorff
dimension of D∼ now follows from combining Corollary 2.5 with the follow-
ing lemma.

Lemma 2.9. For µs0-almost every x ∈ Σ we have

lim inf
n→∞

eSnχ(x) = 0 and lim sup
n→∞

eSnχ(x) =∞.

Proof. Note that
	
χdµs0 = 0. Thus, by the law of the iterated logarithm

[6] there exists a constant C > 0 such that for µs0-almost all x ∈ Σ we have

lim inf
n→∞

Snχ(x)√
n log logn

= −C and lim sup
n→∞

Snχ(x)√
n log logn

= C.

From this the conclusion follows.

Lemma 2.9 implies that πS(x) ∈ D∼ for µs0-almost every x ∈ Σ, and
hence

dimH(D∼) ≥ dimH(πS(µs0)) = β̃(s0).

Therefore, it remains to show that

dimH(D∞) ≥ β̃(s0).

For this, we consider the set of the equilibrium measures {µs : s > s0}.
Lemma 2.10. For s > s0, we have�

χdµs > 0.
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Proof. Since β is strictly convex, s > s0 implies that β′(s) > −1. This
gives 	

ϕdµs	
ψ dµs

= −β′(s) < 1,

and hence
	
χdµs > 0.

Lemma 2.10 implies that for µs-almost every x ∈ Σ we have (recall that
we are assuming that s > s0)

lim
n→∞

eSnχ(x) =∞.

For the following lemma we introduce the following notations. For x =
(x1x2 . . .) ∈ Σ, k, n ∈ N and i ∈ {1, d}, let kn(x) := k if x has an i-
block of length k at the nth level, and set kn(x) := 0 if xn+1 /∈ {1, d}.
We then have the following routine Khinchin-type estimate, where κi,s :=
−(sϕ((i)) + β(s)ψ((i)))−1 > 0 and κs := min{κi,s : i = 1, d}.

Lemma 2.11. For µs-almost every x ∈ Σ, we have

lim sup
n→∞

kn(x)
log n

≤ κs.

Proof. Let C∗n := {[ω] : ω ∈ An} and recall∑
C∈C∗n

exp(sup
x∈C
Sn(sϕ+ β(s)ψ)(x)) � 1

for all n ∈ N. For ε > 0, let kε,i,n := b(1 + ε)κi,s log nc. Then∑
n∈N

∑
[x1...xn]∈C∗n

e
supx∈[x1...xnikε,i,n]

Sn+kε,i,n
(sϕ+β(s)ψ)(x)

�
∑
n∈N

n−(1+ε).

Hence, by the Borel–Cantelli Lemma, the set of elements in Σ which lie
in cylinder sets of the form [x1 . . . xnikε,i,n ] for infinitely many n ∈ N has
µs-measure equal to zero. By passing to the complement of this limsup-set,
the statement in the lemma follows.

We can now complete the proof of Theorem 1.1 as follows. By Lemma 2.3,
there exists a constant c > 0 such that for each x = (x1x2 . . .) ∈ Σ and for
each sequence (ηn)n in U tending to ξ := πS(x),

lim inf
n→∞

DΘ(ξ, ηn) ≥ c lim inf
n→∞

eSnχ(x)e−knδ.

Moreover, using Lemma 2.10 and the ergodicity of µs, it follows that for
µs-almost every x ∈ Σ we have

lim
n→∞

1
n
Snχ(x) =

�
χdµs =: cχ(x) > 0.

Combining this with Lemma 2.11, it follows that for µs-almost every x ∈ Σ,
with ξ = πS(x), we have

lim inf
n→∞

DΘ(ξ, ηn) ≥ c lim inf
n→∞

eSnχ(x)e−δkn(x) ≥ c lim inf
n→∞

encχ(x)n−δκs =∞.
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This implies

lim
n→∞

DΘ(ξ, ηn) =∞ µs-almost everywhere.

Since πS is bijective except on a countable number of points, we now con-
clude that for all s > s0 we have

dimH(D∞) ≥ dimH(πS(µs)) = −β̂(−β′(s))/β′(s).

To complete the proof, simply note that −β̂(−β′(s))/β′(s) ↗ β̃(s0) for
s↘ s0. This finishes the proof of Theorem 1.1.

3. Proof of Theorem 1.2. If (U , S) and (U , T ) are C1+ε conjugate,
then clearly D∼(S, T ) = ∅, and hence dimH(D∼(S, T )) = 0. This gives one
direction of the equivalence in Theorem 1.2.

For the other direction, assume that dimH(D∼(S, T )) = 0. Then Theo-
rem 1.1 implies that ϕ and ψ are cohomologically dependent. That is, there
exist b, c ∈ R \ {0} and a Hölder continuous function u : Σ → R such that

bϕ+ cψ = u− u ◦ σ.
Then for all s ∈ R,

P (sϕ− (b/c)β(s)ϕ) = P ((s− (b/c)β(s))ϕ) = 0,

and hence β(s) = (s − 1)c/b. Combining this with β(0) = 1 shows that
b/c = −1, and therefore

ψ − ϕ = χ = v − v ◦ σ
for some Hölder continuous function v : Σ → R. Note that in particular
ψ((i)) = ϕ((i)) for each i ∈ {1, d}. Combining this with Proposition 2.1, it
follows that uniformly for all ξ, η ∈ U we have

DΘ(ξ, η) � 1.

This shows that there exists a constant c0 > 1 such that for all ξ ∈ U ,

c−1
0 < lim inf

η→ξ
DΘ(ξ, η) ≤ lim sup

η→ξ
DΘ(ξ, η) < c0.

Since the derivative of Θ exists Lebesgue almost everywhere, it follows that
Θ′(ξ) is uniformly bounded away from zero and infinity for Lebesgue al-
most every ξ ∈ U . We can now complete the proof by an argument similar
to the one in [3] (see the introduction for a statement of the main result
of [3]). We have split the discussion into four steps. Here, for c ∈ R, we
let fc : R → R denote the multiplication map given by x 7→ cx, and we
set σ0 := S′(0) = T ′(0). Note that, since ψ((1)) = ϕ((1)), we clearly have
S′(0) = T ′(0).

Linearisation. For each n ∈ N, let S−n1 and T−n1 denote the inverse
branches of Sn and Tn, respectively, such that 0 is contained in S−n1 (U) and
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T−n1 (U). Using the bounded distortion property and the fact that (S−n1 )′

and (T−n1 )′ are uniformly Hölder continuous, we see, by Arzelà–Ascoli, that
there exist subsequences of (fσn0 ◦S

−n
1 )n∈N and (fσn0 ◦T

−n
1 )n∈N which converge

uniformly on U to C1+ε diffeomorphisms γS and γT respectively. Note that
clearly γS ◦ S = fσ0 ◦ γS and γT ◦ T = fσ0 ◦ γT .

Differentiation. The uniform Hölder continuity of (S−n1 )′ and (T−n1 )′ and
the fact that the conjugacy Θ is bi-Lipschitz imply that the right derivative
of Θ at zero exists and that it has a finite and positive value.

Localisation. We have

fσ0 ◦ γT ◦Θ ◦ γ−1
S = γT ◦ T ◦Θ ◦ γ−1

S = γT ◦Θ ◦ S ◦ γ−1
S

= γT ◦Θ ◦ γ−1
S ◦ γS ◦ S ◦ γ

−1
S

= γT ◦Θ ◦ γ−1
S ◦ fσ0 ◦ γS ◦ γ−1

S

= γT ◦Θ ◦ γ−1
S ◦ fσ0 ,

which shows that γT ◦Θ◦γ−1
S commutes with fσ0 . Using this and the differen-

tiability of Θ at 0, we deduce that γT ◦Θ◦γ−1
S = (fσ0)n◦γT ◦Θ◦γ−1

S ◦(f1/σ0
)n

on the domain of γS . Therefore, for ξ in this domain,

γT ◦Θ ◦ γ−1
S (ξ) =

γT ◦Θ ◦ γ−1
S (σ−n0 · ξ)

σ−n0 · ξ
· ξ → κ0 · ξ as n→∞,

where κ0 > 0 denotes the right derivative of γT ◦ Θ ◦ γ−1
S at zero. It now

follows that there exists δ > 0 such that Θ|[0,δ] is a C1+ε diffeomorphism.

Globalisation. Let n ∈ N be chosen such that S−n1 (U) ⊂ [0, δ]. Since
Θ = Tn ◦Θ ◦S−n1 , it follows that Θ : U → U is a C1+ε diffeomorphism. This
completes the proof of the main part of Theorem 1.2.

In order to prove the Hölder regularity of Θ, as claimed in part (2)
of Theorem 1.2, let ξ, η ∈ U and put ρ := sups∈R(−β′(s)) > 0. Clearly,
Snψ(x)/Snϕ(x) > 1/ρ for all x ∈ Σ and n ∈ N. Without loss of gener-
ality, we can assume that ξ = πS(x1x2 . . .)< η = πS(y1y2 . . .) and η ∈
πS([x1 . . . xn] \ [x1 . . . xn+1]). Moreover, let us only consider the case where
x has a strict d-block of length k at the nth level and y has a strict 1-block
of length l at the (n + 1)th level, for some k, l, n ∈ N. Then there exists a
uniform constant C > 0 such that

|Θ(ξ)−Θ(η)| ≤ C(eSn+kψ(x) + eSn+lψ(y))

= C
(
e
Sn+kψ(x)

Sn+kϕ(x)
Sn+kϕ(x)

+ e
Sn+lψ(y)

Sn+lϕ(y)
Sn+lϕ(y)

)
≤ C(eρ

−1Sn+kϕ(x) + eρ
−1Sn+lϕ(y))

≤ 2C(eSn+kϕ(x) + eSn+lϕ(y))1/ρ ≤ 2C|ξ − η|1/ρ.
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Note that if one of the blocks has infinite word length, then one has to use
approximations of this block by words of finite lengths.

It remains to show that if S and T are cohomologically independent,
then Θ has to be singular with respect to the Lebesgue measure λ. For this,
note that on the unit interval without the boundary points of all refinements
of the Markov partition we have Θ = πT ◦ π−1

S . Therefore, it is sufficient to
show that the measure λ ◦ Θ, whose distribution function is equal to Θ, is
singular with respect to λ. Since µψ ◦π−1

T , µϕ ◦π−1
S and λ are all in the same

measure class, it follows that λ ◦ Θ is absolutely continuous with respect
to µψ ◦ π−1

T ◦ πT ◦ π
−1
S = µψ ◦ π−1

S . On the other hand, since S and T are
cohomologically independent, µψ ◦ π−1

S is singular with respect to µϕ ◦ π−1
S .

This finishes the proof of Theorem 1.2.

4. Examples. In this section we consider two families of examples:
the Salem family and the sine family. For the Salem family we will see in
Section 5 that it gives rise to conjugacies whose sets of nondifferentiability
have Hausdorff dimensions arbitrarily close to zero.

Example 1 (the Salem family). Let us consider a class of examples
studied by Salem in [20]. Namely, we consider the family of conjugacy maps
{Θτ : τ ∈ (0, 1)\{1/2}} which arises from the following endomorphisms of
U . For ξ ∈ U , we define

T (ξ) := 2ξ mod 1 and Sτ (ξ) :=
{
ξ/τ if 0 ≤ ξ ≤ τ ,
(ξ − τ)/(1− τ) if τ < ξ ≤ 1.

The maps Θτ : [0, 1] → [0, 1] are then given by T ◦ Θτ = Θτ ◦ Sτ . One

(a) τ = 1/5 (b) τ = 2/5

Fig. 1. The conjugating map Θτ for the Salem case

immediately verifies that Θτ is strictly monotone and has the property that
Θ′τ (ξ) = 0 for Lebesgue almost every ξ ∈ U . Note that the conjugacies
considered in [20] are in fact dual to the ones which we consider here. How-
ever, this has no effect on the Hausdorff dimension of D∼(Sτ , T ) (see Re-
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mark 1.6(2)), and our conjugacies have the advantage that they allow us
to determine βτ and dimH(D∼(Sτ , T )) rather explicitly. For this, first note
that in the current situation the potential functions ϕτ and ψ are given for
x = (x1x2 . . .) ∈ Σ by

ψ(x) = − log 2 and ϕτ (x) =
{

log τ if x1 = 1,
log(1− τ) if x1 = 2.

The function βτ is defined implicitly by P (sϕτ + β(t)ψ) = 0. Since we have
exp(s log τ −βτ (s) log 2) + exp(s log(1− τ)−βτ (s) log 2) = 1, an elementary
calculation gives that βτ is given explicitly by

βτ (s) =
P (sϕτ )

log 2
= log2(τ s + (1− τ)s) for each s ∈ R.

(a) The β-graph (b) The Lyapunov spectrum s 7→ dimH(L(s))

Fig. 2. The β-graph and the graph of the Lyapunov dimension spectrum in the Salem
case for τ = 0.08; in both figures h = 0.8107... denotes the Hausdorff dimension of D∼.
The conjugacy Θτ is 1/r-Hölder regular.

In order to compute dimH(D∼(Sτ , T )), let ντ be the (pτ , 1−pτ )-Bernoulli
measure such

	
ψ dντ/

	
ϕτ dντ = 1. We then have

1 =
	
ψ dντ	
ϕτ dντ

= −pτ log2 τ − (1− pτ ) log2(1− τ),

and hence
pτ =

1 + log2(1− τ)
log2 τ − log2(1− τ)

.

One then immediately verifies that the supremum in Remark 1.6(2) is at-
tained for µ = ντ , and hence

dimH(D∼(Sτ , T )) = −pτ log2 pτ − (1− pτ ) log2(1− pτ ).

The graphs of βτ and of the corresponding dimension spectrum are given in
Fig. 2. Also, Fig. 3(b) shows dimH(D∼(Sτ , T )) in dependence on τ .
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Finally, let us mention that one can also explicitly calculate the number
s0(Sτ ) which is determined by β′τ (s0(Sτ )) = −1. A straightforward calcula-
tion gives

s0(Sτ ) = (log(τ−1 − 1))−1 log
(

log(2τ)
log(2/(1− τ))

)
.

Example 2 (the sine family). Let T be given as in the previous example,
and for each τ ∈ (0, 1) let the map Rτ : U → U be defined by

Rτ (ξ) := 2ξ +
τ

2π
sin(2πξ) mod 1 for each ξ ∈ U .

The associated conjugacies Ψτ are given by Ψτ ◦ Rτ = T ◦ Ψτ (see Fig. 4).
We can then use Theorem 1.1 to compute the Hausdorff dimension of the
set D∼(Rτ , T ) of points at which Ψτ is not differentiable in the generalised
sense. This is plotted as a graph in Fig 3. (Note that taking the conjugacy
in the other direction would yield exactly the same result.)

(a) The graph of τ 7→ dimD∼(Rτ , T )
for the sine family with parameter τ

(b) The graph of τ 7→ dimD∼(Sτ , T )
for the Salem family with parameter τ

Fig. 3. The two dimension spectra

(a) τ = 0.4 (b) τ = 0.8

Fig. 4. The graphs of the conjugating maps Ψτ for τ = 0.4 and τ = 0.8 in the sine-family
example
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5. Proofs of Propositions 1.4 and 1.5

Proof of Proposition 1.4. We start by observing that the Hausdorff di-
mension of the set D∼ depends regularly on the expanding maps. Let Tτ :
U → U be elements of the Banach manifold of the Ck family of expanding
maps, with a Ck dependence on τ ∈ (−ε, ε), say, and assume that T0 is the
usual d-to-1 linear expanding map. Let 0 = a

(τ)
0 < a

(τ)
1 < · · · < a

(τ)
d = 1

denote the Tτ -preimages of zero. For each α > 0, we then define the operator
Tτ : Cα(U ,R) → Cα(U ,R) on the space of α-Hölder continuous functions
(see e.g. [8]) by

(Tτh)(ξ) :=
1
d
h({Tτ (ξ)}) +

j

d
for each ξ ∈ [a(τ)

j , a
(τ)
j+1], j ∈ {0, . . . , d− 1}.

Also, with ‖h‖∞ denoting the usual supremum norm, we define a norm ‖ · ‖
on Cα(U ,R) by

‖h‖ := sup
ξ 6=η

|h(ξ)− h(η)|
|ξ − η|α

+ ‖h‖∞.

We observe that on each of the intervals [a(τ)
j , a

(τ)
j+1] we have

|Tτh1(ξ)− Tτh2(ξ)| ≤ 1
d
|h1(Tτ (ξ))− h2(Tτ (ξ))| ≤ 1

d
‖h1 − h2‖∞

and

|Tτ (h1 − h2)(ξ) − Tτ (h1 − h2)(η)| ≤ 1
d
‖h1 − h2‖Cα |Tτ (ξ)− Tτ (η)|α

≤ 1
d
‖h1 − h2‖Cα |Tτ (ξ)− Tτ (η)|α

≤
(

1
d
‖h1 − h2‖Cα‖Tτ‖αC1

)
|ξ − η|α.

In particular, for α > 0 sufficiently small, Tτ is a contraction with respect
to ‖ · ‖. Moreover, I − Tτ : Cα(U ,R) → Cα(U ,R) is invertible, and by the
Implicit Function Theorem there exists a Ck family {hτ ∈ Cα(U ,U) : τ ∈
(−ε, ε)} such that h0 is the identity map and Tτhτ = hτ .

Let us consider the map Hτ : (−ε, ε) → Ck−1(U) × Cα(U) given by
Hτ (τ) := (log |T ′τ |, hτ ). Clearly, it is Ck−1 as a map on Banach spaces. Also,
we define the composition operator O : Ck−1(U) × Cα(U) → Cα(U) by
O(f, g) := f ◦ g, which is Ck−2, by a result of [5]. We then consider the
image of Hτ under O, that is,

O ◦Hτ : τ 7→ (log |T ′τ |, hτ ) 7→ O(log |T ′τ |, hτ ) = log |T ′τ | ◦ hτ ∈ Cα,

which is again Ck−2 [5]. (Note that if instead we would consider Õ :
Ck−1(U) × C0(U) → C0(U), then Õ(Hτ ) would be Ck−1; but we need to
work with Hölder functions, which causes the loss of an extra derivative.)
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Now consider the potential function ϕτ : ξ 7→ − log |T ′τ (hτ (πTτ (ξ)))|
defined on U , and then let βτ (s) be defined implicitly by

P (−s log |T ′τ |+ βτ (s) log |T ′0|) = 0.

Since the pressure function is analytic, the Implicit Function Theorem im-
plies that the function τ 7→ βτ is analytic. Also, it follows that τ 7→
dimH(D∼(Tτ , T0)) is a Ck−2 function (for an example see Fig. 3). This com-
pletes the proof of Proposition 1.4.

Proof of Proposition 1.5. The aim is to show that there exists a conju-
gacy between two elements of the space C2(S1) of C2 expanding circle maps
such that the Hausdorff dimension of the set of points at which this con-
jugacy is nondifferentiable in the generalised sense is arbitrarily close to 0.
We start by considering the Salem case but where the maps are defined
on the circle S1. For ease of exposition, we use the same notation and let
T : S1 → S1 and Sτ : S1 → S1 refer to the circle maps which correspond to
the interval maps defined in Example 1. The corresponding conjugacy Θτ is
given as before by T ◦ Θτ = Θτ ◦ Sτ . From our analysis in Example 1 it is
clear that dimH(D∼(Sτ , T )) tends to zero for τ tending to zero (see Fig. 2).
However, whereas T is a C2 map of the circle, Sτ is clearly not (although it
is always piecewise expanding C2 when viewed as a map of U into itself). So,
in order to find a C2 example, we have to apply some perturbations to Sτ .
For this, let βτ and ψ,ϕτ : Σ → R be given as in Example 1. As before
we choose s0(Sτ ) satisfying β′τ (s0(Sτ )) = −1. For the remaining part of the
proof, let τ ∈ (0, 1) \ {1/2} be fixed.

C2 denseness. We use the metric dKL considered by Keller and Liverani
in [10]. This metric is given, for expanding piecewise C2 maps F and G of
the unit interval U into itself, by

dKL(F,G) := inf{γ > 0 | ∃X ⊆ U ∃ a diffeomorphism H : U → U such that
λ(X) > 1− γ, G|X = F ◦H|X and
∀ξ ∈ U : |H(ξ)− ξ| < γ, |1− (H−1)′(H(ξ))| < γ}.

One immediately verifies that there exists a sequence (S(n))n∈N of functions
in C2(S1) such that limn→∞ dKL(S(n), Sτ ) = 0, where the S(n) are viewed
as interval maps.

Norms and operators. Let B0(U) := {f : U → R | ‖f‖0 < ∞} be
the Banach space with the combined norm ‖ · ‖0 given by ‖f‖0 := ‖f‖1 +
‖f‖BV , where ‖ · ‖1 denotes the L1 norm and ‖ · ‖BV the bounded variation
seminorm, given by sup{

∑n
i=1 |f(ξi+1) − f(ξi)| | 0 ≤ x1 < · · · < xn ≤ 1,

n ∈ N}. Also, let the weak operator norm ‖ · ‖W be given by ‖L‖W :=
sup{‖L(g)‖1 | g ∈ B0(U), ‖g‖BV ≤ 1}. Finally, for an expanding map
S : U → U we define the transfer operator LS : B0(U) → B0(U), for
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g ∈ B0(U) and ξ ∈ U , by

LSg(ξ) =
∑

S(η)=ξ

|S′(η)|−1g(η).

Continuity. Firstly, note that it can be shown that limn→∞ ||LS(n) −
LSτ ||W = 0 (see comment (a) on page 143 of [10]). Furthermore, by [10,
Corollary 1], for each t ∈ R fixed, the leading eigenvalues of the operators
LS(n) converge to the leading eigenvalue of LSτ . That is,

lim
n→∞

P (t log |(S(n))′|) = P (t log |S′τ |).

Local uniform convergence. Recall that the map given by

t 7→ βS(n)(t) := P (−t log(S(n))′)/log 2

is differentiable and convex. Using the above ‘Continuity’, we then have
limn→∞ βS(n)(t) = βSτ (t) for each t ∈ R fixed. Since pointwise convergence
of sequences of differentiable convex functions implies local uniform conver-
gence (see [19, Theorem 10.8]), we now conclude that

lim
n→∞

βS(n)(s0(S(n))) + s0(S(n)) = βSτ (s0(Sτ )) + s0(Sτ ).

Since βS(s0(S)) + s0(S) = dimH(D∼(S, T )), this finishes the proof of the
proposition.
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