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Higher order Schwarzian derivatives in interval dynamics

by

O. Kozlovski (Coventry) and D. Sands (Orsay)

Abstract. We introduce an infinite sequence of higher order Schwarzian derivatives
closely related to the theory of monotone matrix functions. We generalize the classical
Koebe lemma to maps with positive Schwarzian derivatives up to some order, obtaining
control over derivatives of high order. For a large class of multimodal interval maps we
show that all inverse branches of first return maps to sufficiently small neighbourhoods
of critical values have their higher order Schwarzian derivatives positive up to any given
order.

1. Introduction. Many results on interval map dynamics were first
proved supposing that the map in question has negative Schwarzian deriva-
tive. This is a convexity condition and as such globally constrains the possi-
ble shape of the map. Since iterates also have negative Schwarzian derivative,
estimates on the distortion of high iterates are often greatly simplified by
this assumption. Having negative Schwarzian does not however give good
control over derivatives of high order.

The great historical failing of the negative Schwarzian theory was that
many interesting and otherwise well-behaved interval maps simply do not
have negative Schwarzian derivative everywhere. This flaw was rectified by
the discovery that a large class of interval maps are, under some mild
hypotheses, real-analytically conjugate to maps with negative Schwarzian
derivative everywhere [GS]. An early manifestation of this was the proof [K]
that first return maps to small neighbourhoods of critical values have neg-
ative Schwarzian derivative.

In this paper we introduce an infinite sequence of higher order Schwarzian
derivatives and prove that inverse branches of first return maps to sufficiently
small neighbourhoods of critical values have positive Schwarzian derivatives
up to some given finite order. (For the classical Schwarzian derivative one
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can equally well consider branches having negative Schwarzian derivative or
inverse branches having positive Schwarzian derivative: these are equivalent.
For higher order Schwarzian derivatives this symmetry disappears, and the
natural concept turns out to be positivity.) We also extend the celebrated
real Koebe lemma to maps with all Schwarzian derivatives positive up to
some order, obtaining control over the distortion of derivatives of high order.

Let d be a positive integer and f a map which is 2d+1 times differentiable
at x. Let R be the rational map of degree at most d that coincides with f to
order 2d at x, i.e. for which R(x) = f(x), DR(x) = Df(x), . . ., D2dR(x) =
D2df(x). Such a rational map may not exist, but if it does exist then it is
unique. It is called the dth (diagonal) Padé approximant [P] to f at x. The
Schwarzian derivative of f at x of order d is then defined to be

Sd(f)(x) ≡ D2d+1(R−1 ◦ f)(x).

Only a local inverse of R being needed, this makes sense as long as Df(x)
6= 0. It is well-known and easily checked [MS, Lemma 4.4], [T], that this
definition gives the classical Schwarzian derivative

S1(f)(x) =
D3f(x)
Df(x)

− 3
2

(
D2f(x)
Df(x)

)2

when d = 1. Define S0(f) ≡ 1 for convenience.
In order to simplify the exposition, existence of higher order Schwarz-

ian derivatives will be indicated implicitly with the convention that an
expression such as Sd(f)(x) < 0 is short-hand for: Sd(f)(x) exists and
Sd(f)(x) < 0.

It is essential to the theory of the classical Schwarzian derivative that
iterates of maps with negative Schwarzian derivative also have negative
Schwarzian derivative, as follows from the composition formula S1(f ◦ g) =
S1(f) ◦ g (Dg)2 + S1(g). There is also a composition formula for the higher
order Schwarzian derivative Sd (Lemma 9), but it contains an extra term
coming from the fact that the set of rational maps of degree d > 1 is not
closed under composition. This term disappears when composing with a
Möbius transformation M (i.e. a rational map of degree 1): post-composition
has no effect while pre-composition yields Sd(f ◦M) = Sd(f) ◦M (DM)2d.
In the special case of maps with all Schwarzian derivatives of order less
than d non-negative, the extra term is non-negative (Proposition 3). This
makes estimating the dth order Schwarzian derivative of a long composition
of such functions feasible. It also shows that this class of maps is closed
under composition. The ultimate origin of this is the fact (Corollary 6) that
S1(f)(x) > 0, . . . , Sd−1(f)(x) > 0 if and only if the dth Padé approximant
to f at x exists, has degree d, and maps the complex upper half-plane into
itself (if Df(x) > 0) or into the complex lower half-plane (if Df(x) < 0).
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The following result explains why inverse branches of many well-known
one-dimensional maps (logistic maps for example) have Schwarzian deriva-
tives of all orders positive: they map the complex upper half-plane into itself.
This is almost but not quite the same as being in the Epstein class. Given
an open interval U , let Pd(U) consist of those functions f : U → R with
2d + 1 derivatives, Df 6= 0 and S1(f) ≥ 0, . . . , Sd(f) ≥ 0 everywhere; set
P∞(U) =

⋂∞
d=1 Pd(U).

Proposition 1. Let φ : U → R be an increasing C∞ diffeomorphism
onto its image, where U is an open real interval. Then φ ∈ P∞(U) if and
only if φ extends to a holomorphic map φ : C \ (R \U)→ C which maps the
complex upper half-plane into itself (i.e. the extension is in the Pick class).

It has often been observed that smooth maps become “increasingly holo-
morphic” when iterated. In the light of the preceding proposition, one way
of formalizing this observation is to say that Schwarzian derivatives of ever
increasing order become positive for inverse branches under iteration. Our
main result shows that this is indeed the case near critical values:

Theorem 1. Let f : I → I be a C2d+1 map of a non-trivial compact
interval , where d is a positive integer , and let all critical points of f be
non-flat. Then for any critical point c of f which is not in the basin of a
periodic attractor there exists a neighbourhood X of c such that if f s(x) ∈ X
for some x ∈ I and s ≥ 0 with Dfs+1(x) 6= 0, then Sk(f−(s+1))(fs+1(x)) > 0
for all k = 1, . . . , d (the local inverse of f s+1 near x is taken).

Recall that a critical point c is said to be non-flat if f can be decomposed
near c as f = ψ ◦ P ◦ φ where φ (resp. ψ) is a C2d+1 diffeomorphism from
a neighbourhood of c (resp. 0) onto a neighbourhood of 0 (resp. f(c)) and
|P (x)| = |x|α for some α > 1 and all small x.

We have so far been unable to prove, when d > 1, the global result
corresponding to Theorem 1, namely that if all periodic points are hyper-
bolic repelling then f can be real-analytically conjugated to a map with all
Schwarzian derivatives of order d or less positive everywhere for all inverse
branches (the conjugacy would depend on d).

The celebrated Koebe lemma for univalent maps f : U → V , where
U and V are simply connected domains in C, states that f has bounded
distortion on any simply connected domain A which is compactly contained
in U : if x ∈ A and y ∈ A then |Df(x)|/|Df(y)| is bounded by a constant de-
pending only on the modulus of U \A. Higher derivatives are also controlled:
after appropriately normalizing the domain U , the ratio |Dkf(x)|/|Df(x)| is
again bounded by a constant depending only on k and the modulus of U \A.

A real counterpart to the complex Koebe lemma exists for maps with
negative classical Schwarzian derivative [MvS, p. 258] but lacks the control
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of higher order derivatives. Here we show that the real Koebe lemma can be
naturally generalized, and control of higher derivatives achieved, in a similar
way to the complex Koebe lemma:

Theorem 2. Let d be a positive integer , U an open interval and m and n
integers such that n is odd and 1 ≤ n ≤ m ≤ 2d. If f ∈ Pd(U) then

(1) |Dmf(x)| ≤ m!
n!

dist(x, ∂U)−(m−n)|Dnf(x)|

for every x in U , where dist(x, ∂U) is the distance from x to the boundary
of U . The constant in (1) is exact and is achieved on a Möbius transforma-
tion.

Note that the inequality in the theorem has the right scaling properties
with respect to affine coordinate changes. A similar result [ST, Theorem 1] is
known for iterates of general smooth maps, but with additional hypotheses
on the sums of lengths of intervals under iteration. Since the class Pd is
closed under composition, Theorem 2 applies to arbitrary compositions of
maps from Pd without the need for dynamical hypotheses of this kind. This
is analogous to the relationship between the classical real Koebe lemma for
maps with negative Schwarzian derivative [MvS, p. 258] and that for general
smooth maps [MvS, Theorem IV.3.1].

Many additional useful facts about maps in Pd can be deduced from the
theory of monotone matrix functions [D]. This is because maps in Pd with
positive derivative turn out (Lemma 10) to be exactly the monotone matrix
functions of order d+ 1. Consider for example Theorem VII.V from [D]. Di-
viding the rows and columns of the Pick matrix appropriately turns the ma-
trix elements into cross-ratios; cross-ratios being unaffected by sign changes,
the resulting matrix is positive for any function in Pd, not just those that
are increasing. The result is a generalization of the well-known cross-ratio
contraction property of maps with positive Schwarzian derivative:

Proposition 2. Let d be a positive integer , U an open interval and take
distinct points λ1, . . . , λd+1 in U . If f ∈ Pd(U) then all eigenvalues of the
matrix

(2)


√√√√ (f(λi)−f(λj)

λi−λj

)2
Df(λi)Df(λj)


(diagonal elements are equal to 1) are non-negative: the matrix is positive.

Some other properties likely to be useful for dynamics can be found
in Theorem VII.II, Chapter XIV and Theorem II.I of [D].
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Organization. Section 2 sketches the essentials of the theory of Padé
approximation as used in this paper and describes some elementary prop-
erties of higher order Schwarzian derivatives. Section 3 introduces the Pick
algorithm, a degree reduction technique useful for proving results by induc-
tion on the order of the Schwarzian derivative. This technique is used in
Section 4 to characterize the real rational maps that preserve the complex
upper half-plane in terms of their higher order Schwarzian derivatives at
a point. At this point the theory is sufficiently developed that obtaining
an effective composition formula is trivial—this is done in Section 5. An-
other application is the proof in Section 6 that the increasing functions in
Pd are exactly the monotone matrix functions of order d+ 1. Proposition 1
is thus a restatement of Loewner’s Theorem [D]. Section 7 uses the theory
of monotone matrix functions to deduce the generalized Koebe lemma from
the integral representation for Pick functions. Finally, in Section 8, we prove
the main theorem using the a priori bounds of [SV] and the results from [ST]
on Epstein class approximation.

2. Rational approximation. This section contains a quick introduc-
tion to the classical theory of rational approximation. Most of the results
are reformulations of well-known properties.

A rational map is a fractionR = p/q where p and q are polynomials and q
is not identically zero. We consider two rational maps R1 = p1/q1 and R2 =
p2/q2 to be equal if the polynomials p1q2 and p2q1 are equal. This means that
common polynomial factors in the numerator and the denominator can be
cancelled without changing the rational map. When viewing R as a function
we will suppose that p and q are relatively prime, i.e. that z 7→ p(z)/q(z)
has no removable singularities on the Riemann sphere. The degree of R,
denoted degR, is the maximum of the degrees of p and q when p and q are
relatively prime.

Two functions f and g are said to coincide to order N at some point x
if f(x) = g(x), Df(x) = Dg(x), . . . , DNf(x) = DNg(x).

Lemma 1 (Uniqueness). Let R1 (resp. R2) be a rational map of degree
at most d1 (resp. d2). If R1 and R2 are finite at some point x, and coincide
to order d1 + d2 there, then R1 = R2.

Proof. See [B, Theorem 1.1]. Without loss of generality x = 0. Let
Ri = pi/qi where pi, qi are polynomials of degree at most di, i = 1, 2.
The hypothesis that R1 and R2 coincide to order d1 + d2 is equivalent to
p1(z)/q1(z) − p2(z)/q2(z) = O(zd1+d2+1). Multiplying through by the de-
nominators gives p1(z)q2(z)− p2(z)q1(z) = O(zd1+d2+1). The left-hand side
is a polynomial of degree at most d1 +d2 so must in fact be identically zero:
p1q2 = p2q1.
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Let d be a non-negative integer and f a map which is 2d times differ-
entiable at x. Recall that the dth (diagonal) Padé approximant to f at x,
denoted [f ]dx, is the rational map of degree at most d that coincides with f
to order 2d at x, if such a rational map exists. By Lemma 1 there is at most
one such rational map.

The classical sufficient condition for the existence of the dth Padé ap-
proximant is the non-vanishing of a certain Hankel determinant. The empty
determinant is considered equal to 1.

Lemma 2 (Existence). Let d be a non-negative integer and x some point.
Given numbers f0, f1, . . . , f2d there exists a rational map R of degree ex-
actly d such that R(x) = f0, DR(x) = f1, . . . , D2dR(x) = f2d if and only
if

(3) det


f1
1!

f2
2! · · · fd

d!
f2
2!

f3
3! · · · fd+1

(d+1)!
...

...
...

fd
d!

fd+1

(d+1)! · · ·
f2d−1

(2d−1)!

 6= 0.

Proof. See [B, Theorem 2.3, points (1) and (5)] or [NS, Chapter 2, Propo-
sition 3.2]. Without loss of generality x = 0. Write Fk = fk/k! and let
f(z) = F0 + F1z + · · · + F2dz

2d + O(z2d+1). The existence of an appropri-
ate R, but of degree at most (rather than exactly) d, is equivalent to the
existence of a pair (p, q) of polynomials such that

degree p ≤ d, degree q ≤ d, q(0) = 1,

F (z)q(z)− p(z) = O(z2d+1).
(4)

Writing q(z) = 1 + Q1z + · · · + Qdz
d, p(z) = P0 + P1z + · · · + Pdz

d and
expressing equation (4) in terms of coefficients yields

0 = Fl +
d∑
i=1

QiFl−i, l = d+ 1, . . . , 2d,(5)

Pl = Fl +
l∑

i=1

QiFl−i, l = 0, . . . , d.(6)

The key is equation (5), since if it can be solved for Q1, . . . , Qd then the
values of P0, . . . , Pd are determined by (6). Thus equation (4) has a unique
solution if and only if the linear part of (5) is invertible. But this is the case
if and only if it has non-zero determinant, which is exactly (3).

The preliminaries now being in place, let us prove the result.
Suppose (3) holds; then (4) has a unique solution (p, q). Unique-

ness implies that at least one of p, q has degree d, since if not, the pair
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(p(z)(1+z), q(z)(1+z)) would be another solution to (4). Uniqueness also im-
plies that p and q are relatively prime since otherwise another solution could
be obtained by cancelling common factors (this reasoning uses q(0) 6= 0).

Conversely, suppose R exists with degree exactly d. Then there exists a
solution (p, q) of (4) where p and q are relatively prime polynomials, and one
of p, q has degree d. Suppose there exists another solution (p̃, q̃) of (4). Since
p̃q = pq̃ and p and q are relatively prime, there must exist some non-zero
polynomial r such that p̃ = rp, q̃ = rq. Now p̃ and q̃ have degree at most d
while one of p, q has degree d, so r must have degree zero, i.e. be a constant.
From q(0) = 1 = q̃(0) it follows that the constant r is in fact 1, i.e. p̃ = p
and q̃ = q. In other words, (4) has a unique solution, which means that (3)
holds.

Write

(7) Md(x, f) ≡


Df(x)

1! · · · Ddf(x)
d!

...
...

Ddf(x)
d! · · · D2d−1f(x)

(2d−1)!

 .
Corollary 1. Let d be a non-negative integer , U an open interval and

f : U → R a function with 2d+ 1 derivatives. Then detMd+1(x, f) = 0 for
all x ∈ U if and only if f is a rational map of degree at most d.

Proof. Suppose f is a rational map of degree at most d. If detMd+1(x, f)
6= 0 then by Lemma 2 there is a rational map R of degree d + 1 which
coincides with f to order 2d + 2 at x. Then Lemma 1 shows that f = R,
which is impossible because their degrees differ. Thus detMd+1(x, f) = 0
for all x ∈ U . For the converse, the difficulty is that the differential equation
to be solved is singular at points where detMd(x, f) = 0.

Claim. Suppose detMd(x, f) 6= 0, detMd+1(x, f) = 0 for all x in some
open interval V ⊆ U . Then f is a rational map of degree d on V .

Proof of Claim. Observe that detMd+1(x, f) = 0 is an ordinary differ-
ential equation for f with highest term D2d+1(f)(x). The coefficient of this
term is detMd(x, f), which is non-zero by hypothesis, so the differential
equation is non-singular: there is local existence and uniqueness. Let R be
the Padé approximant to f of order d at some point p of V (R exists and
has degree d by Lemma 2). Note that detMd+1(x,R) = 0 for all x ∈ V ,
i.e. R is a solution of the differential equation (this was proved above). By
definition R coincides with f to order 2d at p, so f and R have the same
initial values at p and thus coincide throughout V . This proves the Claim.

So suppose detMd+1(x, f) = 0 for all x ∈ U . First consider the case
when Md(x, f) 6= 0 for some point x ∈ U (this is always the case if d = 0).
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Then Md(·, f) 6= 0 at every point of U . Indeed, let V be the maximal open
interval around x on which Md(·, f) 6= 0. By the Claim, f coincides with a
rational map R of degree d on V . If V 6= U then there is some boundary
point p of V in U . By continuity, Dk(R)(p) = Dk(f)(p) for 0 ≤ k ≤ 2d,
so detMd(p, f) 6= 0 by Lemma 2. This implies that p ∈ V , a contradiction
since V is open. Thus V = U and f is a rational map of degree d.

Now suppose that detMd(x, f) = 0 for all x ∈ U . This reduces d by 1 in
the hypotheses. By induction f is a rational map of degree at most d− 1.

Definition 1. We say that f is normal of order d at x if the dth Padé
approximant to f at x exists and has degree exactly d.

Corollary 2. Let f have 2d derivatives at x. Then f is normal of
order d at x if and only if detMd(x, f) 6= 0.

If f is not normal of order d then the dth Padé approximant may nonethe-
less exist, but if so it is simply equal to the (d− 1)st Padé approximation:

Corollary 3. Let f have 2d+ 2 derivatives at x. Suppose the (d+ 1)st
Padé approximant [f ]d+1

x exists. If f is not normal of order d+ 1 at x then
the dth Padé approximant [f ]dx exists and [f ]d+1

x = [f ]dx. If f is normal of
order d + 1 at x then either f is normal of order d at x, or the dth Padé
approximant to f at x does not exist.

Proof. See also [B, Theorem 2.3]. If f is not normal of order d+ 1 then
[f ]d+1

x has degree at most d. Since it satisfies the conditions to be the dth
Padé approximant, by uniqueness it is [f ]dx. Now suppose f is normal of
order d+ 1 and the dth Padé approximant [f ]dx exists. If f is not normal of
order d then [f ]dx has degree at most d− 1. Since [f ]dx and [f ]d+1

x coincide to
order 2d at x, as both coincide with f to at least that order, they are equal
by Lemma 1. This contradicts [f ]d+1

x having degree d+ 1.

Another way of viewing this result is as follows: Suppose f is normal
of order d but not of order d + 1. Let N ∈ {d + 1, d + 2, . . .} be minimal
such that the Nth Padé approximant does not exist, or set N =∞ if Padé
approximants exist of all orders. Then the approximants of orders d < k < N
are all equal to [f ]dx.

Recall that the Schwarzian derivative of f at x of order d is defined to be
Sd(f)(x) = D2d+1(([f ]dx)−1 ◦ f)(x). An alternative definition is Sd(f)(x) =
D2d+1(f− [f ]dx)(x)/Df(x). The equivalence of the two expressions is readily
derived by induction from the fact that f and [f ]dx coincide to order 2d at x.

Lemma 3 (Schwarzian formula). Let d be a non-negative integer and x
some point. If f has 2d+ 1 derivatives at x, Df(x) 6= 0, and f is normal of
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order d at x, then

(8) Sd(f)(x) = (2d+ 1)!
detMd+1(x, f)

Df(x) detMd(x, f)
.

Proof. Let R = [f ]dx be the dth Padé approximant to f at x. Recall the
alternative definition Sd(f)(x) = (D2d+1f(x) − D2d+1R(x))/Df(x) of the
Schwarzian derivative of order d. Write

A =


F1 · · · Fd
...

...
Fd · · · F2d−1

 ,(9)

C = [Fd+1 · · · F2d](10)

and D = F2d+1, where Fk = Dkf(x)/k!. Let R = p/q where p(z) = P0 +
P1z+ · · ·+Pdz

d and q(z) = 1 +Q1z+ · · ·+Qdz
d are polynomials of degree

at most d. Equation (5) can be rewritten as [Qd, . . . , Q1]T = −A−1CT .
Since D2d+1R(x)/(2d+1)! = −C[Qd, . . . , Q1]T , it follows that (D2d+1f(x)−
D2d+1R(x))/(2d+ 1)! = D − CA−1CT . Applying the well-known formula

(11) det
[
A B

C D

]
= detAdet(D − CA−1B)

for the determinant of a conformally partitioned block matrix with B = CT

immediately yields

(12) D − CA−1CT =
detMd+1(x, f)
detMd(x, f)

.

Thus
(13)

Sd(f)(x) =
D2d+1f(x)−D2d+1R(x)

Df(x)
= (2d+ 1)!

detMd+1(x, f)
Df(x) detMd(x, f)

.

Lemma 4. Let d be a non-negative integer , U an open interval and f :
U → R a function with 2d+1 derivatives. Suppose Df(x) 6= 0 for all x ∈ U .
Then Sd(f) is identically zero on U if and only if f is a rational map of
degree at most d.

Proof. If f is a rational map of degree at most d, then f is the dth Padé
approximant to itself at any point, so Sd(f) = 0 by definition. So suppose
Sd(f) is identically zero on U . If f is not normal of order d at any point of
U (this does not happen if d = 0) then detMd(x, f) = 0 for all x ∈ U , so
f is a rational map of degree at most d− 1 by Corollary 1. So suppose f is
normal of order d at some point x of U . Then, as in the proof of Corollary 1,
f is normal of order d at every point of U . Indeed, let V be the maximal
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open interval around x on which f is normal of order d. Then formula (8)
is valid on V , so from Sd(f) ≡ 0 it follows that detMd+1(·, f) = 0 on V .
It was shown in the proof of Corollary 1 that f then coincides on V with a
rational map R of degree exactly d. If V 6= U then there is some boundary
point p of V in U . By continuity, f and R coincide to order 2d at p, so R
is the dth Padé approximant to f at p. Thus f is normal of order d at p by
definition, i.e. p ∈ V . This contradicts V being open. Hence V = U and f
is a rational map of degree d.

3. The Pick algorithm. Let D = {z ∈ C : |z| < 1} be the open
unit disk in the complex plane. The Schur class consists of all holomorphic
functions D→ D. Given a holomorphic map F : D→ D, the Schur algorithm
generates a new holomorphic map F̃ : D → D as follows. Let MF be the
Möbius transformation z 7→ (z − F (0))/(1 − F (0)z). This preserves D and
maps F (0) to 0. The function z 7→MF (F (z))/z has a removable singularity
at z = 0, so extends to a holomorphic function F̃ : D → C. The Schwarz
lemma shows that in fact F̃ : D→ D. If F̃ is not constant then F̃ : D→ D.
Applying the algorithm iteratively results in a finite or infinite sequence of
Schur maps that terminates with a constant function if finite.

The Schur algorithm uses 0 as a distinguished point of D and a particular
choice of Möbius transformation taking F (0) to 0. Other choices produce
different sequences of maps. Moving the distinguished point towards the
boundary of D, normalizing with Möbius transformations, and passing to the
limit results in a version of the Schur algorithm for which the distinguished
point lies on the unit circle. This is the Pick algorithm studied in this section.

Rather than work with D, D and the unit circle, it is more convenient
to use the conformally equivalent complex upper half-plane H = {z ∈ C :
=(z) > 0}, its closure in the Riemann sphere H = {z ∈ C : =(z) ≥ 0}∪{∞},
and the extended real line R∪{∞}. Section 4 makes use of the Pick algorithm
in the complex plane. Here we consider real-valued functions defined on a
real neighbourhood of a point x ∈ R since this suffices for our applications.

Definition 2. Let f be twice differentiable at x with Df(x) 6= 0. The
Pick algorithm based at x transforms f into

(14) Px(f) : z 7→


1−Df(x) z−x

f(z)−f(x)

z − x
, z 6= x,

D2f(x)
2Df(x)

, z = x.

Note that Px(f) is continuous at x (in general, two derivatives are lost
at x). If f(x) and Df(x) are known, then f can be recovered from f̃ = Px(f):
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Definition 3. Let f̃ be continuous at x, and take some A ∈ R and
µ ∈ R \ {0}. The inverse Pick algorithm based at x transforms f̃ into

(15) f : z 7→ A+
µ(z − x)

1− (z − x)f̃(z)
.

This is indeed an inverse: Px(f) = f̃ . Note that f is twice differentiable
at x, f(x) = A and Df(x) = µ 6= 0 (in general, two derivatives are gained
at x).

Clearly, f is a rational map if and only if Px(f) is. If they are rational, it
is straightforward to show that deg f = 1+degPx(f). This uses the standing
assumptions that f is real (which implies that f(x) is finite) and Df(x) 6= 0.

It can be helpful to think of the Pick algorithm in terms of continued
fractions. Applying the inverse Pick algorithm d times to f̃ results in the
Jacobi-type continued fraction

(16) f : z 7→ A0 +
µ0(z − x)

1− (z − x)A1 −
µ1(z − x)2

1− (z − x)A2 −
µ2(z − x)2

. . .
−

µd−1(z − x)2

1− (z − x)f̃(z)
A0, . . . , Ad−1 ∈ R, µ0, . . . , µd−1 ∈ R \ {0}.

Since we only use continued fractions to illustrate results rather than prove
them, we have felt free to state their properties without justification. Observe
that f is 2d times differentiable at x and Pdx(f) = f̃ . More: f is normal of
orders 1, . . . , d at x. Conversely, if f is 2d times differentiable at x and f is
normal of orders 1, . . . , d at x then f can be written in the form (16) with f̃
continuous at x. The kth convergent of equation (16) (obtained by setting
µk = 0) is exactly the kth Padé approximant to f at x (0 ≤ k < d). These
properties are the essence of:

Lemma 5. Let d be a positive integer and f a map which is 2d times
differentiable at x with Df(x) 6= 0. The dth Padé approximant [f ]dx to f at
x exists if and only if the (d − 1)st Padé approximant [Px(f)]d−1

x to Px(f)
exists, and then Px([f ]dx) = [Px(f)]d−1

x .

Proof. Write f̃ for Px(f). The case d = 1 is immediate: the 0th Padé ap-
proximant always exists and the first Padé approximant to f exists because
Df(x) 6= 0. The formula connecting the two is trivial. So suppose d > 1 and
that [f̃ ]d−1

x exists—denote it by T . Define R via the inverse Pick algorithm:
R(z) = f(x)+Df(x)(z−x)/(1−(z−x)T (z)). Note that degR = 1+deg T .
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Then

(17) f(z)−R(z) =
1

Df(x)
f(z)− f(x)

z − x
R(z)−R(x)

z − x
(z−x)2(f̃(z)−T (z)).

By definition f̃ and T coincide to order 2(d − 1), i.e. f̃(z) − T (z) =
o((z − x)2(d−1)). Then f(z) − R(z) = o((z − x)2d) by (17), which means
that f and R coincide to order 2d. Thus R is the dth Padé approximant to
f at x, as desired. The case when it is the dth Padé approximant to f at x
that is initially known to exist is left to the interested reader.

Corollary 4. Let d be a positive integer and f a map which is 2d+ 1
times differentiable at x with Df(x) 6= 0. Then

(18) Sd(f)(x) = 2d(2d+ 1)DPx(f)(x)Sd−1(Px(f))(x).

Included in this is that Sd(f) exists if and only if Sd−1(Px(f)) exists.

Proof. The statement about existence is immediate from Lemma 3. For
the formula, revisit the proof of the lemma. Writing f̃(z) − T (z) =
α(z−x)2d−1+o((z−x)2d−1), we observe that α = Df̃(x)Sd−1(f̃)(x)/(2d−1)!.
This observation is precisely the alternative definition of the higher Schwarz-
ian derivative from Section 2. Likewise, f(z)−R(z) = Df(x)α(z−x)2d+1 +
o((z−x)2d+1)—which follows from (17)—means Sd(f)(x) = α(2d+1)!. This
is the same as (18).

In terms of the continued fraction representation (16), this says that

µk =
Sk(f)(x)

2k(2k + 1)Sk−1(f)(x)
for 1 ≤ k < d.

Since A1 = 1
2D

2f(x)/Df(x), the Ak can presumably be expressed in terms
of higher order non-linearities.

4. Rational Pick maps. In this section we use the Pick algorithm
to characterize the real rational maps in the Pick class as those with their
Schwarzian derivatives of all orders non-negative. Remarkably, if they are
non-negative at a single point then they are non-negative everywhere.

A rational map R is real if it can be written as a ratio of polynomials
with only real coefficients. This is equivalent to R being real- or infinite-
valued everywhere on the real line. By uniqueness, Padé approximants to
real-valued maps (the only kind of Padé approximant considered in this
paper) are real.

Definition 4. The Pick class consists of all holomorphic functions
H→ H.

Non-constant members of the Pick class map the complex upper half-
plane H into itself, as follows from the open mapping theorem. The one-
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to-one correspondence between the Schur and Pick classes can be used to
transform properties of the Schur class, such as the characterization of Schur
rational maps as finite Blaschke products multiplied by numbers in D, into
statements about the Pick class. But for our purposes it is simpler to work
directly with the Pick class.

Lemma 6. If a rational map R is in the Pick class and R is real-valued
(hence finite) at some point x ∈ R then either R is a constant or DR(x) > 0.

Proof. If DR(x) < 0 then all points x + εi ∈ H with ε > 0 sufficiently
small would be mapped into the lower half-plane. If DR(x) = 0 and R is
not a constant, then R(z) = R(x) + α(z − x)k + O((z − x)k+1) with k > 1
and α 6= 0, so again some points in H would be mapped into the lower
half-plane.

As the following lemma shows, every real rational Pick map of positive
degree can be generated via the inverse Pick algorithm from a real rational
Pick map of degree one smaller (µ should be taken positive in the inverse
algorithm in order to generate a map with positive derivative at x).

Lemma 7 (Degree reduction). Let R be a real rational map and x ∈ R
some point for which R(x) is finite and DR(x) > 0. Then R is in the Pick
class if and only if Px(R) is in the Pick class.

Proof. Let T = Px(R) and recall the relationship

(19) R(z) = R(x) +
DR(x)(z − x)

1− (z − x)T (z)
.

First suppose that T is in the Pick class and take an arbitrary point
z0 ∈ H. In order to see that R(z0) ∈ H, let B = T (z0) ∈ H and consider the
Möbius transformation

(20) MB : z 7→ R(x) +
DR(x)(z − x)
1− (z − x)B

.

Since z 7→ −1/z maps H to H, so does z 7→ B − 1/z because =(B) ≥ 0.
Composing with z 7→ −DR(x)/z shows that z 7→ z DR(x)/(1 − Bz) also
maps H into itself since DR(x) > 0. Thus MB maps H into itself because x
and R(x) are real. In particular, R(z0) = MB(z0) ∈ H. This shows that R
is in the Pick class.

Now suppose that R is in the Pick class. The Poincaré distance d(z, w)
between points z, w of H is given by

(21) d(z, w) = log
|z − w|+ |z − w|
|z − w| − |z − w|

.

Since R maps H holomorphically into itself, it does not expand the Poincaré
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distance: d(R(z),R(w)) ≤ d(z, w), which is equivalent to

(22)
|R(z)−R(w)|+ |R(z)−R(w)|

|z − w|+ |z − w|
≤ |R(z)−R(w)| − |R(z)−R(w)|

|z − w| − |z − w|
.

Writing w = x+ εi and passing to the limit ε ↓ 0 in (22) yields

(23)
|R(z)−R(x)|
|z − x|

≤ DR(x)
=(R(z))
=(z)

|z − x|
|R(z)−R(x)|

,

where we have used the equality |u+v|− |u−v| = 4<(uv)/(|u+v|+ |u−v|)
to evaluate the right-hand side of (22) (with u = z − x, v = εi in the
denominator, and u = R(z) − <(R(w)), v = =(R(w))i in the numerator).
By the identity =(α)/|α|2 = −=(1/α) used twice, once with α = z − x and
once with α = R(z)−R(z), this rearranges to

(24) 0 ≤ =
(

1
z − x

− DR(x)
R(z)−R(x)

)
,

which is exactly =(T (z)) ≥ 0 since

(25) T (z) =
1− DR(x)(z−x)

R(z)−R(x)

z − x
.

It is now easy to understand why a real rational map in the Pick class
has non-negative Schwarzian derivatives of all orders: applying the Pick al-
gorithm repeatedly gives a sequence of real rational Pick maps of decreasing
degree, finishing with a constant. Except for the constant, these all have
positive derivative (Lemma 6). But the higher order Schwarzians of the
original map are just products of these derivatives, up to a positive constant
(Corollary 4).

Lemma 8 (Characterization). Let R be a real rational map of degree
d ≥ 1, and x ∈ R some point at which R is finite. If R is in the Pick class
then DR(x) > 0 and Sk(R)(x) > 0 for 1 ≤ k < d. The existence of the
Schwarzian derivatives is part of the conclusion. Conversely , if DR(x) > 0
and Sk(R)(x) ≥ 0 for 1 ≤ k < d then R is in the Pick class. The existence
of the Schwarzian derivatives is part of the hypotheses.

Proof. We proceed by induction on the degree. The case d = 1 is easily
checked, so take d > 1. If R is in the Pick class then DR(x) > 0 (Lemma 6)
and T ≡ Px(R) is in the Pick class (Lemma 7). Because deg T = d− 1 ≥ 1,
it follows by induction that DT (x) > 0 and Sk(T )(x) > 0 for 1 ≤ k < d−1.
Corollary 4 immediately gives Sk(R)(x) > 0 for 1 ≤ k < d.

Conversely, if DR(x) > 0 and Sk(R)(x) ≥ 0 for 1 ≤ k < d then, by
Corollary 4, Sk(T )(x) ≥ 0 for 1 ≤ k < d − 1. Note that S1(R)(x) 6= 0
(otherwise R would not be normal of order 2; by hypothesis the Padé ap-
proximants to R at x of order 1, . . . , d exist, so Corollary 3 would then
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imply that R equals [R]1x, which has degree 1, a contradiction with d > 1),
so DT (x) > 0 by Corollary 4. Thus by induction T is in the Pick class, and
therefore also R by Lemma 7.

Corollary 5. Let R be a real rational Pick map of degree d which is
finite at x. Then R is normal of orders 0, . . . , d at x.

Proof. If R is constant then there is nothing to prove. Otherwise DR(x)
6= 0 by Lemma 6, which means that R is normal of order 1 at x. Since
S1(R)(x) 6= 0 by Lemma 8, it follows from Lemma 3 that detM2(x,R) 6= 0,
which shows thatR is normal of order 2 at x (Corollary 2). Repeat for higher
orders using the non-zero Schwarzian derivatives ensured by Lemma 8.

Thus every real rational Pick map of degree d which is finite at a point
x ∈ R can be written in the form

(26) R(z) = A0 +
µ0(z − x)

1− (z − x)A1 −
µ1(z − x)2

1− (z − x)A2 −
µ2(z − x)2

. . .

1− (z − x)Ad
where A0, . . . , Ad ∈ R and µ0, . . . , µd−1 are strictly positive. Conversely,
every function of this form defines a real rational Pick map of degree d
which is finite at x.

Corollary 6. Let d be a positive integer and x some point. Suppose f
has 2d derivatives at x and Df(x) > 0. Then S1(f)(x) > 0, . . . , Sd−1(f)(x)
> 0 if and only if the dth Padé approximant to f at x exists, has degree d,
and is in the Pick class.

Proof. If S1(f)(x) > 0, . . . , Sd−1(f)(x) > 0 then, like in the proof of
Corollary 5, f is normal of orders 0, . . . , d by induction on the order. In
particular, [f ]dx exists and has degree d. Now suppose that R ≡ [f ]dx exists
and has degree d. Since f and R coincide to order 2d, it is immediate that
Sk(R)(x) = Sk(f)(x) for 1 ≤ k < d. Thus S1(f)(x) > 0, . . . , Sd−1(f)(x) > 0
if and only if S1(R)(x) > 0, . . . , Sd−1(R)(x) > 0, and this, according to
Lemma 8, if and only if R is in the Pick class.

5. Composition formula. The composition formula for the classical
Schwarzian derivative, S1(g◦f) = S1(g)◦f (Df)2+S1(f), implies that the set
of maps for which S1 is identically zero is closed under composition. This set
is precisely the group of Möbius transformations—the composition formula
implicitly contains the group structure of these maps. On the other hand,
the set of rational maps of degree at most d is not closed under composition,
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yet these are the maps for which Sd is identically zero (Lemma 4). Inevitably
the composition formula for Sd contains additional terms reflecting the lack
of group structure:

Lemma 9. Let d be a positive integer , f (resp. g) a function which is
2d+ 1 times differentiable at x (resp. f(x)). Suppose Df(x) 6= 0, Dg(f(x))
6= 0 and Sd(f)(x), Sd(g)(f(x)) and Sd(g ◦ f)(x) exist. Then

(27) Sd(g◦f)(x) = Sd(g)(f(x))(Df(x))2d+Sd(f)(x)+Sd([g]df(x)◦[f ]dx)(x).

Note that if either [g]df(x) or [f ]dx is a Möbius transformation, then
Sd([g]df(x) ◦ [f ]dx)(x) = 0 because [g]df(x) ◦ [f ]dx has degree at most d.

Proof of Lemma 9. The result is almost immediate from the definitions.
Indeed, set F ≡ [f ]dx and G ≡ [g]df(x); define ∆f = F−1 ◦ f , ∆g = G−1 ◦ g
and ∆◦ = ([G ◦ F ]dx)−1 ◦ G ◦ F . By definition

∆f (z) = z +
Sd(f)(x)
(2d+ 1)!

(z − x)2d+1 + o((z − x)2d+1),

∆g(z) = z +
Sd(g)(f(x))

(2d+ 1)!
(z − f(x))2d+1 + o((z − f(x))2d+1),

∆◦(z) = z +
Sd(G ◦ F)(x)

(2d+ 1)!
(z − x)2d+1 + o((z − x)2d+1).

(28)

Let ∆̂g = F−1 ◦ ∆g ◦ F . Manipulating the ∆g series and using DF(x) =
Df(x), we get

(29) ∆̂g(z) = z +
Sd(g)(f(x))

(2d+ 1)!
Df(x)2d(z − x)2d+1 + o((z − x)2d+1).

Observe that g◦f = G◦∆g◦F◦∆f = G◦F◦∆̂g◦∆f = [G ◦ F ]dx◦∆◦◦∆̂g◦∆f .
Composing the series for last three terms gives

∆◦ ◦ ∆̂g ◦∆f (z)

= z +
(
Sd(G ◦ F)(x) + Sd(g)(f(x))Df(x)2d + Sd(f)(x)

) (z − x)2d+1

(2d+ 1)!

+ o((z − x)2d+1).

Thus [g ◦ f ]dx = [G ◦ F ]dx and equation (27) follows.

Nonetheless, for any d there is a general composition inequality for maps
with non-negative Schwarzian derivatives of lower order. The reason for
this is that Padé approximants to such maps correspond to (non-constant)
members of the Pick class, and the set of such Pick maps is closed under
composition.
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Proposition 3. Let d be a positive integer and f (resp. g) a function
which is 2d + 1 times differentiable at x (resp. f(x)). Suppose Df(x) 6= 0,
Dg(f(x)) 6=0, Sd(f)(x) and Sd(g)(f(x)) exist , and Sk(f)(x)≥0, Sk(g)(f(x))
≥ 0 for every 1 ≤ k < d. Then Sd(g ◦ f)(x) exists and

(30) Sd(g ◦ f)(x) ≥ Sd(g)(f(x))(Df(x))2d + Sd(f)(x).

Proof. Without loss of generality, Df(x) > 0 and Dg(f(x)) > 0 (other-
wise pre- and/or post-compose with z 7→ −z to arrange this—Schwarzian
derivatives do not change). The dth Padé approximant F ≡ [f ]dx to f at x
is in the Pick class by Lemma 8 because Sk(F)(x) = Sk(f)(x) ≥ 0 for
1 ≤ k < d. Likewise, G ≡ [g]df(x) is in the Pick class. In order words, F
and G map the complex upper half-plane H into itself. Obviously, their
composition does too, i.e. G ◦ F is in the Pick class. Thus [G ◦ F ]dx ex-
ists by Lemma 5—this is equivalent to the existence of Sd(g ◦ f). Finally,
Sd(G ◦ F)(x) ≥ 0 by Lemma 8.

6. Monotone matrix functions. In this section we introduce the class
of monotone matrix functions and relate them to maps with non-negative
higher order Schwarzian derivatives. A complete description of this class can
be found in [D].

Recall how to take the image of a real symmetric matrix A by a function
f : if A is diagonal, A= diag(λ1, . . . , λn), then f(A) = diag(f(λ1), . . . , f(λn));
otherwise diagonalize A via some linear coordinate change, take the image of
the diagonal matrix, and undiagonalize by applying the inverse coordinate
change. This is well-defined if the spectrum of A belongs to the domain of f .

Recall the ordering on the real symmetric n-by-n matrices: A ≤ B if and
only if B−A is a positive matrix, meaning vT (B−A)v ≥ 0 for every n-by-1
vector v.

Definition 5. Let n be a positive integer, U an open interval of the
real line, and f : U → R a function. Call f matrix monotone of order n if,
for any real symmetric n-by-n matrices A and B with spectrum contained
in U , A ≤ B implies f(A) ≤ f(B).

Lemma 10. Let d be a positive integer , U an open interval and f : U→R
a function with 2d+ 1 derivatives. Suppose Df(x) > 0 for all x ∈ U . Then
Sk(f) ≥ 0 on U for all 1 ≤ k ≤ d if and only if f is matrix monotone of
order d+ 1.

Proof. Suppose first that Sk(f) ≥ 0 for all 1 ≤ k ≤ d. Take some
x ∈ U and let R be the dth Padé approximant to f at x. This rational
map is in the Pick class because Sk(R)(x) = Sk(f)(x) ≥ 0 for 1 ≤ k < d
(Lemma 8), so Md+1(x,R) is a positive matrix by [D, Theorem III.IV].
Since f and R coincide to order 2d at x and D2d+1(f)(x) = D2d+1(R)(x) +
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Df(x)Sd(f)(x) (this is the alternative definition of the Schwarzian derivative
from Section 2),

(31)

Md+1(x, f) = Md+1(x,R) +Df(x)Sd(f)(x)


0 · · · 0
...

...
0 · · · 1

 ≥Md+1(x,R).

Thus Md+1(x, f) is also a positive matrix. Since Md+1(x, f) is positive for
every x ∈ U , Theorem VIII.V of [D] shows (1) that f is matrix monotone
of order d+ 1.

Now suppose that f is matrix monotone of order d + 1 on V . Choose
some point x ∈ U . Applying [D, Theorem XIV.I] with n = d + 1 and S
consisting of 2d + 1 copies of x gives a Pick function φ on U which coin-
cides with f to order 2d at x. According to Theorem III.IV of [D], either
Md(x, φ) is strictly positive, or φ is a rational map of degree at most d− 1.
In this last case, [D, Theorem XIV.II] states that f and the rational Pick
map φ coincide on U ; the result is then immediate from Lemma 8. So sup-
pose Md(x, φ) = Md(x, f) is strictly positive. Then the principal minors of
Md(x, f) are strictly positive: detMj(x, f) > 0 for 1 ≤ j ≤ d. Thus f is
normal of orders 1, . . . , d at x and formula (8) can be freely applied. This
gives Sk(f)(x) > 0 for 1 ≤ k < d. Furthermore, Md+1(x, f) is a positive
matrix by [D, Theorem VII.VI], so Sd(f)(x) ≥ 0.

It is a remarkable fact (Loewner’s Theorem [D]) that a function is ma-
trix monotone of all orders if and only if it extends holomorphically to the
complex upper half-plane H and maps H into itself. Thus:

Proof of Proposition 1. Combine Lemma 10 and Loewner’s theorem.

7. Proof of the generalized Koebe lemma. In this section we prove
Theorem 2. Without loss of generality Df > 0 on U , so f is matrix monotone
of order d + 1 (Lemma 10). Applying [D, Theorem XIV.I] with n = d + 1
and S consisting of 2d + 1 copies of x gives a Pick function φ on U which
coincides with f to order 2d at x. It clearly suffices to prove the result for φ.
Now φ, being in the Pick class, has the integral representation

(32) φ(x) = αx+ β +
� [ 1
ξ − x

− ξ

ξ2 + 1

]
dµ(ξ),

(1) The convexity hypothesis in the theorem is used to get the existence of sufficiently
many derivatives almost everywhere; if the function is assumed sufficiently differentiable,
as here, then this hypothesis is automatically satisfied—it follows from the positivity of
the matrix.
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where α ≥ 0, β is real and µ is a positive Borel measure, supported in R\U ,
for which

	
(ξ2 +1)−1 dµ(ξ) is finite. See [D, Theorem II.I, Lemma II.2]. The

derivatives of φ are given by the following formulae:

Dφ(x) = α+
� 1

(ξ − x)2
dµ(ξ)

Dmφ(x) = m!
� 1

(ξ − x)m+1
dµ(ξ) if m > 1.

(33)

We can now estimate |Dmφ(x)| easily:

|Dmφ(x)| = m!
∣∣∣∣ � 1

(ξ − x)m+1
dµ(ξ)

∣∣∣∣(34)

≤ m!
� 1
|ξ − x|n+1

1
|ξ − x|m−n

dµ(ξ)

≤ m!
n!

1
dist(x, ∂U)m−n

|Dnφ(x)|.

The last assertion holds because n is odd, so |ξ − x|n+1 = (ξ − x)n+1, and
because µ puts no mass on the interval U . Also notice that in the case n = 1
we have used the positivity of α.

8. Proof of the main theorem. In this section we prove Theorem 1.
Let us recall a few definitions. An interval is called nice if the iterates of
its boundary points never return inside the interval. A sequence of intervals
{Wj}sj=0 is called a chain if Wj is a connected component of f−1(Wj+1). The
order of a chain is the number of intervals in the chain containing a critical
point. A δ-scaled neighbourhood of an interval J is any V containing the set
{x : ∃y ∈ J, |x−y| < δ|J |}. In this case we also say that J is δ-well-inside V .
In what follows we will assume that I is the interval [0, 1].

We need real bounds, and will use Theorem D′ of [SV, Section 8]. The
authors formulate this result slightly differently, however their proof gives
precisely this:

Fact 1. Let f : I → I be a C3 map with non-flat critical points. Then
there exists τ > 0 and arbitrarily small neighbourhoods W and V ⊃ W of
the set of those critical points which are not in the basin of any periodic
attractor , such that
• all connected components of W and V are nice intervals;
• if W ⊂ V are two connected components of W and V, then V is a
τ -scaled neighbourhood of W ;

• if x ∈ I is a point and s ≥ 0 is minimal such that fs(x) ∈ W, then
the chain obtained by pulling back the connected component of V con-
taining f s(x) along the orbit x, f(x), . . . , f s(x) has order bounded by
the number of critical points of f .
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We also make use of Theorem 2 from [ST], which we state as:

Fact 2. Let f : I → I be a Cn map with non-flat critical points, n ≥ 2.
Let T be an interval such that fs : T → f s(T ) is a diffeomorphism. For
each S, τ, ε > 0 there exists δ = δ(S, τ, ε, f) > 0 satisfying the following. If∑s−1

j=0 |f j(T )| ≤ S and J is a subinterval of T such that

• fs(T ) is a τ -scaled neighbourhood of fs(J),
• |f j(J)| < δ for 0 ≤ j < s,

then, letting φ0 : J → I and φs : fs(J)→ I be affine diffeomorphisms, there
exists a real-analytic diffeomorphism G : I → I such that ‖φsf sφ−1

0 −G‖Cn

< ε, and G−1 belongs to the P∞((−τ/2, 1 + τ/2)) class.

In addition, we will use the following lemmas:

Lemma 11. Let F,G : I → I be two Cn diffeomorphisms, n ≥ 1, with
‖F − G‖Cn < ε. Take some K, ε > 0 and suppose |DG(x)| > K−1 and
|DkG(x)| < K for all x ∈ I and k = 1, . . . , n. Then there exists δ =
δ(n,K, ε) such that ‖F ◦G−1 − Id‖Cn < δ. Moreover , limε→0 δ(n,K, ε) = 0.

Proof. Denote H = F ◦ G−1. Then |H(x) − x| = |F − G|(G−1(x))< ε.
The first derivative of H is DH(x) = (DF/DG)(G−1(x)) so obviously
|DH(x) − 1| < εK. This proves the lemma for n = 1 with δ(1,K, ε) = εK.
For n ≥ 2 we reason inductively. Observe that

(DnH) ◦G

=
DnF −DnG+DnG(1−H ′ ◦G)−

n−1∑
i=2

(DiH) ◦GQn,i(DG, . . . ,Dn+1−iG)

(DG)n

where the Qn,i are polynomials (this is easily checked by induction).
Since ‖DG‖Cn−1 < K by hypothesis, there is some ∆ = ∆(n,K) for

which |Qn,i(DG, . . . ,Dn+1−iG)| ≤ ∆ for i = 2, . . . , n− 1. Thus

|DnH| ≤
‖F −G‖Cn + ‖DG‖Cn−1εK +

∑n−1
i=2 ‖H − Id‖Ci∆(n,K)

K−n
(35)

≤ Kn(ε+ εK2 + nδ(n− 1,K, ε)∆(n,K)) ≡ δ′(n,K, ε).
Clearly δ′(n,K, ε)→ 0 as ε→ 0. The result follows.

Lemma 12. For every A ≥ 0, α > 1 and d ≥ 1 there is some ε =
ε(A,α, d) > 0 with the following property. If φ, ψ : I → I are C2d+1(I)
diffeomorphisms, ‖φ− Id‖C2d+1 < ε, ‖ψ− Id‖C2d+1 < ε and 0 ≤ a ≤ A, then
(ψ ◦ qα,a ◦ φ)−1 ∈ Pd(int I) where

(36) qα,a : x 7→ (x+ a)α − aα

(1 + a)α − aα
.
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Recall that we have assumed I = [0, 1].

Proof. The only difficulty here is that qα,a has a singularity at −a which
may be arbitrarily close to I. This means that derivatives of q−1

α,a are not
uniformly bounded as a → 0, complicating continuity arguments. In what
follows, we only mark dependence on a explicitly: the other parameters α, A
and n should be considered as fixed, with all quantities potentially depending
on them. For example, we will write qa for qα,a.

The singularity can be side-stepped by decomposing qa as t◦sa ◦r where
sa : I → I is a real-analytic homeomorphism, diffeomorphic on int I, with
s−1
a in the Pick class on int I, like qa. The maps r, t : I → I should be real-

analytic diffeomorphisms, with r−1 and t−1 Pick functions on J , an interval
strictly bigger than I. Finally, r−1 and t−1 should not be rational functions.
Then the the matrices Mk(y, r−1) and Mk(y, s−1) will be uniformly positive
for y ∈ I and k = 1, . . . , n thanks to [D, Theorem III.IV]. Note that r,
t and J do not depend on a. Although it is not hard to give an explicit
such decomposition, we will not do so here since the formulae are ugly and
uninformative.

With such a decomposition in hand, [D, Theorem VII.V] and an easy
continuity argument imply that (ψ ◦ t)−1 ∈ Pd(I) and (r ◦ φ)−1 ∈ Pd(I) if
‖φ− Id‖C2d+1 and ‖ψ − Id‖C2d+1 are sufficiently small, which is the desired
result.

Now we can finish the proof of Theorem. The notation g ∈ P−1
d (x) means

S1(g−1)(g(x)) ≥ 0, . . . , Sd(g−1)(g(x)) ≥ 0 (local inverse at x). Assume that
a critical point c is not contained in the basin of a periodic attractor. The
neighbourhood X of c will be a connected component of W given by Fact 1
for W sufficiently small.

Take W and V as in Fact 1 and let f s(x) ∈ W. We may suppose that
s ≥ 0 is minimal with fs(x) ∈ W, since the general case can be deduced from
this by decomposition (recall that the class Pd is closed under composition).

Let V and W be connected components of V and W containing c. Let
V ′ be a τ/3-scaled neighbourhood of W so that |V ′| = (1 + 2/3τ)|W |. The
interval V is also a τ/3-scaled neighbourhood of V ′. Let {Vj}sj=0 be the
corresponding chain of pullbacks of V along the orbit of x, i.e. f j(x) ∈ Vj
and Vs = V , and let {V ′j }sj=0 and {Wj}sj=0 be corresponding chains for
V ′ and W . The map fs : W0 → W is a diffeomorphism because of the
minimality of s. This is true even ifW does not contain every critical point,
as long as W is sufficiently small (the necessary smallness does not depend
on x or s).

Due to [SV, Theorem C] there exist τ ′ > 0 and C > 0 such that V ′j is a
τ ′-scaled neighbourhood of Wj , Vj is a τ ′-scaled neighbourhood of V ′j and
|V ′j | < C|Wj | for all j = 0, . . . , s. Minimality of s implies that all intervals
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Wj are disjoint, so
s∑
j=0

|V ′j | < C

and we can use Fact 2 for fk : V ′j → V ′j+k if this map is a diffeomorphism.
Let 0 ≤ s0 < s1 < · · · < sk = s be the moments j when V ′j con-

tains a critical point, and put s−1 = −1 for convenience. Then fsi−si−1−1 :
V ′si−1+1 → V ′si

is a diffeomorphism for i = 0, . . . , k. It is enough to show
that each fsi−si−1 belongs to P−1

d (fsi−1+1(x)) for i = 0, . . . k, since these
compose to give f s+1.

Take some 0 ≤ i < k (see below for the case i = k) and apply Fact 2
to f si−si−1−1 : V ′si−1+1 → V ′si

with T = V ′si−1+1 and J = Wsi−1+1. Let
Fi : I → I be fsi−si−1−1 pre- and post-composed with affine maps taking I
to Wsi−1+1 and Wsi to I respectively. We obtain a diffeomorphism Gi : I → I

with G−1
i in the P∞((−τ/6, 1+τ/6)) class such that ‖Fi−Gi‖C2d+1 < ε. The

complex Koebe lemma gives the bounds on Gi needed to apply Lemma 11,
yielding ‖Fi◦Gi−1−Id‖C2d+1 < δ. Note that by shrinking the neighbourhood
W we can make ε and δ as small as we like.

Abusing the notation, let c be a critical point contained in V ′si
. If W is

small enough, it will be the only critical point. Note that c is not contained
in Wsi because we are considering the case si 6= s. Let F : I → I be
f : Wsi → f(Wsi) pre- and post-composed with affine maps taking I to Wsi

and f(Wsi) to I respectively, as in the previous paragraph. Then F can be
written in the form φ◦qα,a◦ψ, where qα,a(x) = ((x+a)α−aα)/((1+a)α−aα),
and φ, ψ are diffeomorphisms of I which are close to the identity map in
the C2d+1 topology if V ′si

is small. These assertions on F follow from the
definition of a critical point being non-flat.

As noted above, the intervals V ′si
and Wsi are comparable, so c is not far

away from the interval Wsi compared to its size. Expressed in terms of the
rescaled map F , this means that there exists a uniform constant A > 0 such
that the parameter a is always in [0, A]. Applying Lemma 12, we see that the
inverse of φ◦qα,a◦(ψ◦Fi◦G−1

i ) is in Pd(I), at least ifW is small enough. Com-
posing with Gi, we see that the inverse of φ◦ qα,a ◦ψ ◦Fi is also in Pd(int I).
Since this composition is precisely fsi−si−1 : Wsi−1+1 → Wsi+1 rescaled
affinely, this shows that f si−si−1 belongs to P−1

d (fsi−1+1(x)) as claimed.
We now consider the case i = k, when si = s. The difference here is that

the critical point belongs to Ws = W , which actually makes the argument
slightly simpler. The critical point cuts the interval W in half; let W ′ denote
the half containing f s(x). Then we repeat the above argument, but instead
of rescaling f : W → f(W ), we rescale f : W ′ → f(W ′); the parameter a is
then always zero. The argument is otherwise essentially the same.
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Université Paris-Sud
91405 Orsay Cedex, France

E-mail: duncan.sands@math.u-psud.fr

Received 2 January 2009;
in revised form 13 May 2009


