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Normal points for generic hyperbolic maps
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To Michael Misiurewicz on the occasion of his 60th birthday

Abstract. We consider families of hyperbolic maps and describe conditions for a
fixed reference point to have its orbit evenly distributed for maps corresponding to generic
parameter values.

0. Introduction. Given a continuous transformation on a compact
space we call a point normal if the ergodic averages of any continuous
functions converge. For example, the familiar notion of a normal number
0 < ξ < 1 in the context of number theory is one which is normal in
the above sense for all of the transformations T : [0, 1) → [0, 1) given by
T (ξ) = dξ (mod 1) for each d ≥ 2.

In this note, we want to consider the question of when a specific point
is normal for typical transformations, in some suitable sense. We begin by
considering a particularly simple setting. Let f(λ) : K → K, for λ ∈ (−ε, ε),
be a family of C1 orientation preserving expanding maps of the unit circle
K = R/Z of degree d ≥ 2 which are perturbations of the standard linear
map f(0) : K → K given by f(0)(ξ) = dξ (mod 1).

A simple result is the following.

Theorem. Fix a point x ∈ M . For typical non-trivial families f(λ) :
K → K there exists ε = ε(x) > 0 such that for almost all λ ∈ (−ε, ε), with
respect to Lebesgue measure, the f(λ) orbit of x is normal , i.e., there exists
a measure m(λ) on K such that

lim
n→∞

1
n

n∑
j=1

g(f j(λ)x) =
�
g(ξ) dm(λ)(ξ)

for all continuous functions g : K → R.

2010 Mathematics Subject Classification: 37D20, 37D05, 37A25.
Key words and phrases: normal points, hyperbolic maps, parameter values.

DOI: 10.4064/fm206-1-15 [271] c© Instytut Matematyczny PAN, 2009



272 M. Pollicott

The somewhat vague “typicality” hypothesis of the theorem can be more
precisely formulated as follows. It is well known that there is a natural family
of conjugating maps π(λ) : K → K such that f(λ)π(λ) = π(λ)f(0) (and π(0) is
the identity). We require that x satisfies dπ(λ)(x)/dλ 6= 0.

Furthermore, the measure m(λ) describing the distribution of the orbit
is simply the unique measure of maximal entropy for f(λ). In particular, in
the special case of the linear map f(0) the measure of maximal entropy m(0)

is precisely the Haar measure on K.
The above theorem is probably best understood by considering a specific

example, as in the next section. In later sections we consider the generaliza-
tion to diffeomorphisms and flows.

In a recent paper [4] of Faller and Pfister the authors studied a certain
parameterised family of piecewise linear maps of the interval for which the
measure of maximal entropy was absolutely continuous. They considered
a reference point and showed that for almost all values in the parameter
space (with respect to Lebesgue measure) the orbits are normal. In an earlier
paper [2], Bruin showed that for a certain parameterized family of tent maps
and almost all parameter values the critical point c has an orbit which is
normal. Finally, part of the motivation for Bruin’s result was a paper of
Brucks and Misiurewicz [1] showing that the orbit of the critical point is
dense for almost all parameter values.

1. Example. Consider a family of expanding maps f(λ) : K → K on
the unit circle defined by f(λ)(ξ) = 2ξ + p(λ, ξ) (mod 1) where:

(1) p(λ, ξ) is bianalytic on (−δ, δ)×K;
(2) p(0, ξ) = 0 for each ξ ∈ K.

In particular, f(0) : K → K is the usual doubling map f(0)(ξ) = 2ξ (mod 1).
If we assume that ∂p(λ, ξ)/∂ξ > −1 for |λ| < ε and ξ ∈ K, then f(λ) is
expanding. We denote by π(λ) : K → K the natural topological conjugacy
between f(λ) and f(0), i.e., π(λ) is a homeomorphism such that

π(λ)(f(0)ξ) = f(λ)(π(λ)ξ) for each ξ ∈ K. (1.1)

The map π(0) will be the identity. If λ 6= 0 then the map π(λ) : K → K will be
Hölder continuous, but not usually C1. However, there is a C1 dependence
(−ε, ε) 3 λ 7→ π(λ) ∈ C0(K,K), as we shall recall in §2. In particular, for a
fixed reference point x ∈ K the map (−ε, ε) 3 λ 7→ π(λ)(x) is C1.

To be even more concrete, we could choose p(λ, ξ) = λ sin(2πξ).
In this case, the point x = 0, for example, does not move under the

perturbation and is thus exceptional. To study the behaviour of the other
points, we can differentiate (1.1) with respect to λ to write
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Fig. 1. Left: the graph of f(1/10)(x) = 2x+ 1
10

sin(2πx) (mod 1). Right: the graph of the
(non-differentiable) conjugating map π(1/10).

(1.2)
∂π(λ)(2x)

∂λ

∣∣∣∣
λ=0

=
∂f(0)(ξ)
∂ξ

∣∣∣∣
ξ=x︸ ︷︷ ︸

=2

∂π(λ)(x)
∂λ

∣∣∣∣
λ=0

+
f(λ)(x)
∂λ︸ ︷︷ ︸

=sin(2π2ξ)

.

We can then iterate the identity (1.2) to deduce that the solution has series
expansion

∂π(λ)(x)
∂λ

∣∣∣∣
λ=0

= lim
N→∞

(
−

N∑
n=1

2−n sin(2π2nx) + 2−N
dπ(λ)(2Nx)

dλ

∣∣∣∣
λ=0

)

= −
∞∑
n=1

2−n sin(2π2nx),

which is α-Hölder continuous as a function of x, for any 0 < α < 1, but
not C1.
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Fig. 2. Left: the graph of the non-differentiable function x 7→ ∂π(λ)(x)

∂λ
|λ=0. Right: the

graph of the map λ 7→ π(λ)(1/10) (i.e., with x = 1/10), which is analytic for |λ| sufficiently
small.

With the exception of the points for which the above derivative is zero,
we can choose ε(x) > 0 for which the derivative ∂π(λ)(x)

∂λ

∣∣
λ=0

remains non-zero
for λ ∈ (−ε(x), ε(x)).
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2. Conjugating map for expanding maps. We say that the map
f(λ) : K → K, λ ∈ (−ε, ε), is expanding if infξ |f ′(λ)(ξ)| > 1.

Let C0(K,K) be the space of continuous functions from K to itself.
Given 0 < δ < 1/2, we can consider a neighbourhood U ⊂ C0(K,K) of
the identity map on K which is naturally identified with C0 (K, (−δ, δ)) by
π(x) = x+ h(x), where h ∈ C0 (K, (−δ, δ)), say, for δ > 0 sufficiently small.
Using the natural inclusion C0 (K, (−δ, δ)) ⊂ C0 (K,R) we can interpret U
in terms of Banach manifolds. In particular, writing

(2.1) (−ε, ε) 3 λ 7→ π(λ)(x) =: x+ h(λ)(x)

we say that (−ε, ε) 3 λ 7→ π(λ) is C1 if for any bounded linear map L ∈
C0(K,R)∗ the map (−ε, ε) 3 λ 7→ L(h(λ)) ∈ R is C1.

The next result is fairly standard.

Proposition 2.1 (Structural stability).

(1) There exist conjugating homeomorphisms π(λ) ∈ C0(K,K) such that

π(λ) ◦ f(0) = f(λ) ◦ π(λ) for each λ ∈ (−ε, ε).

(2) m(λ) = π(λ)∗m(0) (i.e., for any continuous function F : K → R we
have

	
F ◦ π−1

(λ) dm(λ) =
	
F dm(0)).

(3) The map (−ε, ε) 3 λ 7→ π(λ) ∈ C0(K,K) is C1.

Proof. There is a very accessible account of the construction of structural
stability and part (1) for interval maps in [6] (using the fixed point method).
This can be adapted to show the first part of the proof. We can assume
without loss of generality that f(0)) fixes 0 ∈ R/Z and then we can consider
C0(I, I) in place of C0(K,K), where I = [0, 1]. Let am (1 ≤ m ≤ k) be
the preimages. One initially looks for fixed points π ∈ C0(I, I) to the maps
f∗(λ)(·) : C0(I, I)→ C0(I, I) defined by

f∗(λ)(π)(x) =
1
k
π(f(λ)x) +

m

k
for am ≤ x ≤ am+1.

The existence of the fixed point follows from the contraction mapping the-
orem (cf. [6]).

To prove part (2), recall that since the topological entropy is preserved
by topological conjugacy, it follows from the variational principle for entropy
that the image of the measure of maximal entropy under a conjugating map
is again the measure of maximal entropy.

For part (3), observe that ‖Df∗(λ)‖ ≤ 1/k and thus Df∗(λ) − I : C0(K,R)
→ C0(K,R) is invertible. Moreover, the composition map (f(λ), π) 7→ f∗(λ)(π)
is C1 (cf. [8, Lemma A.1]). Since the conjugacy π(λ) is defined implicitly by
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f∗(λ)(π(λ))− π(λ) = 0 we can apply the Inverse Function Theorem to deduce

that (−ε, ε) 3 λ 7→ π(λ) ∈ C0(K,K) is C1.

Remark. We easily see that π(λ) is actually α-Hölder continuous with
α = log β/log d, where |f ′(λ)(ξ)| ≥ β > 1 for all t ∈ (−ε, ε).

This leads naturally to the following corollary to Proposition 1.1:

Corollary. For each x ∈ K the map (−ε, ε) 3 λ 7→ π(λ)(x) ∈ K is C1.

Proof. The differentiability of (−ε, ε) 3 λ 7→ π(λ) ∈ C0(K,K) means
that, by (1.1), for any linear functional L : C0(K,R)→ R the map (−ε, ε) 3
t 7→ L(π(λ)) ∈ R is C1. We can choose L(π(λ)) = π(λ)(x), the evaluation at
the point x.

3. Proof of Theorem 1. The Haar measure m(0) is well known to be
ergodic with respect to the linear map f(0) : K → K. In particular, we recall
the following classical result.

Lemma 3.1 (Birkhoff Ergodic Theorem). There exists a set X0 ⊂ K
of full m(0) measure (i.e., Haar measure) such that for ξ ∈ X0 and any
continuous function G : K → R we have

lim
N→∞

1
N

N−1∑
i=0

G(f i(0)ξ) =
�
Gdm(0).

Let λ ∈ (−ε, ε) and x ∈ K. Given F ∈ C0(K,R), we can use f(λ) =
π−1

(λ) ◦ f(0) ◦ π(λ) to rewrite the Birkhoff averages

1
N

N−1∑
i=0

F (f i(λ)x) =
1
N

N−1∑
i=0

(F ◦ π−1
(λ))(f

i
(0)π(λ)x) for N ≥ 1.

Moreover, if we write ξ := π(λ)(x) ∈ X0 then applying Lemma 3.1 with
G = F ◦ π−1

(λ) we obtain

lim
N→∞

1
N

N−1∑
i=0

(F ◦ π−1
(λ))(f

i
(0)ξ) =

�
F ◦ π−1

(λ) dm(λ)

provided that π(λ)(x) is a typical point for the measure m0, i.e., ξ :=
π(λ)(x) ∈ X0.

Moreover, since m(λ) = π(λ)∗m(0) (by Proposition 2.1(2)) we have
�
F ◦ π−1

(λ) dm(λ) =
�
F dm(0).

In particular, since m(0) is equal to Haar measure we see that for almost
all λ the image π(λ)(x) is in the set X0 of full m(0) measure:
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Lemma 3.2. Assume that ∂π(λ)(x)

∂λ

∣∣
λ=0
6= 0. Then there exists 0 < ε(x)

≤ ε such that for almost every λ ∈ (−ε(x), ε(x)) we have π(λ)(x) ∈ X0.

Proof. For a given point x, we can choose 0 < ε(x) ≤ ε such that
∂π(λ)(x)

∂λ

∣∣ 6= 0 for t ∈ (−ε(x), ε(x)). Then the map (−ε(x), ε(x)) 3 t 7→ π(λ)(x)
is a diffeomorphism onto its image. However, since X0 has full m(0) (i.e.,
Haar) measure and the map (−ε(x), ε(x)) 3 t 7→ π(λ)(x) has an absolutely
continuous inverse, we deduce that

{λ ∈ (−ε(x), ε(x)) : π(λ)(x) ∈ X0}

has full Lebesgue measure.

Finally, Theorem 1 follows by comparing Lemmas 3.1 and 3.2.

Remark. We can choose sets X ⊂ K of positive m0 measure and Λx ⊂
(−η, η), for x ∈ X and η > 0, of full Lebesgue measure 2η such that the
ergodic averages for x ∈ X and f(λ), with λ ∈ Λx, correspond to the measure
of maximal entropy m(λ). However, somewhat paradoxically, we cannot find
λ 6= 0 for which m(0){x : Λx 3 λ} > 0 since otherwise m(λ) would have to
be equal to the absolutely continuous invariant measure for f(λ), which is
patently not the case.

4. Anosov diffeomorphisms. Let M be a d-dimensional compact
manifold and let f : M → M be a transitive C1 diffeomorphism. We
call f Anosov if there is a C0 splitting TM = Es ⊕ Eu such that there
exist constants C > 0 and 0 < λ < 1 such that ‖Dfn|Es‖ ≤ Cλn and
‖Df−n|Eu‖ ≤ Cλn for n ≥ 0.

Example. Let M=T2 be a two-dimensional torus and let f(0) : T2→T2

be a linear hyperbolic toral automorphism. To be more precise, we can
consider

f(0)(x, y) = (2x+ y, x+ y) (mod 1)

and a perturbation

f(λ)(x, y) = (2x+ y, x+ y)
+ (λ1 sin(2πx) + λ2 cos(2πy), λ1 cos(2πx) + λ2 sin(2πy)) (mod 1),

say, where λ = (λ1, λ2). We then have det(D(0)f(λ)) = − cos(2π(x+ y)).

We require the following results on structural stability. Let f(λ) : M →M

be a C1 family of transitive Anosov diffeomorphisms. Let m(λ) denote the
unique measure of maximal entropy for f(λ). Assume that for f(0) : M →M
the measure of maximal entropy is equivalent to the Riemannian volume
on M .
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Proposition 4.1 (Structural stability for Anosov diffeomorphisms).

(1) There exist conjugating homeomorphisms π(λ) ∈ C0(M,M) such that

π(λ)f(λ) = f(0)π(λ) for each λ ∈ (−ε, ε)d.

(2) π(λ)∗m(0) = m(λ) (i.e., for any continuous function G : M → R we
have

	
G ◦ π(λ) dm(0) =

	
Gdm(λ)).

(3) The map (−ε, ε)d 3 λ 7→ π(λ) ∈ C0(M,M) is C1.

This can be deduced from the corresponding result for Anosov flows in [8]
(cf. also [7] and [3]).

This leads naturally to the following:

Corollary. Let x ∈ M . Let f(λ) be a C1 family of Anosov diffeomor-
phisms. Then the map (−ε, ε)d 3 λ 7→ π(λ)(x) ∈M is C1.

This essentially appears as part (b) of Theorem A.1 in [8]. Although the
theorem is stated for Anosov flows and one-dimensional perturbations, it is
easily seen to apply in this case.

The natural analogues of Lemmas 3.1 and 3.2 are:

Lemma 4.1. There exists a set X0 ⊂M of full m(0) measure (i.e., Haar
measure) such that for y ∈ X0 and any continuous G : K → R we have

lim
N→∞

1
N

N−1∑
i=0

G(f i(0)y) =
�
Gdm(0).

Lemma 4.2. Assume that Dπ(λ)(x)|λ=0 is non-singular. For almost ev-
ery λ ∈ (−ε, ε)d we have π(λ)(x) ∈ X0.

Finally, we can compare Lemmas 4.1 and 4.2 to deduce the following.

Theorem 2. Fix x ∈M . For typical non-trivial families f(λ) : M →M
of Anosov diffeomorphisms there exists ε = ε(x) > 0 such that for almost all
λ ∈ (−ε, ε)d, with respect to Lebesgue measure, the f(λ)-orbit of x is normal ,
i.e., there exists a measure m(λ) on M such that

lim
n→∞

1
n

n∑
i=1

g(f i(λ)x) =
�
g(ξ) dm(λ)(ξ) ∀g ∈ C0(K,R).

In the above theorem, “typical” means that det(D0π(λ)) 6= 0.

Remark. From the proof of the structural stability theorem [9], [8] one
can solve D0π(λ) = (I − f∗)−1D0f(λ) where f∗v(x) = Dfv(f−1x) and I − f∗
is invertible because of the hyperbolicity of f . In particular, providing the
perturbation Df(λ)(x)|λ=0 is non-singular we see that Dπ(λ)(x)|λ=0 is non-
singular.
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5. Anosov flows. There are completely analogous results for Anosov
flows. Let M be a d-dimensional compact manifold and let φt : M → M
be a transitive C1 flow. We call the flow Anosov if there is a C0 splitting
TM = E0 ⊕ Es ⊕ Eu such that:

(i) E0 is a one-dimensional bundle tangent to the flow direction.
(ii) There exist constants C, a > 0 such that ‖Dφt|Es‖ ≤ Ce−at and
‖Dφ−t|Eu‖ ≤ Ce−at for t ≥ 0.

Let φ(λ) be a C1 family of Anosov flows. Let m(λ) denote the measure
of maximal entropy for φ(λ). Assume that for φ(0) the measure of maximal
entropy is equivalent to the Riemannian volume on M .

We recall the following result.

Proposition 5.1 (Structural stability for Anosov flows).

(1) There exist homeomorphisms π(λ) ∈ C0(M,M) and changes of ve-
locity ρ(λ) : M → R+ such that φ(λ) is topologically conjugate by π(λ)

to the reparameterization by ρ(λ) of φ(0).
(2) π(λ)∗(ρm(0)) = m(λ) (i.e., for any continuous function G : M → R

we have
	
G ◦ π(λ)ρ dm(0) =

	
Gdm(λ)).

(3) The maps (−ε, ε)d 3 λ 7→ π(λ) ∈ C0(M,M) and (−ε, ε)d 3 λ 7→
ρ(λ) ∈ C0(M,R) are both C1.

The above result was essentially proved in [8, Theorem A.1] (cf. also
[7] and [3]) and, indeed, Proposition 3.1 in §3 was essentially already de-
duced from it. The only slight modification required is to deal with d-
dimensional perturbations. In addition, part (2) on the conjugacy of flows
is an easy consequence of well known results on the reparameterizations of
flows.

A significant difference between the case of Anosov diffeomorphisms
(Proposition 4.1) and Anosov flows (Proposition 5.1) is that in the latter
case one cannot expect the conjugating map to be unique (due to the option
of reparameterizing the flows). However, the images of different conjugacies
will lie on the same orbit.

Proposition 5.1 leads naturally to the following:

Corollary. Let x ∈M . Let φ(λ) be a C1 family of Anosov flows. Then
the map (−ε, ε)d 3 λ 7→ π(λ)(x) ∈M is C1.

This essentially appears as part (b) of Theorem A.1 in [8]. Although the
theorem is formally stated for Anosov flows and one-dimensional perturba-
tions, it is easily seen to apply in this case.

The natural analogues of Lemmas 3.1 and 3.2 are:
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Lemma 5.1. There exists a set X0 ⊂ K of full m(0) measure such that
for y ∈ X0 and any continuous G : K → R we have

lim
T→∞

1
T

T�

0

G(φ(0)ty) dt =
�
Gdm(0).

Lemma 5.2. Assume that Dπ(λ)(x)|λ=0 is non-singular. For almost ev-
ery λ ∈ (−ε, ε)d we have π(λ)(x) ∈ X0.

Finally, we can compare Lemmas 5.1 and 5.2 to deduce the following.

Theorem 3. Fix x ∈M . For typical non-trivial families φ(λ) there exists
ε = ε(x) > 0 such that for almost all λ ∈ (−ε, ε)d, with respect to Lebesgue
measure, the φ(λ) orbit of x is normal , i.e., there exists a measure m(λ) on
M such that

lim
T→∞

1
T

T�

0

g(φ(λ),tx) dt =
�
g(ξ) dm(λ)(ξ) ∀g ∈ C0(M,R).

In the above theorem, “typical” means that det(D0π(λ)) 6= 0.

6. Riemann surfaces. We can consider an application of Theorem 3
on Anosov flows to geodesic flows on Riemann surfaces of higher genus.
Let V be a compact oriented surface with genus g ≥ 2. The space of (Rie-
mann) metrics ρ of constant curvature κ = −1 is naturally identified with
R6(g−1). We can associate to any unit tangent vector v ∈ T1V a unique
unit speed geodesic γv : R → V which satisfies γ̇v(0) = v. It is natural to
say that v is normal if for any continuous function F : T1V → R the limit
limT→∞ T

−1
	T
0 F (γ̇v(t)) dt exists.

The tangent space to the space of metrics at a fixed Riemann met-
ric ρ0, say, can be identified with the space RQ of real parts of holomorphic
quadratic differentials Q (on the surface with metric ρ0) [5].

Proposition 6.1. Let V be a compact surface with a metric ρ(0) of
constant curvature κ = −1. Any fixed v ∈ T1V is normal for almost all
metrics in a sufficiently small neighbourhood U of ρ(0).

Proof. We can consider a parameterization (−ε, ε)6(g−1) of a neighbour-
hood of ρ0. We need to establish that the derivative D0π(λ) of a conjugacy
πλ associated to the two geodesic flows is non-singular. It is convenient to as-
sume that if v ∈ (T1V )x then π(λ)(v) lies in {expρ0 X : X ∈ (TV )x, X ⊥ v,

‖X‖ < ε}. Fathi and Flaminio [5], using the terminology of infinitesi-
mal Morse correspondences and the notation Ξ := D0π(λ), showed that
‖RQ‖2 = 12‖Ξ‖2 [5, Proposition 4.8]. From this result, the conclusion di-
rectly follows.
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