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A simple proof of polar decomposition in
pseudo-Euclidean geometry
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Maciej P. Wojtkowski (Olsztyn)

Abstract. We give a simple direct proof of the polar decomposition for separated
linear maps in pseudo-Euclidean geometry.

1. Introduction. Ricardo Mañé [M] introduced the concept of a domi-
nated splitting for a diffeomorphism of a compact manifold, which is a weak
form of hyperbolicity of dynamical systems. This property is the subject of
several recent papers, in particular [P-S], which contains an extensive bibli-
ography. It was observed in [W1] that the dominated splitting is associated
with a pseudo-Riemannian structure on the manifold and the derivative hav-
ing a special property with respect to that structure, namely that it takes
positive tangent vectors to positive tangent vectors. Such linear maps were
called separated in [W2] for the reason that this property leads to the gap
in the spectrum, for instance the separation of Lyapunov exponents. Other
terms can be found in the literature, e.g., they were called plus operators by
Krein and Shmul’jan [K-S1].

Non-degenerate separated linear maps have the polar decomposition, and
the corresponding singular values, similarly to the Euclidean case. It was
shown in [W2] how to estimate Lyapunov exponents in terms of these sin-
gular values.

The polar decomposition of separated linear maps was first obtained by
Potapov [P]. We give a simple direct proof of this fact.

2. Separated linear maps. Let us consider an n-dimensional real lin-
ear vector space V with a chosen pseudo-Euclidean structure, i.e., a non-
degenerate symmetric bilinear form [·, ·] with the positive index of inertia
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equal to p and the negative index of inertia equal to q, p + q = n, p ≥ 1,
q ≥ 1. We will refer to it as the J-form.

Depending on the sign of the J-form, we have positive and negative vec-
tors. We denote by

C± = {v ∈ V | ±[v, v] > 0} ∪ {0}
the open cones of, respectively, positive and negative vectors (with the zero
vector included), and by C0 their common boundary,

C0 = {v ∈ V | [v, v] = 0}.
Without loss of generality we can assume that V = Rp ⊕ Rq and for

v = (v1, v2), v1 ∈ Rp, v2 ∈ Rq,

[v, v] = 〈Jv, v〉 = v2
1 − v2

2, where J =
[
Ip 0
0 −Iq

]
,

where Ip, Iq are the identity matrices in Rp and Rq respectively. By 〈·, ·〉 we
denote here the arithmetic scalar product, but we will avoid using it in our
paper. The terms orthogonality, isometry, etc., will refer exclusively to the
J-form.

A linear subspace E is called non-degenerate if the restriction of the J-
form to this subspace is non-degenerate. We know that E is non-degenerate
if and only if its orthogonal complement E⊥ is complementary, i.e., E ∩E⊥
= {0}, or equivalently E ⊕ E⊥ = V .

Definition 1. A linear non-singular operator A : V → V is

(i) separated if AC+ ⊂ C+,
(ii) strictly separated if A(C0 ∪ C+) ⊂ C+,
(iii) monotone if [Av,Av] ≥ [v, v] for every v ∈ V .

Definition 2. For a linear operator B : V → V the adjoint operator
B† : V → V is defined by the condition that for every v, w ∈ V ,

[B†v, w] = [v,Bw].

An operator B is symmetric (or self-adjoint) if B† = B.

In coordinates we have
B† = JBTJ.

Clearly for any operator A the operators A†A and AA† are symmetric. An
operator U is an isometry if and only if U †U = I = UU †.

Potapov [P] obtained the following fundamental result:

Theorem 1. Every non-degenerate separated operator A has a unique
representation A = UR, where U is an isometry , and R is symmetric and
has only real positive eigenvalues.
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The operator R is called the modulus of A. Strictly speaking, Potapov
considered only monotone operators, but he was well aware that for every
separated operator A there is a positive real number α > 0 such that αA is
monotone, so there is no actual generalization (the range of such numbers
α will be described in Theorem 3). The proof of Potapov is elegant and
intricate. We propose a simple direct proof of the Potapov modulus theorem.

The discussion of the general case of polar decomposition can be found
in [B-R], and for the infinite-dimensional case, see [K-S2], [B]. The paper
[M-R-R] addresses the general case of plus matrices (in our terminology:
separated linear maps without the assumption of non-singularity).

Suppose we have S = UR with R symmetric and U an isometry. Then
S†S = RU †UR = R2. Hence our task is to obtain the square root of the
operator S†S. We will take advantage of the well known fact that if a linear
map L : V → V has only real positive eigenvalues than it has a unique
square root with positive eigenvalues. It is easy to obtain the square root
using the Jordan normal form of L.

The Potapov modulus theorem follows from

Theorem 2. For every non-degenerate separated operator S the operator
S†S has only real positive eigenvalues.

Indeed, once we have R = (S†S)1/2 we can define U = SR−1. We see
immediately that U is an isometry:

U †U = R−1S†SR−1 = I.

3. Three lemmas. Let us formulate three lemmas which apply to any
pseudo-Euclidean structure. The first two are standard and we give them
without proof.

Lemma 1. If B is symmetric and E is an invariant subspace of B,
B(E) ⊂ E, then E⊥, the orthogonal complement of E, is also invariant ,
B(E⊥) ⊂ E⊥. Also, any two eigenvectors of B with different eigenvalues are
orthogonal.

Lemma 2. If B is symmetric then the function [Bv, v], v ∈ V, restricted
to [v, v] = const has a critical point at w 6= 0 if and only if w is an eigenvector
of B.

Corollary 1. If for a symmetric B there is a real number r such that
[Bv, v] ≥ r[v, v] for all v, and there is w 6= 0 such that [Bw,w] = r[w,w],
then w is an eigenvector of B and r is the corresponding eigenvalue.

Proof. The form [Bv, v] has a conditional minimum at w under the con-
dition [v, v] = [w,w]. By Lemma 2, w is an eigenvector with an eigenvalue b.
If [w,w] 6= 0 then clearly b = r. If [w,w] = 0 then let us consider a vector
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v0 ∈ C0 such that [w, v0] = 1. We now get, for every ε,

[B(w + εv0), w + εv0] = 2εb+ ε2[Bv0, v0] ≥ r[w + εv0, w + εv0] = 2εr.

It follows immediately that b = r.

Let us consider the case of a plane with the Lorentzian form

J =
[
0 1
1 0

]
and B =

[
a b

c d

]
.

We find that B is symmetric if and only if a = d. Clearly this condition
does not guarantee that B has real eigenvalues, nor that it has a basis of
eigenvectors. However, we have the following

Lemma 3. If for a symmetric B, [Bv, v] ≥ 0 for v in the positive cone C+,
and the form [B·, ·] assumes also negative values, then B has only positive
eigenvalues. If the eigenvalues are different then the eigenvector of the larger
eigenvalue is in C+, and the eigenvector of the smaller one is in C−. If the
eigenvalue is double then either B is a multiple of identity , or B is a Jordan
block with the unique eigenvector in C0.

Proof. Putting v = (x, y) we have [v, v] = 2xy and [Bv, v] = bx2 + cy2

+2axy. For this quadratic form to be non-negative in C+ it is necessary that
b, c ≥ 0. We have further

[Bv, v] = (
√
bx−

√
cy)2 + 2(a+

√
bc)xy = (

√
bx+

√
cy)2 + 2(a−

√
bc)xy.

Since the quadratic form is assumed to have negative values somewhere in
C−, the second formula leads to a−

√
bc > 0. We have

[Bv, v] ≥ (a+
√
bc)[v, v] and [Bv, v] ≥ (a−

√
bc)[v, v].

Assuming that b, c > 0 we have equalities occurring at the non-zero vectors
v in C+ and C−, respectively. By Corollary 1 they must be eigenvectors of
B with eigenvalues a±

√
bc.

Clearly one can get this conclusion and the rest of the lemma by direct
calculation. We chose to apply Corollary 1 to illustrate its efficacy.

Another consequence of the proof is that for any number r with a−
√
bc ≤

r ≤ a +
√
bc we have [Bv, v] ≥ r[v, v] for all v ∈ R2. By Corollary 1 the

equality occurs only for an eigenvector v (or v = 0), and r equal to the
eigenvalue.

4. Proof of the main theorem

Theorem 3. If a non-degenerate linear map A is strictly separated then
B = A†A has only positive eigenvalues λp ≥ · · · ≥ λ1 > µ1 ≥ · · · ≥ µq > 0
and a basis of respective mutually orthogonal eigenvectors vp, . . . , v1 ∈ C+

and w1, . . . , wq ∈ C−. Moreover , for any r ∈ [µ1, λ1], we have [Bv, v] =
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[Av,Av] > r[v, v] for every non-zero v ∈ V , unless v is an eigenvector with
eigenvalue r.

Proof. Note that the quadratic form [Av,Av] = [Bv, v] has the same
type as the form [v, v]. In particular, it is indefinite. Moreover, it is positive
for v /∈ C−.

Consider the Euclidean sphere S = {v ∈ Rn | 〈v, v〉 = 1} and the function
f(v) = [Bv, v]/[v, v], well defined on S\C0. The numerator [Bv, v] is positive
on the compact subset S \ C−, hence it is bounded away from zero there.
The denominator is zero at the boundary of this set. It follows that f(v)
goes to +∞ at the boundary of S∩C+, and finally f(v) attains a minimum
value λ1 > 0 at v1 ∈ S∩C+. We have shown that the quadratic form [Bv, v]
has a minimum at v1 under the condition [v, v] = 1. By Lemma 2, v1 is an
eigenvector with eigenvalue λ1. Moreover, [Bv, v] ≥ λ1[v, v] for v /∈ C−.

Since the quadratic form [Bv, v] assumes negative values at some v ∈
S ∩ C−, the function f(v) assumes positive values at the same v. Near the
boundary of S∩C− the form [Bv, v] has positive values and is bounded away
from zero on a neighborhood of the boundary. Again it follows that f(v) goes
to −∞ as v ∈ S∩C− tends to the boundary. We conclude that f(v) attains
a maximum value µ1 > 0 at w1 ∈ C−, and by Lemma 2, w1 is an eigenvector
with eigenvalue µ1. Moreover, [Bv, v] ≥ µ1[v, v] for v /∈ C+.

Let E be the plane spanned by v1 and w1. Then B(E) = E. Hence we
can apply Lemma 3 to the restriction of the form [B·, ·] to the plane E. It
follows that µ1 < λ1 and that the eigenvectors are orthogonal.

Applying now Corollary 1 we get the last part of our theorem.
Let F be the orthogonal complement of E. Since the subspace E is non-

degenerate (i.e., the restriction of the J-form to E is non-degenerate), the
subspace F is complementary to E, that is, E∩F = {0} and E⊕F = V . We
restrict the quadratic forms [·, ·] and [B·, ·] to F . They must have the same
type. If they are both positive (or negative) definite we get the conclusion
of our theorem by observing that now B is symmetric with respect to the
Euclidean scalar product ±[·, ·]. If the forms are indefinite we can repeat the
argument above and obtain another pair of eigenvalues

λ2 = inf
v∈C+∩F

[Bv, v]
[v, v]

≥ inf
v∈C+

[Bv, v]
[v, v]

= λ1,

0 < µ2 = sup
v∈C−∩F

[Bv, v]
[v, v]

≤ sup
v∈C−

[Bv, v]
[v, v]

= µ1

with orthogonal eigenvectors v2 ∈ C+ ∩ F and w2 ∈ C− ∩ F .
Repeating this step we will exhaust the dimension and obtain an orthog-

onal basis of eigenvectors with all eigenvalues positive, which is the content
of our theorem.
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5. The limit case. Let us finally discuss the limit case when A is sep-
arated but not strictly separated. There are strictly separated operators Dε

which are ε-close to the identity. Then Aε = DεA is strictly separated and
ε-close to A. By continuity of the spectrum, Theorem 3 immediately implies

Theorem 4. If A is separated then B = A†A has only positive eigen-
values λp ≥ · · · ≥ λ1 ≥ µ1 ≥ · · · ≥ µq > 0, and A is strictly sep-
arated if and only if µ1 < λ1. Moreover , for any r ∈ [µ1, λ1] we have
[Bv, v] = [Av,Av] > r[v, v] for every non-zero v, unless v is an eigenvector
with eigenvalue r.

Proof. This follows from Theorem 3 by taking the limit over strictly
separated operators as explained above. In particular, for any r with µ1 ≤
r ≤ λ1 we get [Bv, v] ≥ r[v, v] for all v ∈ V . To prove the criterion for
strict separatedness, assume that A is non-strictly separated. Then there is
a nonzero w ∈ C0 such that Aw ∈ C0. It follows that [Bw,w] = 0 = r[w,w]
and by Corollary 1 such a w must be an eigenvector with eigenvalue r. It
follows that r = µ1 = λ1.

It remains to inspect what can happen to the orthogonal bases in the limit
of non-strictly separated A, when µ1 = λ1. As opposed to the Euclidean case,
the orthogonal bases can collapse and give rise to Jordan blocks.

If two or more orthogonal eigenvectors collapse to one then the limit
eigenvector must belong to C0, and its eigenvalue is equal to r = µ1 = λ1

(cf. the proof of Theorem 4 above). It is interesting that the resulting Jordan
block must be of dimension 2, which was known to Frobenius [P]. Indeed,
we have

Proposition 1. If A is non-strictly separated then any Jordan block of
B = A†A with eigenvalue r = µ1 = λ1 is of dimension 2.

Proof. We have [Bv, v] > r[v, v] for any non-zero v, unless v is an
eigenvector with eigenvalue r. Consider the operator H = B − rI which
has the eigenvalue zero. B has a Jordan block with eigenvalue r of di-
mension 3 or more if and only if there is a non-zero vector z such that
H3z = 0 and H2z 6= 0. The inequality above yields [Hv, v] > 0 for non-
zero v, unless v is an eigenvector with eigenvalue zero, i.e. Hv = 0. Since
[H(Hz), Hz] = [H3z, z] = 0, we conclude that Hz is an eigenvector with
eigenvalue zero, and hence H2z = 0. The contradiction proves our claim.

Let us finally describe the complete structure of B = A†A for a non-
strictly separated A, with λ1 = µ1 = r > 0 and [Bv, v] = [Av,Av] ≥ r[v, v].

Proposition 2. There is a splitting V = E ⊕ F ⊕ G invariant under
B = A†A with the following properties:
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(i) The subspaces E,F,G are mutually orthogonal , and hence the re-
striction of [·, ·] to all three subspaces is non-degenerate (unless a
subspace is trivial).

(ii) [Bv, v] = [Av,Av] > r[v, v] for all non-zero v ∈ G, and there is an
orthogonal basis of eigenvectors of B in G \ C0; the eigenvalues of
the eigenvectors in G \ C− and in G \ C+ are, respectively , smaller
and larger than r.

(iii) Bv = rv for v ∈ F .
(iv) The subspace E has dimension 2k, E = E1 ⊕ · · · ⊕ Ek with mutu-

ally orthogonal planes E1, . . . , Ek, invariant under B. Each of these
planes gives rise to a Jordan block for B, i.e., there is only one
eigenvector with eigenvalue r in each of the planes. The restriction
of the J-form to any of the planes is indefinite, and hence the re-
striction of B to such a plane is covered by Lemma 3, and the unique
eigenvector belongs to C0.

Proof. If the spectrum of B contains only one eigenvalue r then the
subspaceG is trivial. Otherwise it is spanned by a maximal orthogonal family
of eigenvectors with eigenvalues different from r. We construct it in the same
way as in the Euclidean case, taking advantage of the fact that none of these
eigenvectors can lie in C0, and hence its orthogonal complement is indeed
complementary.

Once we exhaust all the eigenvalues different from r we obtain an in-
variant non-degenerate subspace G. The restriction of B to the orthogonal
complement of G has only one eigenvalue, equal to r. If there are no eigenvec-
tors with this eigenvalue which are not in C0, then the subspace F is trivial.
Otherwise it is spanned by a maximal orthogonal family of eigenvectors with
eigenvalue r, which are not in C0. The construction is the same as before.

We are left with the invariant orthogonal complement E of F ⊕G. The
restriction of B to E has only one eigenvalue equal to r and all the eigen-
vectors lie in E ∩ C0. Moreover, for non-zero v ∈ E we have the inequality
[Bv, v] = [Av,Av] > r[v, v] unless v is an eigenvector. The eigenvectors in E
form a subspace E0 which is completely contained in C0. If the restriction of
the J-form to the subspace E has a positive index of inertia p′, and a negative
index of inertia q′, then the dimension of E0 does not exceed the minimum
of p′ and q′. Hence B must have Jordan blocks in E. By Proposition 1 they
must have dimension 2.

We found that there must be Jordan blocks in E and all of them must
be of dimension 2. Let E1 be such an invariant plane. We want to establish
that E1 is non-degenerate. There is a basis {z, w} in E1 such that Bz =
rz + w,Bw = rw. We get [Bz, z] = r[z, z] + [w, z] and since z is not an
eigenvector we must have [w, z] > 0. This together with [w,w] = 0 guarantees
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that the restriction of the J-form to E1 is indefinite, and so E1 is non-
degenerate.

The subspace E must be spanned by such mutually orthogonal planes.
Indeed, on the complement of all the Jordan blocks in E we would have B =
rI, and the J-form would be non-degenerate. That would give us eigenvectors
of eigenvalue r outside C0, and all of them were already included in F .
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