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Abstract. The aim of this paper is twofold. On the one hand, we want to discuss
some methodological issues related to the notion of strange nonchaotic attractor. On the
other hand, we want to formulate a precise definition of this kind of attractor, which
is “observable” in the physical sense and, in the two-dimensional setting, includes the
well known models proposed by Grebogi et al. and by Keller, and a wide range of other
examples proposed in the literature. Furthermore, we analytically prove that a whole
family of two-dimensional quasiperiodic skew products defined on S1 × R have strange
nonchaotic attractors. As a corollary we show analytically that the system proposed by
Grebogi et al. has a strange nonchaotic attractor.

1. Introduction. The notion of strange nonchaotic attractor (briefly
SNA) was introduced (1) by Grebogi et al. in [10] when studying attractors
of quasiperiodically forced skew products of the form

(1)
{
θn+1 = θn + ω (mod 1),
xn+1 = ψ(θn, xn),

where x ∈ R, θ ∈ S1 and ω ∈ R\Q. One of the two examples they considered
consisted in taking ψ(θ, x) = 2σ cos(2πθ) tanh(x) in the above system (see
Figure 1 for a picture of the attractor of an instance of this system):

(2)
{
θn+1 = θn + ω (mod 1),
xn+1 = 2σ cos(2πθn) tanh(xn).

2010 Mathematics Subject Classification: Primary 37C55, 34D08, 37C70.
Key words and phrases: quasiperiodically forced system, strange nonchaotic attractor,
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(1) This kind of attractor had already been studied in the literature much earlier than
the term SNA was coined. For example in [18, 19, 24] constructions of flows containing
strange nonchaotic attractors can be found. Also, in the last part of this paper, we see
that some well known one-dimensional attractors are SNA’s.
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Fig. 1. The attractor of (2) with σ = 1.5

The authors of [10] defined an SNA as an attractor whose Lyapunov ex-
ponents are nonpositive almost everywhere and which is neither finite nor
piecewise differentiable. An attractor in this definition is a compact set with
a neighbourhood such that, for almost every initial condition in this neigh-
bourhood, the limit set of the orbit as time tends to +∞ is in the attractor.
An attractor is piecewise differentiable if it is either a piecewise differentiable
curve or surface, or a volume bounded by a piecewise differentiable closed
surface. Later on, it was proved by G. Keller [17] for systems similar to (2)
that the attractor cuts the repeller x = 0 in an invariant set which is dense
(in x = 0) and it is different from zero in a set whose projection onto S1 has
full measure. This gives the strangeness of such attractors.

As already explained in [10], in this theory, the term chaotic refers to the
dynamics on the attractor, while strange refers to the geometrical structure
of the attractor.

There is a lot of controversy about what should be the precise defini-
tion of SNA and whether the elements involved must be “observable” in a
physical and computational sense. Indeed, this notion is often not even pre-
cisely formulated. On the other hand, unfortunately, one can find much more
empirical and crude numerical studies about SNA’s than rigorous proofs of
their existence, and there are also some theoretical issues about a number
of the numerical studies. Some remarkable examples of rigorous studies of
the existence of such attractors can be found in several contexts. For exam-
ple, system (2) is studied in [4]; [1] and [5] are devoted to the study of the
quasiperiodic quadratic family; in [14] the quasiperiodic Arnold map is con-
sidered; in [13], SL(2,R) cocycles are studied; [12] is devoted to the study of
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Harper maps; and, finally, in [11] and [17] the authors consider a quasiperi-
odically forced system of the form (1) defined on the positive semi-cylinder
S1× [0,∞), where the second component is given by ψ(θ, x) = g(θ)f(x) and
f is monotonic.

The aim of this paper is to give a rigorous definition of SNA in the topo-
logical setting, while trying to clarify and fix the above mentioned theoretical
issues. This will be done in the third section.

The second section is devoted to introducing the notation used along this
paper and to showing two paradigmatic examples in this field. In the third
section, as we have said, we propose a rigorous definition and discuss some
methodological aspects relating to the nonchaoticity part of the definition.
This section is the core of this paper. Finally, in the last section we check that
the two examples given in the second section are SNA’s with the definition
we propose. Also, we prove that two well known kinds of attractor in one-
dimensional dynamics, the absorbing Cantor set and the solenoidal attractor,
are SNA’s.

2. Notation and motivating examples. We are interested in two-
dimensional quasiperiodically forced skew products. These are systems de-
fined on the Cartesian product of the circle S1 = R/Z and a metric space
X, of the form

(3)
{
θn+1 = Rω(θn) = θn + ω (mod 1),
xn+1 = ψ(θn, xn),

where (θn, xn) ∈ S1 × X and ω ∈ R \ Q. The first component, which is
independent of the second, is the basis of the skew product. These systems
map each fibre {θ} ×X into another one {Rω(θ)} ×X.

Recall that Rω is minimal and has the Lebesgue measure as a unique
invariant measure (thus being uniquely ergodic). Moreover, every invariant
attracting set is the graph of a correspondence ϕ from Λ to X, where Λ is
an invariant set of Rω of full Lebesgue measure. Then ϕ must satisfy the
invariance equation

ϕ(Rω(θ)) = ψ(θ, ϕ(θ))

for every θ ∈ Λ, or equivalently, it must be a fixed point of the transfer
operator defined by

T ϕ(θ) := ψ(θ, ϕ(R−1
ω (θ))).

Note that since ϕ is a correspondence, the equality in the above formula
is between sets.

Example 1 (Grebogi et al. [10]). In this example we discuss the study
of system (2) done in [10], together with the proposed notion of SNA. We
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recall that the system considered is

(2)
{
θn+1 = Rω(θn),
xn+1 = 2σ tanh(xn) cos(2πθn),

where (θn, xn) ∈ S1 × R and ω ∈ R \ Q. For every (θ0, x0) and n ∈ N
it follows that (θn, xn) ∈ S1 × [−2σ, 2σ]. So, the system has an attractor
in this region. As mentioned before, attractor in [10] means a compact set
with a neighbourhood such that, for almost every initial condition in this
neighbourhood, the ω-limit set of the orbit is in the attractor. Observe that
this definition is very similar to the one proposed by Milnor [20].

The attractor is the closure of the graph of a map ϕ : S1 → [−2σ, 2σ] ⊂ R
and, as we already know, it must satisfy the invariance equation

(4) ϕ(Rω(θ)) = 2σ cos(θ) tanh(ϕ(θ)).

Since tanh(0) = 0, the circle x = 0 is invariant. Thus, by the Birkhoff
Ergodic Theorem, it can be shown that the vertical Lyapunov exponent at
x = 0 is �

S1

log
∣∣∣∣∂(2σ tanh(x) cos(2πθ))

∂x

∣∣∣∣
x=0

∣∣∣∣ dθ = log |σ|

for almost every θ ∈ S1 with respect to the Lebesgue measure. So, if |σ| > 1,
the vertical Lyapunov exponent at x = 0 is positive and the circle x = 0 is
a repeller. Consequently, the map ϕ is not identically zero. Moreover, since
cos(2πθ) vanishes for θ ∈ {1/4, 3/4} it follows that the set

D := {(i/4 + nω (mod 1), 0) : n ∈ Z, i ∈ {1, 3}}

is invariant and dense in x = 0, and belongs at the same time to the repeller
and to the attractor. The authors use numerical techniques to find that ϕ
is positive almost everywhere, and hence discontinuous almost everywhere.
This gives the strangeness of the attractor.

The nonchaoticity is studied in terms of Lyapunov exponents. An at-
tractor is defined to be nonchaotic whenever the Lyapunov exponents are
nonpositive for almost every point in the basin of attraction of the attractor
(that is, in the set of initial conditions which approach the attractor as time
tends to +∞). For this kind of system the vertical Lyapunov exponent at
(θ, x) is given by

(5) lim sup
n→∞

1
n

log
∥∥∥∥(∂θn/∂θ ∂θn/∂x

∂xn/∂θ ∂xn/∂x

)(
0
1

)∥∥∥∥ = lim sup
n→∞

1
n

log
∣∣∣∣∂xn

∂x

∣∣∣∣.
By Oseledets’s Theorem, limn→∞ n

−1 log |∂xn/∂x| exists for almost every
point in the support of any invariant measure and, as we will see, the other
Lyapunov exponent is zero.
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Using the geometrical properties of the hyperbolic tangent function it can
be easily proved that |tanh′(x)| < tanh(x)/x; this is used by the authors to
check that, whenever the above limit exists, the vertical Lyapunov exponent
is negative. This provides a rigorous proof of the nonpositivity of the Lya-
punov exponent for almost every point with respect to an invariant measure
but in general it does not control the value of the Lyapunov exponent for
Lebesgue almost every point in the basin of attraction of the attractor.

Example 2 (Keller [17]). As far as we know, [17] together with [4] con-
tain the first rigorous proofs of the existence of such SNA.

Keller proved the existence of an SNA (with the definition used in [10])
for two-dimensional quasiperiodically forced skew products of the form

(6)
{
θn+1 = Rω(θn),
xn+1 = f(xn)g(θn),

where (θn, xn) ∈ S1 × [0,∞), the map g : S1 → [0,∞) is continuous and
bounded, and the map f : [0,∞)→ [0,∞) is C1, bounded, increasing, strictly
concave and such that f(0) = 0. Such models are “one-sided” generalisations
of (2). To see this and to fix ideas, notice that f(x) can be taken equal to
tanh(x) and g(x) equal to 2|σ cos(2πθ)|.

Set
I(g) :=

�

S1

log g(θ) dθ ≥ −∞,

which is well defined because g is bounded. As in system (2), the circle x = 0
is invariant and the vertical Lyapunov exponent on this invariant set is the
logarithm of

σ :=
{
f ′(0) exp(I(g)) if I(g) > −∞,
0 otherwise,

for almost every θ ∈ S1. So, if σ > 1, the circle x = 0 is a repeller.
Then the attractor and its dynamics are described by the following

Theorem 2.1 (Keller). There exists an upper semicontinuous map ϕ :
S1 → R+ whose graph is invariant under system (6). Moreover :

(a) the Lebesgue measure on the circle, lifted to the graph of ϕ, is a
Sinai–Ruelle–Bowen measure, that is,

lim
n→∞

1
n

n−1∑
k=0

ϑ(F k(θ, x)) =
�

S1

ϑ(θ, ϕ(θ)) dθ

for every ϑ ∈ C0(S1 × R+,R) and Lebesgue almost every (θ, x) ∈
S1 × R+, where F denotes the map (θ, x) 7→ (Rω(θ), f(x)g(θ)),

(b) if σ ≤ 1 then ϕ ≡ 0,
(c) if σ > 1 then ϕ(θ) > 0 for almost every θ,
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(d) if σ > 1 and g(θ0) = 0 for some θ0 then the set {θ : ϕ(θ) > 0} is
meager and ϕ is almost everywhere discontinuous,

(e) if σ > 1 and g > 0 then ϕ is positive and continuous; if g is C1 then
so is ϕ,

(f) if σ 6= 1 then |xn − ϕ(θn)| → 0 exponentially fast for almost every θ
and every x > 0.

When σ > 1 it follows that the vertical Lyapunov exponent exists for
almost every θ and for every x > 0 and it is equal to

I(g) +
�

S1

log f ′(ϕ(θ)) dθ < 0.

By using Oseledets’s Theorem it can be shown that the second Lyapunov
exponent is zero for every (θ, x) such that the vertical Lyapunov exponent
exists with limit. Hence, case (d) of the above theorem shows the existence
of SNA for such systems.

Let us point out that the graph of ϕ is not closed because it is discontin-
uous almost everywhere. Therefore the attractor must be the closure of this
graph.

3. A definition of strange nonchaotic attractor. As we have said
in the introduction, there is no unique notion of SNA in the literature. More-
over, depending on the definition chosen, certain objects will be or will not
be SNA’s and the difficulty of their study can vary. The aim of this section
is to give a rigorous definition of this kind of attractor which supports theo-
retically the SNA’s found in the above models. We also look for a definition
that agrees with the numerical approach in the quest for SNA’s. Indeed, we
want a definition whose elements are “observable” in the physical sense (that
is, which involves sets of positive Lebesgue measure).

We divide this section into four subsections. In the first three of them
we will define one of the terms involved in the definition of SNA: attractor,
nonchaotic and strange. In the last one we will state a common definition of
SNA in the literature (that we call the one-dimensional approach) and we
will compare it with the definition we propose.

3.1. Attractor. We adopt the definition of attractor proposed by Milnor
in [20]:

Definition 3.1. Let (X, f) be a (semi-)dynamical system where X is
a smooth compact manifold endowed with a measure µ equivalent to the
Lebesgue one when it is restricted to any coordinate neighbourhood and f
is a continuous map. A closed subset A ⊂ X will be called an attractor if it
satisfies the following two conditions:

(I) The set ρ(A) := {z ∈ X : ω(z) ⊂ A} has strictly positive measure.
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(II) There is no strictly smaller closed set A′ ⊂ A so that ρ(A′) coincides
with ρ(A) up to a set of measure zero.

The set ρ(A) is called the realm of attraction of A, and it can be defined
for every subset of X. When it is open, it is called the basin of attraction
of A. A set satisfying this definition is called a metric attractor.

Any attractor A must be a nonempty closed f -invariant (i.e. f(A) = A)
subset of the nonwandering set of f .

Notice that the realm of attraction of a repeller has measure zero. Thus,
an attractor A may contain a repeller. Also, it may contain a smaller attrac-
tor A′ ( A as long as ρ(A) and ρ(A′) differ by a set of positive measure.
The attractors for which this is not possible are minimal attractors. They
are defined by replacing condition (II) of Definition 3.1 by

(II′) There is no strictly smaller closed set A′ ⊂ A such that µ(ρ(A′)) is
positive.

If the space X is not compact but there exists a compact set X̃ with
positive measure such that f(X̃) ⊂ X̃, then there exists an attractor in X̃.

There is an important choice to make for the definition of attractor.
Either we require the attractor to be closed and then, in the examples con-
sidered, the repeller x = 0 is contained in the attractor, or we omit this
condition. In that case, the ω-limit sets of points in the attractor need not
be contained in it, and this causes invariance problems. We have chosen to
define an attractor as a closed set.

3.2. Strangeness. Concerning SNA’s we have found three different def-
initions of strangeness. In the literature, an attractor is considered strange
in the following cases:

(1) It is neither a finite set of points nor piecewise differentiable (see, for
instance, [10]).

(2) It has fractal geometry (that is, its Hausdorff dimension is greater
than its topological dimension—see, for instance, [22]).

(3) Its Hausdorff dimension is greater than one (see, for instance, [21]).

As far as we know, the three definitions are used in articles where two-
dimensional systems are studied, while for higher-dimensional systems only
the first one is used.

It is an exercise to show that the Hausdorff dimension of the graph of
a one-dimensional piecewise differentiable map is one. Thus, one can show
that, in the two-dimensional case, the third definition implies the second
one and, in turn, this implies the first one. So we choose as a definition of
strangeness the more general one:
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Definition 3.2. An attractor is strange if it is neither a finite set of
points nor a piecewise differentiable manifold. A manifold X is piecewise
differentiable if there exists a finite set of disjoint differentiable submanifolds
A1, . . . , Ak such that

X ⊂ Cl
( k⋃

i=1

Ai

)
.

If ∂X 6= ∅, then the boundary is also required to be piecewise differentiable.

3.3. Nonchaoticity. As is customary in the world of SNA’s, we define the
notion of nonchaotic in terms of Lyapunov exponents.

Let (X, f) be a (semi-)dynamical system where X is a finite-dimensional,
smooth, compact, Riemannian manifold. The maximal upper Lyapunov ex-
ponent of x ∈ X is defined as

λmax(x) = lim sup
n→∞

1
n

log |Dfn(x)|(7)

= max
{

lim sup
n→∞

1
n

log ‖Dfn(x)v‖ : v ∈ TxX \ {0}
}
.

Observe that the maximal upper Lyapunov exponent always exists. More-
over, since X is finite-dimensional, its value does not depend on the choice of
the compatible matrix norm. Also, by Oseledets’s Theorem, it exists in terms
of limits for almost every point in the support of any invariant measure.

Definition 3.3. Let (X, f) be a (semi-)dynamical system where X is a
finite-dimensional, smooth, compact, Riemannian manifold. An attractor A
is called nonchaotic if the set of points x ∈ ρ(A) for which λmax(x) > 0 has
zero Lebesgue measure.

This definition implies that the maximal upper Lyapunov exponent is
non-positive for almost every point in ρ(A), which has positive Lebesgue
measure. Thus, in contrast with other definitions of nonchaoticity used in
the literature (that only take into account sets of Lebesgue measure zero)
the above definition depends on quantities (lim sup) that are well defined for
every point, and properties (λmax(x) ≤ 0) that must be satisfied in sets of
positive Lebesgue measure, thus being observable.

Another approach to the definition of nonchaoticity for systems of the
form (1) is (see for instance [15], [16]) to consider the dynamical system
in dimension one restricted to the attractor. Then the original system is
called nonchaotic if the unique Lyapunov exponent of this reduced system is
nonpositive. The Lyapunov exponent is defined (with lim) for almost every
point in the attractor by the Birkhoff Ergodic Theorem since the dynamics
on the attractor is driven by θn+1 = Rω(θn), which is uniquely ergodic with
the unique ergodic measure being the Lebesgue measure. The drawback of
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this definition, in our opinion, is that the nonchaoticity condition is not
observable in the above sense.

Rather often in the literature, Lyapunov exponents are computed (fre-
quently in a very crude numerical way) for Lebesgue almost every point and
with lim instead of lim sup without checking the existence of such numbers.
To see the problems that can arise from this approach, in the next section
we discuss some theoretical issues about Lyapunov exponents and provide
two examples showing that, in general, these problems have to be taken into
account.

3.3.1. Comments on the use of Lyapunov exponents in the definition of
nonchaoticity. Let X be an m-dimensional manifold, let F be a differen-
tiable map from X to itself, and let µ be an F -invariant measure. Then by
Oseledets’s Theorem there exist m Lyapunov exponents, −∞ ≤ λ1 ≤ · · · ≤
λm <∞, such that for µ-almost every x ∈ X it follows that

lim
n→∞

1
n

log ‖DFn(x)v‖ ∈ {λ1, . . . , λm}

for every v in the tangent space to X at x, and

(8) lim
n→∞

1
n

log |detDFn(x)| =
m∑

i=1

λi.

The points which satisfy the above conditions are called regular points.
Consequently, in the case of two-dimensional skew products of the form

(1), for µ-almost every (θ, x), the Lyapunov exponents are the vertical Lya-
punov exponent :

(9) λv = lim
n→∞

1
n

log
∥∥∥∥( 1 0
∂xn/∂θ ∂xn/∂x

)(
0
1

)∥∥∥∥ = lim
n→∞

1
n

log
∣∣∣∣∂xn

∂x

∣∣∣∣,
and a second one that we will denote by λ̂. Moreover, from (8) it follows
that, for µ-almost every (θ, x),

λv + λ̂ = lim
n→∞

1
n

log
∣∣∣∣det

(
1 0

∂xn/∂θ ∂xn/∂x

)∣∣∣∣ = lim
n→∞

1
n

log
∣∣∣∣∂xn

∂x

∣∣∣∣ = λv.

We can summarize the above arguments as:

Remark 3.4. The second Lyapunov exponent λ̂ is zero, and the maximal
Lyapunov exponent λmax = max{λv, λ̂} is nonpositive if and only if λv ≤ 0.

It is also important to point out that the above formulas do not work
for arbitrary points outside the support of an invariant measure. Then the
Lyapunov exponents are only defined in terms of lim sup. In [3] it is shown
that the set of points whose Lyapunov exponents are not given in terms
of limits may be nonempty and have full Hausdorff dimension (but it has
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zero measure with respect to any invariant measure). Moreover, property (8)
does not necessarily hold after replacing lim by lim sup. A nice and simple
example of this fact, due to R. de la Llave [8], is described in Example 3. We
should note that, in view of Oseledets’s Theorem, the set of points for which
(8) does not hold has zero measure with respect to any invariant measure.

Example 3. The system we consider is a nonsymmetric horseshoe. To
define it in detail we follow Robinson’s construction of the horseshoe map [23].
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f(H)

f(C1) f(C2)

C2

H

C1

f(A) f(B)

B

A

Fig. 2. Construction of the sets N and f(N)

We start by taking λ < 1/2 and the unit square divided into three hori-
zontal strips (see Figure 2),

[0, 1]× [0, 1] = A ∪H ∪B,

where A := [0, 1]× [0, λ] and B := [0, 1]× [1−λ, 1]. Let f ∈ C∞([0, 1]× [0, 1])
be such that

Df |A =
(
d/κα 0

0 κα

)
and Df |B =

(
−d/α 0

0 −α

)
,

with κ > 1, d, α > 0, 1/α < λ < 1/2 and 0 < d/κα+ d/α < 1. Therefore,

(10) κα > α and
d

κα
<
d

α
.
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Now we set N := ([0, 1]× [0, 1]) ∪ C1 ∪ C2, where

C1 =
(

[0, 1]×
[
−καλ− 1

2
, 0
])
∪S1, C2 =

(
[0, 1]×

[
1, 1+

καλ− 1
2

])
∪S2,

and S1 and S2 are the semidiscs of radius 1/2 on the bottom of [0, 1] ×
[−(καλ− 1)/2, 0] and on the top of [0, 1]× [1, 1+ (καλ− 1)/2], respectively.

Finally, we can extend f to a C∞ diffeomorphism of N in such a way
that f(H) ⊂ C2, f(C2) ⊂ C1, f(C1) ⊂ C1 and f |C1 is contractive, so that f
has a unique fixed point which is contained in f(C1).

Associated to this diffeomorphism we can consider a symbolic dynamics
analogous to the one associated to Smale’s horseshoe.

It is well known that the unique invariant set of this map contained in
the unit square is

Λ := {x ∈ [0, 1]× [0, 1] : f i(x) ∈ A ∪B for all i ∈ Z}.

We consider the set Λ̃ of those points x ∈ Λ such that, for some l ∈
N ∪ {0}, the itinerary of f l(x) is of the form

(11) Ap1Bp2−p1Ap3−p2Bp4−p3 · · ·Ap2k+1−p2kBp2k+2−p2k+1 · · ·
where pk = ρk with ρ ∈ N \ {1}. We set p0 = 0. Then, for every n ∈
[pk, pk+1 − 1],

f l+n(x) ∈
{
A if k is even,
B if k is odd.

Clearly, f(Λ̃) ⊂ Λ̃.
The next result summarises the situation for the Lyapunov exponents of

the above model and, in particular, shows that condition (8) does not hold
for this example.

Lemma 3.5. For every point x ∈ Λ̃, the upper Lyapunov exponents are

lim sup
n→∞

1
n

log
∥∥∥∥Dfnx

(
1
0

)∥∥∥∥ = log(d/α),

lim sup
n→∞

1
n

log
∥∥∥∥Dfnx

(
0
1

)∥∥∥∥ = log(κα).

Moreover ,

lim sup
n→∞

1
n

log |det(Dfnx)| = lim
n→∞

1
n

log |det(Dfnx)| = log(d).

Therefore, since κ > 1, formula (8) does not hold.

Proof. Since we have to take limits, we can skip the first iterates of x
and assume that x already has an itinerary of the form (11) (that is, we can
assume that l = 0).
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We start by proving that the upper Lyapunov exponent in the direction
(1, 0) is log(d/α). Without loss of generality we can work with ‖·‖∞, because
the value of the Lyapunov exponents does not depend on the chosen norm.
Given n ∈ N we set

K(n) :=
1
n

log
∥∥∥∥Dfnx

(
1
0

)∥∥∥∥
∞

=
m1 log(d/κα) +m2 log(d/α)

m1 +m2
,

where n = m1 +m2, and m1 = m1(n) and m2 = m2(n) are the numbers of
iterates of x which are in A and B, respectively. Since m1 ≥ 0 and m2 ≥ 0
we have

log(d/κα) ≤ K(n) ≤ log(d/α).

On the other hand,

lim sup
n→∞

K(n) = lim sup
n→∞

m1 log(d/κα) +m2 log(d/α)
m1 +m2

= lim sup
n→∞

m2(log(d/α)− log(d/κα)) + (m1 +m2) log(d/κα)
n

= log(d/κα) + (log(d/α)− log(d/κα)) lim sup
n→∞

m2

n
≤ log(d/α).

Thus, to prove that lim supn→∞K(n) = log(d/α) it is enough to show that
there exists a sequence {nk}k∈N ⊂ N such that

lim
k→∞

m2(nk)
nk

= 1.

We set nk = p2k − 1 = ρ2k − 1. Then, in view of (11),

m2(nk) =
k∑

i=1

(p2i−p2i−1) =
k∑

i=1

(ρ2i−ρ2i−1) =
ρ− 1
ρ

ρ2 − ρ2k

1− ρ2
=
ρ2k+1 − ρ
ρ+ 1

.

Hence
m2(nk)
nk

=
1

ρ2k − 1
ρ2k+1 − ρ
ρ+ 1

,

which tends to 1 when k →∞.
The proof that the vertical Lyapunov exponent is log(κα) follows in a

similar way as before.
To prove the last statement of the lemma note that

|det(Df |A)| = d

κα
κα = d and |det(Df |B)| = d

α
α = d.

Then, for every x ∈ Λ (and in particular for every x ∈ Λ̃),
1
n

log |det(Dfnx)| = log(d).
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Therefore,

lim sup
n→∞

1
n

log |det(Dfnx)| = lim
n→∞

1
n

log |det(Dfnx)| = log(d).

3.4. A common definition of SNA. One of the usual definitions of SNA
is the one given for instance in [12]. The authors define the graph of a
measurable function ϕ : D ⊂ S1 → R to be an SNA for a quasiperiodically
forced system of the form (1) if it has the following four properties:

(1) for almost every initial condition (θ0, x0) ∈ S1 × R,

lim
n→∞

|ψ(n)(θ0, x0)− ϕ(θn)| = 0

where ψ(n) denotes the second component of the nth iterate of the
system (this follows from the fact that for almost every θ ∈ S1 the
vertical Lyapunov exponent on the graph of ϕ is nonpositive),

(2) it is invariant: ψ(θ, ϕ(θ)) = ϕ(θ + ω) for every θ ∈ S1,
(3) the Lyapunov exponent on the attractor is 0, because the basis of

the system is an irrational rotation,
(4) it cannot be extended to the graph of a continuous function in S1.

The first condition of this definition, which we will informally call the one-
dimensional approach, corresponds to the definition of attractor the authors
consider, the third one is the definition of nonchaoticity, and the last one
sets up the strangeness condition.

The main differences between the one-dimensional approach and the one
we propose are the following: First, the invariant objects satisfying the above
definition are not closed in contrast with any standard definition of attractor.

On the other hand, the notion of nonchaoticity of the one-dimensional
approach only takes into account the dynamics on the graph of ϕ, whereas
ours takes into account all Lyapunov exponents. Thus, the notion of non-
chaoticity that we propose is stronger than the one contained in the one-
dimensional approach. However, the notion of strangeness considered in the
one-dimensional approach is stronger than the one we propose.

Finally, the one-dimensional approach definition strongly depends on the
fact that the system is a quasiperiodic skew product.

4. Some examples of SNA’s. First of all notice that Keller’s [17] model
(see Example 1 and Theorem 2.1) has an SNA when σ > 1 and g vanishes at
some point. Indeed, since ϕ (the map giving the invariant graph) is discon-
tinuous almost everywhere, its graph is not closed. So, a reasonable choice
for the attractor is the closure of the graph of ϕ. This set is an attractor
in view of Theorem 2.1(f), and the strangeness follows from Theorem 2.1(d)
(see also statement (c)). Finally, the system is nonchaotic by Remark 3.4
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and because the vertical Lyapunov exponent exists for almost every θ and
for every x > 0, and it is negative.

Next we want to see that the Grebogi et al. [10] model (see Example 1)
has an SNA. To do it we will prove that a larger class of models which are
“two-sided” generalisations of the Keller model have an SNA, and we will
obtain the desired result as a corollary.

The systems we will consider are of the form

(12)
{
θn+1 = Rω(θn),
xn+1 = f(xn)g(θn),

where (θn, xn) ∈ S1 × R, ω ∈ R \ Q, g : S1 → R is bounded, differentiable
and vanishes at some point, and f : R→ R is odd, bounded, C1 and satisfies
f(0) = 0. Moreover, either f is increasing and f |(0,∞) strictly concave, or f
is decreasing and f |(0,∞) strictly convex.

As before, we define the parameter

σ := f ′(0) exp
( �

S1

log |g(θ)| dθ
)
,

which is the Lyapunov exponent of the invariant circle x = 0.
Then we have

Proposition 4.1. Assume that model (12) satisfies σ > 1. Then it has
an SNA.

Note that from Proposition 4.1 it follows immediately that the closure of
the attractor of the Grebogi et al. [10] model is an SNA.

Proof of Proposition 4.1. Let T (θ, x) := (Rω(θ), f(x)g(θ)). Since f and
g are bounded, there exists Q such that |f(x)g(θ)| ≤ Q for every (θ, x) ∈
S1 × R. Then T (S1 × [−Q,Q]) ⊂ S1 × [−Q,Q], and since S1 × [−Q,Q] is
compact, there is an attractor of the system (12) in S1 × [−Q,Q].

Now we consider the following related model:

(13)
{
θn+1 = Rω(θn),
zn+1 =

∣∣f |R+(zn)
∣∣ |g(θn)|,

where zn ∈ R+. This model satisfies the assumptions of the Keller model,
and thus the conclusion of Theorem 2.1 holds for it. In particular, by using
the notation of Theorem 2.1,

ϕ(θ) =
∣∣f |R+(ϕ(R−1

ω (θ)))
∣∣ |g(R−1

ω (θ))|.
Then, since f is odd,

±ϕ(θ) = ±
∣∣f |R+(ϕ(R−1

ω (θ)))
∣∣ |g(R−1

ω (θ))| = (±s)f(ϕ(R−1
ω (θ)))g(R−1

ω (θ))

= f((±s)ϕ(R−1
ω (θ)))g(R−1

ω (θ)),
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where s := sign(g(R−1
ω (θ)) sign(f(ϕ(R−1

ω (θ)))). Hence,

{ϕ(θ),−ϕ(θ)} = f({ϕ(R−1
ω (θ)),−ϕ(R−1

ω (θ))})g(R−1
ω (θ))

and the closure of the graph of Φ(θ) = {ϕ(θ),−ϕ(θ)} is an attractor for
system (12). Moreover, since ϕ is strange so is Φ.

Finally, since f is odd and the differences between systems (12) and (13)
are essentially changes of sign in the coordinate x, it follows that the vertical
Lyapunov exponents of both systems are the same. Thus, Φ is nonchaotic if
and only if ϕ is nonchaotic. Hence, system (12) has an SNA for σ > 1 by
Theorem 2.1.

The quasiperiodically quadratic family studied in [5] is another example
of system with an SNA. It is immediate from [5, Main Theorem] that the
closure of the invariant graph the author finds satisfies our definition.

4.1. One-dimensional SNA’s. To end this section let us display a very
different kind of SNA. Indeed, we will remark that absorbing Cantor sets
and solenoidal attractors (of which the Feigenbaum attractor is a particular
case) are, indeed, SNA’s.

Let f : [−1, 1]→ [−1, 1] be an S-unimodal map (i.e. its Schwarzian der-
ivative is negative wherever it is well defined) with a nonflat critical point c.
By the topological classification of the attractors of these maps (see, for
example, [9, Theorem 1.3 of Chapter V]), they have a unique attractor, which
satisfies Milnor’s definition (i.e. it is a metric attractor). More concretely, if
f has an attracting periodic orbit then the attractor is this periodic orbit;
if f is infinitely often renormalizable then the attractor is the Cantor set
ω(c), which is called a solenoidal attractor. The last possibility is that f
is finitely often renormalizable. In this case the attractor is either a union
of transitive intervals, or a Cantor set which is ω(c). In this last situation
the attractor is called an absorbing Cantor set (or a wild Cantor attractor
in [7]). The existence of this kind of attractor was proved in [6] and [7] under
certain conditions (a particular case of maps satisfying these conditions are
the Fibonacci maps). Whenever the attractor is a Cantor set, it is minimal
and strange. Thus, to prove that it is an SNA we only have to see that the
Lyapunov exponent is nonpositive for Lebesgue almost every point in [−1, 1].
From statement 1 of the corollary on page 366 of [9], the Lyapunov exponent

λf := lim sup
n→∞

1
n

log |Dfn(x)|

exists for Lebesgue almost every x, and it is positive if and only if f has
an absolutely continuous invariant probability measure (with respect to the
Lebesgue measure). By [9, Theorem 1.5 of Chapter V], if f has an abso-
lutely continuous invariant probability measure, then it is only finitely often
renormalizable and it has no absorbing Cantor attractor. Thus, when the
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attractor of f is solenoidal or an absorbing Cantor set, the Lyapunov expo-
nent is less than or equal to zero for Lebesgue almost every x. Consequently,
the attractor is an SNA in these cases.
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