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Rational Misiurewicz maps for which the Julia set is not the
whole sphere

by

Magnus Aspenberg (Kiel)

Abstract. We show that Misiurewicz maps for which the Julia set is not the whole
sphere are Lebesgue density points of hyperbolic maps.

1. Introduction. The notion of Misiurewicz maps goes back to the
famous paper [14] by M. Misiurewicz. There have been some variations of
the definition of complex Misiurewicz maps (see e.g. [9], [19]). Let us proceed
with the following definition. First, let J(f) be the Julia set of the function
f and F (f) its Fatou set. The set of critical points is denoted by Crit(f)
and the omega limit set of x is denoted by ω(x).

Definition 1.1. A rational non-hyperbolic map f is a Misiurewicz map
if f has no parabolic periodic points and for every c ∈ Crit(f) we have
ω(c) ∩ Crit(f) = ∅.

In [17] Rivera-Letelier shows that Misiurewicz maps for unicritical poly-
nomials of the form fc(z) = zd + c, c ∈ C, are Lebesgue density points of
hyperbolic maps. This paper extends this result to all Misiurewicz maps in
the space of rational functions of a given degree d ≥ 2, if the Julia set is
not the whole sphere, i.e. every Misiurewicz map for which J(f) 6= Ĉ is a
Lebesgue density point of hyperbolic maps. The statement is false if the Julia
set is the whole sphere (see e.g. [3]), because in this case, post-critically fi-
nite Misiurewicz maps are Lebesgue density points of Collet–Eckmann (CE)
maps. In addition, these CE-maps have their Julia set equal to the whole
sphere (see also [16]). It seems plausible that every Misiurewicz map for
which J(f) = Ĉ is a Lebesgue density point of CE-maps.

The following is the main result of this paper.
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Theorem A. If f is a rational Misiurewicz map of degree d ≥ 2, for
which J(f) 6= Ĉ, then f is a Lebesgue density point of hyperbolic maps in
the space of rational maps of degree d.

The space of rational maps of degree d is a complex manifold of dimension
2d+1. To prove Theorem A we will consider 1-dimensional balls around the
starting map f . If B(0, r) is a 1-dimensional ball in the parameter space
of rational maps of degree d ≥ 2, then we can associate a direction vector
v ∈ P(C2d) to B(0, r), such that the plane in which B(0, r) lies can be
parameterized by {tv : t ∈ C}. In this case we say thatB(0, r) has direction v.

Theorem A above follows directly from the following.

Theorem B. Let r > 0 and fa, a ∈ B(0, r), be a 1-dimensional family
of rational functions of degree d ≥ 2 and suppose that f = f0 is Misiurewicz
map for which J(f) 6= Ĉ. Then for almost all directions v of B(0, r), f is a
Lebesgue density point of hyperbolic maps in the ball B(0, r).

Combining [17] and Theorem A, every CE-map for which the Julia set
is not the whole sphere can be approximated by a hyperbolic map. In par-
ticular, this holds for all polynomial CE-maps. In view of [17] and [3] it is a
natural conjecture that almost every CE-map has its Julia set equal to the
whole sphere.

Remark 1.2. We note that any Misiurewicz map which is not a flexible
Lattès map can be approximated by a hyperbolic map even in the case
J(f) = Ĉ, see [1]. Later Gauthier ([8, Theorem 6.3]) proved this using simpler
arguments with good families (see [2]) and non-normality. Similar arguments
appear also in [5]. In fact, the main result in [8] is that Misiurewicz maps
belong to the support of bifurcation currents.

In the last section we sketch how to approximate a Misiurewicz map (not
being a flexible Lattès map) with a hyperbolic map combining Theorem A
and [8].

For a survey of Lattès maps and the definition of flexible Lattès maps
see e.g. [13].

2. Preliminary lemmas. We will use the following lemmas by R. Mañé.

Theorem 2.1 (Mañé’s Theorem I). Let f : Ĉ→ Ĉ be a rational map and
Λ ⊂ J(f) a compact invariant set not containing critical points or parabolic
points. Then either Λ is a hyperbolic set or Λ ∩ ω(c) 6= ∅ for some recurrent
critical point c of f .

Theorem 2.2 (Mañé’s Theorem II). If x ∈ J(f) is not a parabolic pe-
riodic point and does not intersect ω(c) for some recurrent critical point c,
then for every ε > 0, there is a neighborhood U of x such that
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• For all n ≥ 0, every connected component of f−n(U) has diameter ≤ ε.
• There exists N > 0 such that for all n ≥ 0 and every connected com-
ponent V of f−n(U), the degree of fn|V is ≤ N .
• For all ε1 > 0 there exists n0 > 0 such that every connected component
of f−n(U) with n ≥ n0 has diameter ≤ ε1.

An alternative proof of Mañé’s Theorem by L. Tan and M. Shishikura
can be found in [18]. Let us also note that a corollary of Mañé’s Theorem
II is that a Misiurewicz map cannot have any Siegel disks, Herman rings or
Cremer points (see [11] or [18]).

For k ≥ 0, define

P k(f) =
⋃

n>k, c∈Crit(f)∩J(f))

fn(c).

Given a Misiurewicz map f , there is some k ≥ 0 such that P k(f) is a
compact, forward invariant subset of the Julia set which contains no critical
points.

By Mañé’s Theorem I, the set Λ = P k(f) is hyperbolic. It is then well-
known that there is a holomorphic motion h on Λ:

h : Λ×B(0, r)→ C.

For each fixed a ∈ B(0, r) the map h = h(z, a) = ha is an injection from Λ
to ha(Λ) = Λa and for fixed z ∈ Λ the map h = h(z, a) is holomorphic in a.

Each critical point cj ∈ J(f) moves holomorphically, if it is non-degen-
erate (i.e. cj is simple), by the Implicit Function Theorem. If it is degener-
ate, we have to use a new parameterisation to be able to view each critical
point as an analytic function of the parameters. If the parameter space is
1-dimensional one can use the Puiseaux expansion (see e.g. [6, Theorem 1,
p. 386]). By reparameterising using a simple base change of the form a 7→ aq

for some integer q ≥ 1, the critical points then move holomorphically. In the
multi-dimensional case, i.e. if we consider the whole 2d+ 1-dimensional ball
B(0, r) in the parameter space, there is a corresponding result following from
the standard theory of resolution of singularities (see e.g. [10] for a survey).
A real analytic version of this result is stated in Lemma 9.4 in [15]. The
complex analytic version is stated in [1] and can be formulated as follows:
There is a proper, holomorphic map ψ : U → V , where U and V are open
sets in C2d+1 containing the origin, such that

f ′(z, ψ(a)) = E(z − c1(a)) · . . . · (z − c2d−2(a)),

where each cj(a) is a holomorphic function on U and E is holomorphic and
non-vanishing. We therefore assume that all critical points cj on the Julia
set move holomorphically.
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For some k ≥ 0 we have vj := fk+1(cj) ∈ Λ for all cj ∈ Crit(f) ∩ J(f).
Thus we can define the parameter functions

xj(a) = vj(a)− ha(vj(0)).

Let B(0, r) be a full dimensional ball in the parameter space of rational
maps around f = f0. We already know that Misiurewicz maps which are
not flexible Lattès maps cannot carry an invariant line field on its Julia set
(see [4]). This implies that not all the functions xj can be identically zero in
B(0, r).

Lemma 2.3. If f is a Misiurewicz map and not a flexible Lattès map,
then at least one xj is not identically zero in B(0, r).

In fact, it follows a posteriori that no such xj is identically zero. However,
let us now assume that I is the set of indices j such that xj is not identically
zero in B(0, r). We know that I 6= ∅. In the end, we prove that in fact
I = {1, . . . , 2d− 2}.

Hence the sets {a : xj(a) = 0}, j ∈ I, are all analytic sets of codimen-
sion 1. Hence for almost all directions v the functions xj , j ∈ I, are not
identically zero in the corresponding disk B(0, r). From now on, fix such a
disk B(0, r) for some r > 0.

Definition 2.4. Given 0 < k < 1, a disk D0 = B(a0, r0) ⊂ B(0, r) is a
k-Whitney disk if |a0|/r0 = k.

A Whitney disk is a k-Whitney disk for some 0 < k < 1.

We will now use a distortion lemma from [4, Lemma 3.5]. In this lemma
we put ξn = ξn,j and

ξn,j(a) = fna (cj(a)),

where a ∈ B(0, r). Moreover, choose some δ′ > 0 such that N is a fixed 10δ′-
neighbourhood of Λ such that Λa ⊂ N for all a ∈ B(0, r) and dist(Λa, ∂N ) ≥
δ′. This δ′ > 0 shall be fixed throughout the paper and depends only on f .

Lemma 2.5. Let ε > 0. If r > 0 is sufficiently small , there exists a
number 0 < k < 1 only depending on the function xj , and a number S =
S(δ′), such that the following holds for any k-Whitney disk D0 = B(a0, r0) ⊂
B(0, r): there is an n > 0 such that the set ξn(D0) ⊂ N and has diameter at
least S. Moreover ,

(1)
∣∣∣∣ξ′k(a)ξ′k(b)

− 1
∣∣∣∣ ≤ ε

for all a, b ∈ D0 and all k ≤ n.
The difference from standard Koebe distortion lemmas is that in this

case we have very small distortion also of the argument. Hence, if ε is small
in the above lemma, we have good geometry control of the shape of ξn(D0)
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up to the large scale S > 0, i.e. it is almost round. We will use the fact that
this holds for every xj , j ∈ I.

3. Conclusion and proof of Theorem B. We recall the following
folklore lemma. For proofs see e.g. [12] (see also [7] for the case of polyno-
mials).

Lemma 3.1. Let f be a Misiurewicz map for which J(f) 6= Ĉ. Then the
Lebesgue measure of J(f) is zero.

For each critical point cj = cj(0) ∈ J(f), j ∈ I, put Dj = ξnj ,j(D0),
where nj is the number n in Lemma 2.5. Hence for every j, the diameter of
Dj is at least S and we have good control of the geometry, if ε > 0 is small
in Lemma 2.5.

Next we prove the following lemma.

Lemma 3.2. For each compact subset K ⊂ F (f) there is a perturbation
r = r(K) such that K ⊂ F (fa) for all a ∈ B(0, r).

Proof. It follows from [18] and [11] that the only Fatou components for
Misiurewicz maps are those corresponding to attracting cycles. Recall that
f = f0.

Given K ⊂ F (f0), there is some integer n and some small disk Bj ⊂
F (f0) around each attracting orbit such that K ⊂ f−n0 (D), where D =⋃
j Bj . Choose D such that f0(D) ⊂ D. Since fa(D) ⊂ D for small pertur-

bations a ∈ B(0, r), we have fna (D) ⊂ D for all n ≥ 0. Hence the family
{fna }∞n=0 is normal on D and consequently D ⊂ F (fa) for any such param-
eter a ∈ B(0, r). Moreover, f−na (D) moves continuously with the parameter
in the Hausdorff distance topology. Therefore there is some r > 0 such that
also K ⊂ f−na (D) for all a ∈ B(0, r). The lemma is proved.

Let δ > 0. Define

Eδ = {z ∈ F (f0) : dist(z, J(f0)) ≥ δ}.

Now, there is some δ0 > 0 (depending only on f = f0) such that for every
0 < δ < δ0 there exists an r = r(δ) > 0 such that Eδ ⊂ F (fa) for every
a ∈ B(0, r), by Lemma 3.2.

Clearly, r(δ)→ 0 as δ → 0. Since the Lebesgue measure of J(f0) is zero,
for every ε1 > 0 there is some δ > 0 such that the Lebesgue measure of
{z : dist(z, J(f0)) ≤ δ} is less than ε1. Hence there exists some δ > 0 such
that for every disk D of diameter at least S/2 (S > 0 is the large scale from
Lemma 2.5) we have

µ(D ∩ Eδ)
µ(D)

≥ 1− ε1.
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For this δ > 0, there is some r = r(δ) > 0 such that also Eδ ⊂ F (fa) for
all a ∈ B(0, r). Since every Dj contains a disk of diameter S/2 (because of
bounded distortion), we get

µ(Dj ∩ Eδ)
µ(Dj)

≥ 1− ε′1,

where ε′1(ε1)→ 0 as ε1 → 0. By Lemma 2.5,

µ(ξ−1
nj ,j

(Dj ∩ Eδ))
µ(D0)

≥ 1− Cε′1

for some constant C > 0 depending on the ε in Lemma 2.5. We have C → 1
as ε → 0. Now every parameter a ∈ ξ−1

nj ,j
(Dj ∩ Eδ) has the property that

cj(a) ∈ F (fa). For every a in

A =
⋂
j

ξ−1
nj ,j

(Dj ∩ Eδ),

the critical point cj(a) is in F (fa). If I 6= {1, . . . , 2d − 2}, then there is a
small neighbourhood around a in the ball B(0, r) where all cj(a) ∈ F (fa)
for j ∈ I and, by the definition of I (since xj ≡ 0 for j 6= I), the other
cj(a) still land at the hyperbolic set Λa. This means that fa is a J-stable
Misiurewicz map. But this contradicts [4]. Hence I = {1, . . . , 2d− 2}, so no
xj is identically zero.

Consequently, for every a ∈ A, every cj(a) is in F (fa) and it follows that
fa is a hyperbolic map. Since ε1 > 0 can be chosen arbitrarily small, the
Lebesgue density of hyperbolic maps at a = 0 is equal to 1 and Theorem B
follows.

4. Hyperbolic approximation of Misiurewicz maps when J(f)
= Ĉ. In this section we sketch how to perturb a Misiurewicz map (not
being a flexible Lattès map) to a hyperbolic map in the case J(f) = Ĉ.
Start with a Misiurewicz map f = f0 with J(f) = Ĉ such that f is not a
flexible Lattès map. Using again the desingularisation process (see p. 3), we
may assume that all critical points c1, . . . , cl move holomorphically. In [8]
Gauthier pointed out that the set

G0 =
l−1⋂
j=1

{xj = 0}

is a good family in the sense of [2]. In particular, it is a complex analytic set
of dimension 1. Moreover, since f is a Misiurewicz map and not a flexible
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Lattès map, the set

G′0 =
l⋂

j=1

{xj = 0}

reduces to a single point in the parameter space, because f cannot carry
an invariant line field on its Julia set ([4, Lemma 2.3]). This implies that
xl is not identically zero in G0. Now take a k-Whitney disk D0 ⊂ G0 ∩
B(0, r) and use Lemma 2.5. We find that ξn,l(D0) grows to the large scale
S > 0, where S only depends on the function xl. Since J(f) = Ĉ, by the
eventually onto-property (non-normality), after finitely many iterates, say
m = m(S), ξn+m,l(D0) has covered the whole Riemann sphere. We find
thereby a solution to ξn+m,l(a) = cl(a) in G0, for a arbitrarily close to 0.
The function fa is a new Misiurewicz map where one critical point lies in a
super-attracting orbit. Hence J(fa) 6= Ĉ and we can apply Theorem A to
get a hyperbolic map g arbitrarily close to fa. Since a was arbitrarily close
to 0, the proof is finished.
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