Trees of manifolds and boundaries of systolic groups

by
Paweł Zawiślak (Wrocław)

Abstract

We prove that the Pontryagin sphere and the Pontryagin nonorientable surface occur as the Gromov boundary of a 7 -systolic group acting geometrically on a 7 systolic normal pseudomanifold of dimension 3 .

1. Introduction. k-systolic simplicial complexes $(k \geq 6$ is a natural number) were introduced by T. Januszkiewicz and J. Świątkowski in [JS] and independently by F. Haglund in [H]. These are simplicial analogues of metric spaces of nonpositive curvature. The idea of systolicity leads to an answer to the question posed by M. Gromov about a simple, easily checkable combinatorial condition for a simplicial complex implying hyperbolicity of this complex for the standard piecewise euclidean metric on it. In JSW Januszkiewicz and Świątkowski have shown that a 7 -systolic simplicial complex is hyperbolic.

Gromov boundaries of 7 -systolic complexes were investigated by D. Osajda in [O]. He showed that the ideal boundary $\partial_{G} X$ of a (locally finite) 7-systolic simplicial complex X is a strongly hereditarily aspherical compactum. He also showed that the Gromov boundary of a normal 7 -systolic pseudomanifold of finite dimension at least 3 is connected and has no local cutpoints. In the present paper we study in detail the case of such pseudomanifolds in dimension 3.

Trees of manifolds are inverse limits of certain inverse systems of manifolds. The most common examples of such spaces are the Pontryagin sphere and the nonorientable Pontryagin surface, which are trees of 2 -tori and of projective planes, respectively. Trees of manifolds were defined and investigated by W. Jakobsche (see [J]) and by P. R. Stallings (see [S]). These spaces occur as CAT(0) boundaries of right-angled Coxeter groups (see $[\mathrm{F}]$). In the

[^0]case when these groups are hyperbolic their $\operatorname{CAT}(0)$ boundaries coincide with their Gromov boundaries.

The main result of this paper is:
Main Theorem. Let X be a 7-systolic normal pseudomanifold of dimension 3. Let a group G act geometrically on X. Then:
(a) (Theorem7.2) if X is orientable, then $\partial_{G} G$ is homeomorphic to the Pontryagin sphere,
(b) (Theorem 9.5) if X is nonorientable, then $\partial_{G} G$ is homeomorphic to the nonorientable Pontryagin surface.
Let us make a few remarks on the Main Theorem. First, the existence of n-dimensional, k-systolic normal (orientable) pseudomanifolds with geometric group actions was shown in JS. Second, note that in this paper we prove stronger results. In the orientable case we show that the Gromov boundary of a pseudomanifold is homeomorphic to the Pontryagin sphere. In the nonorientable case we use only the cocompactness of the group action. However, the above formulation seems to be more natural.

This paper is organized as follows. In Section 2 we recall some terminology related to simplicial complexes and systolic complexes. We also recall some facts about systolic complexes. In Section 3 we thoroughly examine the properties of combinatorial spheres S_{n} in 3-dimensional 7-systolic normal pseudomanifolds and properties of natural projections $\Pi_{n}: S_{n} \rightarrow S_{n-1}$ between them. D. Osajda showed that in the case of a locally finite 7 -systolic simplicial complex X of finite dimension the inverse limit $\lim \left(S_{n}, \Pi_{n}\right)$ of the system of these spheres and projections is homeomorphic to the Gromov boundary $\partial_{G} X$. In our case, we show that every sphere S_{n} is a surface. Moreover, we show that up to a homeomorphism the sphere S_{n+1} is a connected sum of S_{n} and links of vertices $w \in S_{n}$. In Section 4 we recall the results of Jakobsche from [J] on inverse systems of compact orientable manifolds. The proof of the first statement of the Main Theorem is given in Sections 5, 6 and 7. In Section 5 we modify the maps $\Pi_{n}: S_{n} \rightarrow S_{n-1}$ (without changing the inverse limit $\left.\lim _{\rightleftarrows}\left(S_{n}, \Pi_{n}\right)\right)$. These maps become injective on some appropriate parts of their domains, which is one of the conditions in the definition of a Jakobsche inverse system (which is in turn an object used to define a tree of manifolds). Properties of such modified maps $\Pi_{n}^{\prime}: S_{n} \rightarrow S_{n-1}$ allow us, in Section 6, to further modify the inverse system $\left(S_{n}, \Pi_{n}^{\prime}\right)$. We call these modifications a refinement. Every element of the refined system is a connected sum of its predecessor and some finite number of tori. This is one of the conditions in the definition of the Pontryagin sphere. In Section 7 we define families $\mathcal{D}_{n, k}$ of pairwise disjoint discs in surfaces $S_{n, k}$, which turns the refined system $\left(S_{n, k}, \Pi_{n, k}^{\prime}\right)$ into a Jakobsche inverse system of tori, thus finishing the proof of part (a) of the Main Theorem. In Section 8 we examine
the properties of trees of nonorientable surfaces. In Section 9 we prove the second statement of the Main Theorem.
2. Definitions and properties of systolic complexes. In this section we recall the notion of a systolic complex and some of its basic properties.

Let X be a simplicial complex and let $\sigma \subset X$ be a simplex. The link of X at σ (denoted by X_{σ}) is the subcomplex of X consisting of all simplices disjoint from σ and spanning together with σ a simplex in X. The residue of σ in X (denoted by $\operatorname{Res}(\sigma, X)$) is the union of all simplices in X that contain σ.

For simplices σ_{1} and σ_{2} in X we denote by $\sigma_{1} * \sigma_{2}$ the simplicial join of σ_{1} and σ_{2} (if it exists); this means that σ_{1} and σ_{2} are disjoint and $\sigma_{1} * \sigma_{2}$ is the smallest simplex in X containing both of them. X is flag if every set of vertices $v_{1}, \ldots, v_{n} \in X$ pairwise connected by edges in X spans a simplex $v_{1} * \cdots * v_{n}$ in X. A subcomplex $K \subset X$ is full if for every set of vertices $v_{1}, \ldots, v_{n} \in K$ spanning a simplex $v_{1} * \cdots * v_{n}$ in X this simplex is a simplex in K.

A simplicial complex X is a pseudomanifold of dimension n if it is locally finite, it is a union of its n-simplices and each $(n-1)$-simplex is contained in exactly two n-simplices. A pseudomanifold is orientable if it admits a choice of orientations on top-dimensional simplices in a consistent way, i.e. such that the orientations on each simplex of codimension 1 inherited from two top-dimensional simplices containing it are opposite. An n-dimensional pseudomanifold is normal if for every nonempty simplex σ in X of dimension $\operatorname{dim}(\sigma)<n-1$ the link X_{σ} is connected.

Remark 2.1. Note that if a pseudomanifold is orientable then all its links are also orientable. The converse is not true in general. However, for a simply-connected normal pseudomanifold of dimension 3 its orientability is equivalent to the orientability of its vertex links.

A cycle in X is a subcomplex $\gamma \subset X$ isomorphic to some triangulation of the circle S^{1}. The length of a cycle $\gamma($ denoted by $|\gamma|)$ is the number of its 1-simplices.

Definition 2.2.

1. Let X be a flag simplicial complex and let $k \geq 4$ be a natural number.

- X is k-large if no cycle γ in X of length $3<|\gamma|<k$ is full in X.
- X is locally k-large if for every nonempty simplex σ in X the link X_{σ} is k-large.
- X is k-systolic if it is connected, simply-connected and locally k large.

2. A group G is k-systolic if it acts geometrically (i.e. properly discontinuously and cocompactly) by simplicial automorphisms on some k systolic simplicial complex X.

For brevity a 6 -systolic complex or group is called systolic.
Remark 2.3. Note that a full subcomplex of a k-large simplicial complex is k-large itself.

Now we recall some basic facts about systolic complexes. For the proofs see [JS] and [O]. We start with a theorem relating the notions of systolicity and Gromov hyperbolicity.

Theorem 2.4 ([JS, Theorem 2.1]). The 1-skeleton of a 7-systolic simplicial complex is hyperbolic.

For a subset $A \subset X$ which is a union of some simplices in X we denote by $\operatorname{span}_{X}(A)$ the full subcomplex of X spanned by A (i.e. the intersection of all full subcomplexes of X containing A). Now we recall the definition of combinatorial balls and spheres in a simplicial complex X centered at a simplex $\sigma \subset X$:

- $B_{0}(\sigma, X)=\sigma, B_{n+1}(\sigma, X)=\operatorname{span}_{X}\left(\left\{\tau \subset X: \tau \cap B_{n}(\sigma, X) \neq \emptyset\right\}\right)$,
- $S_{n}(\sigma, X)=\operatorname{span}_{X}\left(\left\{w \in X^{(0)}: d(w, \sigma)=n\right\}\right)$, where $d(w, \sigma)$ denotes the distance in the 1 -skeleton $X^{(1)}$.
In the following proposition we recall some natural properties of balls and spheres in systolic complexes.

FACT 2.5 ([JS, Lemma 7.9]). Let X be a systolic simplicial complex and let $v \in X$ be a vertex. Then for every natural number $n>0$ and for every simplex $\tau \subset S_{n}(v, X)$ the intersection $\rho=B_{n-1}(v, X) \cap X_{\tau}$ is a single simplex. Moreover, $X_{\tau} \cap B_{n}(v, X)=B_{1}\left(\rho, X_{\tau}\right)$ and $X_{\tau} \cap S_{n}(v, X)=S_{1}\left(\rho, X_{\tau}\right)$.

Let b_{τ} denote the barycenter of a simplex τ and let X^{\prime} denote the first barycentric subdivision of the simplicial complex X. We view the barycenters b_{τ} of simplices $\tau \subset X$ as the vertices of X^{\prime}. The combinatorial properties of balls and spheres mentioned in Fact 2.5 are crucial in the definition of projections

$$
\Pi_{n}: S_{n}(v, X) \rightarrow\left[S_{n-1}(v, X)\right]^{\prime}
$$

that we recall now.
For a systolic complex X and a vertex $v \in X$ let S_{n} denote the sphere $S_{n}(v, X)$ and let B_{n} denote the ball $B_{n}(v, X)$. Let $Y^{(0)}$ denote the 0-skeleton of Y, i.e. the vertex set of the simplicial complex Y. Define the map

$$
\Pi_{n}: S_{n}^{(0)} \rightarrow\left(S_{n-1}^{\prime}\right)^{(0)}
$$

by the equalities $\Pi_{n}(w)=b_{\tau}$ for all vertices $w \in S_{n}^{(0)}$, where the simplex τ is the intersection $B_{n-1} \cap X_{w}$.

Spheres and balls in 7 -systolic complexes have stronger properties than those recalled above. The following fact allows us to extend the map $\Pi_{n}: S_{n}^{(0)} \rightarrow\left(S_{n-1}^{\prime}\right)^{(0)}$ to a simplicial map

$$
\Pi_{n}: S_{n} \rightarrow S_{n-1}^{\prime} .
$$

Fact 2.6 ([О, Lemma 3.1]). If X is 7 -systolic then, for any vertices $v_{1}, v_{2} \in S_{n}$ connected by an edge in $S_{n}, \Pi_{n}\left(v_{1}\right)$ and $\Pi_{n}\left(v_{2}\right)$ are either equal or span a 1 -simplex in S_{n-1}^{\prime}.

Define $\Pi_{n}: S_{n} \rightarrow S_{n-1}^{\prime}$ as a simplicial extension of the map $\Pi_{n}: S_{n}^{(0)} \rightarrow$ $\left(S_{n-1}^{\prime}\right)^{(0)}$ defined above.

We now comment on the notation used in this paper. We use the same symbol Π_{n} for the simplicial map $\Pi_{n}: S_{n} \rightarrow S_{n-1}^{\prime}$ and the related continuous map $\Pi_{n}: S_{n} \rightarrow S_{n-1}$ (when we forget the simplicial structure and treat the complexes S_{n} and S_{n-1}^{\prime} just as metric spaces). For example, this is the case in the following fact describing the metric properties of the maps Π_{n}. We denote by d_{X} the standard piecewise euclidean metric on X.

Fact 2.7 ([0, Lemma 3.3]). Let X be a 7 -systolic complex with finite dimension. Then there is a positive constant $C<1$ depending only on $\operatorname{dim} X$ such that for all natural numbers n and for all $x, y \in S_{n}, d_{S_{n-1}}\left(\Pi_{n}(x), \Pi_{n}(y)\right)$ $\leq C \cdot d_{S_{n}}(x, y)$.

The next theorem shows that the inverse system $\left(S_{n}, \Pi_{n}\right)$ can be used to describe the Gromov boundary of a 7 -systolic complex X.

Theorem 2.8 ($[\mathbf{O}$, Lemma 4.1]). Let X be a 7 -systolic locally finite simplicial complex of finite dimension. For a vertex $v \in X$ let S_{n} denote the sphere $S_{n}(v, X)$ and let the maps $\Pi_{n}: S_{n} \rightarrow S_{n-1}$ be defined as before. Then the inverse limit $\lim ^{(}\left(S_{n}, \Pi_{n}\right)$ is homeomorphic to the Gromov boundary of X.

3. Spheres and projections in 7 -systolic normal pseudomanifolds

 of dimension 3. In this section, X is a 7 -systolic, normal pseudomanifold of dimension 3 . We thoroughly examine the properties of the combinatorial spheres S_{n} in such pseudomanifolds and of the projections Π_{n} defined in Section 2 ,In Lemmas 3.1, 3.2 and 3.3 we describe the links of X at simplices of dimensions 2,1 and 0 respectively.

Lemma 3.1. Let $\sigma \subset X$ be a 2 -simplex. Then the link X_{σ} consists of two vertices.

Proof. σ is contained in exactly two simplices of dimension 3.

Lemma 3.2. Let $\varepsilon \subset X$ be a 1-simplex (i.e. an edge). Then the link X_{ε} is a 7-large triangulation of the circle S^{1} (i.e. a triangulation consisting of at least seven edges).

Proof. Let ε be a join $v_{1} * v_{2}$. Let $u \in X_{\varepsilon}$ be a vertex. There are exactly two vertices $w_{1}, w_{2} \in X_{\varepsilon}$ adjacent to u (since $u * v_{1} * v_{2}$ is a 2 -simplex lying in exactly two 3 -simplices). Thus, since X is locally finite, the link X_{ε} is a disjoint union of copies of triangulated circles. But since X is normal, the link X_{ε} is connected, so there must be exactly one copy. Since X is locally 7-large, it follows that this triangulation of X_{ε} must be 7-large.

Lemma 3.3. Let $u \in X$ be a 0-simplex (i.e. a vertex). Then the link X_{u} is topologically a closed connected surface with a 7-large triangulation. Moreover, if X is orientable then X_{u} is also orientable.

Proof. For a vertex $w \in X_{u}$ we have $\left(X_{u}\right)_{w}=X_{u * w}$. Thus the link $\left(X_{u}\right)_{w}$ is a triangulated circle (see Lemma 3.2). A simplicial complex all of whose vertex links are triangulated circles is itself a triangulated surface. Since X is 7 -systolic, this triangulation is 7-large. The connectedness of X_{u} follows from the normality of X. The last assertion follows from Remark 2.1. -

Combinatorial properties of 7-large complexes imply the following:
Remark 3.4. Let Σ be a 7 -large triangulated closed surface and let $\sigma \subset \Sigma$ be a simplex. Then:

1. the balls $B_{1}(\sigma, \Sigma)$ and $B_{2}(\sigma, \Sigma)$ are triangulated 2-discs; moreover, their topological boundaries in Σ are the spheres $S_{1}(\sigma, \Sigma)$ and $S_{2}(\sigma, \Sigma)$ respectively,
2. the ball $B_{3}(\sigma, \Sigma)$ can contain a loop in the 1 -skeleton $\Sigma^{(1)}$ homotopically nontrivial in Σ (if $\operatorname{dim} \sigma>0)$.

In the next lemma we describe the combinatorial and topological properties of the spheres $S_{n}(v, X)$.

Lemma 3.5. Let $v \in X$ be a vertex and let $S_{n}=S_{n}(v, X)$ be the combinatorial sphere of radius n centered at v. Then S_{n} is a connected surface with a 7-large triangulation.

Proof. For $n=1$ we have $S_{1}=X_{v}$. Thus the assertion follows from Lemma 3.3.

Let $w \in S_{n}$ be a vertex and let $\rho:=X_{w} \cap S_{n-1}$. Since X_{w} is a 7-large surface and ρ is a simplex (see Fact 2.5), Remark 3.4 shows that $B_{1}\left(\rho, X_{w}\right)$ is a triangulated 2-disc. As

$$
\left(S_{n}\right)_{w}=X_{w} \cap S_{n}=S_{1}\left(\rho, X_{w}\right)=\operatorname{bd}\left(B_{1}\left(\rho, X_{w}\right)\right)=S^{1}
$$

(see Fact 2.5) it follows that the vertex links of S_{n} are triangulated circles. Thus S_{n} is a triangulated surface.

Since S_{n} is full in X (by definition) and X is 7 -large, it follows that this triangulation of S_{n} is 7-large (see Remark 2.3).

Connectedness of S_{n} can be shown using an inductive argument and Corollary 3.18 below.

Lemmas 3.6, 3.7, 3.8 and 3.9 describe the local properties of the projections $\Pi_{n+1}: S_{n+1} \rightarrow S_{n}$.

Lemma 3.6. For a 2 -simplex $\sigma \subset S_{n}$ there is exactly one vertex $w_{\sigma} \in$ S_{n+1} such that the join $w_{\sigma} * \sigma$ is a simplex in X. This vertex coincides with the preimage $\Pi_{n+1}^{-1}\left(b_{\sigma}\right)$.

Proof. By Fact 2.5, $X_{\sigma} \cap S_{n-1}$ is a single simplex. Thus, for dimensional reasons, it is a vertex. By Lemma 3.1, the link X_{σ} consists of two vertices. Moreover, $X_{\sigma} \cap S_{n}=\emptyset$, since S_{n} is a surface and a full subcomplex. It follows that $X_{\sigma} \cap S_{n+1}$ must be the other vertex of X_{σ}, say w_{σ}. From the definition of the projections it is easy to see that $\Pi_{n+1}^{-1}\left[b_{\sigma}\right]=X_{\sigma} \cap S_{n+1}(\sigma$ is a 2 -simplex). It follows that $\Pi_{n+1}^{-1}\left[b_{\sigma}\right]=w_{\sigma}$.

Lemma 3.7. For an edge $\varepsilon \subset S_{n}$ the intersection $\alpha_{\varepsilon}=X_{\varepsilon} \cap S_{n+1}$ is an arc (triangulated). If σ_{1} and σ_{2} are two 2 -simplices in S_{n} containing ε, then the endpoints of this arc coincide with the preimage vertices $\Pi_{n+1}^{-1}\left(b_{\sigma_{1}}\right)$ and $\Pi_{n+1}^{-1}\left(b_{\sigma_{2}}\right)$.

Proof. Since S_{n} is a surface, there are exactly two 2 -simplices in S_{n}, say $\sigma_{1}=v_{1} * \varepsilon$ and $\sigma_{2}=v_{2} * \varepsilon$, that contain ε. For these two simplices there are two vertices $w_{\sigma_{1}}$ and $w_{\sigma_{2}}$ in S_{n+1} such that for $i=1,2$ the joins $w_{\sigma_{i}} * \sigma_{i}$ are simplices in X.

First we show that $w_{\sigma_{1}}$ and $w_{\sigma_{2}}$ do not lie in a common simplex in X. To see this suppose that $w_{\sigma_{1}} * w_{\sigma_{2}}$ is a simplex in X. By Fact 2.6, $\Pi_{n+1}\left(w_{\sigma_{1}}\right)$ and $\Pi_{n+1}\left(w_{\sigma_{2}}\right)$ lie in a common simplex in the barycentric subdivision S_{n}^{\prime}. Now Π_{n+1} maps $w_{\sigma_{i}}$ to the barycenter $b_{\sigma_{i}}$ for $i=1,2$. But $b_{\sigma_{1}}$ and $b_{\sigma_{2}}$ do not span a simplex in S_{n}^{\prime}, a contradiction.

Now for $i=1,2$ let a vertex u_{i} be the intersection $X_{\sigma_{i}} \cap S_{n-1}$. Note that since u_{1} and u_{2} belong to $X_{\varepsilon} \cap S_{n-1}$, they are equal or span a simplex in S_{n-1} (see Fact 2.5). Since the link X_{ε} is a triangulated circle, and $u_{1}, u_{2}, v_{1}, v_{2}$ are all vertices of X_{ε} lying in $B_{n}(v, X)$, it follows that $w_{\sigma_{1}}$ and $w_{\sigma_{2}}$ are connected by an $\operatorname{arc} \alpha_{\varepsilon}=\left(w_{\sigma_{1}}=w_{0}, w_{1}, \ldots, w_{m}=w_{\sigma_{2}}\right)$ in S_{n+1} (for some $m>1$). Lemma 3.6 implies that the vertices $w_{\sigma_{i}}$ are exactly the preimages $\Pi_{n+1}^{-1}\left(b_{\sigma_{i}}\right)$ for $i=1,2$.

Lemma 3.8. Let $\varepsilon \subset S_{n}$ be an edge, let σ_{1} and σ_{2} be two different 2 simplices in S_{n} containig ε, and let $\alpha_{\epsilon}=\left(w_{0}, w_{1}, \ldots, w_{m}\right)$ be the arc in S_{n+1} given by Lemma 3.7. Then the projection Π_{n+1} maps the edges $w_{0} * w_{1}$ and $w_{m-1} * w_{m}$ homeomorphically onto the edges $b_{\sigma_{1}} * b_{\varepsilon}$ and $b_{\sigma_{2}} * b_{\varepsilon}$ in S_{n}^{\prime}
respectively, and collapses the subarc $\left(w_{1}, w_{2}, \ldots, w_{m-2}, w_{m-1}\right)$ to the barycenter b_{ε}.

Proof. By Lemma 3.7, Π_{n+1} maps w_{0} to $b_{\sigma_{1}}$ and w_{m} to $b_{\sigma_{2}}$. We show that Π_{n+1} maps w_{i} to b_{ε} for $i=1, \ldots, m-1$. It is enough to show that $X_{w_{i}} \cap S_{n}$ is exactly the edge ε.

For this, note that w_{i} and ε span a simplex in X. Thus ε is a simplex in $X_{w_{i}} \cap S_{n}$. If this intersection contains a vertex u not contained in ε, then u and ε span a simplex in S_{n}. But 2 -simplices in S_{n} containing ε are exactly σ_{1} and σ_{2}. It follows that w_{i} is w_{0} or w_{m}, a contradiction.

Lemma 3.9. Let $w \in S_{n}$ be a vertex. Then there exists a cycle (i.e. a triangulated circle) α_{w} in the 1-skeleton of $X_{w} \cap S_{n+1}$ such that the image $\Pi_{n+1}\left[\alpha_{w}\right]$ is equal to the sphere $S_{1}\left(w, S_{n}^{\prime}\right)$ (which is a cycle in the barycentric subdivision S_{n}^{\prime}) and the preimage $\Pi_{n+1}^{-1}\left[S_{1}\left(w, S_{n}^{\prime}\right)\right]$ is equal to α_{w}.

Proof. As S_{n} is a triangulated surface, the residue $\operatorname{Res}\left(w, S_{n}\right)$ is a triangulated 2-disc. Let it consist of the 2-simplices $\sigma_{i}=w * w_{i} * w_{i+1}$ for $i=0,1, \ldots, k-1$, where $k=\left|X_{w} \cap S_{n}\right| \geq 7$ is the length of the link $\left(S_{n}\right)_{w}$ (indices taken modulo k). Let $\alpha_{i}=X_{w * w_{i}} \cap S_{n+1}$ be the arc in S_{n+1} given by Lemma 3.7. Let $\alpha_{w}:=\alpha_{0} \cup \cdots \cup \alpha_{k-1}$. We claim that α_{w} is a cycle.

It is enough to show that $\alpha_{i} \cap \alpha_{j} \neq \emptyset$ only for $|i-j| \leq 1$, and for $|i-j|=1$ it consists of one point. Suppose that $\alpha_{i} \cap \alpha_{j} \neq \emptyset$ for some $i<j \in\{0,1, \ldots, k-1\}$ and let $u \in \alpha_{i} \cap \alpha_{j}$ be a vertex. Since the $\operatorname{arcs} \alpha_{i}$ and α_{j} are contained in the links $X_{w * w_{i}}$ and $X_{w * w_{j}}$ respectively, the simplices $w * w_{i}$ and $w * w_{j}$ lie in $X_{u} \cap S_{n}$. By Fact 2.5 the join $w_{i} * w_{j} * w$ is a simplex in $S_{n} \cap X_{u}$. It follows that $j=i+1$. Since α_{w} is connected $\left(\alpha_{i} \cap \alpha_{i+1}\right.$ is exactly the single vertex equal to $X_{\sigma_{i}} \cap S_{n+1}$), it must be a cycle.

By Lemma 3.7 and the definition of the cycle α_{w} it follows that Π_{n+1} maps α_{w} onto $S_{1}\left(w, S_{n}^{\prime}\right)$. Since $\Pi_{n+1}^{-1}\left[B_{1}\left(w, S_{n}^{\prime}\right)\right] \subseteq X_{w} \cap S_{n+1}$, it is enough to show that for all vertices $u \in X_{w} \cap S_{n+1}$ not contained in α_{w} the projection Π_{n+1} maps u to w. We show that $X_{u} \cap S_{n}$ is exactly w. Suppose that there is another vertex, say w^{\prime}, lying in $X_{u} \cap S_{n}$. Then $w^{\prime}=w_{i}$ for some $i=0,1, \ldots, k-1$. Thus u lies in the $\operatorname{arc} \alpha_{i}$, a contradiction.

From the proof of Lemma 3.9 we get the following additional information:
FACT 3.10. Let $w \in S_{n}$ be a vertex and let $\left\{\varepsilon_{i}: i=1, \ldots, k\right\}$ be the set of all edges in S_{n} that contain w. Then the cycle α_{w} is equal to $\bigcup_{i=1}^{k} \alpha_{\varepsilon_{i}}$.

In the next lemma we show that the cycle α_{w} given by Lemma 3.9 bounds some 2-disc $B_{w} \subset X_{w} \cap B_{n+1}$.

Lemma 3.11. Each cycle α_{w} bounds a 2-disc $B_{w}=B_{2}\left(\sigma_{w}, X_{w}\right)$ in $X_{w} \cap$ B_{n+1}, for some simplex $\sigma_{w} \subset X_{w}$.

Proof. For a vertex $w \in S_{n}$ giving the $\operatorname{arc} \alpha_{w}$ let $\sigma_{w}:=X_{w} \cap S_{n-1}$ (this intersection is a single simplex). We show that $\alpha_{w}=S_{2}\left(\sigma_{w}, X_{w}\right)$. It is obvious that $\alpha_{w} \subseteq S_{2}\left(\sigma_{w}, X_{w}\right)$. For the opposite inclusion let $u \in S_{2}\left(\sigma_{w}, X_{w}\right)$ be a vertex. There is a vertex $u^{\prime} \in S_{n} \cap X_{w}$ connected by edges to u and to some vertex of σ_{w}. It follows that u is a vertex in the arc $\alpha_{w * u^{\prime}}$. Thus, by Fact 3.10, u is a vertex in α_{w}.

By Remark 3.4, the cycle α_{w} is the boundary of $B_{2}\left(\sigma_{w}, X_{w}\right)$. Since the link X_{w} is a surface (with a 7-large triangulation), it follows that $B_{2}\left(\sigma_{w}, X_{w}\right)$ is a 2-disc (see Remark 3.4 again).

For a vertex $w \in S_{n}$ let $P_{w}:=\operatorname{cl}\left(X_{w} \backslash B_{w}\right)$. Clearly, we have the following:
FACT 3.12. The set P_{w} is a subcomplex of S_{n+1}. Topologically it is a connected surface with boundary α_{w}.

The next lemma describes the map Π_{n+1} restricted to the subcomplex $P_{w} \subset S_{n+1}$.

Lemma 3.13. For every vertex $w \in S_{n}$ the projection $\Pi_{n+1}: S_{n+1} \rightarrow S_{n}$ maps the subcomplex P_{w} onto the ball $B_{1}\left(w, S_{n}^{\prime}\right)$. Moreover, the preimage $\Pi_{n+1}^{-1}[w]$ is the union of the simplices in P_{w} disjoint from the cycle α_{w}.

Before proving Lemma 3.13 note the following:
Remark 3.14.

- The ball $B_{1}\left(w, S_{n}^{\prime}\right)$ is topologically a 2 -disc with boundary $S_{1}\left(w, S_{n}^{\prime}\right)$.
- Lemma 3.13 together with previous results (Lemmas and Facts 3.8 3.12 fully describe the restricted map $\Pi_{n+1\left\lceil P_{w}\right.}$.

Proof of Lemma 3.13. By Lemma 3.9, $\Pi_{n+1}^{-1}\left[S_{1}\left(w, S_{n}^{\prime}\right)\right]=\alpha_{w}$. Let $u \in P_{w}$ be a vertex not contained in α_{w}. Since P_{w} is a subcomplex of the link X_{w}, the vertices w and u span an edge in X. We show that $X_{u} \cap S_{n}$ is exactly the vertex w. It follows that Π_{n+1} maps u to w. It is enough to show that $\operatorname{dim}\left(X_{u} \cap S_{n}\right)=0$ (since w a vertex in this intersection, which is a single simplex).

Assume the opposite and let $\sigma=X_{u} \cap S_{n}$. Then Π_{n+1} maps u to b_{σ}. Since σ contains w and has dimension at least $1, b_{\sigma}$ is contained in $S_{1}\left(w, S_{n}^{\prime}\right)$. Thus $u \in \Pi_{n+1}^{-1}\left[S_{1}\left(w, S_{n}^{\prime}\right)\right]$. This contradicts the equality $\Pi_{n+1}^{-1}\left[S_{1}\left(w, S_{n}^{\prime}\right)\right]=\alpha_{w}$.

For a better understanding of the map Π_{n+1} we introduce another cell structure on the sphere S_{n}. We call this cell structure dual.

- The set of dual 0-cells (denoted by e_{σ}^{0}) consists of the barycenters b_{σ} of all 2-simplices $\sigma \subset S_{n}$.
- The set of dual 1-cells (denoted by e_{ε}^{1}) consists of the unions $b_{\sigma_{1}} * b_{\varepsilon} \cup$ $b_{\sigma_{2}} * b_{\varepsilon}$, where ε is an edge in S_{n} while σ_{1} and σ_{2} are the two 2-simplices in S_{n} containing ε.
- The set of dual 2-cells (denoted by e_{w}^{2}) consists of the balls $B_{1}\left(w, S_{n}^{\prime}\right)$ around all vertices $w \in S_{n}$.
We denote by S_{n}^{d} the cell complex related to this cell structure, and by $\left(S_{n}^{d}\right)^{(k)}$ its k-skeleton, i.e. the cell subcomplex consisting of all cells of dimension at most k.

Using this dual cell structure, as a consequence of previous lemmas we get:

Lemma 3.15.

1. $\Pi_{n+1}^{-1}\left[e_{\sigma}^{0}\right]$ is the vertex $w_{\sigma}=X_{\sigma} \cap S_{n+1}$.
2. $\Pi_{n+1}^{-1}\left[e_{\varepsilon}^{1}\right]$ is the arc α_{ε}.
3. $\Pi_{n+1}^{-1}\left[e_{w}^{2}\right]$ is the subcomplex P_{w}.

Proof. Assertion 1 follows from Lemma 3.6.
By Lemma 3.8, Π_{n+1} maps α_{ε} onto e_{ε}^{1}. By Lemma 3.7, the preimages of the endpoints of e_{ε}^{1} are exactly the endpoints of α_{ε}. By Lemma 3.9, $\Pi_{n+1}^{-1}\left[e_{\varepsilon}^{1}\right]$ is contained in the cycle α_{u} for every endpoint u of ε. Let u and u^{\prime} be the two endpoints of ε. Since $\alpha_{u} \cap \alpha_{u^{\prime}}=\alpha_{\varepsilon}$, we get assertion 2 .

Assertion 3 follows from Lemma 3.13,
The next lemma describes the relationship between the 1 -skeleton $\left(S_{n}^{d}\right)^{(1)}$ of the dual cell structure on the sphere S_{n} and its preimage under Π_{n+1}.

Lemma 3.16. The preimage $\Pi_{n+1}^{-1}\left[\left(S_{n}^{d}\right)^{(1)}\right]$ of the 1 -skeleton of the dual cell structure is naturally homeomorphic to this 1-skeleton.

Proof. The 1-skeleton $\left(S_{n}^{d}\right)^{(1)}$ is the union $\bigcup e_{\varepsilon}^{1}$ of 1-cells. By Lemmas 3.8 and 3.15, Π_{n+1} gives a one-to-one correspondence between the $\operatorname{arcs} \alpha_{\varepsilon}$ and the dual 1-cells e_{ε}^{1}. Namely, α_{ε} is mapped onto e_{ε}^{1}. Moreover, this correspondence is consistent with the incidence relation, i.e. $e_{u}^{2} \cap e_{u^{\prime}}^{2} \neq \emptyset$ if and only if $\alpha_{u} \cap \alpha_{u^{\prime}} \neq \emptyset$, and the same holds for triples of vertices.

Remark 3.17.

- Note that the restriction of Π_{n+1} to $\Pi_{n+1}^{-1}\left[\left(S_{n}^{d}\right)^{(1)}\right]$ is not a homeomorphism onto $\left(S_{n}^{d}\right)^{(1)}$. However, it can be approximated by homeomorphisms of the form described later in Lemma 5.2. More precisely, the map $w_{\sigma} \rightarrow e_{\sigma}^{0}$ can be extended to a map $S_{n+1} \rightarrow S_{n}$ such that every $\operatorname{arc} \alpha_{\varepsilon}$ is homeomorphically mapped onto the dual 1-cell e_{ε}^{1}. As a consequence, the cycle α_{w} is mapped homeomorphically onto the boundary $\operatorname{bd}\left(e_{w}^{2}\right)$ of the dual 2-cell e_{w}^{2}.
- The sphere S_{n+1}, up to homeomorphism, can be thought of as obtained from S_{n} by cutting out the interiors of all dual 2-cells e_{w}^{2} and replacing them by surfaces P_{w} such that each boundary $\operatorname{bd}\left(P_{w}\right)=\alpha_{w}$ is glued homeomorphically to $\operatorname{bd}\left(e_{w}^{2}\right)$.

Recall that a connected sum of the manifolds M and N of dimension n (with or without boundaries) along n-discs $D \subset \operatorname{int}(M)$ and $D^{\prime} \subset \operatorname{int}(N)$ is the quotient space

$$
\left((M \backslash \operatorname{int}(D)) \cup\left(N \backslash \operatorname{int}\left(D^{\prime}\right)\right)\right) / x \sim f(x)
$$

where $f: \operatorname{bd}(D) \rightarrow \operatorname{bd}\left(D^{\prime}\right)$ is a homeomorphism.
As a consequence of the second part of Remark 3.17 we have:
Corollary 3.18. The sphere S_{n+1} is topologically a connected sum of the sphere S_{n} and the links X_{w} of the vertices $w \in S_{n}$ along the discs $B_{w} \subset$ X_{w} and $e_{w}^{2} \subset S_{n}$.
4. Inverse limits, Jakobsche spaces and outline of proof of the Main Theorem. In this section we recall the result of Jakobsche from [J] concerning inverse systems of appropriately iterated connected sums of compact orientable manifolds. This result justifies the notion of tree of manifolds.

Recall that a family \mathcal{A} of subsets of a metric space X is a null family if for every $\epsilon>0$ only finitely many elements $A \in \mathcal{A}$ have diameter greater than ϵ. The family \mathcal{A} is dense if $\bigcup \mathcal{A}$ is a dense subset of X.

Theorem 4.1 ([J, Theorem 4.6]). Let $\left(L_{0} \stackrel{\alpha_{1}}{\leftarrow} L_{1} \stackrel{\alpha_{2}}{\leftarrow} L_{2} \stackrel{\alpha_{3}}{\leftarrow} \cdots\right)$ be an inverse system of connected closed orientable m-manifolds $(m \geq 2)$ and for each $k \geq 0$ let \mathcal{D}_{k} be a finite collection of pairwise disjoint bicollared discs in L_{k} such that:

1. each L_{k} is a connected sum of finitely many copies of L_{0},
2. every map α_{k+1} restricted to $\alpha_{k+1}^{-1}\left[L_{k} \backslash \bigcup\left\{\operatorname{int}(D): D \in \mathcal{D}_{k}\right\}\right]$ is a homeomorphism onto $L_{k} \backslash \bigcup\left\{\operatorname{int}(D): D \in \mathcal{D}_{k}\right\}$,
3. every preimage $\alpha_{k+1}^{-1}[D]$ (for $D \in \mathcal{D}_{k}$) is homeomorphic to a copy of L_{0} with the interior of a bicollared disc removed,
4. the family $\left\{\alpha_{j, i}[D]: i \geq j, D \in \mathcal{D}_{i}\right\}\left({ }^{1}\right)$ is null and dense in L_{j} for all j,
5. $\alpha_{j, i}[D] \cap \operatorname{bd}\left(D^{\prime}\right)$ is empty for all $D \in \mathcal{D}_{i}, D^{\prime} \in \mathcal{D}_{j}$ and all $i>j$.

Then the inverse limit $\lim \left(L_{0} \stackrel{\alpha_{1}}{\longleftarrow} L_{1} \stackrel{\alpha_{2}}{\longleftarrow} L_{2} \stackrel{\alpha_{3}}{\longleftarrow} \cdots\right)$ depends only on L_{0}.
We denote this inverse limit by $X\left(L_{0}\right)$ and call it the Jakobsche space for L_{0}, or the Jakobsche tree of manifolds L_{0}. We call $\left(L_{k}, \alpha_{k}, \mathcal{D}_{k}\right)_{k \geq 0}$ satisfying assumptions 1-5 of Theorem 4.1 a Jakobsche inverse system for L_{0}. If $\left(L_{k}, \alpha_{k}, \mathcal{D}_{k}\right)_{k \geq 0}$ satisfies assumptions $2,4,5$ and the condition:

3a. every preimage $\alpha_{k+1}^{-1}[D]$ (for $D \in \mathcal{D}_{k}$) is homeomorphic to a connected closed (orientable) m-manifold (not necessarily fixed) with the interior of a bicollared disc removed,

[^1]then we call it a Jakobsche inverse system of (orientable) m-manifolds. We call the corresponding inverse limit a tree of (orientable) manifolds.

Remark 4.2.

1. Note that we have not stated the result of Jakobsche in its full generality.
2. For $L_{0}=\mathbb{T}^{2}$, the 2-dimensional torus, the space $X\left(\mathbb{T}^{2}\right)$ is known as the Pontryagin sphere.
3. For $m=2$ and $L_{0}=\Sigma_{g}$, the orientable surface of genus $g>1$, the space $X\left(\Sigma_{g}\right)$ is homeomorphic to the Pontryagin sphere. Actually, every tree of orientable surfaces of genera greater than 0 is homeomorphic to the Pontryagin sphere. We sketch some details of this in Section 8 (see Remark 8.6(2)).
If X is a locally finite 7 -systolic simplicial complex of finite dimension, then by Theorem 2.8 , the Gromov boundary $\partial_{G} X$ is homeomorphic to the inverse limit $\lim \left(S_{n}, \Pi_{n}\right)$. The results of Section 3 imply that the inverse system $\left(S_{n}, \Pi_{n}\right)$ of spheres and projections in a 7 -systolic orientable normal pseudomanifold X of dimension 3 is close to satisfying assumptions $1-5$ of the Jakobsche theorem. In the next remark we make this observation more precise.

REmark 4.3. The maps Π_{k} are natural candidates for projections α_{k}, and the families $\mathcal{D}_{k}=\left\{e_{w}^{2}: w \in S_{k}^{(0)}\right\}$ of dual 2-cells in the spheres S_{k} are natural candidates for families of discs as in a Jakobsche inverse system. More precisely, Fact 2.7 implies that for such a choice of families \mathcal{D}_{k} the family $\left\{\Pi_{j, i}[D]: i \geq j, D \in \mathcal{D}_{i}\right\}$ is null in every sphere S_{j}. Moreover, since $\bigcup \mathcal{D}_{j}$ covers the sphere S_{j}, it follows that the families $\left\{\Pi_{j, i}[D]: i \geq j, D \in \mathcal{D}_{i}\right\}$ are dense in every S_{j}. If the links of all vertices of X are triangulations of the same surface Σ_{0}, then assumptions 4.1 and 4.1 are satisfied with $L_{0}=\Sigma_{0}$ by Lemma 3.15 (3).

On the other hand, the maps Π_{k} and the families \mathcal{D}_{k} defined as above fail to satisfy some other assumptions of the Jakobsche theorem. In particular:

- elements of \mathcal{D}_{k} are not pairwise disjoint,
- even though Π_{k+1} maps $\Pi_{k+1}^{-1}\left[S_{k} \backslash \bigcup\left\{\operatorname{int}\left(e_{w}^{2}\right): w \in S_{k}^{(0)}\right\}\right]$ onto $S_{k} \backslash$ $\bigcup\left\{\operatorname{int}\left(e_{w}^{2}\right): w \in S_{k}^{(0)}\right\}$ the restriction of Π_{k+1} to this preimage is not a homeomorphism, and
- assumption 5 of Theorem 4.1 fails.

The strategy of the proof of part (a) of the Main Theorem is as follows. In Section 5 we modify the inverse system $\left(S_{n}, \Pi_{n}\right)$, without affecting the inverse limit, by changing the bonding maps appropriately. This modification will make the inverse system satisfy assumptions 2,4 and 5 of Theorem 4.1 (after choosing the families of discs appropriately). The mod-
ified inverse system $\left(S_{n}, \Pi_{n}^{\prime}\right)$ (with families of discs chosen appropriately) will be a Jakobsche inverse system of orientable surfaces. In Section 6 we refine this new system without changing the inverse limit either. The refined system will consist of orientable surfaces $S_{n, k}$ for $k=0,1, \ldots, g_{n}$ (for some natural numbers g_{n}) and maps $\Pi_{n, k+1 \rightarrow k}^{\prime}: S_{n, k+1} \rightarrow S_{n, k}$ satisfying $S_{n, 0}=S_{n}, S_{n, g_{n}}=S_{n+1}$ and $\Pi_{n, 1 \rightarrow 0}^{\prime} \circ \Pi_{n, 2 \rightarrow 1}^{\prime} \circ \cdots \circ \Pi_{n, g_{n} \rightarrow g_{n}-1}^{\prime}=\Pi_{n+1}^{\prime}$. The refinement is necessary to get a connected sum with tori, rather than with higher genera surfaces. In Section 7 we define a family of discs in every surface of the refined system to match all the assumptions of Theorem 4.1.
5. Modification of the inverse system. We denote by $d_{\text {sup }}$ the uniform metric on the set of continuous maps between two compact spaces. We perform small (with respect to the uniform distance) modifications of the maps Π_{n} in the inverse system $\left(S_{n}, \Pi_{n}\right)$ keeping the inverse limit unchanged. To do this we use the following result due to M. Brown.

Theorem $5.1\left(\left[\bar{B}\right.\right.$, Theorem 3]). Let $Y=\lim \left(Y_{i}, f_{i}\right)$, where Y_{i} are compact metric spaces. For $i>0$ let K_{i} be a nonempty collection of maps from Y_{i} to Y_{i-1}. Suppose that for each $i>0$ and $\epsilon>0$ there is $g_{i} \in K_{i}$ such that $d_{\text {sup }}\left(f_{i}, g_{i}\right)<\epsilon$. Then there is a sequence $\left(g_{i}\right)$ where $g_{i} \in K_{i}$ such that Y is homeomorphic to $\lim _{\rightleftarrows}\left(Y_{i}, g_{i}\right)$.

The next lemma shows that it is possible to approximate the projections $\Pi_{n+1}: S_{n+1} \rightarrow S_{n}$ arbitrarily closely by maps $\Pi_{n+1, \epsilon}: S_{n+1} \rightarrow S_{n}$ having much better properties (from the point of view of fulfilling the requirements of Jakobsche inverse system).

LEMMA 5.2. For any number $\epsilon>0$ and any integer $n>0$ there is a continuous map $\Pi_{n+1, \epsilon}: S_{n+1} \rightarrow S_{n}$ satisfying the following:

1. $d_{\text {sup }}\left(\Pi_{n+1}, \Pi_{n+1, \epsilon}\right)<\epsilon$,
2. $\Pi_{n+1}^{-1}[w]=\left(\Pi_{n+1, \epsilon}\right)^{-1}[w]=\left(X_{w} \backslash B_{3}\left(\sigma_{w}, X_{w}\right)\right) \cup S_{3}\left(\sigma_{w}, X_{w}\right)$ for all vertices $w \in S_{n}^{(0)}$ (where $\sigma_{w}=X_{w} \cap S_{n-1}$),
3. the restriction of $\Pi_{n+1, \epsilon}$ to $S_{n+1} \backslash \bigcup\left\{\left(\Pi_{n+1, \epsilon}\right)^{-1}[w]: w \in S_{n}^{(0)}\right\}$ is a homeomorphism onto $S_{n} \backslash\left\{w: w \in S_{n}^{(0)}\right\}$,
4. $\Pi_{n+1}\left[S_{n+1}^{(0)}\right] \subseteq \Pi_{n+1, \epsilon}\left[S_{n+1}^{(0)}\right]$.

Proof. Let $w \in S_{n}$ be a vertex. Let l_{w} denote the number of 2 -simplices in S_{n} that contain w. For $i=0,1, \ldots, l_{w}-1$ let $\sigma_{i}=w * w_{i} * w_{i+1}$ be all these 2 -simplices (with indices taken modulo l_{w}).

Consider the cycle $\alpha_{w} \subset S_{n+1}$ as described in Lemma 3.9. Denote the vertices of α_{w} in the following way:

$$
\begin{array}{r}
w_{0,0}, w_{0,1}, \ldots, w_{0, k_{0}}=w_{1,0}, w_{1,1}, \ldots, w_{1, k_{1}}=w_{2,0}, \ldots \\
w_{l_{w}-1,0}, \ldots, w_{l_{w}-1, k_{l w-1}}=w_{0,0}
\end{array}
$$

(for some natural numbers $k_{0}>1, \ldots, k_{l_{w}-1}>1$). We choose the indices in such a way that $\Pi_{n+1}\left(w_{i, 0}\right)=b_{\sigma_{i}}, \Pi_{n+1}\left(w_{i, j}\right)=b_{\sigma_{i} \cap \sigma_{i+1}}$ for $0<j<k_{i}$ and successive vertices are connected by an edge.

Consider the 2-simplices in P_{w} intersecting α_{w}. Denote them in the following way (see Figure 1; note that this figure does not reflect the geometry

Fig. 1. Proof of Lemma 5.2
of the subcomplex P_{w}, in fact all simplices have sides of length 1):

$$
\begin{gathered}
w_{0,0} * w_{0,0,1} * w_{0,0,2}, w_{0,0} * w_{0,0,2} * w_{0,0,3}, \ldots, w_{0,0} * w_{0,0, m_{0,0}-1} * w_{0,0, m_{0,0}} \\
w_{0,0} * w_{0,1} * w_{0,0, m_{0,0}}, w_{0,1} * w_{0,1,1} * w_{0,1,2}\left(\text { where } w_{0,1,1}=w_{0,0, m_{0,0}}\right), \ldots \\
w_{0, k_{0}-1} * w_{0, k_{0}} * w_{0, k_{0}-1, m_{0, k_{0}-1}}, w_{1,0} * w_{1,0,1} * w_{1,0,2} \\
\left(\text { where } w_{1,0}=w_{0, k_{0}} \text { and } w_{1,0,1}=w_{0, k_{0}-1, m_{0, k_{0}-1}}\right), \ldots, \\
w_{l_{w}-1, k_{\left(l_{w}-1\right)}-1} * w_{l_{w}-1, k_{\left(l_{w}-1\right)}-1,0} * w_{l_{w}-1, k_{\left(l_{w}-1\right)}-1,1}, \ldots, \\
w_{l_{w}-1, k_{\left(l_{w}-1\right)}-1} * w_{l_{w}-1, k_{\left(l_{w}-1\right)}-1, m_{\left[l_{w-1, k_{\left(l_{w-1)}-1\right]}-1}\right.}} \\
* w_{l_{w}-1, k_{\left(l_{w}-1\right)}-1, m_{\left[l_{w}-1, k_{\left(l_{w}-1\right)}-1\right]}}
\end{gathered}
$$

(where $w_{l_{w}, k_{l_{w}}}=w_{0,0}$ and $w_{l_{w}-1, k_{\left(l_{w}-1\right)}-1, m_{\left[l_{w}-1, k_{\left(l_{w}-1\right)}-1\right]}}=w_{0,0,1}$).
For two points x and y lying in a single simplex we denote by $[x, y]$ the interval connecting them.

For $i=0,1, \ldots, l_{w}-1$ choose points $a_{i}, b_{i}, c_{i}, d_{i}$ in the following way: $a_{i} \in\left[w_{i, 0}, w_{i-1, k_{(i-1)}-1}\right]$ with $d\left(a_{i}, w_{i-1, k_{(i-1)}-1}\right)=\epsilon, b_{i} \in\left[w_{i, 0}, w_{i-1, k_{(i-1)}-1}\right]$ with $d\left(a_{i}, w_{i, 0}\right)=\epsilon, c_{i} \in\left[w_{i, 0}, w_{i, 1}\right]$ with $d\left(c_{i}, w_{i, 0}\right)=\epsilon, d_{i} \in\left[w_{i, 0}, w_{i, 1}\right]$ with $d\left(d_{i}, w_{i, 1}\right)=\epsilon$. For $s \in[0, \sqrt{3} / 2]$ and $i=0,1, \ldots, l_{w}-1$ choose $a_{i}^{s}, b_{i}^{s}, c_{i}^{s}, d_{i}^{s}$ in the following way: $a_{i}^{s} \in\left[w_{i, 0,1}, a_{i}\right]$ with $d\left(a_{i}^{s},\left[w_{i, 0}, w_{i-1, k_{(i-1)}-1}\right]\right)=s$, $b_{i}^{s} \in\left[w_{i, 0,1}, b_{i}\right]$ with $d\left(b_{i}^{s},\left[w_{i, 0}, w_{i-1, k_{(i-1)}-1}\right]\right)=s, c_{i}^{s} \in\left[w_{i, 0, m_{i, 0}}, c_{i}\right]$ with $d\left(c_{i}^{s},\left[w_{i, 0}, w_{i, 1}\right]\right)=s, d_{i}^{s} \in\left[w_{i, 0, m_{i, 0}}, d_{i}\right]$ with $d\left(d_{i}^{s},\left[w_{i, 0}, w_{i, 1}\right]\right)=s$. For $s \in$ $[0, \sqrt{3} / 2], i=0,1, \ldots, l_{w}-1, j=0,1, \ldots, k_{i}-1$ and $k=1, \ldots, m_{i, j}$ choose $e_{i, j, k}^{s} \in\left[w_{i, j}, w_{i, j, k}\right]$ with $d\left(e_{i, j, k}^{s},\left[w_{i, j, k}, w_{i, j, k+1}\right]\right)=\sqrt{3} / 2-s$.

For $i=0,1, \ldots, l_{w}-1$ let $a_{i}^{\prime}=\Pi_{n+1}\left(a_{i}\right), b_{i}^{\prime}=\Pi_{n+1}\left(b_{i}\right), c_{i}^{\prime}=\Pi_{n+1}\left(c_{i}\right)$ and $d_{i}^{\prime}=\Pi_{n+1}\left(d_{i}\right)$. For $i=0,1, \ldots, l_{w}-1$ and $s \in[0, \sqrt{3} / 2]$ let $a_{i}^{\prime s}=$ $\Pi_{n+1}\left(a_{i}^{s}\right), b_{i}^{s}=\Pi_{n+1}\left(b_{i}^{s}\right), c_{i}^{\prime s}=\Pi_{n+1}\left(c_{i}^{s}\right), d_{i}^{s}=\Pi_{n+1}\left(d_{i}^{s}\right), e_{i}^{\prime s}=\Pi_{n+1}\left(e_{i, 0, k}^{s}\right)$ and $e_{i, i+1}^{\prime s}=\Pi_{n+1}\left(e_{i, j, k}^{s}\right)($ for $j>0)$.

For each $i=0,1, \ldots, l_{w}-1$ choose vertices $w_{i_{i}, j_{i}} \in\left\{w_{i, 1}, \ldots, w_{i, k_{i}-1}\right\}$ and $w_{i_{i}, j_{i}, k_{i}} \in\left\{w_{i_{i}, j_{i}, 1}, \ldots, w_{i_{i}, j_{i}, m_{i_{i}, j_{i}}}\right\}$ (the vertices $w_{i_{i}, j_{i}}$ will be mapped onto the barycenters $b_{w * w_{i+1}}$ in order to fulfill condition 4).

Define the map $\Pi_{n+1}^{w, \epsilon}: P_{w} \rightarrow S_{n}$ as follows:

- $\Pi_{n+1}^{w, \epsilon}(x)=\Pi_{n+1}(w)$ for $w \in\left[w_{i, 0,1}, a_{i}, b_{i}\right] \cup\left[w_{i, 0, m_{i, 0}}, c_{i}, d_{i}\right]$ and for $x \in \Pi_{n+1}^{-1}[w]$,
- for $s \in[0, \sqrt{3} / 2]$ and $i=0,1, \ldots, l_{w}-1$ let $\Pi_{n+1}^{w, \epsilon}:\left[b_{i}^{s}, e_{i, 0,1}^{s}\right] \cup$ $\left[e_{i, 0,1}^{s}, e_{i, 0,2}^{s}\right] \cup \cdots \cup\left[e_{i, 0, m_{i, 0}}^{s}, c_{i}^{s}\right] \rightarrow\left[b_{i}^{s s}, e_{i}^{\prime s}\right] \cup\left[e_{i}^{\prime s}, c_{i}^{\prime s}\right]$ be linear (with respect to the length of segments),
- for $s \in[0, \sqrt{3} / 2]$ and $i=0,1, \ldots, l_{w}-1$ let

$$
\Pi_{n+1}^{w, \epsilon}:\left[d_{i}^{s}, e_{i, 1,1}^{s}\right] \cup\left[e_{i, 1,1}^{s}, e_{i, 1,2}^{s}\right] \cup \cdots \cup\left[e_{i_{i}, j_{i}, k_{i}-1}^{s}, e_{i_{i}, j_{i}, k_{i}}^{s}\right] \rightarrow\left[d_{i}^{\prime s}, e_{i, i+1}^{s}\right]
$$

and

$$
\Pi_{n+1}^{w, \epsilon}:\left[e_{i_{i}, j_{i}, k_{i}}^{s}, e_{i_{i}, j_{i}, k_{i}+1}^{s}\right] \cup \cdots \cup\left[e_{i, k_{i}-1, m_{i, k_{i}-1}}^{s}, a_{i+1}^{s}\right] \rightarrow\left[e_{i, i+1}^{s}, a_{i+1}^{s}\right]
$$

be linear.
Note that $\Pi_{n+1}^{w, \epsilon}$ is a well defined continuous map. Note also that with vertices $w_{i_{i_{w}}}, j_{i_{w}}$ chosen in a coherent way (i.e. for two adjacent vertices $w, w^{\prime} \in S_{n}$ the chosen vertices $w_{i_{i_{w}}, j_{i_{w}}}$ and $w_{i_{i_{w^{\prime}}}, j_{i_{w}}}$ lying on the arc $\alpha_{w * w^{\prime}}$ must coincide) the map $\Pi_{n+1}^{\epsilon}=\bigcup_{w \in S_{n}^{(0)}} \Pi_{n+1}^{w, \epsilon}: S_{n+1} \rightarrow S_{n}$ is well defined and satisfies the required conditions. We omit further details.

The following lemma is an obvious corollary of Theorem 5.1 and Lemma 5.2. We define a sequence of maps $\left(\Pi_{n+1}^{\prime}: S_{n+1} \rightarrow S_{n}\right)_{n \geq 1}$ such that the inverse limits $\lim \left(S_{n}, \Pi_{n}\right)$ and $\lim \left(S_{n}, \Pi_{n}^{\prime}\right)$ are homeomorphic. The new inverse system $\left(S_{n}, \Pi_{n}^{\prime}\right)$ satisfies the conditions mentioned at the beginning of this section. As we will show later, after refinement of this new system, we will be able to define the families of discs $\mathcal{D}_{n, k}$ such that the refined system $\left(S_{n, k}, \Pi_{n, k}^{\prime}, \mathcal{D}_{n, k}\right)$ will become a Jakobsche inverse system for the torus.

LEmmA 5.3. There is a sequence of continuous maps $\left(\Pi_{n+1}^{\prime}: S_{n+1} \rightarrow\right.$ $\left.S_{n}\right)_{n \geq 1}$ and a decreasing sequence of positive real numbers $\left(\epsilon_{n}\right)_{n>1}$ such that:

1. the inverse limits $\lim _{\leftrightarrows}\left(S_{n}, \Pi_{n}\right)$ and $\lim _{\leftrightarrows}\left(S_{n}, \Pi_{n}^{\prime}\right)$ are homeomorphic,
2. $\Pi_{n+1}^{-1}[w]=\left(\Pi_{n+1}^{\prime}\right)^{-1}[w]=\left(X_{w} \backslash B_{3}\left(\sigma_{w}, X_{w}\right)\right) \cup S_{3}\left(\sigma_{w}, X_{w}\right)$ for all vertices $w \in S_{n}^{(0)}$ (where $\sigma_{w}=X_{w} \cap S_{n-1}$),
3. the restriction of Π_{n+1}^{\prime} to $S_{n+1} \backslash \bigcup\left\{\left(\Pi_{n+1}^{\prime}\right)^{-1}[w]: w \in S_{n}^{(0)}\right\}$ is a homeomorphism onto $S_{n} \backslash\left\{w: w \in S_{n}^{(0)}\right\}$,
4. $\Pi_{n+1}\left[S_{n+1}^{(0)}\right] \subseteq \Pi_{n+1}^{\prime}\left[S_{n+1}^{(0)}\right]$,
5. $d_{\text {sup }}\left(\Pi_{n+1}, \Pi_{n+1}^{\prime}\right)<\epsilon_{n}$,
6. $\epsilon_{n} /(1-C)<1$, where C is the constant given by Fact 2.7 (this property will be used in the proof of Lemma 9.4).
7. Refinement of the inverse system. In this section X is orientable. Recall that the vertex links X_{u} are orientable surfaces (see Remark 2.1). We refine the inverse system $\left(S_{n}, \Pi_{n}^{\prime}\right)$ without changing the inverse limit. The refined system $\left(S_{n, k}, \Pi_{n, k}^{\prime}\right)$ will have the property that every surface $S_{n, k+1}$ is a connected sum of its predecessor $S_{n, k}$ and a finite number of tori.

As will be made clear in Section 7, the inverse system $\left(S_{n}, \Pi_{n}^{\prime}\right)$, after appropriate choice of families \mathcal{D}_{n} of discs in S_{n}, fulfills assumptions 2,4 and 5 of Theorem 4.1. Preimages of the chosen discs under the bonding maps Π_{n+1}^{\prime} will correspond to surfaces that are contained in links of X at vertices of S_{n}.

Two phenomena may appear that prevent the system $\left(S_{n}, \Pi_{n}^{\prime}\right)$ from satisfying assumptions 1 and 3 of the Jakobsche theorem for $L_{0}=\mathbb{T}^{2}$. The first is that links at vertices do not have to be surfaces of the same genus. The second is that even if all vertex links are homeomorphic, they may be surfaces of genus greater than 1 .

Using the following two lemmas we will be able to refine the system $\left(S_{n}, \Pi_{n}^{\prime}\right)$ to overcome these difficulties. We start with some terminology.

Definition 6.1. Let $f: \Sigma \rightarrow \Sigma^{\prime}$ be a map between compact orientable surfaces and let $\mathcal{D}=\left\{D_{1}, \ldots, D_{l}\right\}$ be a family of pairwise disjoint discs in Σ^{\prime}. We say that f collapses Σ to Σ^{\prime} along the family \mathcal{D} if:

- Σ is a connected sum of Σ^{\prime} and a finite number of surfaces $\Sigma_{g_{1}}, \ldots, \Sigma_{g_{l}}$ of genera $g_{1}>0, \ldots, g_{l}>0$ respectively (for some $l>0$) along discs $D_{i} \subset \Sigma^{\prime}$ and $D_{i}^{\prime} \subset \Sigma_{g_{i}}$ for $i=1, \ldots, l$,
- $f(x)=x$ for all $x \in \Sigma^{\prime} \backslash \bigcup_{i=1}^{l} \operatorname{int}\left(D_{i}\right)$,
- there are open neighbourhoods U_{i} of $\operatorname{bd}\left(D_{i}^{\prime}\right)$ in $\Sigma_{g_{i}} \backslash \operatorname{int}\left(D_{i}^{\prime}\right)$ and points $x_{i} \in \operatorname{int}\left(D_{i}\right)$ such that f maps U_{i} homeomorphically onto $D_{i} \backslash\left\{x_{i}\right\}$ and collapses $\left(\Sigma_{g_{i}} \backslash \operatorname{int}\left(D_{i}^{\prime}\right)\right) \backslash U_{i}$ to x_{i}.
We call such a map a collapsing map. If it is clear which family \mathcal{D} we mean, we say that f collapses Σ to Σ^{\prime}.

Note that the maps $\Pi_{n, \epsilon}$ from Lemma 5.2, and hence the maps Π_{n}^{\prime} from Lemma 5.3, are examples of collapsing maps.

We state without proof two obvious lemmas which we use in the refinement procedure.

Lemma 6.2. Let Σ be an orientable surface of genus $g>1$. Then there exist orientable surfaces $\Sigma_{1}, \ldots, \Sigma_{g}=\Sigma$, discs $D_{i} \subset \Sigma_{i}($ for $i=1, \ldots, g-1)$ and maps $f_{i}: \Sigma_{i} \rightarrow \Sigma_{i-1}($ for $i=2, \ldots, g)$ such that:

- Σ_{i} is an orientable surface of genus i for $i=1, \ldots, g$,
- Σ_{i} is a connected sum of Σ_{i-1} and a torus T_{i-1}^{2} along the disc D_{i-1} and some disc $D_{i-1}^{\prime} \subset T_{i-1}^{2}$ such that $D_{i} \subset T_{i-1}^{2} \backslash D_{i-1}^{\prime}$ and f_{i} collapses Σ_{i} to Σ_{i-1} along $\mathcal{D}_{i-1}=\left\{D_{i-1}\right\}$.
Lemma 6.3. Let $f: \Sigma \rightarrow \Sigma^{\prime}$ collapse an orientable surface Σ to an orientable surface Σ^{\prime} along a family $\mathcal{D}=\left\{D_{1}, \ldots, D_{l}\right\}$. Let $\Sigma_{g_{1}}, \ldots, \Sigma_{g_{l}}$ be orientable surfaces as in Definition 6.1. For $i=1, \ldots, l$ let $D_{i}^{\prime} \subset \Sigma_{g_{i}}$ be discs as in Definition 6.1. Let the genus g_{j} of $\Sigma_{g_{j}}$ be greater than 1 for some $j \in\{1, \ldots, l\}$. Then there exist:
- a decomposition of $\Sigma_{g_{j}}$ to a connected sum of two orientable surfaces $\Sigma_{g_{j}^{\prime}}$ and $\Sigma_{g_{j}^{\prime \prime}}$ of genera $g_{j}^{\prime}=1$ and $g_{j}^{\prime \prime}=g_{j}-1$ respectively (i.e. $\Sigma_{g_{j}^{\prime}}$ is a torus) along discs $D_{j}^{\prime \prime} \subset \Sigma_{g_{j}^{\prime}}$ and $D_{j}^{\prime \prime \prime} \subset \Sigma_{g_{j}^{\prime \prime}}$ such that $D_{j}^{\prime} \subset \Sigma_{g_{j}^{\prime}}$ and $D_{j}^{\prime \prime} \cap D_{j}^{\prime}=\emptyset$,
- a surface $\Sigma^{\prime \prime}$, which is a connected sum of Σ^{\prime} and $\Sigma_{g_{1}}, \ldots, \Sigma_{g_{j-1}}, \Sigma_{g_{j}^{\prime}}$, $\Sigma_{g_{j+1}}, \ldots, \Sigma_{g_{l}}$ along discs D_{i} and D_{i}^{\prime} respectively,
- maps $f_{1}: \Sigma \rightarrow \Sigma^{\prime \prime}$ and $f_{2}: \Sigma^{\prime \prime} \rightarrow \Sigma^{\prime}$ such that f_{1} collapses Σ to $\Sigma^{\prime \prime}$ along $\left\{D_{j}^{\prime \prime}\right\}, f_{2}$ collapses $\Sigma^{\prime \prime}$ to Σ^{\prime} along \mathcal{D}, and $f=f_{2} \circ f_{1}$.

Remark 6.4. Note that Lemmas 6.2 and 6.3 are also true for nonorientable surfaces. The only difference is that collapsing maps involve connected sums with projective planes rather than tori.

As an immediate consequence we get the following:
Corollary 6.5. For $n \geq 1$ let $\Pi_{n+1}^{\prime}: S_{n+1} \rightarrow S_{n}$ be defined as before. For each vertex $w \in\left(S_{n}\right)^{(0)}$ denote by g_{w} the genus of the link X_{w} (which is a closed orientable surface). Let $g_{n}=\max \left\{g_{w}: w \in\left(S_{n}\right)^{(0)}\right\}$. Then there exist surfaces

$$
S_{n}=S_{n, 0}, S_{n, 1}, \ldots, S_{n, g_{n}}=S_{n+1}
$$

and maps

$$
\begin{aligned}
& S_{n, 0} \stackrel{\Pi_{n, 1 \rightarrow 0}^{\prime}}{\longleftarrow} S_{n, 1} \stackrel{\Pi_{n, 2 \rightarrow 1}^{\prime}}{\longleftarrow} S_{n, 2} \stackrel{\Pi_{n, 3 \rightarrow 2}^{\prime}}{\longleftarrow} \\
& \ldots \stackrel{\Pi_{n, g_{n}-1 \rightarrow g_{n}-2}^{\prime}}{\longleftarrow} S_{n, g_{n}-1} \stackrel{\Pi_{n, g_{n} \rightarrow g_{n}-1}^{\prime}}{\longleftarrow} S_{n, g_{n}}
\end{aligned}
$$

such that:

- $S_{n, k}$ is a connected sum of $S_{n, k-1}$ and some tori $T_{n, k, 1}, T_{n, k, 2}$, $\ldots, T_{n, k, m_{n, k}}$ (for some natural number $m_{n, k} \geq 1$) along pairwise disjoint discs

$$
D_{n, k, 1} \subset S_{n, k-1}, \quad D_{n, k, 2} \subset S_{n, k-1}, \ldots, \quad D_{n, k, m_{n, k}} \subset S_{n, k-1}
$$

and

$$
D_{n, k, 1}^{\prime} \subset T_{n, k, 1}, \quad D_{n, k, 2}^{\prime} \subset T_{n, k, 2}, \ldots, D_{n, k, m_{n, k}}^{\prime} \subset T_{n, k, m_{n, k}}
$$

respectively,

- every disc $D_{n, k+1, i}$ is contained in some torus $T_{n, k, j}$ and is disjoint from the disc $D_{n, k, j}^{\prime}$,
- for each $n>0$ and each $k=1, \ldots, g_{n}$ the map $\Pi_{n+1, k \rightarrow k-1}^{\prime}$ collapses $S_{n, k}$ to $S_{n, k-1}$ along the family $\left\{D_{n, k, i}: i=1, \ldots, m_{n, k}\right\}$,
- $\Pi_{n+1}^{\prime}=\Pi_{n, g_{n} \rightarrow 0}^{\prime}$ (where $\Pi_{n, g_{n} \rightarrow 0}^{\prime}$ denotes the composition $\Pi_{n, 1 \rightarrow 0}^{\prime} \circ$ $\left.\Pi_{n, 2 \rightarrow 1}^{\prime} \circ \cdots \circ \Pi_{n, g_{n} \rightarrow g_{n}-1}^{\prime}\right)$.

Corollary 6.5 gives the refined inverse system of orientable surfaces

$$
\left(S_{1} \stackrel{\Pi_{1,1 \rightarrow 0}^{\prime}}{\longleftarrow} S_{1,1} \stackrel{\Pi_{1,2 \rightarrow 1}^{\prime}}{\longleftarrow} \cdots \stackrel{\Pi_{1, g_{1} \rightarrow g_{1}-1}^{\prime}}{\longleftarrow} S_{2} \stackrel{\Pi_{2,1 \rightarrow 0}^{\prime}}{\longleftarrow} \cdots\right) .
$$

In this inverse system every surface is a connected sum of its predecessor and a finite number of tori (possibly only one). If the genus of S_{1} is greater
than 1, we use Lemma 6.2 for S_{1} to get the inverse system

$$
\left(S_{0} \stackrel{\Pi_{0,1 \rightarrow 0}^{\prime}}{\longleftarrow} S_{0,1} \stackrel{\Pi_{0,2 \rightarrow 1}^{\prime}}{\longleftarrow} \cdots \stackrel{\Pi_{0, g_{0} \rightarrow g_{0}-1}^{\prime}}{\longleftarrow} S_{1} \stackrel{\Pi_{1,1 \rightarrow 0}^{\prime}}{\longleftarrow} \cdots\right)
$$

with S_{0} a torus. We do not do this if S_{1} is a torus.
The last condition of Corollary 6.5 implies that refining the inverse system does not change the inverse limit. Thus we get the following:

Corollary 6.6. Suppose that X is a 7 -systolic normal orientable pseudomanifold of dimension 3. Then the Gromov boundary $\partial_{G} X$ is homeomorphic to the inverse limit of the refined inverse system

$$
\lim _{\leftrightarrows}\left(S_{0} \stackrel{\Pi_{0,1 \rightarrow 0}^{\prime}}{\longleftarrow} S_{0,1} \stackrel{\Pi_{0,2 \rightarrow 1}^{\prime}}{\longleftarrow} \cdots \stackrel{\Pi_{0, g_{0} \rightarrow g_{0}-1}^{\prime}}{\longleftarrow} S_{1} \stackrel{\Pi_{1,1 \rightarrow 0}^{\prime}}{\longleftarrow} S_{1,1} \stackrel{\Pi_{1,2 \rightarrow 1}^{\prime}}{\longleftarrow} \cdots\right)
$$

$\left(\lim _{\longleftarrow}\left(S_{1} \stackrel{\Pi_{1,1 \rightarrow 0}^{\prime}}{\longleftarrow} S_{1,1} \stackrel{\Pi_{1,2 \rightarrow 0}^{\prime}}{\longleftarrow} \cdots\right)\right.$ if S_{1} is a torus $)$.
7. Getting the structure of a Jakobsche inverse system. In this section we continue the previous considerations, under the same assumption that X is orientable. We define some finite families $\mathcal{D}_{n, k}$ of pairwise disjoint discs in every surface $S_{n, k}$. The inverse system $\left(S_{n, k}, \Pi_{n, k}^{\prime}\right)$ with families $\mathcal{D}_{n, k}$ will satisfy all assumptions of the Jakobsche theorem, with $L_{0}=\mathbb{T}^{2}$.

To define these families we need some preparation. For $n=0,1, \ldots$ let $A_{n}=\left\{\Pi_{n, l}^{\prime}(w): l \geq n, w \in S_{l}^{(0)}\right\} \subset S_{n}$ and let $A_{n, k}=\Pi_{n, g_{n} \rightarrow k}^{\prime}\left[A_{n+1}\right] \subset$ $S_{n, k}$, where $\Pi_{n, l}^{\prime}: S_{n} \rightarrow S_{l}$ and $\Pi_{n, g_{n} \rightarrow k}^{\prime}: S_{n+1} \rightarrow S_{n, k}$ are the compositions $\Pi_{l+1}^{\prime} \circ \cdots \circ \Pi_{n}^{\prime}$ and $\Pi_{n, k+1 \rightarrow k}^{\prime} \circ \cdots \circ \Pi_{n, g_{n} \rightarrow g_{n}-1}^{\prime}$ respectively.

LEmma 7.1. A_{n} is a countable dense subset of S_{n} for all $n \geq 1$, and $A_{n, k}$ is a countable dense subset of $S_{n, k}$ for all $n \geq 0$ and all $k=0,1, \ldots, g_{n}$.

Proof. Recall that every map Π_{i} is a C-contraction and the 0 -skeleton $S_{i}^{(0)}$ is a finite 1-net in S_{i} for all i. It follows that $\left\{\Pi_{n, l}(w): w \in S_{l}^{(0)}\right\}$ is a finite C^{l-n}-net in S_{n}. Since the maps Π_{i}^{\prime} satisfy the condition $\Pi_{i}\left[S_{i}^{(0)}\right] \subset$ $\Pi_{i}^{\prime}\left[S_{i}^{(0)}\right]$ (see assertion 4 of Lemma 5.3) it follows that the assertion holds for the sets A_{n}. Since $A_{n, k}$ is the image of the countable dense set A_{n+1} under a surjection, it is itself countable and dense.

Now we define inductively families of discs \mathcal{D}_{n} and $\mathcal{D}_{n, k}$ in the spheres S_{n} and $S_{n, k}$ respectively to match all assumptions of Theorem 4.1.

Suppose the genus of the sphere S_{1} is equal to 1 (i.e. S_{1} is a torus). Let

$$
\mathcal{D}_{1}=\left\{D_{w}: w \in\left(S_{1}\right)^{(0)}\right\}
$$

be a family of pairwise disjoint discs with $w \in \operatorname{int}\left(D_{w}\right), \operatorname{diam}\left(D_{w}\right)<1 / 2$ and $\operatorname{bd}\left(D_{w}\right) \cap A_{1}=\emptyset$. Note that since every disc is the union of an uncountable family of disjoint circles and a point (just take a homeomorphism to the unit
plane disc and circles of radius $r \in(0,1]$ centered at 0$)$, it follows that such discs exist.

If S_{1} has genus greater than 1, then as in Corollary 6.6 we start with the surface S_{0}. Let \mathcal{D}_{0} be a family consisting of one small 2-disc D in S_{0} (contained in the disc $D_{0,0}$ as in Lemma 6.2 and satisfying the inequality $\operatorname{diam}(D)<1)$, with $x \in \operatorname{int}(D)$ (where a point $x \in \operatorname{int}\left(D_{0,0}\right)$ and a disc $D_{0,0}$ are given by the fact that the map $\Pi_{0,1 \rightarrow 0}^{\prime}: S_{0,1} \rightarrow S_{0}$ is a collapsing map). Again we can assume that $\operatorname{bd}(D) \cap A_{0}=\emptyset$.

Now suppose we have defined the families $\mathcal{D}_{0}, \ldots, \mathcal{D}_{n-1}$ and $\mathcal{D}_{i, j}$ for all $i \leq n-1$ and $j=0,1, \ldots, g_{i}$. We define the family \mathcal{D}_{n} as follows. For every vertex $u \in S_{n}^{(0)}$ we choose a small 2-disc D_{u} containing u in its interior such that:

- the discs D_{u} are pairwise disjoint,
- $\operatorname{bd}\left(D_{u}\right) \cap A_{n}=\emptyset$ for all vertices $u \in S_{n}^{(0)}$,
- $\Pi_{i, n}^{\prime}\left[D_{u}\right] \cap \operatorname{bd}\left(D^{\prime}\right)=$ for all $i<n$ and all $D^{\prime} \in \mathcal{D}_{i}$,
- $\Pi_{i, g_{i} \rightarrow j}^{\prime} \circ \Pi_{i+1, n}^{\prime}\left[D_{u}\right] \cap \operatorname{bd}\left(D^{\prime}\right)=\emptyset$ for all $i<n$, all $j=0,1, \ldots, g_{i}$ and all $D^{\prime} \in \mathcal{D}_{i, j}$,
- $\operatorname{diam}_{S_{i}}\left(\Pi_{i, n}^{\prime}\left[D_{u}\right]\right)<1 / 2^{n}$ for all $i<n$,
- $\operatorname{diam}_{S_{i, j}}\left(\Pi_{i, g_{i} \rightarrow j}^{\prime} \circ \Pi_{i+1, n}^{\prime}\left[D_{u}\right]\right)<1 / 2^{n}$ for all $i<n$ and all $j=1, \ldots, g_{i}$.

To choose such a family \mathcal{D}_{n}, note that no point $a=\Pi_{i, n}^{\prime}(u) \in A_{i}$ lies in the boundary $\operatorname{bd}\left(D^{\prime}\right)$ of any disc $D^{\prime} \in \mathcal{D}_{i}$. Analogously, no $a=\Pi_{i, g_{i} \rightarrow j}^{\prime} \circ$ $\Pi_{i+1, n}^{\prime}(u) \in A_{i, j}$ is in $\operatorname{bd}\left(D^{\prime}\right)$ for any $D^{\prime} \in \mathcal{D}_{i, j}$. Thus for small enough $\epsilon>0$, $\Pi_{i, n}^{\prime}\left[B_{S_{n}}(u, \epsilon)\right] \cap \operatorname{bd}\left(D^{\prime}\right)=\emptyset$ for all $D^{\prime} \in \mathcal{D}_{i}$ and $\Pi_{i, g_{i} \rightarrow j}^{\prime} \circ \Pi_{i+1, n}^{\prime}\left[B_{S_{n}}(u, \epsilon)\right] \cap$ $\operatorname{bd}\left(D^{\prime}\right)=\emptyset$ for all $D^{\prime} \in \mathcal{D}_{i, j}$ (there are only finitely many such discs D^{\prime}). Since S_{n} is a surface, the metric ball $B_{S_{n}}(u, \epsilon)$ contains a 2-disc D_{u} containing u in its interior. Again we can assume that $\operatorname{bd}\left(D_{u}\right) \cap A_{n}=\emptyset$.

Now suppose we have defined the families $\mathcal{D}_{0}, \mathcal{D}_{1}, \ldots, \mathcal{D}_{n}$, the families $\mathcal{D}_{i, j}$ for all $i<n$ and $j=0,1, \ldots, g_{i}$ and the families $\mathcal{D}_{n, j}$ for all $j<k$. We define the family $\mathcal{D}_{n, k}$ as follows. For all points $x_{n, k, l}$ given by the fact that the map $\Pi_{n, k+1 \rightarrow k}^{\prime}: S_{n, k+1} \rightarrow S_{n, k}$ is a collapsing map let $D_{n, k, l}$ be a small disc in $S_{n, k}$ containing $x_{n, k, l}$ in its interior such that:

- the discs $D_{n, k, l}$ are pairwise disjoint,
- $\operatorname{bd}\left(D_{n, k, l}\right) \cap A_{n, k}=\emptyset$ for all l,
- $\Pi_{i, n}^{\prime} \circ \Pi_{n, k \rightarrow 0}^{\prime}\left[D_{n, k, l}\right] \cap \operatorname{bd}\left(D^{\prime}\right)=\emptyset$ for all $i<n$ and all $D^{\prime} \in \mathcal{D}_{i}$,
- $\Pi_{i, g_{i} \rightarrow j}^{\prime} \circ \Pi_{i+1, n}^{\prime} \circ \Pi_{n, k \rightarrow 0}^{\prime}\left[D_{n, k, l}\right] \cap \operatorname{bd}\left(D^{\prime}\right)=\emptyset$ for all $i<n$, all $j=$ $0,1, \ldots, g_{i}$ and all $D^{\prime} \in \mathcal{D}_{i, j}$,
- $\operatorname{diam}_{S_{i}}\left(\Pi_{i, n}^{\prime} \circ \Pi_{n, k \rightarrow 0}^{\prime}\left[D_{n, k, l}\right]\right)<1 / 2^{n}$ for all $i<n$,
- $\operatorname{diam}_{S_{i, j}}\left(\Pi_{i, g_{i} \rightarrow j}^{\prime} \circ \Pi_{i+1, n}^{\prime} \circ \Pi_{n, k \rightarrow 0}^{\prime}\left[D_{n, k, l}\right]\right)<1 / 2^{n}$ for all $i<n$ and all $j=0,1, \ldots, g_{i}$.

Such discs can be chosen analogously to the way we have defined the elements of the families \mathcal{D}_{n}.

Now the families of discs \mathcal{D}_{n} and $\mathcal{D}_{n, k}$ together with the maps Π_{n}^{\prime} and $\Pi_{n, k \rightarrow k-1}^{\prime}$ satisfy the assumptions of Theorem 4.1 (note that A_{n} is dense in S_{n} and $A_{n, k}$ is dense in $S_{n, k}$). Since the maps Π_{n}^{\prime} were chosen close enough to the maps Π_{n} to preserve the inverse limit, as a corollary we get:

Theorem 7.2. The Gromov boundary of a 7-systolic normal orientable pseudomanifold of dimension 3 is a Jakobsche tree of tori, i.e. the Pontryagin sphere.
8. Nonorientable trees of surfaces. In this section we examine the properties of Jakobsche inverse systems of nonorientable surfaces. An extension of Jakobsche's construction for nonorientable case was considered in [S]. In dimension 2, i.e. for nonorientable surfaces, it is possible and more convenient to follow Jakobsche's approach rather than that of Stallings. We sketch here some details of this.

We call a family \mathcal{D} of pairwise disjoint closed discs contained in the interior of a manifold M a good family if it is a null family and $\{\operatorname{int}(D)$: $D \in \mathcal{D}\}$ is a dense family in M.

The following lemma is a simple extension of Toruńczyk's lemma (see [J, Lemma 3.1]).

LEmmA 8.1. Let Σ and Σ^{\prime} be nonorientable surfaces (with or without boundaries) and let $f: \Sigma \rightarrow \Sigma^{\prime}$ be a homeomorphism. Let \mathcal{Z} and \mathcal{Z}^{\prime} be two good families of closed 2-discs in Σ and Σ^{\prime} respectively. Then there exist a bijective function $p: \mathcal{Z} \rightarrow \mathcal{Z}^{\prime}$ and a homeomorphism

$$
f^{\prime}: \Sigma \backslash \bigcup_{D \in \mathcal{Z}} \operatorname{int}(D) \rightarrow \Sigma^{\prime} \backslash \bigcup_{D^{\prime} \in \mathcal{Z}^{\prime}} \operatorname{int}\left(D^{\prime}\right)
$$

such that

$$
f^{\prime} \quad \operatorname{bd}(\Sigma)=f_{\lceil\operatorname{bd}(\Sigma)} \quad \text { and } \quad f^{\prime}[\operatorname{bd}(D)]=\operatorname{bd}(p(D)) \text { for each } D \in \mathcal{Z} .
$$

The proof of this lemma is the same as in [J], thus we omit it.
Using Lemma 8.1 and the fact that every homeomorphism of the boundary of a closed nonorientable surface with the interior of a disc removed can be extended to a homeomorphism of this surface, by the same argument as in the proof of Theorem 4.6 in [J], we get the following:

ThEOREM 8.2. Let $\left(L_{0} \stackrel{\alpha_{1}}{\leftarrow} L_{1} \stackrel{\alpha_{2}}{\leftarrow} L_{2} \stackrel{\alpha_{3}}{\leftrightarrows} \cdots\right)$ be an inverse system of connected closed nonorientable surfaces and for each $k \geq 0$ let \mathcal{D}_{k} be a finite collection of pairwise disjoint discs in L_{k} such that:

1. each L_{k} is a connected sum of finitely many copies of L_{0},
2. every map α_{k+1} restricted to $\alpha_{k+1}^{-1}\left[L_{k} \backslash \bigcup\left\{\operatorname{int}(D): D \in \mathcal{D}_{k}\right\}\right]$ is a homeomorphism onto $L_{k} \backslash \bigcup\left\{\operatorname{int}(D): D \in \mathcal{D}_{k}\right\}$,
3. every preimage $\alpha_{k+1}^{-1}[D]$ (for $D \in \mathcal{D}_{k}$) is homeomorphic to a copy of L_{0} with the interior of a disc removed,
4. the family $\left\{\alpha_{j, i}[D]: i \geq j, D \in \mathcal{D}_{i}\right\}$ is null and dense in L_{j} for all j,
5. $\alpha_{j, i}[D] \cap \operatorname{bd}\left(D^{\prime}\right)=\emptyset$ for all $i>j$ and all $D \in \mathcal{D}_{i}$ and $D^{\prime} \in \mathcal{D}_{j}$.

Then the inverse limit $\lim \left(L_{0} \stackrel{\alpha_{1}}{\leftrightarrows} L_{1} \stackrel{\alpha_{2}}{\leftrightarrows} L_{2} \stackrel{\alpha_{3}}{\leftrightarrows} \cdots\right)$ depends only on L_{0}.
As in the orientable case we denote this space by $X\left(L_{0}\right)$ and call it a Jakobsche tree of nonorientable surfaces L_{0}. Just as in the orientable case, we call the system $\left(L_{k}, \alpha_{k}, \mathcal{D}_{k}\right)_{k \geq 0}$ satisfying assumptions 1-5 of Theorem 8.2 a Jakobsche inverse system for L_{0}. If $\left(L_{k}, \alpha_{k}, \mathcal{D}_{k}\right)_{k \geq 0}$ satisfies assumptions $2,4,5$ and the condition:

3a. every preimage $\alpha_{k+1}^{-1}[D]$ (for $D \in \mathcal{D}_{k}$) is homeomorphic to a connected closed nonorientable surface with the interior of a disc removed,
then we call it a Jakobsche inverse system of nonorientable surfaces. We call the corresponding inverse limit a tree of nonorientable surfaces.

Remark 8.3.

1. For $L_{0}=\mathbb{R P}^{2}$, the projective plane, the space $X\left(\mathbb{R P}^{2}\right)$ is known as the nonorientable Pontryagin surface.
2. For $L_{0}=\Sigma_{g}$, the nonorientable surface of genus $g>1$, the space $X\left(\Sigma_{g}\right)$ is homeomorphic to the nonorientable Pontryagin surface. That is, every tree of nonorientable surfaces is homeomorphic to the nonorientable Pontryagin surface (see Remark 8.6).

The next two lemmas show that if nonorientable surfaces occur densely enough in a tree of surfaces, then this tree is homeomorphic to the nonorientable Pontryagin surface. The proof of the following lemma is similar to the proof of Theorem 2.1.49 from [M], thus we omit it.

Lemma 8.4. Let $\left(X_{0} \stackrel{s_{1}}{\leftarrow} X_{1} \stackrel{s_{2}}{\leftarrow} X_{2} \stackrel{s_{3}}{\leftrightarrows} \cdots\right)$ and $\left(Y_{0} \stackrel{t_{1}}{\leftarrow} Y_{1} \stackrel{t_{2}}{\leftarrow} Y_{2} \stackrel{t_{3}}{\leftrightarrows}\right.$ \cdots) be two inverse systems of topological spaces such that the maps s_{i} and t_{i} are continuous and onto for all natural numbers i and there exist:

- increasing sequences $\left\{n_{k}\right\},\left\{m_{k}\right\},\left\{n_{k}^{\prime}\right\}$ and $\left\{m_{k}^{\prime}\right\}$ of natural numbers satisfying $n_{k-1} \leq n_{k}^{\prime} \leq n_{k}$ and $m_{k-1} \leq m_{k}^{\prime} \leq m_{k}$,
- continuous onto maps $f_{k}: X_{n_{k}} \rightarrow Y_{m_{k}}$ and $g_{k}: Y_{m_{k}^{\prime}} \rightarrow X_{n_{k}^{\prime}}$, such that the following diagrams are commutative:

$$
\begin{aligned}
& \begin{array}{cccc}
X_{n_{k}^{\prime}} & \stackrel{s_{n_{k}^{\prime}, n_{k}}}{\longleftarrow} & X_{n_{k}} & X_{n_{k-1}} \\
g_{k} \uparrow & \left\lfloor f_{k}\right. & f_{k-1} \downarrow & \\
s_{n_{k-1}, n_{k}^{\prime}} & X_{n_{k}^{\prime}} \\
& & & \uparrow g_{k}
\end{array} \\
& Y_{m_{k}^{\prime}} \stackrel{t_{m_{k}^{\prime}, m_{k}}}{\longleftarrow} Y_{m_{k}} \quad Y_{m_{k-1}} \stackrel{t_{m_{k-1}, m_{k}^{\prime}}}{\longleftarrow} Y_{m_{k}^{\prime}}
\end{aligned}
$$

Then the inverse limits $\lim _{\rightleftarrows}\left(X_{k}, s_{k}\right)$ and $\lim \left(Y_{k}, t_{k}\right)$ are homeomorphic.
LEMMA 8.5. Let $\left(L_{0} \stackrel{\alpha_{1}}{\longleftarrow} L_{1} \stackrel{\alpha_{2}}{\longleftarrow} L_{2} \stackrel{\alpha_{3}}{\longleftarrow} \cdots\right)$ be an inverse system of connected closed nonorientable surfaces and for each $k \geq 0$ let \mathcal{D}_{k} be a finite collection of pairwise disjoint discs in L_{k} such that:

1. $\left(L_{k}, \alpha_{k}, \mathcal{D}_{k}\right)$ is a Jakobsche inverse system of surfaces $\left(^{2}\right)$,
2. for every natural number k and for every disc $D \in \mathcal{D}_{k}$ there is a natural number $l_{D}>k$ such that $\left(\alpha_{k, l_{D}}\right)^{-1}[D]$ is a nonorientable surface with the interior of a disc removed,
3. every map α_{k+1} collapses L_{k+1} to L_{k} along \mathcal{D}_{k}.

Then the inverse limit $\lim \left(L_{0} \stackrel{\alpha_{1}}{\longleftarrow} L_{1} \stackrel{\alpha_{2}}{\longleftarrow} L_{2} \stackrel{\alpha_{3}}{\longleftarrow} \cdots\right)$ is homeomorphic to the nonorientable Pontryagin surface.

Proof. We shall define the following collection of data:

- an infinite increasing sequence $\left\{n_{k}\right\}$ of natural numbers,
- a sequence $\left\{L_{k}^{\prime}\right\}$ of nonorientable closed surfaces,
- a sequence $\left\{\mathcal{D}_{k}^{\prime}\right\}$ of finite families of pairwise disjoint discs in every surface L_{k}^{\prime},
- sequences of maps $\left\{f_{k}: L_{n_{k}} \rightarrow L_{k-1}^{\prime}\right\},\left\{g_{k}: L_{k}^{\prime} \rightarrow L_{n_{k}}\right\}$ and $\left\{\alpha_{k}^{\prime}:\right.$ $\left.L_{k}^{\prime} \rightarrow L_{k-1}^{\prime}\right\}$
satisfying the following:
(a) the diagrams:

and

are commutative,
(b) $g_{k} \operatorname{maps} L_{k}^{\prime} \backslash \bigcup_{D \in \mathcal{D}_{k-1}^{\prime}}\left(\alpha_{k}^{\prime}\right)^{-1}[\operatorname{int}(D)]$ homeomorphically onto $L_{n_{k}} \backslash$ $\bigcup_{D \in \mathcal{D}_{k-1}^{\prime}} f_{k}^{-1}[\operatorname{int}(D)]$ and maps $\left(\alpha_{k}^{\prime}\right)^{-1}[D]$ onto $f_{k}^{-1}[D]$ for all discs $D \in \mathcal{D}_{k-1}^{\prime}$,

[^2](c) f_{k+1} maps $L_{n_{k+1}} \backslash \bigcup_{D \in \mathcal{D}_{k}^{\prime}} f_{k+1}^{-1}[\operatorname{int}(D)]$ homeomorphically onto $L_{k}^{\prime} \backslash$ $\bigcup_{D \in \mathcal{D}_{k}^{\prime}} \operatorname{int}(D)$,
(d) α_{k}^{\prime} collapses L_{k}^{\prime} to L_{k-1}^{\prime} along $\mathcal{D}_{k-1}^{\prime}$,
(e) $\left(L_{k}^{\prime}, \alpha_{k}^{\prime}, \mathcal{D}_{k}^{\prime}\right)$ is a Jakobsche inverse system of nonorientable surfaces.

Note that by Lemma 8.4 the inverse limits $\lim \left(L_{k}, \alpha_{k}\right)$ and $\lim \left(L_{k}^{\prime}, \alpha_{k}^{\prime}\right)$ are homeomorphic. By the nonorientable analogues of Lemmas 6.2 and 6.3 the inverse limit $\lim \left(L_{k}^{\prime}, \alpha_{k}^{\prime}\right)$ is homeomorphic to the Jakobsche tree of projective planes. Thus, by Theorem 8.2, both these inverse limits are homeomorphic to the nonorientable Pontryagin surface.

It remains to construct the desired data. We do this inductively. Let $n_{0}=0, L_{0}^{\prime}=L_{0}, g_{0}=\operatorname{Id}_{L_{0}}, \mathcal{D}_{0}^{\prime}=\mathcal{D}_{0}$. Let $n_{1}=1, f_{1}=\alpha_{1}$.

Suppose that we have defined the following:

- natural numbers n_{j} for $j=0,1, \ldots, k$ satisfying $n_{j}<n_{j+1}$ for $j=$ $0,1, \ldots, k-1$,
- nonorientable closed surfaces L_{j}^{\prime} for $j=0,1, \ldots, k-1$,
- finite families \mathcal{D}_{j}^{\prime} (for $j=0,1, \ldots, k-1$) of pairwise disjoint discs in every surface L_{j}^{\prime} respectively,
- maps $f_{j}: L_{n_{j}} \rightarrow L_{j-1}^{\prime}$ for $j=0,1, \ldots, k, g_{j}: L_{j}^{\prime} \rightarrow L_{n_{j}}$ for $j=$ $0,1, \ldots, k-1$ and $\alpha_{j}^{\prime}: L_{j}^{\prime} \rightarrow L_{j-1}^{\prime}$ for $j=0,1, \ldots, k-1$ (if $k>0$)
satisfying (a), (b), (c), (d) and an additional condition:
(f) every preimage $\left(\alpha_{j}^{\prime}\right)^{-1}[D]$ (for $D \in \mathcal{D}_{j-1}^{\prime}$) is homeomorphic to a nonorientable closed surface with the interior of a disc removed.

Let $n_{k+1}>n_{k}$ be the smallest integer such that $\left(f_{k} \circ \alpha_{n_{k}, n_{k+1}}\right)^{-1}[D]$ is a nonorientable surface with the interior of a disc removed for all discs $D \in \mathcal{D}_{k-1}^{\prime}$ (such a number exists due to assumption 2).

Let

$$
L_{k}^{\prime}=\left(L_{k-1}^{\prime} \backslash \bigcup_{D \in \mathcal{D}_{k-1}^{\prime}} \operatorname{int}(D)\right) \cup \bigcup_{D \in \mathcal{D}_{k-1}^{\prime}}\left(f_{k} \circ \alpha_{n_{k}, n_{k+1}}\right)^{-1}[D]
$$

where points $x \in \operatorname{bd}(D)$ are identified with their preimages $\left(f_{k} \circ \alpha_{n_{k}, n_{k+1}}\right)^{-1}[x]$ due to (c) and assumption 1.

Define $g_{k}: L_{k}^{\prime} \rightarrow L_{n_{k}}, f_{k+1}: L_{n_{k+1}} \rightarrow L_{k}^{\prime}$ and $\alpha_{k}^{\prime}: L_{k}^{\prime} \rightarrow L_{k-1}^{\prime}$ by

$$
g_{k}(x)= \begin{cases}f_{k}^{-1}(x) & \text { if } \left.x \in L_{k-1}^{\prime} \backslash \bigcup_{D \in \mathcal{D}_{k-1}^{\prime}} \operatorname{int}(D) \text { (by (c) for } f_{k}\right), \\ \alpha_{n_{k}, n_{k+1}}(x) & \text { if } x \in \bigcup_{D \in \mathcal{D}_{k-1}^{\prime}}\left(f_{k} \circ \alpha_{n_{k}, n_{k+1}}\right)^{-1}[D],\end{cases}
$$

$$
\begin{aligned}
f_{k+1}(x) & = \begin{cases}x & \text { if } x \in \bigcup_{D \in \mathcal{D}_{k-1}^{\prime}}\left(f_{k} \circ \alpha_{n_{k}, n_{k+1}}\right)^{-1}[D] \\
f_{k} \circ \alpha_{n_{k}, n_{k+1}}(x) & \text { otherwise },\end{cases} \\
\alpha_{k}^{\prime}(x) & = \begin{cases}x & \text { if } x \in L_{k-1}^{\prime} \backslash \bigcup_{D \in \mathcal{D}_{k-1}^{\prime}} \operatorname{int}(D) \\
f_{k} \circ \alpha_{n_{k}, n_{k+1}}(x) & \text { otherwise. }\end{cases}
\end{aligned}
$$

These maps are of course well defined and continuous. They satisfy (a), (b) and (d) in the obvious way.

To define \mathcal{D}_{k}^{\prime} we need some technical definition. For $n_{k} \leq j<n_{k+1}$ let

$$
\begin{aligned}
& \mathcal{D}_{j}^{+}=\left\{D \in \mathcal{D}_{j}: D \cap\left(f_{k} \circ \alpha_{n_{k}, j}\right)^{-1}\left[D^{\prime}\right]=\emptyset \text { for } D^{\prime} \in \mathcal{D}_{k-1}^{\prime}\right. \text { and } \\
& \\
& \left.D \cap \alpha_{s, j}^{-1}\left[D^{\prime \prime}\right]=\emptyset \text { for } n_{k} \leq s<j \text { and } D^{\prime \prime} \in \mathcal{D}_{s}\right\} .
\end{aligned}
$$

Define

$$
\mathcal{D}_{k}^{\prime}=\left\{f_{k+1}\left[\alpha_{j, n_{k+1}}^{-1}[D]\right]: n_{k} \leq j<n_{k+1}, D \in \mathcal{D}_{j}^{+}\right\}
$$

We skip the straightforward check of conditions (c) and (e).
Remark 8.6.

1. Note that assumption 3 in Lemma 8.5 is not necessary. Indeed, as in the proof of Theorem 4.6 in [J], it is possible to change $\alpha_{k}: L_{k} \rightarrow L_{k-1}$ on $\alpha_{k}^{-1}[D]$ (for $D \in \mathcal{D}_{k-1}$), keeping the inverse limit unchanged, to get collapsing maps.
2. The same argument shows that every tree of orientable surfaces of genera greater than 0 is homeomorphic to the Pontryagin sphere.
3. Proof of part (b) of the Main Theorem. In this section we extend Theorem 7.2 to the nonorientable case. We need some preparations. We start with the following property of group actions on metric spaces, the proof of which we skip.

Lemma 9.1. Let X be a proper metric space and let a group G act on X cocompactly by isometries. Then there is a positive constant $R>0$ such that for all $x \in X$ the translates of the metric ball $B_{X}(x, R)$ under elements of G cover X, i.e. $G \cdot B_{X}(x, R)=X$.

Consider now a 3 -dimensional 7 -systolic normal pseudomanifold X with a cocompact action of a group G by simplicial automorphisms. For a vertex $w \in X$ and a simplex $\sigma \subset X_{w}$ consider the subcomplex

$$
X_{w, \sigma}=\left(X_{w} \backslash B_{2}\left(\sigma, X_{w}\right)\right) \cup S_{2}\left(\sigma, X_{w}\right)
$$

Let $K_{w, \sigma}=\operatorname{diam}\left(X_{w, \sigma}^{(1)}\right)$ (in the intrinsic metric $\left.d_{X_{w, \sigma}^{(1)}}\right)$. Note that $K=$ $\max \left\{K_{w, \sigma}: w \in X^{(0)}, \sigma \subset X_{w}\right\}$ is finite.

The next lemma describes the relationship between distances in successive spheres in a 7 -systolic normal pseudomanifold of dimension 3 .

LEmma 9.2. Let X be a 7 -systolic 3 -dimensional normal pseudomanifold with a cocompact action of a group G by simplicial automorphisms. Let K be as above. Let p and q be two vertices in the sphere S_{k} and let p^{\prime} and q^{\prime} be two vertices in S_{k+1} connected by an edge to p and q respectively. Then

$$
d_{S_{k+1}^{(1)}}\left(p^{\prime}, q^{\prime}\right) \leq K\left(d_{S_{k}^{(1)}}(p, q)+1\right)
$$

Proof. Let $p=p_{0}, p_{1}, \ldots, p_{n}=q$ be a geodesic in the 1-skeleton $S_{k}^{(1)}$. For $i=1, \ldots, n$ let p_{i}^{\prime} be a vertex in $X_{p_{i-1} * p_{i}} \cap S_{k+1}$. Note that diam $\left(\left(X_{p_{i}} \cap\right.\right.$ $\left.\left.S_{k+1}\right)^{(1)}\right) \leq K$, since $X_{p_{i}} \cap S_{k+1}=X_{p_{i}, \rho}$, where $\rho=\Pi_{k}\left(p_{i}\right)$. Thus
$d_{S_{k+1}^{(1)}}\left(p^{\prime}, q^{\prime}\right) \leq d_{S_{k+1}^{(1)}}\left(p^{\prime}, p_{1}^{\prime}\right)+\sum_{j=1}^{n-1} d_{S_{k+1}^{(1)}}\left(p_{i}^{\prime}, p_{i+1}^{\prime}\right)+d_{S_{k+1}^{(1)}}\left(p_{n}^{\prime}, q^{\prime}\right) \leq K(n+1)$.
The next lemma shows that if a nonorientable complex X is as in Lemma 9.2 then there are enough vertices with nonorientable links in X, in a certain precise sense.

Lemma 9.3. Let X be a 7-systolic normal nonorientable pseudomanifold of dimension 3 with a cocompact action of a group G by simplicial isometries. Let $v \in X$ be a vertex. Let $w \in S_{k}=S_{k}(v, X)$ be a vertex. Then for every $\epsilon>0$ there is a $k^{\prime}>k$ and a vertex $u \in S_{k^{\prime}}$ such that the link X_{u} is a nonorientable surface and $\Pi_{k, k^{\prime}}(u) \in B_{S_{k}}(w, \epsilon)$.

Proof. Let $\epsilon>0$. By Lemma 9.1 there is $R>0$ such that for all $x \in X$ the translates of the metric ball $\overline{B_{X}}(x, R)$ under elements of G cover X, i.e. $G \cdot B_{X}(x, R)=X$. Thus there is a positive integer N such that $G \cdot B_{N}(w, X)$ $=X$ for all vertices $w \in X$ (where $B_{N}(w, X)$ denotes the combinatorial N-ball).

For a natural number $l>0$ and for $i=0,1, \ldots, 2 N$ consider the combinatorial spheres $S_{k+l+i}=S_{k+l+i}(v, X)$. Let $u_{i} \in S_{k+l+i}^{(0)}$ be such that $\Pi_{k+l+i+1}\left(u_{i+1}\right)=u_{i}$ for $i=0,1, \ldots, 2 N-1$ and $\Pi_{k, k+l}\left(u_{0}\right)=w$. There is a vertex $u \in B_{N}\left(u_{N}, X\right)$ such that the link X_{u} is a nonorientable surface. Since $B_{N}\left(u_{N}, X\right) \subseteq B_{k+l+2 N}(v, X) \backslash B_{k+l-1}(v, X)$, it is enough to show that for l large enough, for all vertices $z \in B_{N}\left(u_{N}, X\right)$, we have $d_{S_{k}}\left(\Pi_{k, k+l+i}(z), w\right)<\epsilon$, where $k+l+i=d_{X^{(1)}}(v, z)$ (here we use the convention that $\Pi_{k, k}=\operatorname{Id}_{S_{k}}$).

For this let z be a vertex in $B_{N}\left(u_{N}, X\right) \cap S_{k+l+i}$ for some $i=0,1, \ldots, 2 N$. Let

$$
u_{0}=z_{0,1}, z_{0,2}, \ldots, z_{0, j_{0}}, z_{1,1}, \ldots, z_{1, j_{1}}, \ldots, z_{i-1,1}, \ldots, z_{i-1, j_{i-1}}, z_{i, 1}, z_{i, j_{i}}=z
$$

(for some natural numbers $j_{0}, j_{1}, \ldots, j_{i}$) be a geodesic in the 1 -skeleton
$X^{(1)}$ satisfying $z_{m, n} \in B_{N}\left(u_{N}, X\right) \cap S_{k+l+m}(v, X)$ for $m=0,1, \ldots, i$ and $n=1, \ldots, j_{m}$ (actually all geodesics between z and u_{0} have this form, since combinatorial balls are convex (see [JS, Corollary 7.5]) and thus geodesically convex (see HS, Proposition 4.9])).

Let K be the constant of Lemma 9.2 and let $L=\max \{K, 2 N+2\}$. We will show that

$$
d_{S_{k+l+i}}\left(z, u_{i}\right)<L^{2 N+3}
$$

Using this inequality we get

$$
d_{S_{k}}\left(\Pi_{k, k+l+i}(z), w\right)<C^{l+i} L^{2 N+3}<C^{l} L^{2 N+3}
$$

where C is the constant given by Fact 2.7. Thus for l large enough the assertion holds.

To prove the above inequality, we inductively show that for all $t=$ $0,1, \ldots, i$,

$$
d_{S_{k+l+t}^{(1)}}\left(z_{t, j_{t}}, u_{t}\right)<t L^{t+1}+2 R \quad \text { and } \quad d_{S_{k+l+t}^{(1)}}\left(z_{t, 0}, u_{t}\right)<t L^{t+1}
$$

Since $z_{0, j_{0}}$ and u_{0} are vertices in the intersection $B_{N}\left(u_{N}, X\right) \cap B_{k+l}(v, X)$, it follows that

$$
d_{S_{k+l}^{(1)}}\left(z_{0, j_{0}}, u_{0}\right)=d_{X^{(1)}}\left(z_{0, j_{0}}, u_{0}\right) \leq 2 N
$$

Suppose that

$$
d_{S_{k+l+t}^{(1)}}\left(z_{t, j_{t}}, u_{t}\right)<t L^{t+1}+2 N
$$

By Lemma 9.2 ,

$$
d_{S_{k+l+t+1}^{(1)}}\left(z_{t+1,0}, u_{t+1}\right)<K\left(t L^{t+1}+2 N+1\right)<L(t+1) L^{t+1}=(t+1) L^{t+2}
$$

and thus

$$
d_{S_{k+l+t+1}^{(1)}}\left(z_{t+1, j_{t+1}}, u_{t+1}\right)<(t+1) L^{t+2}+2 N
$$

It follows that

$$
d_{S_{k+l+i}^{(1)}}\left(z, u_{i}\right)<i L^{i+1}+2 N<L^{2 N+3}
$$

and the lemma follows.
Lemma 9.4. Let X and G be as in Lemma 9.3. Let $v \in X$ be a vertex. Let $w \in S_{k}=S_{k}(v, X)$ be a vertex. Then there is a $k^{\prime}>k$ and a vertex $u \in S_{k^{\prime}}$ such that the link X_{u} is a nonorientable surface and $\Pi_{k, k^{\prime}}^{\prime}(u)=w$.

Proof. Let $w^{\prime} \in S_{k+1}$ be a vertex such that $\Pi_{k+1}\left[\operatorname{Res}\left(w^{\prime}, S_{k+1}\right)\right]=w$. Let $\epsilon>0$ be such that $\epsilon+\epsilon_{l} /(1-C)<1$ for $l=2,3, \ldots$ (where the ϵ_{l} are given by Lemma 5.3. Due to Lemma 9.3 there is a $k^{\prime}>k+1$ and a vertex $u \in S_{k^{\prime}}$ such that X_{u} is a nonorientable surface and $\Pi_{k+1, k^{\prime}}(u) \in B_{S_{k+1}}\left(w^{\prime}, \epsilon\right)$.

Note that if $d_{S_{l}}(x, y) \leq \delta$, then

$$
\begin{aligned}
d_{S_{l-1}}\left(\Pi_{l}^{\prime}(x), \Pi_{l}(y)\right) & \leq d_{S_{l-1}}\left(\Pi_{l}^{\prime}(x), \Pi_{l}(x)\right)+d_{S_{l-1}}\left(\Pi_{l}(x), \Pi_{l}(y)\right) \\
& \leq C \delta+\epsilon_{l}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
d_{S_{k+1}}\left(\Pi_{k+1, k^{\prime}}^{\prime}(u), \Pi_{k+1, k^{\prime}}(u)\right) & \leq \epsilon_{k+1}+C \epsilon_{k+2}+\cdots+C^{k^{\prime}-k-1} \epsilon_{k^{\prime}} \\
& <\epsilon_{k+1} \frac{1}{1-C}<1-\epsilon
\end{aligned}
$$

Thus $\Pi_{k+1, k^{\prime}}^{\prime}(u) \in B_{S_{k+1}}\left(w^{\prime}, 1\right) \subset \operatorname{Res}\left(w^{\prime}, S_{k+1}\right)$, so $\Pi_{k, k^{\prime}}(u)=w$.
Now we can prove part (b) of the Main Theorem.
Theorem 9.5. Let X be a 7-systolic nonorientable pseudomanifold of dimension 3. Let a group G act cocompactly on X by simplicial automorphisms. Then the Gromov boundary $\partial_{G} X$ is homeomorphic to the nonorientable Pontryagin surface.

Proof. By Sections 3, 5, 6 and 7 we can assume that $\partial_{G} X$ is homeomorphic to the inverse limit of a system of nonorientable surfaces satisfying assumptions 1 and 3 of Lemma 8.5. By Lemma 9.4 we can assume that assumption 2 is also satisfied. Thus the assertion holds by Lemma 8.5.

Acknowledgements. I would like to thank Jacek Świątkowski for all his help during the work on this paper. I would also like to thank Paweł Krupski, Krzysztof Omiljanowski, Damian Osajda and Kamil Duszenko for remarks which helped me to improve the exposition.

During the work on this paper I was partially supported by MNiSW Grants N N201 178033 and N201 012 32/0718.

References

[B] M. Brown, Some applications of an approximation theorem for inverse limits, Proc. Amer. Math. Soc. 11 (1960), 478-483.
[F] H. Fischer, Boundaries of right-angled Coxeter groups with manifold nerves, Topology 42 (2003), 423-446.
[H] F. Haglund, Complexes simpliciaux hyperboliques de grande dimension, preprint, Prépublication Orsay 71, 2003.
[HS] F. Haglund and J. Świątkowski, Separating quasi-convex subgroups in 7-systolic groups, Groups Geom. Dynam. 2 (2008), 223-244.
[J] W. Jakobsche, Homogeneous cohomology manifolds which are inverse limits, Fund. Math. 137 (1991), 81-95.
[JS] T. Januszkiewicz and J. Świątkowski, Simplicial nonpositive curvature, Publ. Math. IHES 104 (2006), 1-85.
[M] S. Macias, Topics on Continua, Chapman \& Hall/CRC, Boca Raton, 2005.
[O] D. Osajda, Ideal boundary of 7-systolic complexes and groups, Algebr. Geom. Topology 8 (2008), 81-99.
[S] P. R. Stallings, An extension of Jakobsche's construction of n-homogeneous continua to the nonorientable case, in: Continua (Cincinnati, OH, 1994), Lecture Notes in Pure Appl. Math. 170, Dekker, New York, 1995, 347-361.

Paweł Zawiślak
Mathematical Institute
University of Wrocław
pl. Grunwaldzki $2 / 4$
50-384 Wrocław, Poland
E-mail: Pawel.Zawislak@math.uni.wroc.pl

Received 16.2.2009;
in revised form 31.8.2009

[^0]: 2010 Mathematics Subject Classification: 20F67, 20F65.
 Key words and phrases: systolic group, systolic complex, Gromov boundary, Pontryagin sphere, tree of manifolds.

[^1]: $\left.{ }^{(}{ }^{1}\right)$ For $i>j$ we denote by $\alpha_{j, i}$ the composition $\alpha_{j+1} \circ \cdots \circ \alpha_{i}$, whereas $\alpha_{i, i}$ denotes the identity on L_{i}.

[^2]: $\left.{ }^{(2}\right)$ In particular, we require that $\alpha_{k+1}^{-1}[D]$ (for $D \in \mathcal{D}_{k}$) is a closed surface (orientable or not) with the interior of a disc removed.

