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Topological friction in aperiodic minimal Rm-actions
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Jarosław Kwapisz (Bozeman, MT)

Abstract. For a continuous map f preserving orbits of an aperiodic Rm-action on a
compact space, its displacement function assigns to x the “time” t ∈ Rm it takes to move
x to f(x). We show that this function is continuous if the action is minimal. In particular,
f is homotopic to the identity along the orbits of the action.

Let X be a compact metric space with a continuous Rm-action T :
Rm ×X → X. Denote T (t, x) simply by x + t. Assume T is aperiodic, i.e.,
x+ t = x implies t = 0. We are interested in continuous f : X → X mapping
every orbit of T to itself, which is to say that there is φ : X → Rm such that

(0.1) f(x) = x+ φ(x), x ∈ X.
Note that the aperiodicity of T makes φ, called the displacement function,
uniquely determined by f . Recall that T is minimal iff its orbits are dense
in X.

Theorem. If the action T is minimal, then φ is continuous.

The twist map f : (x1, x2) 7→ (x1 + x2, x2) on the two-torus T2 = R2/Z2

does not admit a continuous displacement function yet preserves the or-
bits of a periodic R-action (x1, x2) 7→ (x1 + t, x2). Whether the minimal-
ity hypothesis can be relaxed to transitivity for R-actions is unknown to
the author. However, the following simple example shows that some hy-
pothesis beyond the aperiodicity is necessary. Take X := D × R2/Z2 where
D := {1/n : n ∈ N} ∪ {0}. Let T (t, (x, y)) = (x, y + tω) with ω = (1,

√
2),

and set f(0, y) := (0, y) and f(1/n, y) := (1/n, y + φnω) where φn → ∞
are chosen so that dist(φnω,Z2) → 0. Since φ(1/n, y) = φn for y ∈ T2, φ is
unbounded and so discontinuous.

The subtlety underlying the continuity of φ surfaces already in the “al-
gebraic case” when m = 1, T is a minimal translation on a compact abelian

2010 Mathematics Subject Classification: Primary 37B05.
Key words and phrases: aperiodic actions, minimal action, displacement function.

DOI: 10.4064/fm207-2-5 [175] c© Instytut Matematyczny PAN, 2010



176 J. Kwapisz

group G, and f is a homeomorphism. Any homeomorphism f0 of the real
line, f0 : x 7→ x+φ0(x), where φ0 is not periodic but merely (Bochner–Bohr)
almost periodic, generates such f : G→ G with the displacement φ : G→ R
being the continuous extension of φ0 to the translation hull of φ0 (cf. [3,
p. 27], and [2] for further discussion). It is easy to see that a homeomor-
phism f : G→ G (satisfying our hypotheses) arises from an almost periodic
φ0 via the hull construction exactly when φ is continuous.

When G is a torus Td = Rd/Zd (d ≥ 2) with a minimal Kronecker action,
T (t, x) = x+tω, the theorem follows readily from the homotopy classification
of maps of Td according to which f lifts to f̃ : Rd → Rd of the form f̃ = A+Φ
where A ∈ GLd(Z) and Φ is Z2-periodic and continuous. Indeed, one of the
lifts f̃ preserves the pencil of lines {x+Rω}x∈R2 constituting the lifted orbits
of T and the irrationality of ω forces A = Id. Hence, φ is just a component
of Φ, φ = 〈Φ|ω〉, which makes it continuous.

A similar argument can be made for G that is a solenoid but one has to
contend with a trickier homotopy classification due to disconnectedness of
X in the direction transversal to the flow (see [7] and the references therein).
In fact, this is the continuity of φ in the transverse direction that relies on
the minimality, whereas the continuity along the flow is rather general. For
non-algebraic minimal flows that are poorly understood one might worry that
f is shearing off and radically rearranging nearby orbit segments to render
φ unbounded. The goal of this note is to identify a mechanism (“friction”)
that precludes this scenario in minimal flows.

The theorem is also a step in homotopy classification of homeomorphisms
of X that permute the orbits of T . Observe that f is homotopic to the
identity along the orbits of T exactly when φ is continuous; and if it is,
{x+ λφ(x)}λ∈[0,1] supplies such a homotopy.

In another connection, continuity of φ guarantees that φ is integrable
with respect to any ergodic f -invariant measure µ. The Birkhoff averages	
X φdµ are called rotation vectors and constitute an important topological
invariant of the dynamics of f (cf. [6, 1]).

An orbit Ox := x + Rm is an immersed copy of Rm parametrized by
αx : t 7→ x + t. That f maps Ox continuously with respect to its intrinsic
topology is a corollary of the following lemma. We shall not use here the
minimality (which is invoked only once in the proof of the theorem), nor
the full strength of the aperiodicity hypothesis but merely that there are
ε0, L0 > 0 such that if J ⊂ Rm is connected and diam(J) > L0, then
diam(x+ J) > ε0 for any x ∈ X (1).

(1) This hinges on absence of small periods, i.e. existence of L0 > 0 such that x+t = x,
|t| < L0 ⇒ t = 0, which fails exactly when some x is stabilized by a connected subgroup
of Rm.
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Lemma. If I is a line segment and γ : I → X is continuous with the
image γ(I) contained in Ox for some x ∈ X and diam(γ(I)) < ε0/2, then
α−1
x ◦ γ : I → Rm is continuous and diam(α−1

x ◦ γ(I)) ≤ L0.

Proof. Let U be an open ball of radius ε0/2 containing γ(I), and let J1,
J2, . . . be the connected components of the open set α−1

x (U ∩ Ox) ⊂ Rm.
Note that diam(Jk) ≤ L0, so the closure Jk is compact, making (αx|Jk

)−1

continuous. Moreover, Γk := αx(Jk)∩ γ(I) is compact. Since αx(∂Jk) ⊂ ∂U
and γ(I) ⊂ U , we also have Γk = αx(Jk) ∩ γ(I), so the Γk are disjoint
(like the Jk). Thus

⋃
k γ
−1(Γk) = I is a disjoint union of compact sets,

forcing γ−1(Γk0) = I for some k0 (by Sierpiński’s theorem, [5, p. 173]). In
particular, α−1

x ◦γ|I = (αx|Jk0
)−1 ◦γ|I is continuous. From α−1

x ◦γ(I) ⊂ Jk0 ,
diam(α−1

x ◦ γ(I)) ≤ diam(Jk0) ≤ L0. 2

Corollary. There is C > 0 such that, for any x ∈ X, gx := α−1
x ◦ f ◦

αx : Rm → Rm is continuous and

(0.2) |gx(t1)− gx(t2)| ≤ C|t1 − t2|+ C, t1, t2 ∈ Rm.

Proof. Because αx(t) is a uniformly continuous function of x ∈ X and t in
a compact neighborhood of 0, there is δ0 ∈ (0, 1) such that diam(f ◦αx(I)) <
ε0/2 provided I is a segment with length |I| ≤ δ0. Cover the segment [t1, t2]
joining t1 to t2 by at most |t2−t1|/δ0+1 subsegments Ij of length δ0 and apply
the lemma to each γj := f◦αx|Ij to conclude that diam(α−1

x ◦f◦αx([t1, t2])) ≤
(|t2 − t1|/δ0 + 1)L0. Then C := L0/δ0 is as desired.

Proof of the Theorem. First, we claim that Gr := {x : |φ(x)| ≤ r} is
closed for any r ≥ 0. Indeed, suppose that xn ∈ Gr converge to x ∈ X. There
is a subsequence (nk) and t ∈ [−r, r] such that φ(xnk

)→ t and nk →∞. By
passing to the limit in f(xnk

) = xnk
+φ(xnk

) we get f(x) = x+ t. Since also
f(x) = x+φ(x), the aperiodicity of T forces φ(x) = t, thus placing x in Gr.

Furthermore, the restriction φ|Gr is continuous, as otherwise we would
have x and xn as above and ε > 0 with |φ(xn) − φ(x)| ≥ ε, which yields
|t− φ(x)| ≥ ε contrary to t = φ(x).

It remains to show that X = Gr′ for some r′ > 0, as then φ = φ|Gr′ ,
which we know is continuous. Since X =

⋃
r∈NGr, the Baire theorem secures

r ∈ N with U := int(Gr) 6= ∅. By the minimality of T and the compactness
of X, there is R > 0 such that any orbit piece {y + t : |t| < R}, y ∈ X,
intersects U .

Consider an arbitrary x ∈ X. Take t with |t| ≤ R and x+ t ∈ U so that
|φ(x + t)| ≤ r. Since gx(0) = φ(x) and gx(t) = φ(x + t) + t, the Corollary
yields

(0.3) |φ(x)| ≤ |φ(x+ t)|+ |gx(0)− gx(t)|+ |t| ≤ r + CR+R+R.

That is, x ∈ Gr′ with r′ := r + CR+R+R.
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From another perspective (cf. [4]), the theorem is an assertion about
regularity of the coboundary φ in the cohomological equation
(0.4) ψ(x, t) = t+ φ(x+ t)− φ(x), x ∈ X, t ∈ Rm,

where the cocycle ψ : X × Rm → Rm is related to f via f(x + t) = f(x) +
ψ(x, t) (which, if f−1 exists, means that ψ is the cocycle associated to the
action (t, x) 7→ f−1 ◦T (t, f(x)) considered as a time change of T ). Here ψ is
the data and it is always continuous. Indeed, by the corollary and ψ(x, t) =
gx(t) − gx(0), we have sup{|ψ(x, t)| : x ∈ X, |t| ≤ r} ≤ Cr + C < ∞.
Thus, if xn → x, tn → t, and ψ(xn, tn) → s, then f(xn + tn) = f(xn) +
ψ(xn, tn) converges to f(x+ t) = f(x) + s, so ψ(x, t) = s. More subtly, the
theorem guarantees that the solution to (0.4), our displacement function φ,
is continuous if T is minimal.
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