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Topology of the regular part for
infinitely renormalizable quadratic polynomials

by

Carlos Cabrera (Cuernavaca) and Tomoki Kawahira (Nagoya)

Abstract. We describe the well studied process of renormalization of quadratic poly-
nomials from the point of view of their natural extensions. In particular, we describe the
topology of the inverse limit of infinitely renormalizable quadratic polynomials and prove
that when they satisfy a priori bounds, the topology is rigid modulo combinatorial equiv-
alence.

1. Introduction and basic theory. There are some dynamical sys-
tems that can be interpreted by geometric objects. Sullivan constructed
a lamination by Riemann surfaces associated to expanding maps on the
circle, by using its inverse limit [20]. These laminations play a crucial role
in his proof of the universality of infinitely renormalizable unimodal maps.
Later on in [16], Lyubich and Minsky generalized this construction to every
rational map on the sphere. They proved a rigidity theorem for critically
non-recurrent rational maps without parabolic cycles, by means of hyper-
bolic 3-laminations associated to these maps.

For a given rational map, Lyubich and Minsky’s construction of
the hyperbolic 3-lamination is essentially based on the construction of a
Riemann surface lamination associated to the map. In their setting,
they also used inverse limits. However, the construction of the Riemann
surface lamination is more involved than Sullivan’s, since the presence
of critical orbits forces some “irregular points” to be excluded from the
inverse limit. The rest is called the regular part (or regular leaf space),
which has nice analytic properties. Indeed, we may regard the regular part
as the desired Riemann surface lamination when the critical orbits behave
nicely.

Part of the program presented by Lyubich and Minsky was to investigate
the properties of the regular part of quadratic maps fc(z) = z2+c ([16, §10]).
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Here are two possible problems:

• Describe the topological structure of the regular part for a quadratic
map.
• Classify the quadratic maps by the topologies of their regular parts.

The authors dealt with these problems when fc has a (super)attracting
or parabolic cycle and perhaps we have reasonable solutions [2, 3, 9, 10].
However, needless to say, the most important class to consider is the family
of infinitely renormalizable quadratic maps.

Main results. Let us roughly summarize the main results of this paper.
(The precise definitions and statements will be given later.) Let fc be an
infinitely renormalizable quadratic map. Such a map uniquely determines
an invariant called the combinatorics, which is represented by a sequence
of parameters {s0, s1, . . .} with superattracting fsi . We say fc has a priori
bounds when each level of renormalization is separated by an annulus of
definite modulus.

Under the assumption of a priori bounds, the regular part of fc is a
lamination under the topology induced from its inverse limit. Our results
reveal the relations between the topology of the regular part Rc and the
combinatorics {s0, s1, . . .} of fc with a priori bounds. The first theorem is:

Structure Theorem. The regular part Rc of fc with a priori bounds is
decomposed into blocks that are homeomorphic to the regular part of fsi for
si in the combinatorics of fc. In particular, the configuration of the blocks
perfectly reflects the nest of the renormalizations.

Next we consider the classification of such an fc by the topology of
regular parts. We will prove:

Main Theorem. If two non-real infinitely renormalizable maps fc and
fc′ with a priori bounds admit an orientation preserving homeomorphism
between their regular parts, then they have the same combinatorics. More-
over, if the Mandelbrot set is locally connected at the parameter c, we have
c = c′.

Thus the topology of the regular part of the infinitely renormalizable
map with a priori bounds has rigidity up to combinatorial equivalence. In
particular, it may even determine the original dynamics if the Mandelbrot
set is locally connected (cf. Mostow’s rigidity for finite volume complete hy-
perbolic manifolds and corresponding Kleinian groups). The assumption of
“non-real” is a technical condition for the proof, which we believe is unnec-
essary. On the other hand, the “orientation preserving” condition excludes
trivial homeomorphisms that come from complex conjugation.
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Outline of the paper. In the rest of this section we give a brief introduc-
tion to the theory of dynamics of quadratic maps and their renormalizations.
In Section 2, we review the definition of the inverse limits and the regular
parts generated by quadratic maps. Section 3 is devoted to the statement
and proof of the Structure Theorem (Theorem 4). Finally, in Section 4, we
prove the Main Theorem (Theorem 7) stated as above.

1.1. Preliminaries. We start with notation on the dynamics of quadra-
tic maps. Readers may refer to [4] and [13] for basic definitions.

Julia/Fatou sets, and external rays. For a quadratic map fc(z) = z2 + c
on the Riemann sphere C, we denote the Julia set by J(fc), and the Fatou
set by F (fc). The filled Julia set is denoted by K(fc). The closure of the
forward orbit of 0, denoted by P (fc), is called the postcritical set.

Throughout this paper we assume that K(fc) and J(fc) are both con-
nected, i.e., the postcritical set P (fc) is bounded. Let Ac := C\K(fc) denote
the basin of infinity of fc. The Böttcher coordinate ψc : Ac → C \ D is the
unique Riemann map with ψc(fc(z)) = ψc(z)2.

For r > 1, the set Ec(r) := ψ−1
c ({w ∈ C : |w| = r}) is called the

equipotential curve of level r. For θ ∈ R/Z, the set Rc(θ) := ψ−1
c ({w ∈ C\D :

argw = θ}) is called the external ray of angle θ.

Ray portrait. (See Milnor’s [19, §6].) Let O = {p1, . . . , pm} be a repelling
cycle of fc. Let Θ(pi) denote the set of angles of external rays landing at pi.
The collection rp(O) = {Θ(p1), . . . , Θ(pm)} is called the ray portrait of O.
A ray portrait is called non-trivial if there are at least two rays landing at
every point in O.

Superattracting quadratic maps. When fs(z) = z2 + s has a cycle con-
taining the critical point z = 0, we say s is a superattracting parameter. Let
{αs(1), . . . , αs(m) = 0} denote the superattracting cycle with fs(αs(i)) =
αs(i+ 1), where we take indices modulo m. Let Ds be the Fatou component
containing 0. It is known that the dynamics of fms : Ds → Ds is conjugate
to f0 : D → D. Let Ψs : Ds → D be this conjugacy. The internal equipo-
tential Is(r) of level r < 1 is defined by Ψ−1

s ({|w| = r}). We also denote
Ψ−1
s ({|w| < r}) by Ds(r).

Let Os be the repelling cycle in
⋃

1≤i≤m f
i
s(∂Ds) that is the orbit of the

pull-back of 1 ∈ ∂D by Ψs. It is known that if m ≥ 2, the ray portrait rp(Os)
is non-trivial. Indeed, a result due to Milnor (see [19]) states that the map
fs is uniquely determined by rp(Os). Following Milnor’s terminology, we call
rp(Os) the characteristic ray portrait of fs.

Quadratic-like maps. (See [13, 17, 18].) Let g : U → V be a quadratic-
like map. Throughout this paper we will only consider quadratic-like maps
g : U → V with connected filled Julia set K(g). Let J(g) and P (g) denote
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the Julia set and the postcritical set of g. The β-fixed point of g is denoted
by β(g).

By Douady–Hubbard’s Straightening Theorem [4], there exists a unique
c = c(g) ∈ C and a quasiconformal map h : V → V ′ such that h conjugates
g : U → V to fc : fc−1(V ′)→ V ′ where ∂h = 0 a.e. on K(g). The quadratic
map fc is called the straightening of g and h is called a straightening map.
Although such an h is not uniquely determined, we always assume that
any quadratic-like map g comes together with one fixed straightening map
h = hg.

One can always find rg > 1 such that if r satisfies 1 < r ≤ rg and
θ ∈ R/Z, the pulled-back equipotential

Eg(r) := h−1(Ec(r))

and the external ray

Rg(θ) := h−1({ρe2πiθ : 1 < ρ ≤ rg})

are well-defined.

Renormalization of quadratic maps. A quadratic-like map g : U → V is
said to be renormalizable, if there exist a number m > 1, called the order
of renormalization, and two open sets U1 ⊂ U and V1 ⊂ V containing the
critical point of g, such that g1 = gm : U1 → V1 is again a quadratic-like map
with connected Julia set K(g1). We say g1 : U1 → V1 is a renormalization of
g : U → V . We call K1 := K(g1), g(K1), . . . , gm−1(K1) the little Julia sets.
We also assume that m is the minimal order with this property and that
the renormalization is non-crossing. (See [17] or [18].)

Infinitely renormalizable maps. (See [15].) In this paper we only deal
with quadratic-like maps which are restrictions of some iterated quadratic
map. Given a quadratic map fc and r > 1, let Uc(r) denote the topological
disk in C enclosed by Ec(r); then the restriction fc : Uc(

√
r) → Uc(r) is a

quadratic-like map. Set g0 = fc, U0 := Uc(
√
r) and V0 := Uc(r). We say

fc is infinitely renormalizable if there exist an infinite sequence of numbers
1 = p0 < p1 < p2 < · · · and two sequences of open sets {Un} and {Vn} such
that each gn = fpn

c : Un → Vn is a quadratic-like map, with the property
that gn+1 is a renormalization of gn of order mn := pn+1/pn > 1. The index
n of gn is called the level of renormalization.

Combinatorics of renormalizable maps. (See Lyubich’s [14] and [15].)
From now on, fc will denote an infinitely renormalizable quadratic map
with renormalizations {gn : Un → Vn} as above. In order to describe the
combinatorics of fc, first we observe that the orbit under gn of the β-fixed
point of gn+1 is a repelling cycle On of gn.



Infinitely renormalizable quadratic polynomials 39

By our non-crossing assumption, the ray portrait rp(hn(On)) is non-
trivial and it determines a unique superattracting quadratic map fsn(z) =
z2 + sn with characteristic ray portrait rp(hn(On)). We call the infinite se-
quence of superattracting parameters {s0, s1, s2, . . .} the combinatorics of fc;
this is a well-defined invariant if we take mn minimal for each n.

A priori bounds. An infinitely renormalizable fc is said to have a priori
bounds if there exists ε > 0 such that mod(Vn \Un) > ε for all n ≥ 0. As we
will see later, this condition ensures nice properties of P (fc).

2. Inverse limits and regular parts. In this section we consider the
inverse limit of a quadratic polynomial and define its regular part. In some
sense, the regular part is the analytically well-behaved subspace of the in-
verse limit of a quadratic polynomial. Readers may refer to [16] and [8] for
more details on the objects defined here.

2.1. Inverse limits and solenoidal cones

Inverse limits. Consider {f−n : X−n → X−n+1}∞n=1, a sequence of d-to-1
branched covering maps on the manifoldsX−n with the same dimension. The
inverse limit of this sequence is defined as

lim←−(f−n, X−n) :=
{
x̂ = (x0, x−1, x−2, . . .) ∈

∏
n≥0

X−n : f−n(x−n) = x−n+1

}
.

The space lim←−(f−n, X−n) has a natural topology which is induced from the
product topology in

∏
n≥0X−n. The projection π : lim←−(f−n, X−n) → X0 is

defined by π(x̂) := x0.

Example 1 (Natural extensions of quadratic maps). When all the pairs
(f−n, X−n) coincide with (fc,C), following Lyubich and Minsky [16] we will
denote lim←−(fc,C) by Nc. The set Nc is called the natural extension of fc. In
this case, we denote the projection to the first coordinate by πc : Nc → C.
There is a natural homeomorphism f̂c : Nc → Nc given by f̂c(z0, z−1, . . .) :=
(fc(z0), z0, z−1, . . .).

Let X be a forward invariant set. The invariant lift X̂ of X is the set
of points ẑ ∈ Nc such that all coordinates of ẑ belong to X. In particular,
∞̂ = (∞,∞, . . .).

Inverse limits appear naturally in dynamics, for instance, in the dynamics
of Hénon maps. See [5] for more details.

Example 2 (The dyadic solenoid). A well-known example of an inverse
limit is the dyadic solenoid S1 := lim←−(f0,S1), where f0(z) = z2 and S1

is the unit circle in C. The dyadic solenoid is a connected set but is not
path-connected. Since S1 is a topological group, S1 is a topological group
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acting on itself by translations: For any element τ = (τ0, τ−1, . . .) in S1, the
left translation τ : S1 → S1 is given by τ(z0, z−1, . . .) = (τ0z0, τ−1z−1, . . .).

Solenoidal cones. A solenoidal cone is a space homeomorphic to
lim←−(f0,C \ D). Let fc be a map with connected K(fc); then the set Âc :=
lim←−(fc, Ac) in Nc is a solenoidal cone. To see this, consider the lift of the
inverse ψ−1

c of the Böttcher coordinate given by ψ̂−1
c : (z0, z−1, . . .) 7→

(ψ−1
c (z0), ψ−1

c (z−1), . . .). The set Âc \ {∞̂} is foliated by sets of the form
Sc(r) := π−1

c (Ec(r)) with r > 1. For every r, Sc(r) is homeomorphic to the
dyadic solenoid. In fact, there is a canonical homeomorphism φr = φc,r :
Sc(r) → S1 defined by φr : (z0, z1, . . .) 7→ (ψc(z0)/r, ψc(z1)/r1/2, . . .). We
call such Sc(r) a solenoidal equipotential.

Let us give a few more examples of solenoidal cones. For r > 1, set
Dr := {|z| < r}. We denote the inverse limit associated with the backward
dynamics

· · · f0−→ C \ f−2
0 (Dr)

f0−→ C \ f−1
0 (Dr)

f0−→ C \ Dr

by Â0(r). This is a solenoidal cone compactly contained in Â0 ⊂ N0. Simi-
larly, the set Âc(r) := ψ̂−1

c (Â0(r)) is a solenoidal cone compactly contained
in Âc ⊂ Nc. Note that the boundary of Âc(r) in Nc is Sc(r). The union
Âc(r) ∪ Sc(r) is called the compact solenoidal cone at infinity of radius r
associated to fc.

Let fs be a superattracting quadratic map with critical orbit of size m.
For all r < 1, the inverse limit given by the backward dynamics

· · · f
m
c−→ Ds(r1/4)

fm
c−→ Ds(r1/2)

fm
c−→ Ds(r)

is also a solenoidal cone. We denote it by lim←−(fms , Ds(r)). We may con-
sider lim←−(fms , Ds(r)) as a subset of Ns by the following embedding map: For
(x0, x−1, . . .) ∈ lim←−(fms , Ds(r)), define ι : (x0, x−1, . . .) 7→ (y0, y−1, . . .) ∈ Ns
so that x−k = y−mk for all k ≥ 0. Then D̂s(r) := ι(lim←−(fms , Ds(r))) is a
solenoidal cone in Ns. Note that ∂D̂s(r) is a proper subset of π−1

s (Is(r))
unless s = 0. Now D̂s(r), f̂s(D̂s(r)), . . . , f̂m−1

s (D̂s(r)) are disjoint solenoidal
cones in Ns.

Quadratic-like inverse limits. Let g : U → V be a proper holomorphic
map, and let lim←−(g, V ) denote the inverse limit for the sequence

· · · → g−2(V )→ g−1(V )→ V.

Here we allow U = V . In some cases g will be taken as the restriction of a
map defined on a larger set; in these cases we will consider all branches of
the inverse of g satisfying g−n(V ) ⊂ U .

We will use the following relation between inverse limits of quadratic-
like maps and their straightenings:
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Proposition 1. Let g : U → V be a quadratic-like map with straight-
ening fc(z) = z2 + c. Then the inverse limit lim←−(g, V ) is homeomorphic to
Nc with a compact solenoidal cone at infinity removed.

Proof. Any topological conjugacy between two given maps induces a
homeomorphism between the inverse limits. By the Straightening Theorem,
g is conjugated to a suitable restriction of fc. By choosing the right conju-
gacy, g is conjugated to fc restricted to the interior of some equipotential,
say fc restricted to Uc(

√
r). Now, the inverse limit lim←−(fc, Uc(r)) is equal to

Nc with the compact solenoidal cone of radius r at infinity removed.

Remark. By construction, the homeomorphism in Proposition 1 can be
chosen to be a leafwise quasiconformal map.

2.2. Regular parts and infinitely renormalizable maps

Regular parts of quadratic natural extensions. Let fc be a quadratic map.
A point ẑ = (z0, z−1, . . .), in the natural extension Nc = lim←−(fc,C), is called
regular if there exists a neighborhood U0 of z0 such that the pull-back of
U0 along ẑ is eventually univalent. The regular part (or regular leaf space)
Rfc = Rc is the set of regular points in Nc. Let Ifc = Ic denote the set of
irregular points. Now we have Nc = Rc t Ic.

The regular parts are analytically well-behaved subspaces of the natural
extensions. More precisely, Rc is the largest subspace of Nc whose path-
connected components, called leaves, admit Riemann surface structures. It is
a fact, due to Lyubich and Minsky [16], that all leaves of Rc are isomorphic
to C or D. Moreover, f̂c sends leaves to leaves isomorphically. Leaves are
wildly foliated in the natural extension: indeed, every leaf is dense in Nc.
See [16, §3] for more details.

Example (Regular part of superattracting maps). Relevant examples of
regular parts are given by superattracting quadratic maps. Let fs be a super-
attracting quadratic map with superattracting cycle {αs(1), . . . , αs(m) = 0}
as in the previous section. Under the homeomorphic action f̂s : Ns → Ns,
the points α̂s(i) := (αs(i), αs(i− 1), αs(i− 2), . . .) form a cycle of period m.
In this case, the set Is of irregular points is {∞̂, α̂s(1), . . . , α̂s(m)}. Thus
the regular part Rs is Ns minus these m+ 1 irregular points. Note that for
any r > 1, ∞̂ ∈ Âs(r) and α̂s(i) ∈ f̂ is(D̂s(1/r)). Hence Is is contained in a
disjoint union of solenoidal cones. Under the topology induced from Ns, Rs
is a Riemann surface lamination with all leaves isomorphic to C.

Regular part of infinitely renormalizable maps and a priori bounds. Let
P̂ (fc) be the invariant lift of the postcritical set, that is, the set of points
ẑ = (z0, z−1, . . .) ∈ Nc with z−n ∈ P (fc) for all n ≥ 0.
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Now suppose that fc has a priori bounds. If Kn denotes the little Julia
set of the nth renormalization, it follows that the postcritical set is given by

P (fc) =
⋂
n≥0

⋃
j≥0

f jc (Kn)

and homeomorphic to a Cantor set. Moreover, the map fc restricted to P (fc)
acts as a minimal Z-action. See McMullen’s [17, Theorems 9.4]. Hence we
have the following:

Lemma 2. If fc is a quadratic polynomial with a priori bounds, then the
set of irregular points in Nc − {∞̂} is P̂ (fc). Moreover, the projection πc

restricted to P̂ (fc) is a homeomorphism over P (fc). Thus, the irregular part
Ic is homeomorphic to a Cantor set together with the isolated point ∞̂.

We will also need the following fact, due to Kaimanovich and Lyubich
([8, Lemma 3.18]):

Theorem 3 (Kaimanovich–Lyubich). If fc has a priori bounds, then Rc
is a locally compact Riemann surface lamination, whose leaves are confor-
mally isomorphic to C.

Theorem 3 is originally proved for fc with persistent recurrence, which
is a weaker condition than a priori bounds.

3. Structure Theorem. In this section we describe in detail the topo-
logical structures of the natural extensions of infinitely renormalizable qua-
dratic maps.

Blocks for superattracting maps. We first define the blocks associated
with superattracting quadratic maps. Let s be a superattracting parameter
as in Section 1, with a superattracting cycle of period m ≥ 2. For a fixed
r > 1, we set

Bs := Ns \
(
Âs(r) ∪

m−1⊔
i=0

f̂ is(D̂s(1/r))
)

and call it a block associated with fs. That is, Bs is the natural extension
of fs with compact solenoidal cones at each of the irregular points removed.
Note that Bs is an open set and has m+ 1 boundary components which are
all solenoidal equipotentials.

In addition, we also define

Qs := Ns \
(
{∞̂} ∪

m−1⊔
i=0

f̂ is(D̂s(1/r))
)

= Bs t (Âs(r) \ {∞̂})

for later use.
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Structure Theorem for infinitely renormalizable maps. Recall that the
combinatorics of infinitely renormalizable maps are characterized by se-
quences of superattracting parameters. The following theorem shows that
the natural extensions of infinitely renormalizable quadratic maps can be
partially decomposed into blocks which are homeomorphic to the blocks of
such superattracting parameters. We will establish:

Theorem 4 (Structure Theorem). Let fc be infinitely renormalizable
with a priori bounds, and {gn = fpn

c : Un → Vn}n≥0 be the associated se-
quence of renormalizations with combinatorics {s0, s1, . . .}. Set mn :=
pn+1/pn. Then there exist disjoint open subsets B0,B1,B2, . . . of Rc such
that:

(1) For n = 0, the set B0 is homeomorphic to Qs0. Moreover, the union
B0 ∪{∞̂} forms a neighborhood of ∞̂ with m0 boundary components
which are all homeomorphic to the dyadic solenoid.

(2) For each n ≥ 1, the set Bn is homeomorphic to Bsn. Moreover, Bn
has mn+1 boundary components which are all homeomorphic to the
dyadic solenoid.

(3) For any n ≥ 1, the sets Bn, f̂c(Bn), . . . , f̂pn−1
c (Bn) have disjoint clo-

sures.
(4) For 0 ≤ n < n′, the closures Bn and Bn′ intersect iff n′ = n+ 1. In

this case, for all 0 ≤ i < mn the closures f̂ ipn
c (Bn+1) and Bn share

just one of their solenoidal boundary components.
(5) The natural extension of fc and its regular part are given by

Nc = {∞̂} t Rc t P̂ (fc) and Rc = B0 t
∞⋃
n=1

pn−1⊔
i=0

f̂ ic(Bn).

We call the open sets {f̂ ic(Bn)}n,i blocks. Theorem 4 implies thatRc has a
(locally finite) tree structure given by configuration of the blocks (Figure 3
below). Note that the block Bn which we will construct may not be an
invariant set of fpn

c .

3.1. Proof of the Structure Theorem. We construct the blocks by
an iterative procedure. Let us state it as a lemma so that we can apply it
to each level of the renormalization.

Let g : U → V be an infinitely renormalizable quadratic-like map with
combinatorics {s = s0, s1, s2, . . .} and a renormalization g1 = gm : U1 → V1.
For r > 1, let Ug(r) denote the topological disk in C enclosed by Eg(r). We
may assume that V = Ug(r) and V1 = Ug1(r1) for some r, r1 > 1, and r1 is
so close to 1 that

U1 b V1 b g−m(V ) b U b V.
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Since V1 b g−m(V ), the map gi|V1 makes sense and gi(V1) ⊂ V for all
1 ≤ i ≤ m.

Set X := lim←−(g, V ) and X1 := lim←−(g1, V1). Then X1 is naturally embedded
in X as follows: For x̂ = (x0, x−1, . . .) ∈ X1, set ι(x̂) := (x∗0, x

∗
−1, . . .) ∈ X so

that x−k = x∗−mk for all k ≥ 0. We denote the embedded image ι(X1) by X ∗1 .
By Proposition 1, X1 (resp. X ∗1 ) is homeomorphic to Nc1 with a compact
solenoidal cone at infinity removed, where c1 = c(g1) is the straightening of
the infinitely renormalizable g1 with combinatorics {s1, s2, . . .}. Recall that
s = s0 is a superattracting parameter, and its characteristic ray portrait
rp(Os) is given by the cyclic orbit of β(g1) (the β-fixed point of g1) under g.
In principle, the set X \

⊔m−1
i=0 ĝi(X ∗1 ) is a prototype for the block homeo-

morphic to Bs. However, the sets ĝi(X ∗1 ) may not be disjoint, and this would
contradict properties (2) and (3) of the theorem. This case occurs when the
little Julia sets touch at the β-fixed point. To avoid this situation, we need
to deform X ∗1 to a smaller set Y∗1 such that X ∗1 and Y∗1 are homotopically
homeomorphic. More precisely, we claim:

Lemma 5. There exists a topological disk W1 ⊂ V1 with the following
properties:

(a) The set Y1 := lim←−(g1,W1) ⊂ X1 is homeomorphic to X1.
(b) Set Y∗1 := ι(Y1) ⊂ X . Then the sets ĝi(Y∗1 ) (0 ≤ i < m) have disjoint

closures.
(c) The set X \

⊔m−1
i=0 ĝi(Y∗1 ) is homeomorphic to the block Bs.

Proof of (a) and (b). We will modify the standard idea of thickening of
puzzle pieces (see for instance [18, Lemmas 1.5 and 1.6]) into thinning. Set
β1 := β(g1) and K1 := K(g1). In the pulled-back external rays landing at
β1 by the straightening map h = hg, there are two of such rays R1 and R2

such that R1 ∪ R2 separates any other rays landing at β1 and K1 \ {β1}.
Analogously, for the preimage β∗1 := g−1

1 ({β1})\{β1}, there are two rays R3

and R4 landing at β∗1 with the same property. The rays {R1, R2, R3, R4} are
called the supporting rays of K1.

Next we take a small disk, centered at β1, whose preimage under g1

consists of two disks ∆ and ∆∗ around β1 and β∗1 respectively. The union
of ∆, ∆∗, and the supporting rays divides V into three topological disks.
Let us take the one containing K1 \ (∆ ∪∆∗). By cutting the boundary by
other external rays, we have a smaller domain W ′ shown in Figure 1.

Let W1 denote the topological disk that is the connected component
of W ′ ∩ V1 containing the critical point of g1. Since W1 ⊂ V1 b g−m(V ),
the sets W1, g(W1), . . . , gm−1(W1) are all defined. In particular, they
have disjoint closures by construction. Now the inverse limit of the family
{g1 : g−n−1

1 (W1)→ g−n1 (W1)}n≥0, which we denote by Y1 := lim←−(g1,W1), is
a proper subset of X1 = lim←−(g1, V1).
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Fig. 1. The heavy curves show the boundary of W ′.

Let us check that Y1 is homeomorphic to X1. By definition V1 \W1 con-
sists of disjoint topological disks and does not intersect the postcritical set
P (g1) since we take sufficiently small ∆ and ∆∗. (See [17, Theorem 8.1] for
example. This is the only part where we use the infinite renormalizability.)
Thus g1 : g−n−1

1 (V1) → g−n1 (V1) is isotopic to g1 : g−n−1
1 (W1) → g−n1 (W1)

for each n ≥ 0, and this isotopy gives a homeomorphism between the inverse
limits.

Let Y∗1 be the embedded image of Y1 under the map ι : X1 → X . For all
0 ≤ i < m, the sets ĝi(Y∗1 ) are defined and have disjoint closures since their
projections gi(W1) are defined and have disjoint closures. Hence we have (a)
and (b) of the lemma.

Proof of (c). Set B := X \
⊔m−1
i=0 ĝi(Y∗1 ). Now it is enough to show that

B is homeomorphic to the block Bs associated with fs, that is,

Bs = Ns \
(
Âs(r) t

m−1⊔
i=0

f̂ is(D̂s(1/r))
)

= π−1
s (Us(r)) \

m−1⊔
i=0

f̂ is(D̂s(1/r)).

Here we take the same r as in the construction of V = Ug(r). For later use
we also set Vs := Us(r).

We first work with the dynamics downstairs. Set B := V \
⊔m−1
i=0 gi(W1)

and mark B with some arcs given as follows (see Figure 2, left): First join
g(β1) and ∂g(W1) by an arc δ within g(∆). Since g : W1 → g(W1) is a
branched covering, the pull-back g−1(δ) has two components in ∆ and ∆∗.
Now the markings are given by g−1(δ), δ, g(δ), . . . , gm−2(δ) and all of the
forward images of the supporting rays

⋃4
j=1Rj . The markings decompose

B into finitely many pieces that are all topological disks. Note that the
boundary of each piece intersects the equipotential Eg(r) and at least two
external rays.

Correspondingly, set Bs := Vs \
⊔m−1
i=1 f is(Ds(1/r)), and complete the

marking of Bs by taking all the forward images of supporting rays of Ds
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and small arcs from each point of the landing points of such rays to the
equipotentials f is(Is(1/r)) (Figure 2, right). The markings also decompose
Bs into some pieces as in the case of B.

Fig. 2. The shaded regions show B and Bs with their markings drawn in.

Clearly, there is a homeomorphism φ from B to Bs respecting the con-
figuration of the markings which in particular sends the supporting external
rays to the supporting external rays without changing angles. Since by con-
struction B and Bs do not intersect the postcritical sets, it is not difficult
to check that the map φ lifts to a homeomorphism φ̂ : π−1(B) → π−1

s (Bs)
respecting the backward orbits of the markings, and then extends to a hom-
eomorphism φ̂ : B → Bs.

Proof of Theorem 4 (Structure Theorem). We first set X0 = lim←−(g0, V0) ⊂
Nc and apply Lemma 5 with g = g0. Then we have a block B0 := X0 \⊔m0−1
i=0 ĝi0(Y∗1 ) that is homeomorphic to Bs0 . To get property (1), we need to

replace B0 by Rc \
⊔m−1
i=0 ĝi(Y∗1 ) to cover all the basin at infinity of fc. By

Proposition 1 again, B0 is homeomorphic to Qs0 .
Now assume that for n ≥ 1 we applied Lemma 5 with g = gn−1, and we

have a topological disk Wn ⊂ Vn and Yn = lim←−(gn,Wn) ⊂ Xn = lim←−(gn, Vn).
For the next induction step, we apply the lemma with a slight modification.
We may assume that gn : Un → Vn and gn+1 : Un+1 → Vn+1 satisfy the
original condition

Un+1 b Vn+1 b g−mn
n (Vn) b Un b Vn

in the lemma, and also

Vn+1 t gn(Vn+1) t · · · t gmn−1
n (Vn+1) b Wn.

In the same way as in the lemma, we construct a topological disk Wn+1 ⊂
Vn+1 such that Yn+1 = lim←−(gn+1,Wn+1) is naturally embedded into Xn as
ι(Yn+1) = Y∗n+1, and the set Xn \

⊔mn−1
i=0 ĝin(Y∗n+1) is homeomorphic to Bsn .

In addition, the set B′n := Yn\
⊔mn−1
i=0 ĝin(Y∗n+1) is also homeomorphic to Bsn ,
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since Yn is homeomorphic to Xn and we have

Y∗n+1 t ĝn(Y∗n+1) t · · · t ĝmn−1
n (Y∗n+1) b Yn ⊂ Xn

by the second condition above.
Finally, we define the block Bn in the theorem by the image of the iterated

natural embeddings

B′n ↪→ lim←−(gn−1,Wn−1) ↪→ · · · ↪→ lim←−(g1,W1) ↪→ lim←−(g0, V0)

so that the block becomes a subset of the original natural extension Nc
(Figure 3). Now Bn contains no irregular point by this construction. Hence
Bn ⊂ Rc. Properties (2), (3), and (4) of the theorem are clear, also by the
construction.

Fig. 3. A caricature of the tree structure of Rc.

Only for (5) do we need the condition that fc has a priori bounds: By
Lemma 2, the set P̂ (fc) ∪ {∞̂} consists of all the irregular points. Hence
the regular part consists of all the backward orbits that do not remain in
P (fc) ∪ {∞}. Since such a backward orbit must be contained in either B0

or the closure of the block f̂ ic(Bn) for some n ≥ 1 and 0 ≤ i < pn, we have

Rc ⊂ B0 t
⋃∞
n=1

⊔pn−1
i=0 f̂ ic(Bn). The opposite inclusion holds since Bn ⊂ Rc

for all n ≥ 0, thus the second equality in (5) follows. Now the first equality
is straightforward.

To end this section we show a proposition that is important for the
arguments in the next section.

Buildings at finite levels. For fc with a priori bounds, we define an open
set

Qn := Rc \
∞⋃

k=n+1

pk−1⊔
i=0

f̂ ic(Bk),

which consists of blocks up to the nth level. Then any ẑ ∈ Rc is contained
in Qn with sufficiently large n.
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The proposition below states that Qn can be embedded into the regular
part of a superattracting quadratic map. For the combinatorics {s0, s1, . . .}
of fc, its finite subsequence {s0, s1, . . . , sn} determines a superattracting
parameter σn. More precisely, for a β-fixed point β(gn+1) of gn+1 = f

pn+1
c ,

its forward orbit On+1 under fc forms a repelling periodic cycle. Then its ray
portrait rp(On+1) uniquely determines a superattracting quadratic map fσn .
Now we have:

Proposition 6. For infinitely renormalizable fc, let Qn be the set de-
fined as above. Then we have a homeomorphism hn between Qn and Qσn.

Proof. The proof is almost straightforward by Lemma 5. In fact, we can
apply the same argument by setting g := g0 and g1 := gn+1.

4. Rigidity. In this section we prove the Main Theorem of the paper,
which is the following:

Theorem 7 (Main Theorem). Let fc and fc′ be infinitely renormalizable
maps with a priori bounds. Assume Im(c) 6= 0. If h : Rc → Rc′ is an
orientation preserving homeomorphism, then c and c′ belong to the same
combinatorial class.

There is a natural homeomorphism between Nc and Nc̄, so we avoid this
inconsistency by requiring h to be orientation preserving.

From the point of view of the parameter plane, it is known that c is
combinatorially rigid if and only if the Mandelbrot set is locally connected
(MLC) at c. In view of that, our main theorem has the following corollary.

Corollary 8. Assume that h : Rc → Rc′ and c are as in the Main The-
orem. If in addition the Mandelbrot set is locally connected at c, then c = c′.

In [15], Lyubich proved MLC for fc with a priori bounds satisfying a
secondary limb condition. In this direction, recent papers by Kahn [6] and
Lyubich [7] give a priori bounds for infinitely renormalizable parameters
with special combinatorics. In all these parameters, the Mandelbrot set is
locally connected.

The strategy to prove the Main Theorem is to show that any homeomor-
phism given in the statement admits a homeomorphic extension to the nat-
ural extensions, satisfying the properties of the following general theorem:

Theorem 9. Let c and c′ be any pair of parameters such that there exists
h : Nc → Nc′, an orientation preserving homeomorphism between natural
extensions, such that:

(1) h(∞̂) = ∞̂,
(2) h sends repelling leaves into repelling leaves.

Then fc and fc′ belong to the same combinatorial class.
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A leaf L in Rc is called repelling if it contains a repelling periodic point
of f̂c. Clearly, every repelling leaf is invariant under some iterate of f̂c, but
the converse is not true in general. For instance, if fc has a parabolic cycle,
there are invariant leaves of Rc without periodic points.

We will see that, for quadratic polynomials with a priori bounds, re-
pelling leaves have particular topological properties. Hence any homeomor-
phism as in the Main Theorem must send repelling leaves into repelling
leaves.

This was the approach in [3] (see also [2]) to prove rigidity for hyperbolic
and complex semihyperbolic maps.

4.1. Proof of Theorem 9. There are several models describing the
combinatorics of quadratic polynomials; a comprehensive text can be found
in [1]. In this paper, we are going to adopt the description given by rational
laminations. Any quadratic polynomial fc with c in the Mandelbrot set
determines an equivalence relation in Q/Z, called the rational lamination
of fc. This equivalence relation is defined as follows: Given θ and θ′ in Q/Z,
we say that θ ∼ θ′ if the external rays Rθ and Rθ′ land at the same point in
the Julia set J(fc).

Given any equivalence relation R in Q/Z we may ask whether R is the
lamination associated to a quadratic polynomial. In [11], Kiwi gave necessary
and sufficient conditions for R to be the rational lamination associated to a
map fc.

Two parameters c1 and c2 in the Mandelbrot set are combinatorially
equivalent if fc1 and fc2 determine the same rational lamination. Clearly,
this is an equivalence relation in the Mandelbrot set. The induced partition
also coincides with the combinatorial invariants given by ray portraits for
superattracting maps fs, or the sequence {s1, s2, . . .} for infinitely renormal-
izable maps fc.

We will need the following property of rational laminations:

Lemma 10. Let R and R′ be two rational laminations, and assume that
there is θ ∈ Q/Z such that each class in R′ is obtained by rotating a class
in R by angle θ. Then θ = 0 (mod 1).

In the dynamical plane, if p is a periodic point in the Julia set J(fc) then
p is the landing point of external rays which are periodic under fc (see [19]).
Now, if the periodic lift p̂ belongs to the regular part, then there are periodic
lifted external rays landing at p̂ in L(p̂). Each of these lifted external rays
will intersect a leaf of a solenoidal equipotential.

Let us consider the dyadic solenoid S1 = lim←−(f0, S1) ⊂ R0. One can check
that every repelling periodic point in R0 belongs to S1. By restriction, let us
call a leaf S in S1 repelling if S is contained in a repelling leaf in R0. If a leaf
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S ⊂ S1 is invariant under some iterate of f̂0, then S must be repelling. In
other words, there is a one-to-one correspondence between repelling leaves in
S1 and periodic points in S1 of f0. With this fact and the lift of Böttcher’s
coordinate we can carry information on repelling periodic points of fc to
repelling leaves in Rc.

More precisely, let L be a repelling leaf in Rc and let Sc(r) be some
solenoidal equipotential. Consider the intersection L ∩ Sc(r), which may
consist of several leaves in Sc(r). Let φ be the canonical homeomorphism
of Sc(r) with S1; then every leaf in φ(L ∩ Sc(r)) is repelling in S1. Hence,
every leaf in φ(L∩ Sc(r)) contains a periodic point in S1 by f̂0. In fact, the
pull-back to L of each of these periodic points is precisely the intersection
of a periodic solenoidal external ray landing at the periodic point of L. As
a consequence we have:

Lemma 11. Let S1 and S2 be two leaves in Sc(r). Then S1 and S2 belong
to the same repelling leaf L in Rc if and only if they intersect at periodic
lifted external rays landing at the same point in π−1(J(fc)) ∩Rc.

The proof of Theorem 9 is decomposed into three statements: Lemma 12
whose proof can be found in [3], Proposition 13 which is due to Kwapisz [12],
and Lemma 14. The first starts by noting that the foliation of the solenoidal
cone by solenoidal equipotentials defines a local base of neighborhoods at
∞̂ in Nc. Hence, given a homeomorphism h as in Theorem 9, we can find
a solenoidal equipotential Sc(r) whose image lies between two solenoidal
equipotentials. Recall that a solenoidal equipotential Sc(r) has associated a
canonical homeomorphism φr : Sc(r) → S1, moreover, φr2 ◦ f̂c ◦ φ−1

r = f̂0.
So the map h ◦ φ−1

r maps S1 into a cylinder over S1 bounded by the two
solenoidal equipotentials. Hence, we are in the following situation:

Lemma 12. Let e : S1 → S1 × (0, 1) be a topological embedding. Then
there is an embedding e′ : S1 → S1 × (0, 1) isotopic to e such that e′(S1) =
S1 × {1/2}.

The isotopy in Lemma 12 pulls back to an isotopy ψ defined on Sc(r).
This isotopy induces a homeomorphism h′ from Sc(r) to a solenoidal equipo-
tential in Nc′ . We can extend ψ to an isotopy defined globally in Nc, so that
this isotopy is the identity outside a neighborhood of Sc(r). With this con-
struction, h′ extends to a homeomorphism defined on Nc and isotopic to h.

We now restrict our attention to the map h′|Sc(r). We want to study the
isotopic properties of h′|Sc(r) but keeping in mind that every map isotopic
to h′|Sc(r) will induce a map isotopic to h′ defined globally in Rc. Using the
canonical homeomorphism of solenoidal equipotentials to S1, we see that h′

restricted to Sc(r) induces a self-homeomorphism of the dyadic solenoid S1.
Now by the group structure of S1, as described by Kwapisz in [12], each
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homotopy class of homeomorphisms of S1 is uniquely represented by a map
with a special form:

Proposition 13 (Kwapisz). Let Φ : S1 → S1 be a homeomorphism of
the dyadic solenoid. Then there exist a unique n and an element τ ∈ S1

such that Φ is isotopic to ẑ 7→ τ f̂n0 (ẑ).

The number n is uniquely determined by the homotopy class of h′.
The map f̂−1

c′ restricted to a solenoidal equipotential acts, under canon-
ical homeomorphism, in S1 as f̂−1

0 . Note that if τ ∈ S1, then f̂−1
0 (τ ẑ) =

f̂−1
0 (τ)f̂−1

0 (ẑ). Thus, by post-composing h′ with f̂−nc′ , Proposition 13 implies
that f̂−nc′ ◦ h

′ is isotopic to a homeomorphism h′′ : Nc → Nc′ that sends a
solenoidal equipotential, say Sc(r), into a solenoidal equipotential. The re-
striction of h′′ to Sc(r), under the canonical homeomorphism to S1 is just
some translation by τ ′ := f̂−n0 (τ) of the dyadic solenoid S1.

Isotopies defined in solenoids keep each leaf invariant. On the other hand,
the map f̂c′ sends repelling leaves into repelling leaves. So, if h is a hom-
eomorphism that sends repelling leaves into repelling leaves, the map h′′,
induced by Proposition 13, also sends repelling leaves to repelling leaves.

Lemma 14. Let h′′ be the homeomorphism above. Then τ ′ is isotopic to
the identity.

Proof. Let us consider the restriction of h′′ to the solenoidal equipotential
Sc(r) such that h′′(Sc(r)) is also a solenoidal equipotential. Under canonical
homeomorphisms we can regard H := h′′|Sc(r) as a self-map of S1. We
assume that H has the form ẑ 7→ τ ′ẑ. By Lemma 11, H sends repelling
leaves into repelling leaves.

Let S be a periodic leaf in S1 with periodic point θ̂, and let θ̂′ be the
periodic point in H(S). By sliding S1 along H(S) to send H(θ̂) to θ̂′, this
operation induces a new map H ′ in the isotopy class of H, which satisfies
H ′(θ̂) = τ ′′θ̂ = θ̂ for some τ ′′ ∈ S1. Since θ̂ and θ̂′ are periodic in S1, also
τ ′′ must be periodic. Hence, the map H ′ leaves the set of periodic points in
S1 invariant.

Now, periodic points in S1 are determined by the first coordinate. The
translation τ ′ induces a rotation in the set of periodic angles which extends
to a rotation on the rational lamination. By Lemma 10 this implies that
the rational laminations are the same, and that the translation τ ′′ is the
identity. By construction, τ ′ is isotopic to τ ′′.

Proof of Theorem 9. From the existence of the homeomorphism h, we
obtained the homeomorphism h′′. In turn, Lemma 14 implies that h′′ is
isotopic to another homeomorphism. Such homeomorphism when restricted
to a solenoidal equipotential is the identity, under canonical identifications.
Any rational ray Rθ landing in J(fc) lifts to a periodic external ray in Nc.
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Under canonical identification, the intersection of the lift of periodic external
rays is a periodic point in S1. Moreover, this periodic point in S1 is precisely
the periodic lift of angle θ in S1. Finally, Lemma 11 implies that the rational
laminations of fc and fc′ are the same. Thus c and c′ belong to the same
combinatorial class.

4.2. Ends of the regular part. A path γ : [0,∞) → Rc is said to
escape to infinity if it leaves every compact set K ⊂ Rc. We define an end
of Rc to be an equivalence class of paths escaping to infinity. Let γ and σ
be two paths escaping to infinity. We say that γ and σ access the same end
if for every compact set K ⊂ Rc, the paths γ and σ eventually belong to
the same connected component of Rc \K. Consider the set End(Rc) which
is the union of Rc with the abstract set of ends.

Let fc be an infinitely renormalizable quadratic polynomial with a priori
bounds. By Theorem 3, the regular part Rc is locally compact. Thus
End(Rc) is a compact set, which we will call the end compactification of Rc.

Proposition 15. Let fc be an infinitely renormalizable quadratic poly-
nomial with a priori bounds. Then End(Rc) is homeomorphic to Nc.

Proof. First, we will show that there exists a bijection Φ between the
set of irregular points and the set of ends. Let î be an irregular point
in Nc, let i0 = π(̂i) and take any z0 ∈ C \ P (fc). Since P (fc) is a Can-
tor set, there is a path σ, connecting z0 to i0, which intersects P (fc) only
at i0. We can lift the path σ to Nc to a path σ̂ from a point in the fiber
of z0 to î. By construction, the path σ̂ intersects Ic at î, hence the re-
striction of σ̂ to Rc is a path escaping to infinity. Let Φ(̂i) = [σ̂], where
[σ̂] is the end represented by σ̂. To check that Φ is well-defined, let σ̂
and σ̂′ be two paths in Nc intersecting the irregular set only at the end
point î. These paths do not need to start at the same point or belong
to the same leaf. Let L be the leaf containing σ([0, 1)) in Rc. Since ev-
ery leaf is dense in Rc and is simply connected, we can construct a family
of paths σ̂n in L ending at î and such that σ̂n → σ̂′ pointwise. Let K
be any compact set in Rc, and U be a connected component of Rc \ K
which eventually contains σ̂′. Since U is open, there is an N such that
σ̂N also eventually belongs to U . But σ̂ and σ̂N belong to the same path-
connected component (same leaf), thus σ̂ must also be eventually contained
in U .

To see that Φ is injective, let î and î′ be two different irregular points. By
Lemma 2, the projection π is a homeomorphism between the set of irregular
points and P (fc). Thus we have π(̂i) 6= π(̂i′). Hence, if σ and σ′ are two
paths escaping to î and î′ respectively, then σ and σ′ eventually belong to
different components of some level of renormalization.
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Finally, let us prove that Φ is surjective. Let e be an end of the regular
part Rc, and consider a path σ̂ escaping to e. Let V0 = Uc(r) for some r,
where Uc(r) is as in Section 1. For each level n of renormalization, let Zn be
the union of disjoint open neighborhoods of the little Julia sets of level n.
If these Julia sets touch, we can shrink the domains a little to make them
disjoint as in the proof of Theorem 4. Then Cn = V0 \ Zn is a compact
set in C \ P (fc). Thus π−1(Cn) is compact in Rc, and by definition the
path σ̂ must eventually escape π−1(Cn). It follows that the projection π(σ̂)
eventually belongs either to a neighborhood of infinity, and then σ̂ escapes
to ∞̂, or to a component of Zn, say Vn. Since the components of Zn are
disjoint, it is clear that Vn+1 is contained in Vn. By a priori bounds, the
domains {Vn} shrink to a point i0 in P (fc). This process can be repeated for
every coordinate of σ̂ to yield a sequence of points {in} in P (fc) which are
the coordinates of a point î in P̂ (fc). By Lemma 2, î is irregular. Now, local
neighborhoods of irregular points in Nc intersect complements of compact
sets in Rc. So one can check that Φ induces the desired homeomorphism.

In the remaining part of the paper, h will denote a homeomorphism of
the regular parts of two infinitely renormalizable quadratic polynomials, fc
and fc′ , with a priori bounds.

Corollary 16. The map h admits an extension to a homeomorphism
h̃ : Nc → Nc′ of the natural extensions. Moreover, h̃(∞̂) = ∞̂.

Proof. By Proposition 15 the map h extends to the natural extensions
sending irregular points to irregular points, and by Lemma 2 the point ∞̂
is the only isolated irregular point, hence h(∞̂) = ∞̂.

4.3. Topology of periodic leaves. Since leaves are path-connected
components of Rc, given a leaf L ⊂ Rc we can consider how many accesses
to ∞̂ the leaf has, that is, the number of path components of L \K that are
connected to ∞̂ in Nc, for a suitable large compact set K ⊂ Rc. Note that a
leaf has access to a point in P (fc) if and only if it intersects infinitely many
levels in the tree structure of Rc. However, this is not the case for repelling
leaves:

Lemma 17. Let L be a repelling leaf. Then there is a level n such that
L ⊂ Qn. In this case, L has access only to ∞̂.

Proof. Let p̂ be the periodic point in L and let p = π(p̂). Since fc is
infinitely renormalizable, p is repelling, and therefore it must belong to the
Julia set J(fc). Moreover, the inverse of the classical Königs linearization
coordinate around p provides a global uniformization coordinate for L. From
this uniformization it follows that a point ẑ in Rc belongs to L only if the
coordinates of ẑ accumulate on the cycle of p.
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Since the postcritical set is the intersection of the renormalization do-
mains, we can find a level n+ 1 of the renormalization such that the orbit,
of renormalization domains of level n+ 1, is outside a neighborhood of the
cycle of p. By this choice, no point in L can intersect the level n+ 1 of the
tree structure of Rc. The statement of the lemma now follows.

Let fs be a superattracting map; then every leaf L invariant under some
iterate of f̂s must contain a repelling periodic point and hence L is repelling.
In this case, there are no critical points in the Julia set J(fs) so the fiber
π−1(J(fs)) is compact (see [16, Lemma 8.4]). For a periodic point p in J(fs),
let p̂ be an invariant lift of p in Rs. From [3], we have the following:

Proposition 18. Let fs be a superattracting polynomial, and let L be
a repelling leaf in Rs. Then the number of accesses of L to ∞̂ is equal to
the number of external rays landing at p. Moreover, if L is a leaf which has
at least three accesses to ends, then L must be repelling.

Let us remark that Proposition 15 also holds when fs is superattracting,
however, repelling leaves may have access to other irregular points. Never-
theless, if some repelling leaf L has at least three accesses to ∞̂ then by
Proposition 18, the corresponding periodic point p has at least three exter-
nal rays landing at p. If fc is non-hyperbolic, then there exists a periodic
point p with at least three rays landing at p if and only if Im(c) 6= 0.

Let us now go back to the case where fc is infinitely renormalizable with
a priori bounds:

Lemma 19. Let fc be infinitely renormalizable with a priori bounds. Let
L ⊂ Rc be a leaf that has access to ∞̂ but to no other irregular point, and the
number of accesses to infinity is at least three. Then L must be a repelling
leaf.

Proof. Since the only access to infinity of L is ∞̂, there is a level n
such that L ⊂ Qn. Recall, as in the discussion prior to Proposition 6, that
the dynamics of f̂c on Qn determines a superattracting polynomial fσn . By
Proposition 6, Qn is homeomorphic to Qσn . Let L′ be the leaf in Qσn cor-
responding to L. By Proposition 18, the leaf L′ is repelling in Qσn under
dynamics of f̂σn and has at least three accesses to ∞̂. Let p̂′ be the peri-
odic point in L′ under f̂σn . Then p′ := π(p̂′) is a periodic point in J(fσn)
such that there are at least three rays landing at p′ by the construction
of the homeomorphism between Qn and Qσn . Now, there exists a periodic
point p in J(fc) whose ray portrait is the same as that of p′. In particular,
p has at least three rays landing. Let Zn be as in the proof of Proposi-
tion 15. Then p ∈ C \ Zn and L contains a periodic lift of p. Thus L is
repelling.
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Now we are ready to prove Theorem 7:

Proof of the Main Theorem. By Corollary 16, the map h extends to a
homeomorphism of natural extensions h̃, with h̃(∞̂) = ∞̂. Since Im(c) 6= 0,
there exists a repelling leaf L in Nc such that L has at least three accesses
to ∞̂. This is a topological property, so h(L) is also a leaf with at least
three accesses to ∞̂. By Lemma 19, h(L) is also repelling and moreover
Im(c′) 6= 0. In this way, h̃ sends a repelling leaf into a repelling leaf. By
an isotopy argument similar to the one used in the proof of Lemma 14, we
can see that this implies that h sends repelling leaves into repelling leaves.
Hence, h̃ satisfies the conditions of Theorem 9, which implies that fc and
fc′ belong to the same combinatorial class.
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