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A new class of weakly countably determined Banach spaces

by

K. K. Kampoukos and S. K. Mercourakis (Athens)

Abstract. A class of Banach spaces, countably determined in their weak topology
(hence, WCD spaces) is defined and studied; we call them strongly weakly countably
determined (SWCD) Banach spaces. The main results are the following: (i) A separable
Banach space not containing `1(N) is SWCD if and only if it has separable dual; thus in
particular, not every separable Banach space is SWCD. (ii) If K is a compact space, then
the space C(K) is SWCD if and only if K is countable.

1. Introduction. The aim of the present paper is to introduce and
study a new class of Banach spaces referred to as strongly weakly count-
ably determined (SWCD) spaces. This is, to some extent, a continuation of
[M-S], where strongly weakly K-analytic (SWKA) Banach spaces were stud-
ied. Both classes generalize the corresponding one of strongly weakly com-
pactly generated (SWCG) Banach spaces, introduced by G. Schlüchterman
and R. F. Wheeler ([S-W]) and also presented in [H&al]. The above classes
are distinct and subclasses of the well known and extensively investigated
classes WCD, WKA and WCG respectively. A significant point concerning
the above mentioned subclasses is that none of them includes all separable
Banach spaces and their members have interesting geometrical properties.

In Section 3, we strengthen the well known countably determined prop-
erty for topological spaces by introducing the concept of a strongly count-
ably determined (SCD) topological space (Def. 3.1). This concept generalizes
the corresponding one of a strongly K-analytic topological space, defined in
[M-S]. We give several characterizations of strongly countably determined
(and strongly K-analytic) topological spaces, which are analogous to corre-
sponding characterizations of countably determined (and K-analytic) topo-
logical spaces (Props. 3.1 and 3.2) and also prove some stability properties
of these spaces (Prop. 3.3). We show by Example 3.1 that a countably de-
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termined (even K-analytic) topological space need not be SCD. Finally we
characterize SCD spaces as those topological spaces X such that the space
K(X) of compact nonempty subsets of X endowed with the Vietoris topol-
ogy is (strongly) countably determined (Th. 3.1). This result generalizes
Th. 1.12 of [M-S].

In Section 4, we define SWCD Banach spaces as those Banach spaces
which are strongly countably determined in their weak topology (Def. 4.1)
and study some of their properties. We give a characterization of SWCD
Banach spaces using the lattice K(M) of compact nonempty subsets of a
separable metric space M (Prop. 4.1) in the spirit of similar characteriza-
tions of WKA ([T]), WCD ([M1], [A-M], [C-O]) and SWKA ([M-S]) Banach
spaces. We also prove that a separable Banach space X not containing `1(N)
is SWCD if and only if X∗ is separable (Th. 4.1); this result generalizes Th.
2.6 of [M-S]. It follows in particular that not every separable Banach space
(even not containing `1(N)) is SWCD. We also note that the classes of
SWKA and SWCD Banach spaces are distinct, since according to a result
of [M-S], a Banach space X with separable dual is SWKA if and only if X
is Polish.

In Section 5, we study direct sums of SWCD Banach spaces. We show
in particular that a countable `p-sum (with p ≥ 1) of SWCD (resp. SWKA)
Banach spaces is also SWCD (resp. SWKA) (Prop. 5.1). On the other hand,
in contrast to the case of WKA, WCD and WCG Banach spaces, we show
that an uncountable `p-sum (p > 1) of (separable) SWCD Banach spaces
need not be SWCD, and an arbitrary uncountable c0-sum of nontrivial Ba-
nach spaces is never SWCD (Th. 5.1 and Cor. 5.1). In particular c0(ω1) is
not SWCD. As a consequence we prove that if K is a compact Hausdorff
space, then C(K) is SWCD if and only if K is countable (Th. 5.2).

2. Preliminaries and notation. We denote by Σ the set NN of infinite
sequences of positive integers, endowed with the cartesian topology, which
makes Σ (usually called the Baire space) a Polish space (i.e., homeomorphic
to a complete separable metric space). S stands for the set

⋃∞
n=0 Nn (N0 = ∅)

of finite sequences of positive integers. We give S the partial order of “initial
segments” which makes S a tree: for s = (s1, . . . , sn), t = (t1, . . . , tm) in S we
define s ≤ t if n ≤ m and si = ti for all i = 1, . . . , n. If s = (s1, . . . , sk) ∈ S,
σ = (n1, . . . , nk, . . .) ∈ Σ and m ∈ N, then we write: (i) s < σ if si = ni
for all i = 1, . . . , k, (ii) σ|m for the finite sequence (n1, . . . , nm). For every
s ∈ S we set I(s) = {σ ∈ Σ : s < σ}; it is easy to see that the countable
family {I(s) : s ∈ S} is a basis for Σ, consisting of open and closed sets.

For a Hausdorff topological spaceX,K(X) is the set of compact nonempty
subsets of X. If Y is a topological space, a map F : Y → K(X) is said to
be upper semicontinuous (usco) if for every y ∈ Y and every open subset
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V of X with F (y) ⊆ V there exists a neighbourhood W of y such that
F (W ) =

⋃
{F (t) : t ∈W} ⊆ V .

We use [F&al] as a basic reference for the theory, notation and terminol-
ogy of Banach spaces, and [J-R] for the theory of K-analytic and countably
determined topological spaces. If X is a (real) Banach space, then BX and
BX∗ are the closed unit balls of X and its dual X∗ respectively.

3. Strongly countably determined topological spaces. The fol-
lowing result is similar to Prop. 1.1 of [T] (see also Prop. 7.1.1 of [F] and
[J-R]); we give a sketch of its proof.

Proposition 3.1. Let X be a subspace of a compact Hausdorff space K.
Then the following are equivalent:

(i) There exist compact subsets Kn, n ∈ N, of K such that for every
compact subset L of X and x ∈ K \ X there exists n ∈ N with
L ⊆ Kn and x /∈ Kn.

(ii) There exist compact sets Bs, s ∈ S, in K and a subset Σ′ of Σ
such that for every compact subset L of X there exists σ ∈ Σ′ with
L ⊆

⋂∞
n=1Bσ|n ⊆ X and X =

⋃
σ∈Σ′

⋂∞
n=1Bσ|n.

(iii) There exists a subset Σ′ of Σ and an upper semicontinuous map
F : Σ′ → K(X) such that for every compact subset L of X there
exists σ ∈ Σ′ with L ⊆ F (σ). In particular X = F (Σ′).

Proof. (i)⇒(ii). For s = (n1, . . . , nm) ∈ S we put Bs =
⋂m
i=1Kni . Then

we define Σ′ = {σ ∈ Σ : ∅ 6=
⋂∞
n=1Bσ|n ⊆ X}. Let L be any nonempty

compact subset of X. Set M = {n ∈ N : L ⊆ Kn}. It is obvious that L ⊆⋂
n∈M Kn. We claim that

⋂
n∈M Kn ⊆ X. Indeed, assume that there exists

u ∈
⋂
n∈M Kn with u /∈ X; then by our assumption there exists n0 ∈M such

that L ⊆ Kn0 and u /∈ Kn0 , a contradiction. Let σ = (n1, n2, . . .), where
{n1, n2, . . .} is an enumeration of M ; then L ⊆

⋂∞
n=1Bσ|n and assertion (ii)

is satisfied.
(ii)⇒(iii). Assume without loss of generality that Bσ =

⋂∞
n=1Bσ|n 6= ∅

for all σ ∈ Σ′. We define a map F : Σ′ → K(X) by F (σ) = Bσ. It is
clear that it remains to prove (only) that F is an upper semicontinuous
map. Consider σ ∈ Σ′ and an open set U of X such that F (σ) ⊆ U , that
is, F (σ) =

⋂∞
n=1Bσ|n ⊆ U . As K is compact, we get m ∈ N such that⋂m

n=1Bσ|n ⊆ U , hence F (I(σ|m) ∩Σ′) ⊆ U , so F is usco.
(iii)⇒(ii). For each s ∈ S, let Bs be the closure of the set F (I(s) ∩ Σ′)

in K. For each σ ∈ Σ′ we have F (σ) ⊆ Bσ|n for all n ∈ N, so F (σ) ⊆⋂∞
n=1Bσ|n. If L is a compact subset of X, then there exists σ ∈ Σ′ such that

L ⊆ F (σ), hence L ⊆
⋂∞
n=1Bσ|n. It remains to show that

⋂∞
n=1Bσ|n ⊆ X,

which is true as the map F is usco and F (σ) =
⋂∞
n=1Bσ|n.
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(ii)⇒(i). The set S is countable. Let {sn : n ∈ N} be an enumeration
of S. It is enough to put Kn = Bsn for n ∈ N.

Remark 3.1. As is well known, the above proposition holds true if in-
stead of pairs (L, x), with L a compact subset of X and x ∈ K \X, in (i),
we consider pairs (u, x) with u ∈ X and x ∈ K \ X (and with analogous
modifications in (ii) and (iii)). In that case we get the well known concept
of countably determined topological space (see Prop. 1.1 of [T]).

Since by assertion (iii) of the above proposition, the space K can be
replaced by any other compact superspace of X, we can give the following
definition.

Definition 3.1. A topological space X is called strongly countably de-
termined (SCD) if there exists a compact space K such that X ⊆ K and
the assertions of Prop. 3.1 are satisfied.

Remark 3.2. We note that if assertion (ii) or (iii) in the previous propo-
sition is satisfied by Σ instead of Σ′ then we get the concept of a strongly
K-analytic topological (SKA) space introduced in [M-S, Def. 1.11]. It is ob-
vious that each strongly K-analytic space is strongly countably determined.

Examples of strongly countably determined spaces. (i) Every
separable metric space X is SCD. Indeed, let K be a metrizable compacti-
fication of X. We consider a basis B = {Un : n ≥ 1} for the topology of K
that is closed for finite unions. Set Kn = Un ⊆ K for all n ∈ N. We claim
that for every compact subset L of X and every u ∈ K \ X there exists
n0 ∈ N such that L ⊆ Kn0 and u /∈ Kn0 . So let V be an open subset of K
such that L ⊆ V and u /∈ V . Then for some M ⊆ N we have V =

⋃
n∈M Un

and by the compactness of L there exists a finite subset F of M such that
L ⊆

⋃
n∈F Un ⊆ V . The set

⋃
n∈F Un is also a member of B, say Un0 , thus we

have L ⊆ Un0 ⊆ Kn0 ⊆ V and of course u /∈ Kn0 . It follows from assertion
(i) of Prop. 3.1 that X is SCD.

A shorter proof of this example using assertion (iii) of Prop. 3.1 goes as
follows. The spaceK(X) endowed with the Hausdorff metric (which gives rise
to the Vietoris topology of K(X)) is separable and hence it is a continuous
image of a subset Σ′ of Σ.

(ii) Let M be a separable metric space and Ω be a compact space. Then
the spaceM×Ω is SCD. This is easily verified by using the previous example.
It follows immediately from Prop. 3.3 below that every closed subset C of
M ×Ω is SCD. If M is Polish, then C is SKA (see Remark 1.11.1 of [M-S]).

A continuous map f from a topological space X into a topological space
Y is said to be compact covering (see [E, p. 423] and [S-W]) if for every
compact subset L of Y there exists a compact subset K of X such that
f(K) = L. (It is clear that a compact covering map is surjective.) Obvious
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examples of compact covering maps are both projections π1 : X × Y → X
and π2 : X × Y → Y , where X,Y are topological spaces. Using the concept
of the compact covering map we can give still another characterization of
strongly countably determined and strongly K-analytic spaces.

Proposition 3.2. Let X be a subspace of the compact space K. Then
the following are equivalent:

(i) X is SCD (resp. SKA).
(ii) There exist a separable metric space (resp. a Polish space) M , a

closed subset C of M × K and a compact covering map f from C
onto X.

Proof. We examine for example the countably determined case.
(i)⇒(ii). Let F : Σ′ → K(X) be an usco map satisfying assertion (iii)

of Prop. 3.1. Let C =
⋃
{{σ} × F (σ) : σ ∈ Σ′} be the graph of F . As F is

usco, C is a closed subset of Σ′ ×K. It is immediate that the projection of
C onto X is a compact covering map.

(ii)⇒(i). Since C is a SCD space, there exists an usco map Φ : Σ′ →
K(C) satisfying assertion (iii) of Prop. 3.1. It is then easy to see that the
map F : Σ′ → K(X) defined by F (σ) = f(Φ(σ)) makes X a SCD space.

Remark 3.3. (1) It should be clear after all that we may extend Def. 3.1
to obtain a wider class of Hausdorff topological spaces. So we shall call a
Hausdorff spaceX strongly countably determined (resp. stronglyK-analytic)
if there exists a closed subset C of a product M×K, where M is a separable
metric (resp. Polish) space and K is a compact space, and there is a compact
covering map from C onto X. It then follows as in the proof of Prop. 3.2 that
there exists an usco map F : Σ′ → K(X) such that for each compact subset
L of X there exists σ ∈ Σ′ with L ⊆ F (σ). So if X is a subspace of a compact
space, then it is strongly countably determined (resp. strongly K-analytic)
according to Def. 3.1 and the new definition is a consistent extension of the
old one.

(2) We notice that if the topological space X is SCD, then there exists
a separable metric space M and a family {MK : K ∈ K(M)} of com-
pact subsets of X such that: (a) if K1,K2 ∈ K(M) with K1 ⊆ K2, then
MK1 ⊆ MK2 , (b) for each compact subset L of X there exists K ∈ K(M)
such that L ⊆MK .

Indeed, let Σ′ ⊆ Σ and F : Σ′ → K(X) be an usco map satisfying
assertion (iii) of Prop. 3.1. Set M = Σ′ and MK = F (K) =

⋃
σ∈K F (σ) for

each K ∈ K(M). Since F is usco, the set MK = F (K) is compact and it is
easy to see that the family {MK : K ∈ K(M)} has the desired properties.
(If X is SKA then we may replace M by the Baire space Σ). Concerning the
converse direction, let X be a (regular) space admitting a family {MK : K ∈
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K(M)} of compact sets satisfying (a) and (b). If additionally X is Lindelöf
(or Dieudonné complete, or the relatively countably compact subsets of X
are relatively compact), then by Th. 4 of [C-O], X is countably determined.
Furthermore the method of the proof of this result and property (b) imply
that X is SCD (if M is Polish, then X is strongly K-analytic).

In what follows, by “topological space” we mean a Hausdorff and com-
pletely regular space.

The following results give some elementary stability properties of SCD
topological spaces (see also Prop. 1.13 in [M-S]).

Proposition 3.3.

(i) If X is a SCD topological space and Y is a closed subspace of X,
then Y is SCD.

(ii) If (Xn) is any sequence of SCD topological spaces, then the space
X =

∏∞
n=1Xn is SCD.

Proof. (i) We shall use assertion (ii) of Prop. 3.1. Let K be a compact
superspace ofX and {Bs : s ∈ S} a family of compact subsets ofK satisfying
assertion (ii) of Prop. 3.1. Let Z be a closed and hence compact subspace of
K such that Y = X∩Z. SetAs = Bs∩Z for all s ∈ S. ClearlyAs is a compact
set in K and thus in Z. Let L be a compact subset of Y . Then L is a compact
subset of X, thus there exists σ ∈ Σ′ such that L ⊆

⋂∞
n=1Bσ|n ⊆ X, hence

L ⊆
⋂∞
n=1Bσ|n ∩ Z ⊆ X ∩ Z = Y . Set Σ′′ = {σ ∈ Σ′ :

⋂∞
n=1Bσ|n ∩ Z 6= ∅}.

Then clearly Y =
⋃
σ∈Σ′′

⋂∞
n=1Aσ|n and for each compact subset L of Y

there exists σ ∈ Σ′′ such that L ⊆
⋂∞
n=1Aσ|n. So the space Y is strongly

countably determined.
(ii) We shall use assertion (i) of Prop. 3.1 to check that

∏∞
n=1Xn is

strongly countably determined. For each n ∈ N consider a compact super-
space Ωn of Xn. It then follows, from assertion (i), that for each n ∈ N
there exists a sequence (Km

n )m of compact subsets of Ωn such that for each
compact subset L of Xn and w ∈ Ωn \Xn there exists m ∈ N with L ⊆ Km

n

and w /∈ Km
n . Set Ω =

∏∞
n=1Ωn and Zmn = π−1

n (Km
n ) for all n,m ∈ N, where

πn is the nth projection of the space Ω. We shall show that the sequence
Zmn , n,m ∈ N, separates compact subsets of X from points of Ω \X. Let Z
be a compact subset of X and w = (wn) ∈ Ω \X. Then there exists n ∈ N
with wn /∈ Xn, so for the compact subset Zn = πn(Z) of Xn there exists
m ∈ N such that Zn ⊆ Km

n and wn /∈ Km
n . It then follows that Z ⊆ Zmn and

w /∈ Zmn and the proof is complete.

It is not true in general that a continuous image of a SCD space is a SCD
space. This is because every countably determined space is a continuous
image of a closed subset of a product M×K, where M is a separable and K
is a compact space, but as Example 3.1 shows, a countably determined (even
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K-analytic) space is not necessarily SCD (see also Remark 4.3). However,
the following holds.

Proposition 3.4. Let X,Y be topological spaces and f : X → Y a
compact covering map. If X is SCD (resp. SKA), then so is Y .

Proof. This proof is identical to the proof of (ii)⇒(i) of Prop. 3.2, so it
is omitted.

Corollary 3.1. Let (X, τ) be a topological space and let d be a metric
on X with the following properties: (i) (X, d) is a separable metric space,
(ii) the metric topology τd is finer than τ , (iii) a subset K of X is τ -compact
if and only if it is τd-compact. Then each subspace Y of X endowed with the
relative topology τY is SCD.

Proof. It is immediate from the previous proposition.

Example 3.1. A σ-compact space is not necessarily SCD. Let Γ be a set
with |Γ | = c (the cardinality of the continuum) and X = [Γ ]<ω (the set of
finite subsets of Γ ), considered as a subspace of the compact space {0, 1}Γ .
The space X is σ-compact (in particular K-analytic) since it can be written
as X =

⋃∞
n=1[Γ ]≤n, where [Γ ]≤n is the set of subsets A of Γ with |A| ≤ n.

We are going to show that X is not SCD, using a result of Hájek, Lancien
and Montesinos: Given an infinite cardinal τ , for every ordinal α < τ+ there
exists a strong Eberlein compact subset K of c0(τ) with height η(K) ≥ α.
(See [H-L-M] or Lemma 2.53, pp. 71–72 in [H&al]). Recall that a strong
Eberlein compact is a compact subset of the space [Γ ]<ω, where Γ is any
nonempty set.

Assume towards a contradiction that X is SCD. According to (the first
part of) Remark 3.3(2) there exist a separable metric space M and a family
{XK : K ∈ K(M)} of compact subsets of X such that (a) if K1,K2 ∈ K(M)
with K1 ⊆ K2 then XK1 ⊆ XK2 , (b) for every compact subset Ω of X there
exists K ∈ K(M) such that Ω ⊆ XK . Note that every compact subset K of
X is a strong Eberlein compact and since |Γ | = c we have |η(K)| < c+. We
now consider the sets XK ,K ∈ K(M), as disjointly supported by the sets
ΓK =

⋃
{A ⊆ Γ : XA ∈ XK}× {K} and set ∆ =

⋃
{ΓK : K ∈ K(M)}; since

|ΓK | ≤ c for all K ∈ K(M) and |K(M)| ≤ c we get |∆| = c. Now we define a
compact subset of {0, 1}∆ by setting K0 = {XA : A ⊆ ∆ and |A \B| ≤ 1 for
some B ⊆ A, XB ∈ XK , K ∈ K(M)}. It is easy to check that K0 is a strong
Eberlein compact (that is a compact subset of [∆]<ω). It clearly follows from
condition (b) that every compact subset of X is embedded in K0, therefore
η(Ω) ≤ η(K0) for every compact subset Ω ofX; but then the aforementioned
result from [H-L-M] implies that η(K0) = c+, a contradiction.

Note that Example 3.1 can also be proved using the methods of [A-B].
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The following result generalizes Theorem 1.12 of [M-S]. We recall that if
X is any Hausdorff space then the Vietoris topology τν on K(X) has a basis
consisting of the subsets of K(X) of the form

β(V1, . . . , Vn) =
{
K ∈ K(X) : K ⊆

n⋃
i=1

Vi and K ∩ Vi 6= ∅ for i = 1, . . . , n
}

where n ∈ N and V1, . . . , Vn are open nonempty subsets of X (see [E]).

Theorem 3.1. Let X be a (Hausdorff and completely regular) topological
space. Then the following are equivalent:

(i) X is SCD.
(ii) (K(X), τν) is SCD.
(iii) (K(X), τν) is CD.

Proof. (i)⇒(ii). Let Ω be a compact space with X ⊆ Ω. There exists a
sequence (An)n of compact subsets of Ω such that for each compact subset
K of X and w ∈ Ω \X there exists n ∈ N with K ⊆ An and w /∈ An. Put
Bn = K(An) for all n ∈ N. Then the space K(Ω) endowed with the Vietoris
topology is a compact topological space and (Bn) is a sequence of compact
subsets of K(Ω). Let K be a compact subset of K(X) and L ∈ K(Ω)\K(X).
Put XK =

⋃
{A : A ∈ K}. Then XK is a compact subset of X and L is

not a subset of X, hence there exists w ∈ L with w /∈ X. Then there exists
n ∈ N such that XK ⊆ An and w /∈ An.

We now claim that K ⊆ Bn and L /∈ Bn. Indeed, XK ⊆ An, hence for
each A ∈ K we have A ⊆ XK ⊆ An, that is, A ∈ Bn = K(An), which
means that K ⊆ Bn. If we had L ∈ Bn, then L ⊆ An, hence w ∈ An, a
contradiction.

(ii)⇒(iii) is obvious.
(iii)⇒(i). There exists a subset Σ′ of Σ and an usco map Φ : Σ′ →

K(K(X)) with K(X) = Φ(Σ′) =
⋃
σ∈Σ′ Φ(σ). Define a map F : Σ′ → K(X)

by F (σ) =
⋃
Φ(σ) =

⋃
{K : K ∈ Φ(σ)}. Let L be a compact subset of X.

Then L ∈ K(X), hence there exists σ ∈ Σ′ with L ∈ Φ(σ), so L ⊆ F (σ). It
remains to prove that F is upper semicontinuous. Let F (σ) ⊆ V for some
σ ∈ Σ′ and V an open subset of X. Consider the set β(V ) = {K : K ∈ K(X)
and K ⊆ V }, which is open in the Vietoris topology of K(X). Clearly
Φ(σ) ⊆ β(V ). By the semicontinuity of Φ there exists n ∈ N such that
Φ(I(σ|n) ∩ Σ′) ⊆ β(V ), that is, for all τ ∈ Σ′ with τ |n = σ|n we have
Φ(τ) ⊆ β(V ). Then K ⊆ V whenever K ∈ Φ(τ), hence F (τ) ⊆ V , and this
completes the proof.

4. Strongly weakly countably determined Banach spaces. In this
section we introduce and study the concept of a strongly weakly countably
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determined Banach space. The class of strongly weakly countably deter-
mined Banach spaces is a subclass of weakly countably determined (WCD)
Banach spaces, for which we refer to [T] and [F].

Definition 4.1. A Banach space X is called strongly weakly countably
determined (SWCD) if it is SCD in its weak topology.

We note that if (X,w) is strongly K-analytic then the Banach space X
is called strongly weakly K-analytic (SWKA). The class of SWKA Banach
spaces has been introduced in [M-S].

Remark 4.1. (1) A Banach space X is SWCD if and only if the topo-
logical space (BX , w) is SCD. One implication is clear because (BX , w) is
a closed subspace of X. For the other, if there exists a subset Σ′ of Σ and
an upper semicontinuous map F : Σ′ → K(BX) satisfying condition (iii)
of Prop. 3.1, then X is SWCD. To see this, define Φ : Σ′ × N → K(X) by
Φ(σ, n) = nF (σ), which satisfies condition (iii) of Prop. 3.1 and makes X a
SWCD space.

(2) It is easy to see that a Banach space X is SWCD if and only if there
exists a sequence (Kn) of w∗-compact subsets of X∗∗ with the following
property: For each weakly compact subset L of X and each x∗∗ ∈ X∗∗ \X
there exists n ∈ N such that L ⊆ Kn and x∗∗ /∈ Kn. Indeed, if X is SWCD,
then the ball BX of X endowed with the weak topology is SCD, as a closed
subspace. So there exists a sequence (Kn) of w∗-compact subsets of BX∗∗
which satisfies condition (i) of Prop. 3.1. It is easy to see that the countable
family mKn, m, n ≥ 1, has the desired properties. Conversely, if there exists
such a sequence (Kn), then the sequence (Kn∩BX∗∗) of w∗-compact subsets
of BX∗∗ satisfies assertion (i) of Prop. 3.1, so (BX , w) is strongly countably
determined, hence X is SWCD.

(3) It follows from Prop. 3.3 that the class of SWCD Banach spaces is
stable under closed subspaces and finite products. From Th. 3.1 we find that
a Banach space X is SWCD if and only if the space K(X) with the Vietoris
topology (induced by the weak topology of X) is countably determined.

Examples of SWCD Banach spaces. (i) Every SWKA Banach space
is SWCD. (Thus in particular every SWCG Banach space is SWCD; see
[M-S].)

(ii) Every separable Banach space X with separable dual is SWCD. This
is because the unit ball (BX , w) is separable and metrizable. In particular
c0(N) is SWCD but not SWKA. (See Prop. 1.9 and Cor. 1.10 of [M-S].)

(iii) Every separable Banach space X with the Schur property is SWCD.
Actually, Cor. 3.1 implies that every subset A of X with the weak topology
is a SCD topological space. Recall that `1(N) has the Schur property.
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(iv) If X∗ is separable, Y reflexive, and Z a closed subspace of the Banach
space X × Y , then Z is SWCD (see Remark 4.1(3)).

The following is a useful characterization of SWCD spaces (cf. Prop.
1.7 of [M-S] for a similar characterization of SWKA Banach spaces). Its
analogue for WCD spaces, first proved in [M1] (see also Th. 3.16 in [A-M])
and independently in [C-O, Cor. 4.1], states that a Banach space X is WCD
if and only if there exists a separable metric space M and a family {WK :
K ∈ K(M)} of weakly compact subsets of X such that (a) WK1 ⊆ WK2 if
K1 ⊆ K2, (b)

⋃
{WK : K ∈ K(M)} is a total subset of X. (The analogous

characterization of weakly K-analytic Banach spaces is due to Talagrand [T,
Prop. 6.13].

Proposition 4.1. Let X be a Banach space. Then the following are
equivalent:

(i) X is SWCD.
(ii) There exists a separable metric space M and a family {WK : K ∈
K(M)} of weakly compact subsets of X (resp. of BX) such that:
(a) if K1,K2 ∈ K(M) with K1 ⊆ K2, then WK1 ⊆ WK2, (b) for
every weakly compact subset L of X (resp. of BX) there exists K ∈
K(M) such that L ⊆WK .

Proof. Since a Banach space X endowed with the weak topology is Haus-
dorff and completely regular, and furthermore relatively countably compact
sets of (X,w) are relatively compact, the result follows immediately from
Remark 3.3. However, we prefer to give a more direct proof.

(i)⇒(ii). It is an immediate consequence of the easy part of Remark
3.3(2).

(ii)⇒(i). Let {WK : K ∈ K(M)} be a family of weakly compact subsets
of BX satisfying conditions (a) and (b) of assertion (ii). It then follows from
the characterization of WCD Banach spaces, mentioned above, that X is
WCD, hence (BX∗ , w∗) is a Gul’ko compact. (In particular this space is
angelic.) Let {Vn : n ≥ 1} be a countable basis for the topology of the
separable metric space K(M). For each n ∈ N define Ωn to be the w∗-
closure of the set

⋃
{WK : K ∈ Vn} in BX∗∗ . It is then easy to verify that

the sequence (Ωn) of w∗-compact subsets of BX∗∗ satisfies condition (i) of
Prop. 3.1.

The class of SWCD Banach spaces is not stable under continuous linear
maps (cf. Remark 1.16 in [M-S]). Indeed, every separable Banach space is a
quotient of `1(N), but as can be proved below (see Remark 4.3), no separable
Banach space not containing `1(N) with nonseparable dual is SWCD. On
the other hand, we have the following positive result.
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Proposition 4.2. Let X be a Banach space and Y a reflexive subspace
of X. Then X is SWCD (resp. SWKA) if and only if X/Y is SWCD (resp.
SWKA).

Proof. As proved in [S-W, Th. 2.7], if Y is a reflexive subspace of a
Banach space X, then the quotient map q : X → X/Y is a weakly compact
covering (in the sense of Section 1). Actually, it is rather easy to see that if K
is a weakly compact subset of X/Y and δ > 0, then Ω = BX(0, δ)∩ q−1(K)
is weakly compact in X and if in addition δ > sup{‖x̂‖ : x̂ ∈ K}, then
q(Ω) = K. Let us examine the SWCD case (the SWKA case uses Prop. 1.7
of [M-S]).

One implication is an easy consequence of Prop. 3.4. For the other, let
{WK : K ∈ K(M)} be a family of weakly compact subsets of BX/Y making
X/Y a SWCD space according to Prop. 4.1. Set ΩK = BX ∩ q−1(WK) for
each K ∈ K(M). Then each ΩK is a weakly compact subset of BX and if
K1 ⊆ K2, then ΩK1 ⊆ ΩK2 . Let Ω be a weakly compact subset of BX . Then
q(Ω) ⊆ q(BX) ⊆ BX/Y , thus there exists some K such that q(Ω) ⊆WK ; so
Ω ⊆ q−1(WK) ∩BX = ΩK , which completes the proof.

Remark 4.2. The analogue of Prop. 4.2 for WCD and weakly K-analytic
Banach spaces is also true (see also Th. 2.7 of [S-W]). We use the character-
ization of WCD spaces mentioned above and the corresponding characteri-
zation of weakly K-analytic Banach spaces of Talagrand ([T, Prop. 6.13]).

Lemma 4.1. Let Γ be a nonempty set, M a separable metric space and
{ΓK : K ∈ K(M)} a family of finite subsets of Γ such that: (i) Γ =

⋃
{ΓK :

K ∈ K(M)}, (ii) if K1,K2 ∈ K(M) with K1 ⊆ K2, then ΓK1 ⊆ ΓK2,
(iii) each ΓK is finite. Then the set Γ is countable.

Proof. Assume for contradiction that Γ is uncountable; we may assume
that |Γ | = ω1 and let Γ = {γξ : ξ < ω1} be an enumeration of Γ . For each
ξ < ω1 pick Kξ ∈ K(M) such that γξ ∈ ΓKξ . We claim that {Kξ : ξ < ω1}
is a countable subset of K(M). If the claim is not true, then since the space
K(M) endowed with the Vietoris topology is separable and metrizable, there
would exist a sequence (Kξn) of distinct sets of K(M) and K ∈ K(M) such
that Kξn

τν→ K. It then follows that the set W =
⋃∞
n=1Kξn ∪K is compact

in M and ΓKξn ⊆ ΓW for every n ≥ 1, so {γξn : n ≥ 1} ⊆ ΓW , which is a
contradiction.

For another proof of the previous lemma one can see [M2, Remark 1.4].
The following results of this section generalize [M-S, Th. 2.6, Cor. 2.7,

Th. 2.8 and Example 2.9]. We omit the proofs of the next two theorems as
they follow the lines of the proofs of Ths. 2.7 and 2.8 in [M-S]. The only
difference is that instead of the characterization of SWKA Banach spaces
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and Lemma 2.1 of [M-S] we use the characterization of SWCD spaces and
Lemma 4.1 of the present paper.

The first result is a characterization of separable SWCD spaces not con-
taining `1(N).

Theorem 4.1. Let X be a separable Banach space not containing `1(N).
Then X is SWCD if and only if X has separable dual.

Corollary 4.1. Every SWCD Banach space E not containing `1(N) is
Asplund and (hence) WCG.

Proof. Every separable subspace of E has separable dual, so E is As-
plund. As E is Asplund and WCD, it is WCG.

Remark 4.3. It follows immediately from Th. 4.1 that a Banach space
X not containing `1(N) with nonseparable dual (for instance the James tree
space) is not SWCD. Such a Banach space can also be used to show that
the class of SCD topological spaces is not stable under continuous images;
indeed, the identity map I : (X, ‖ · ‖) → (X,w) is continuous, the space
(X, ‖ · ‖) is Polish, hence SCD, but the space (X,w) is not SCD.

In the next theorem T denotes the dyadic tree, that is, T =
⋃∞
n=1{0, 1}n

ordered (as the tree S =
⋃∞
n=0 Nn) by the relation “s is an initial segment

of t”, denoted by s ≤ t.

Theorem 4.2. Let X be a Banach space and (es)s∈T be a bounded family
of X. Assume that (i) for no chain (tn) of T is the sequence (etn) weakly
convergent, (ii) for every antichain (sn) of T there exists a subsequence (s′n)
of (sn) such that the sequence (es′n) is weakly convergent. Then the space X
is not SWCD.

Remark 4.4. As an application of Th. 4.2 we can prove that a separ-
able weakly sequentially complete Banach space with an unconditional basis
need not be SWCD. Actually it is proved in [M-S, Example 2.9] that the
space X0 considered by Batt and Hiermeyer [B-H] is not SWKA. Following
the method of proof of that example, one can prove that X0 is not even
SWCD.

5. Direct sums of SWCD Banach spaces. In this section we exam-
ine direct sums of SWCD and SWKA Banach spaces. We show that in some
cases the direct sum of countably many SWCD or SWKA Banach spaces is
again SWCD or SWKA. But the direct sum of uncountably many SWCD
spaces is not necessarily SWCD. In particular we show that c0(ω1) is not a
SWCD space. Using this result we show that a Banach space of the form
C(K), where K is a compact space, is SWCD if and only if K is countable.
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Proposition 5.1. Let (Xn) be a sequence of SWCD (resp. SWKA) Ba-
nach spaces and p ≥ 1. Then the space X = (

∑∞
n=1⊕Xn)p is SWCD (resp.

SWKA).

Proof. We consider each Xn with the weak topology and let τ be the
product topology on

∏∞
n=1Xn, that is, τ is the pointwise weak topology.

Clearly the pointwise weak topology is coarser than the weak topology on X.
Case I. Let p > 1. In this case the weak topology coincides with the

pointwise weak topology on BX and the space (BX , w) is a closed subset of
(
∏∞
n=1Xn, τ). So the desired conclusion follows immediately from Prop. 3.3.
Case II. Let p = 1. In this case BX is a closed subset of X endowed

with the pointwise weak topology. It is also not difficult to verify both of
the following facts:

Fact I. Every compact subset of the space (
∏∞
n=1Xn, τ) is sequentially

compact; actually, it is an Eberlein compact set.

Fact II. Let Ω be a relatively compact subset of BX in the τ topology.
Then Ω is weakly relatively compact if and only if for each ε > 0 there exists
N ∈ N such that

∑∞
k=N ‖xk‖ < ε for all x = (xk) ∈ Ω.

Let us prove the SWKA case, using Prop. 1.7 of [M-S]. (The SWCD case
is similar using the corresponding Prop. 4.1.) For each k ∈ N there exists a
family {Ωk

σ : σ ∈ Σ} of weakly compact subsets of BXk such that:

(i) If σ, τ ∈ Σ with σ ≤ τ , then Ωk
σ ⊆ Ωk

τ , where σ ≤ τ means that
σ(n) ≤ τ(n) for all n ∈ N.

(ii) For each weakly compact subset L of BXk , there exists σ ∈ Σ such
that L ⊆ Ωk

σ.

For every pair of sequences (mk) ⊆ N and (σk) ⊆ Σ set

Ω((mk),(σk)) =
{

(xk) ∈ BX : xk ∈ Ωk
σk
∀k and

∞∑
k=mi

‖xk‖ ≤ 1/i ∀i ≥ 1
}
.

Then we have the following:

(a) Each set Ω((mk),(σk)) is weakly compact. Indeed, let ε > 0. Then
there exists i ∈ N with 1/i < ε, so if x = (xk) ∈ Ω((mk),(σk)), then∑∞

k=mi
‖xk‖ < 1/i. It easily follows that Ω((mk),(σk)) is τ -compact,

hence weakly compact (Fact II).
(b) If (mk), (lk) ⊆ N and (σk), (τk) ⊆ Σ with mk ≤ lk and σk ≤ τk

for all k ∈ N, then Ω((mk),(σk)) ⊆ Ω((lk),(τk)). Indeed, if x = (xk) ∈
Ω((mk),(σk)), then xk ∈ Ωk

σk
for all k and

∑∞
k=mi

‖xk‖ < 1/i for all i.
It follows that xk ∈ Ωk

τk
for all k and

∑∞
k=li
‖xk‖ < 1/i for all i,

hence x ∈ Ω((lk),(τk)).
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(c) Let Z be a weakly compact subset of BX . For each k set Zk = pk(Z).
Then Zk is a weakly compact subset of BXk , so there exists σk ∈ Σ
such that Zk ⊆ Ωk

σk
. Since Z is weakly compact, for each i ≥ 1 there

exists mi ∈ N such that
∑∞

k=mi
‖xk‖ < 1/i for all x = (xk) ∈ Z.

We claim that Z ⊆ Ω((mk),(σk)). Indeed, if x = (xk) ∈ Z, then
xk ∈ Zk ⊆ Ωk

σk
and for each i ≥ 1 we have

∑∞
k=mi

‖xk‖ < 1/i and
the claim is proved.

Therefore the space X is SWKA.

We now turn to the case p = 0. We first observe that a direct c0-sum X =
(
∑∞

n=1⊕Xn)0 of (nontrivial) Banach spaces is never SWKA. This is because
the space c0(N) is isometrically embedded in X and as we have already
noticed, c0(N) is not SWKA. We do not know whether a countable c0-sum
of (separable) SWCD Banach spaces is again a SWCD space. However, the
following special case can be proved.

Proposition 5.2. Let (Xn) be a sequence of separable (SWCD) Banach
spaces each of which has separable dual or has the Schur property. Then the
space X = (

∑∞
n=1⊕Xn)0 is SWCD. (For instance, for each n, Xn = c0(N)

or Xn = `1(N).)

Proof. Set Z =
∏∞
n=1BXn and endow Z with the pointwise weak topol-

ogy τ . Then BX is a subset of Z and the weak topology on BX coincides
with the relative topology that induces τ on BX . By our assumption for each
n ∈ N there exists a separable metrizable topology τdn on BXn , finer than
the weak topology and having the same compact sets. (If Xn has separable
dual then the weak topology on BX is metrizable, and if Xn has the Schur
property then the norm topology and the weak topology have the same com-
pact sets.) We now consider each BXn with the metric topology τdn and give
Z the corresponding product topology τd. Then (Z, τd) is a separable metriz-
able space and τd is finer than τ . Let Ω be a τ -compact set in Z and let
xk = (xkn)∞n=1, k ≥ 1, be a sequence in Ω. By the compactness of Ω each set
pn(Ω) ⊆ BXn is weakly compact (where pn is the projection on the nth co-
ordinate). Thus for each n ≥ 1, (xkn)k has a weakly convergent subsequence.
By a diagonal argument it follows that (xk)k has a convergent subsequence
in Ω, say xkm

τ→ x, which means that xkm
τd→ x. So Ω is τd-compact and by

Cor. 3.1 the space (BX , w) is SCD, that is, X is SWCD.

It is natural to ask whether the uncountable direct sum (
∑

γ∈Γ ⊕Xγ)p
with p = 0 or p > 1 of a family (Xγ)γ∈Γ of SWCD Banach spaces is also a
SWCD Banach space. As we shall see, the answer to this question is negative.

Theorem 5.1. For each ξ < ω1 let Eξ be a Banach space having a
normalized Schauder basis (e(n,ξ)) with no weakly convergent subsequence.



A class of WCD spaces 169

Then the Banach space E = (
∑

ξ<ω1
⊕Eξ)p where p = 0 or p > 1 is WCG,

but not SWCD.

Proof. It is well known that a c0 or `p, p > 1, direct sum of WCG Banach
spaces is WCG. Let K be a weakly compact subset of E. Then for each
ξ < ω1 put Nξ = {n ∈ N : e(n,ξ) ∈ K}. The set Nξ is finite as K is weakly
compact and the sequence (e(n,ξ)) has no weakly convergent subsequence.
Define m(K, ξ) = 1 if Nξ = ∅ and m(K, ξ) = maxNξ if Nξ 6= ∅. Consider
the map F : K(E) → K(Nω1) defined by F (K) =

∏
ξ<ω1
{1, . . . ,m(K, ξ)}.

The map F has the following properties:

(i) If K1,K2 ∈ K(E) with K1 ⊆ K2, then clearly F (K1) ⊆ F (K2).
(ii) If a family C of weakly compact subsets of E dominates the weakly

compact subsets of E, then the family {F (C) : C ∈ C} dominates the
compact subsets of Nω1 . Indeed, if Ω ∈ K(Nω1) then there exists σ ∈ Nω1

such that Ω ⊆ Ω(σ) =
∏
ξ<ω1
{1, . . . , σ(ξ)}. Define K = {e(n,ξ) : n ≤

σ(ξ), ξ < ω1} ∪ {0}. The set K is weakly compact in E and F (K) = Ω(σ).
There exists C ∈ C such that K ⊆ C, hence Ω ⊆ Ω(σ) = F (K) ⊆ F (C).

Assume towards a contradiction that the space E is SWCD. Then, by
the first part of Remark 3.3(2), there exist a separable metric space M and
a family {XK : K ∈ K(M)} of weakly compact subsets of E such that:
(a) for all K1,K2 ∈ K(M) with K1 ⊆ K2 we have XK1 ⊆ XK2 , (b) for
every weakly compact subset L of E there exists K ∈ K(M) such that
L ⊆ XK . It then follows that the family {F (XK) : K ∈ K(M)} dominates
the compact sets of Nω1 , in particular, Nω1 =

⋃
{F (XK) : K ∈ K(M)} and

F (XK1) ⊆ F (XK2) whenever K1,K2 ∈ K(M) with K1 ⊆ K2. Since the
space Nω1 is realcompact, Th. 4 of [C-O] (see also Remark 3.3(2)) implies
that Nω1 is countably determined and hence Lindelöf, a contradiction (cf.
Remark 5.1 below).

Remark 5.1. An alternative way to get a contradiction is the following:
Let D be a closed and discrete subset of Nω1 with cardinality ω1. (We thank
Professor D. H. Fremlin for pointing out to us that such a subset exists.)
For each K ∈ K(M) define DK = D ∩ F (XK). Then (i) D =

⋃
{DK :

K ∈ K(M)}, (ii) DK1 ⊆ DK2 whenever K1,K2 ∈ K(M) with K1 ⊆ K2,
(iii) each DK is finite. Then Lemma 4.1 shows that the set D is countable,
a contradiction.

Corollary 5.1. Let {Xξ : ξ < ω1} be a family of Banach spaces and
X = (

∑
ξ<ω1

⊕Xξ)p, where p = 0 or p > 1. Then:

(i) If for each ξ < ω1, Xξ = `1(N) or Xξ = c0(N), then X is WCG, but
not SWCD. In particular, c0(ω1) is not SWCD.

(ii) If p = 0 (and uncountably many of Xξ are nontrivial), then X is not
SWCD.
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Proof. (i) The usual basis of `1(N) and the summing basis of c0(N) have
no weakly convergent subsequence, so the previous theorem can be applied.
If we set p = 0 and Xξ = c0(N) we get X = c0(ω1), so c0(ω1) is not SWCD.

(ii) Assume without loss of generality that Xξ 6= {0} for all ξ < ω1. Then
c0(ω1) is embedded in X, hence X is not SWCD.

Remark 5.2. Since c0(ω1) (being WCG) is WKA, we get still another
example of a K-analytic topological space which is not SCD (cf. Example
3.1).

According to Cor. 1.10 of [M-S], if K is a compact space, then the space
C(K) is SWKA if and only if K is a finite set. In the case of SWCD Banach
spaces we have the following analogue of this result.

Theorem 5.2. Let K be a compact space. Then the space C(K) is
SWCD if and only if K is countable.

Proof. If K is countable, then the dual C(K)∗ = `1(K) of C(K) is
separable, hence C(K) is SWCD. Conversely, assume that C(K) is SWCD
and, towards a contradiction, that K is not metrizable. It then follows that
the topological weight w(K) = α of K is uncountable. Since K is a Gul’ko
compact, by a result of Argyros and Negrepontis there exists a pairwise
disjoint family {Uξ : ξ < α} of open nonempty subsets of K (see [A-N]).
Then c0(α) is embedded in C(K), hence c0(α) is SWCD, a contradiction as
α is uncountable. So K is metrizable. Now if K is uncountable, then C(K) is
isomorphic to C[0, 1], by Milyutin’s theorem. It follows that C(K) contains
isomorphically any separable Banach space. In particular C(K) contains a
separable Banach space with nonseparable dual not containing `1(N) (for
example the James tree space JT ), and this contradicts Th. 4.1.

Open questions

(1) Let X be a SWCD Banach space.

(a) Is then X a subspace of a WCG or at least weakly K-analytic?
(b) Assume that X does not contain `1(N). Is then X isomorphic to

a closed subspace of a direct sum Y ⊕ Z, where Y ∗ is separable
and Z is reflexive? (cf. Cor. 4.1)

(2) Must a separable, weakly sequentially complete space which contains
`1(N) hereditarily be SWKA or SWCD? (cf. Question (c) in [S-W])
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