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A reconstruction theorem for locally moving groups
acting on completely metrizable spaces

by

Edmund Ben-Ami (Beer Sheva)

Abstract. Let G be a group which acts by homeomorphisms on a metric space X.
We say the action of G is locally moving on X if for every open U ⊆ X there is a g ∈ G
such that g�X 6= Id while g�(X \ U) = Id. We prove the following theorem:

Theorem A. Let X, Y be completely metrizable spaces and let G be a group which
acts on X and Y with locally moving actions. If the orbits of the action of G on X are of
the second category in X and the orbits of the action of G on Y are of the second category
in Y , then X and Y are homeomorphic.

A particular case of Theorem A gives a positive answer to a question of M. Rubin
and J. van Mill who asked whether X and Y are homeomorphic whenever G is strongly
locally homogeneous on X and Y .

1. Introduction. For a topological space X denote by H(X) the group
of all auto-homeomorphisms ofX. IfX is a regular space andG is a subgroup
of H(X) we call 〈X,G 〉 a space-group pair.

Let 〈X,G 〉 be a space-group pair. If for every nonempty open set U ⊆ X
there is some g ∈ G \ {Id} such that g�(X \ U) = Id, then we say that G
is locally moving on X, or that 〈X,G 〉 is a local movement system. No-
tice that if 〈X,G 〉 is a local movement system, then X has no isolated
points.

Theorem 1.1. Let X and Y be completely metrizable spaces and
〈X,G 〉, 〈Y,H 〉 be local movement systems with ϕ : G ∼= H (ϕ is an isomor-
phism of abstract groups, without the action). Then there are X̂ ⊆ X, Ŷ ⊆ Y
and τ : X̂ ∼= Ŷ such that
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(1) X̂ is co-meager in X and Ŷ is co-meager in Y .
(2) X̂ is invariant under G and Ŷ is invariant under H.
(3) τ induces ϕ in the following sense: ϕ(g)�Ŷ = τ ◦ (g�X̂) ◦ τ−1 for

every g ∈ G.

Let 〈X,G 〉 and 〈Y,H 〉 be space-group pairs, and ϕ : G ∼= H, τ : X ∼= Y
be such that ϕ(g) = τ ◦ g ◦ τ−1 for every g ∈ G. Then we say that τ
induces ϕ.

The conditions in Theorem 1.1 do not ensure that X and Y are hom-
eomorphic. The following example shows this. Let P denote the irrational
numbers, and let G be the group of all auto-homeomorphisms of R which
take P onto itself. Clearly G is locally moving on both R and P, and both
R and P are completely metrizable.

Let 〈X,G 〉 be a space-group pair. Then for every x ∈ X the set
{g(x) | g ∈ G} is called the orbit of x under G. We denote it by G(x).
The following theorem (Theorem A in the abstract) is a trivial consequence
of Theorem 1.1.

Theorem 1.2. Let X and Y be completely metrizable spaces and 〈X,G 〉,
〈Y,H 〉 be local movement systems with ϕ : G ∼= H. If for every x ∈ X, G(x)
is of the second category in X, and for every y ∈ Y , H(y) is of the second
category in Y , then there is a τ : X ∼= Y which induces ϕ.

The next corollary is just a special case of Theorem 1.2. It gives a positive
answer to a question of M. Rubin and J. van Mill [vM]. Let 〈X,G 〉 be a
space-group pair. Then we say that G is strongly locally homogeneous or
SLH on X if there is an open base U for the topology of X such that for
every U ∈ U and every x, y ∈ U there is g ∈ G such that g�(X \ U) = Id
and g(x) = y. Whenever H(X) is SLH on X, we say that X is SLH.

Corollary 1.3. Let X and Y be completely metrizable spaces and
〈X,G 〉, 〈Y,H 〉 be space-group pairs such that G is SLH on X and H is
SLH on Y . If ϕ : G ∼= H then there is τ : X ∼= Y such that τ induces ϕ.

In [vM] J. van Mill constructs two SLH metric spaces X,Y ⊆ S2 which
are not homeomorphic, while H(X) and H(Y ) are isomorphic (in fact X
and Y are complementary in S2 and every homeomorphism of one of them
is extendable to the entire S2). In van Mill’s example, neither X nor Y are
completely metrizable. Thus the completeness condition imposed on all the
spaces we deal with in this paper cannot be dropped even if the groups in
question are SLH on the respective spaces. However, in van Mill’s example,
both the actions of H(X) on X and of H(Y ) on Y can be extended to
actions on the whole S2 (which is the metric completion of both X and Y ).
This raises the following question, in which X denotes the completion of the
metric space X.
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Question. Let X,Y be metric spaces and 〈X,G 〉, 〈Y,H 〉 be space-
group pairs such that G is SLH on X, H is SLH on Y , and ϕ : G ∼= H.
Assume further that there is no X ( X1 ⊆ X such that every member of
G extends to a homeomorphism of X1, and the same holds for Y and H. Is
there a homeomorphism τ : X ∼= Y such that τ induces ϕ?

Throughout this paper the notation τ : X ∼= Y indicates that τ is a hom-
eomorphism between X and Y . Similarly, if G and H are groups, then
ϕ : G ∼= H means that ϕ is an isomorphism between G and H. Note that we
do not equip G and H with any topology, so ϕ is an isomorphism between
abstract groups.

2. Local movement systems. We begin this section by stating M. Ru-
bin’s reconstruction theorem. We first need some definitions. Let Ro(X) de-
note the set of regular open subsets of the space X, that is, the open subsets
of X for which U = int(cl(U)). The Boolean algebra of regular open subsets
of X is Ro (X) = (Ro(X); +, ·,−, 0, 1), where U + V := int(cl(U ∪ V )),
U · V := U ∩ V , −U := int(X \ U), 0 := ∅ and 1 := X. By writing
ψ : Ro(X) ∼= Ro(Y ) we mean that ψ is an isomorphism of Boolean alge-
bras.

Let g ∈ H(X). Clearly, g(V ) ∈ Ro(X) for every V ∈ Ro(X). Moreover,
the mapping V 7→ g(V ) is an automorphism of Ro(X), denoted by gRo .
Clearly, the mapping g 7→ gRo is a group homomorphism of H(X) into
Aut(Ro(X)). Notice that for Hausdorff spaces, if g 6= h ∈ H(X) then
gRo 6= hRo and thus the mapping g 7→ gRo is a group embedding if the
space X is Hausdorff, which is always the case for the spaces we deal with.
Hence, by abuse of notation, we do not distinguish between gRo and g.

Now we are ready to state M. Rubin’s reconstruction theorem. Recall
that 〈X,G 〉 is a local movement system if X is a regular space and G is
locally moving on X.

Theorem 2.1 ([Ru2, Corollary 1.4]). Let 〈X,G 〉 and 〈Y,H 〉 be local
movement systems with ϕ : G ∼= H (ϕ is an isomorphism of abstract groups,
without the action). Then there is a unique ψ : Ro(X) ∼= Ro(Y ) such that
ϕ(g) = ψ ◦ g ◦ ψ−1 for every g ∈ G.

We say that ψ induces ϕ whenever ϕ(g) = ψ ◦ g ◦ ψ−1.
Notice that if we wished to be precise we actually should have written

ϕ(g)Ro = ψ ◦ gRo ◦ ψ−1. From now on we will use g instead of gRo freely.
Remember that we are interested in finding a homeomorphism between

the spaces X and Y , thus, a mapping between points in X and points in Y .
Theorem 2.1 already does most of the work by giving us ψ, which is a
mapping between regular open sets in X and regular open sets in Y . Now,
it remains to use ψ and some additional conditions on the actions and the
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spaces to derive the homeomorphism we are interested in. Theorem 2.1 is
often applied in this way to show spaces are homeomorphic, in [Ru1] for
instance.

Notice that it is not true in general that spaces with isomorphic algebras
of regular open sets are homeomorphic. For instance, a space and its Stone–
Čech compactification have the same algebras of regular open sets.

The rest of this section is devoted to presenting some consequences of
Theorem 2.1 which will come in handy in Section 3.

For any g ∈ H(X) the support of g is supp(g) = {x ∈ X | g(x) 6= x}.
Proposition 2.2. Let 〈X,G 〉 and 〈Y,H 〉 be space-group pairs such that

ϕ : G ∼= H, ψ : Ro(X) ∼= Ro(Y ), and ψ induces ϕ (so for every g ∈ G,
ϕ(g) = ψ ◦ g ◦ψ−1). Then for every g ∈ G and U ∈ Ro(X), supp(g) ⊆ U iff
supp(ϕ(g)) ⊆ ψ(U).

Proof. We show that if supp(g) ⊆ U then supp(ϕ(g)) ⊆ ψ(U). The proof
of the other direction is similar. Let U ∈ Ro(X) and suppose supp(g) ⊆ U .
First note that supp(g) =

⋃
{V ∈ Ro(X) | V ∩ g(V ) = ∅} since X is

Hausdorff. So, for every V ∈ Ro(X), V ∩ g(V ) = ∅ implies that V ⊆ U . We
need to show that for every V ∈ Ro(X), ψ(V ) ∩ ϕ(g)(ψ(V )) = ∅ implies
that ψ(V ) ⊆ ψ(U).

Since ψ induces ϕ, ψ(g(V )) = ϕ(g)(ψ(V )). Hence ψ(V )∩ϕ(g)(ψ(V )) = ∅
implies that ψ(V )∩ψ(g(V ))= ∅, and since ψ is an isomorphism, V ∩g(V )= ∅.
Hence V ⊆ U , and so ψ(V ) ⊆ ψ(U).

Let 〈X,G 〉 be a space-group pair and U ⊆ X. Then G U = {g ∈ G |
supp(g) ⊆ U} is the subgroup of all members of G whose support is con-
tained in U . For every ultrafilter U in Ro(X), let GU be the subgroup of
G generated by

⋃
U∈U GX \ U . Notice that if x ∈ X and x ∈

⋂
U∈U cl(U),

then GU ⊆ Gx for Gx = {g ∈ G | g(x) = x}. For any two ultrafilters U
and V in Ro(X), let GU ,V be the subgroup of G generated by GU ∪GV . The
following corollary is a consequence of Proposition 2.2.

Corollary 2.3. Under the assumptions of Proposition 2.2, for any two
ultrafilters U and V in Ro(X), ϕ(GU ) = Hψ(U) and ϕ(GU ,V) = Hψ(U),ψ(V).

The following corollary of Theorem 2.1 will be very useful later on, but
is interesting in its own right, since it states that being a locally moving
subgroup is a property which is preserved under group isomorphisms:

Corollary 2.4. Let 〈X,G 〉 and 〈Y,H 〉 be local movement systems with
ϕ : G ∼= H. If Ĝ is a subgroup of G which is locally moving on X, then ϕ(Ĝ)
is a subgroup of H which is locally moving on Y .

Proof. It follows from Theorem 2.1 that there is a ψ : Ro(X) ∼= Ro(Y )
which induces ϕ, and thus ϕ and ψ are as in Proposition 2.2. Let V ∈ Ro(Y ).
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Since Ĝ is locally moving on X, there is some g ∈ Ĝ such that g 6= Id and
supp(g) ⊆ ψ−1(V ). Hence, supp(ϕ(g)) ⊆ ψ(ψ−1(V )) = V . Since g 6= Id,
also ϕ(g) 6= Id. So, since Ro(Y ) is a base for the topology of Y (since Y is
metric and thus regular), ϕ(Ĝ) is locally moving on Y .

Denote the fixed points of G by Fix(G) = {x ∈ X | (∀g ∈ G)(g(x) = x)}.
Recall that a subset A of X is said to be nowhere dense in X if cl(A) has
an empty interior.

Proposition 2.5. For every local movement system 〈X,G 〉, Fix(G) is
nowhere dense in X.

Proof. Let U be a nonempty open subset of X. To see that Fix(G) is
not dense in U , choose g ∈ G U \ {Id}. Since X is Hausdorff, there is some
V ⊆ U such that g(V ) ∩ V = ∅, and hence V ∩ Fix(G) = ∅.

3. A theorem for complete metric spaces. This section is de-
voted to proving Theorem 1.1 and some of its corollaries. Recall that our
starting point is the conclusion of Theorem 2.1. So, given an isomorphism
ψ : Ro(X) ∼= Ro(Y ), we wish to find out when there exists a homeomorphism
τ such that ψ(U) = {τ(x) | x ∈ U} for every U ∈ Ro(X). Whenever such a τ
exists, we wish to derive it from ψ and ϕ. We do so by looking at ultrafilters.
For every ultrafilter U in Ro(X), we look at

⋂
U∈U cl(U), which consists of

at most one point since X is Hausdorff. Whenever it equals {x} we say that
U defines x. Since ψ is an isomorphism of Boolean algebras, it induces a
bijection between the ultrafilters in Ro(X) and those in Ro(Y ). Were it a
bijection between the ultrafilters which define some point in X and those
which define some point in Y , we would have a natural candidate for τ . The
proof of Theorem 1.1 is just a refinement of this preliminary suggestion.

Since we are interested in ultrafilters which define a point, the following
observation will come in handy. We use Bε(x) to denote the open ball of
radius ε around x.

Proposition 3.1. Let (X, d) be a complete metric space and let U be an
ultrafilter in Ro(X). Then either U defines a point in X, or there is some
δ > 0 such that for every x ∈ X there is U ∈ U such that Bδ(x) ∩ U = ∅.

Proof. We assume that the latter possibility fails and show that U defines
a point in X. Assume that for every n ∈ ω there is some xn ∈ X such that
B2−n(xn) ∩ U 6= ∅ for every U ∈ U . Let Cn = int(cl(B2−n(xn))) ∈ Ro(X),
so Cn ∩ U 6= ∅ for every U ∈ U . Since U is an ultrafilter in Ro(X), we have
Cn ∈ U for every n ∈ ω.

In particular, Cm ∩ Cn 6= ∅ for every m ≤ n ∈ ω, so d(xm, xn) ≤
2−m+1, which means that (xn) is a Cauchy sequence and hence converges
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to some z ∈X. For every n ∈ ω, B2−n−2(xn+2) ⊆ B2−n(z), and hence
U ∩B2−n(z) 6= ∅. Since z ∈ cl(U) for every U ∈ U , U defines z.

Proof of Theorem 1.1. For every n ∈ ω let Gn be the subgroup of G
generated by

⋃
x∈X GB1/n(x) , and let Hn be the subgroup of H generated

by
⋃
y∈Y H B1/n(y) . Observe that since G is locally moving on X, every Gn

is also locally moving on X. Analogously every Hn is locally moving on Y .
Now we define the following subsets FX ⊆ X and FY ⊆ Y :

FX =
⋃
n∈ω

Fix(Gn)∪
⋃
n∈ω

Fix(ϕ−1(Hn)), FY =
⋃
n∈ω

Fix(Hn)∪
⋃
n∈ω

Fix(ϕ(Gn)).

Let F ′X be the set of all x ∈ X such that there is some ultrafilter U in Ro(X)
which defines x while ψ(U) defines a point y ∈ FY . Let X̃ = X \ (FX ∪F ′X)
and X̂ = {g(x) | g ∈ G, x ∈ X̃}. Analogously, let F ′Y be the set of all y ∈ Y
such that there is some ultrafilter U in Ro(Y ) which defines y while ψ−1(U)
defines a point x ∈ FX . Let Ỹ = Y \ (FY ∪ F ′Y ) and Ŷ = {h(x) | h ∈ H,
y ∈ Ỹ }. It follows from the definition of X̂ and Ŷ that they are invariant
under G and H respectively. Note that the definitions of X̃ and Ỹ are
symmetric, and so every claim we prove about X̃ will be true for the same
reason for Ỹ .

Claim 1. Let U be an ultrafilter in Ro(X) which defines some x∈X \FX .
Then there is some y ∈ Y such that ψ(U) defines y.

Proof. Assume there is no y ∈ Y such that ψ(U) defines y. Then by
Proposition 3.1 there is some n ∈ ω such that for every y ∈ Y there is
U ∈ U such that B2−n(y) ∩ ψ(U) = ∅. Hence Hn ⊆ Hψ(U). So ϕ−1(Hn) ⊆
ϕ−1(Hψ(U)), and thus from Corollary 2.3 we get ϕ−1(Hn) ⊆ GU . Since
GU ⊆ Gx it follows that ϕ−1(Hn) ⊆ Gx, which can’t be since x 6∈ FX so
x 6∈ Fix(ϕ−1(Hn)).

Claim 2. Let U and U ′ be ultrafilters in Ro(X) which both define some
x ∈ X \ FX . Then both ψ(U) and ψ(U ′) define the same point in Y .

Proof. From the previous claim there are y, y′ ∈ Y which are defined by
ψ(U) and ψ(U ′) respectively. Assume that y 6= y′, and take some n such
that 1/n ≤ d(y, y′)/3. For every z ∈ Y we have either y 6∈ cl(B1/n(z)) or
y′ 6∈ cl(B1/n(z)) (or both). So Hn ⊆ Hψ(U),ψ(U ′). Now, just as in the previous
claim ϕ−1(Hn) ⊆ ϕ−1(Hψ(U),ψ(U ′)), and from Corollary 2.3 it follows that
ϕ−1(Hn) ⊆ GU ,U ′ . Since both U and U ′ define x, clearly GU ,U ′ ⊆ Gx and
hence ϕ−1(Hn) ⊆ Gx, which is a contradiction since x 6∈ FX .

In light of the last two claims, we can define τ̃ for every x ∈ X̃ to be
the point in Y defined by an ultrafilter ψ(U) for some U which defines x. It
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follows from the last two claims and from the definition of F ′X and F ′Y that
τ̃ is a well defined function, and that it is 1-1 and onto between X̃ and Ỹ .

Claim 3. τ̃(U ∩ X̃) = ψ(U) ∩ Ỹ for every U ∈ Ro(X).

Proof. Suppose x ∈ U , then U ∈ U for every ultrafilter U which defines x.
Hence τ̃(x) ∈ cl(ψ(U)) since τ̃(x) is the point defined by ψ(U). If τ̃(x) 6∈
ψ(U), then there is some ultrafilter V which defines τ̃(x) and −ψ(U) ∈ V.
But then −U ∈ ψ−1(V) and ψ−1(V) defines x. Clearly U 6∈ V and this is a
contradiction.

Since Ro(X) and Ro(Y ) are bases for the topologies of X and Y , the
previous claim says that τ̃ is a bijection between the members of a base of
X̃ and the members of a base of Ỹ , so τ̃ is a homeomorphism.

Claim 4. X̃ is co-meager in X. In particular, so is X̂.

Proof. Because of Corollary 2.4 and Proposition 2.5, both FX and FY
are meager. Now we show that for every D ⊆ X \FX , if D is dense in some
U ∈ Ro(X) then the set of points in Y defined by ultrafilters ψ(V) such that
V defines some x ∈ D is dense in ψ(U). Take some V ∈ Ro(Y ) such that
cl(V ) ⊆ ψ(U). So ψ−1(V ) ⊆ U . Let z ∈ D∩ψ−1(V ) and take some V which
defines z. Clearly ψ−1(V ) ∈ V and so V ∈ ψ(V). Since z 6∈ FX there is some
y ∈ Y defined by V. Clearly y ∈ cl(V ) ⊆ ψ(U) and we are done. It follows
that F ′X is a countable union of nowhere dense sets.

Notice that for every g ∈ G, the function ϕ(g) ◦ τ̃ ◦ g−1 is a homeo-
morphism between g(X̃) and ϕ(g)(Ỹ ).

Claim 5. ϕ(g)◦ τ̃ ◦g−1(U ∩g(X̃)) = ψ(U)∩ϕ(g)(Ỹ ) for all U ∈ Ro(X).

Proof. We have ϕ(g) ◦ τ̃ ◦ g−1(U ∩ g(X̃)) = ϕ(g) ◦ τ̃(g−1(U) ∩ X̃) =
ϕ(g)(ψ(g−1(U)) ∩ Ỹ ) = ψ(U) ∩ ϕ(g)(Ỹ ). The second equality follows from
Claim 3, and the third from the fact that ψ induces ϕ.

Now we can define τ =
⋃
g∈G ϕ(g) ◦ τ̃ ◦ g−1. Since τ̃ is a homeomorphism,

Claim 5 shows that τ is also a homeomorphism. From the definition of τ it
follows that X̂ is its domain and Ŷ its range. Claim 4 and the fact that ψ
induces ϕ imply that τ induces ϕ. So we are done.

Proof of Theorem 1.2. Let τ be as promised by Theorem 1.1. We only
need to show that Dom(τ) = X and Rng(τ) = Y . Clearly X \ Dom(τ) is
closed under G since Dom(τ) is, and meager since Dom(τ) is co-meager. So,
the orbits of G being of the second category, we have X \Dom(τ) = ∅ and
thus Dom(τ) = X. For the same reason Rng(τ) = Y .

Proof of Corollary 1.3. The fact that G is strongly locally homogeneous
on X implies it is locally moving on X. Moreover, it implies that G(x)
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contains an open subset of X for every x ∈ X, and thus is of the second
category in X. Since the same holds for H and Y , the corollary follows from
Theorem 1.2.
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