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Abstract. Let f be a unimodal map in the logistic or symmetric tent family whose
restriction to the omega limit set of the turning point is topologically conjugate to an
adding machine. A combinatoric characterization is provided for endpoints of the inverse
limit space (I, f), where I denotes the core of the map.

1. Introduction. The topological structure of inverse limit spaces with
unimodal bonding maps has received great interest in recent years. Ingram’s
Conjecture, dating to the early 1990’s, states that inverse limit spaces (I, f)
and (I, g) are not topologically homeomorphic when f and g are distinct
symmetric tent maps [8]. Kailhofer [10] first proved the conjecture in the case
where the turning point is periodic. Štimac [13] then provided a proof when
the turning point is of finite order, and later Raines and Štimac [12] proved
the conjecture when the turning point is non-recurrent. Most recently, Barge,
Bruin and Štimac [1] established Ingram’s Conjecture.

An investigation of inverse limit spaces often involves endpoints, as they
are a topological invariant. Barge and Martin [2] provide a topological char-
acterization of endpoints for inverse limit spaces (I, f) where f is a contin-
uous self-map of a closed interval. A characterization with both a combina-
toric and analytic component is provided by Bruin [6] when f is unimodal
and the turning point is not periodic. The combinatoric component uses
the kneading sequence of the bonding map f . In this paper we establish
that the combinatoric component of Bruin’s characterization suffices in the
case where f is unimodal and f |ω(c) is topologically conjugate to an adding
machine.

Given a unimodal map f with recurrent turning point c, set

E = {x = (x0, x1, . . .) ∈ (I, f) | xi ∈ ω(c) for all i ∈ N}.
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It is not difficult to show that the set of endpoints of (I, f) is contained in E .
Here I is understood to be the “core” of the map f . There are no endpoints
in the case where c is not recurrent with the exception of the symmetric
tent or logistic map with kneading sequence 10∞ [2]. Let A denote the
collection of unimodal maps f where f |ω(c) is topologically conjugate to an
adding machine. In the case where f ∈ A is infinitely renormalizable, we
use our characterization to establish that E is precisely the collection of
endpoints of (I, f). In addition, using our characterization, we prove there
exist symmetric tent maps f ∈ A for which the collection of endpoints of
(I, f) is a proper subset of E .

Given an infinitely renormalizable map f in the logistic family with turn-
ing point c it is known that f |ω(c) is topologically conjugate to an adding
machine; see for example [11, Proposition III.4.5]. It was unknown whether
adding machines could be embedded in the non-infinitely renormalizable
case until 2006 when Block et al. [4] proved that adding machines can be
embedded in symmetric tent maps. Indeed these embeddings occur for a
dense set of parameters in the interval [1, 2]. Adding machines embedded
in non-infinitely renormalizable unimodal maps are called strange adding
machines (SAM) [4].

In [4] an SAM scheme is defined and this SAM scheme is used to show the
existence of adding machines embedded in maps from the symmetric tent
family. It is precisely the symmetric tent maps obtained with an SAM scheme
for which we prove that E contains non-endpoints of (I, f). In contrast, as
noted above, we prove that if f is an infinitely renormalizable logistic map,
then E is precisely the collection of endpoints of (I, f). An alternative proof
for the latter is provided in [9]; however the approach does not lend itself to
investigating the SAM setting.

It is known that if f : [0, 1] → [0, 1] is unimodal with a closed invariant
subsetX such that f |X is topologically conjugate to an adding machine, then
the turning point c is in X (for a short proof see [4]). Hence in searching for
adding machines embedded in unimodal maps, it suffices to consider f |ω(c).
A set S ⊂ [0, 1] is said to straddle c if S contains points lying on both sides
of c but does not contain c. An SAM scheme produces a set that straddles
c and it is precisely this set that we exploit to establish that E contains
non-endpoints in the symmetric tent case.

Throughout this note it is assumed that all maps are unimodal, have no
wandering intervals, and have no attracting periodic orbits. We note that
if such a unimodal map f is not renormalizable, then f is topologically
conjugate to a symmetric tent map. In the renormalizable case, f may be
taken to be in the logistic family [5].



Adding machines and endpoints 83

2. Background

2.1. Unimodal maps. A continuous function f : [0, 1] → [0, 1] for
which there exists a point c ∈ (0, 1) such that f |[0,c] is strictly increasing
and f |[c,1] is strictly decreasing is called unimodal. This point c is called the
turning point and we set ci = f i(c) for all i ∈ N. Examples of unimodal
maps include symmetric tent and logistic maps. The symmetric tent map
Ta : [0, 1]→ [0, 1] with a ∈ [0, 2] is given by

Ta(x) =
{
ax if x ≤ 1/2,
a(1− x) if x ≥ 1/2.

The logistic map ga : [0, 1] → [0, 1] with a ∈ [0, 4] is defined by ga(x) =
ax(1− x).

Given a unimodal map f and x ∈ [0, 1], the itinerary of x under f is
given by I(x) = I0I1I2 · · · where Ij = 1 if f j(x) > c, Ij = 0 if f j(x) < c, and
Ij = ∗ if f j(x) = c. We make the convention that the itinerary stops after
the first ∗ appears, and hence if fn(x) 6= c for all n, then I(x) is infinite.
The kneading sequence of a map f , denoted K(f), is the sequence I(f(c)).
For ease of notation we set K(f) = e1e2e3 · · · , and therefore ei indicates the
position of ci relative to c. For x ∈ [0, 1] we let ω(x, f) = ω(x) = {y ∈ [0, 1] |
there exists n1 < n2 < · · · with fni(x) → y} denote the omega limit set of
x under f .

A unimodal map f (with turning point c) is renormalizable provided
there exists a restrictive interval J 3 c and an n ≥ 2 such that fn(J) ⊂ J
and fn|J is again unimodal. If we may repeat this process infinitely often, we
say the map f is infinitely renormalizable. We note that every tent map Ta
with a ∈ (1,

√
2] is renormalizable, and every tent map Ta with a ∈ (

√
2, 2]

is non-renormalizable; no map in the tent family is infinitely renormalizable.
A unimodal map f is locally eventually onto (leo) provided that for every
ε > 0 there exists M ∈ N such that, if U is an interval with |U | > ε and
if n ≥ M , then fn(U) = [c2, c1]. In the case where a ∈ (

√
2, 2], Ta is leo;

moreover, any renormalizable map is not leo.
Throughout this paper we use the notation 〈a; b〉 to denote the interval

with endpoints a and b when it is unclear whether a < b or b < a. For each
set S, the convex hull is denoted [S].

2.2. Adding machines. Let α = 〈q1, q2, . . .〉 be a sequence of integers
where each qi ≥ 2. Define ∆α to be the set of all sequences (a1, a2 . . .) such
that 0 ≤ ai ≤ qi − 1 for each i. Apply the metric dα to ∆α by

dα((x1, x2, . . .), (y1, y2, . . .)) =
∞∑
i=1

δ(xi, yi)
2i
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where δ(xi, yi) = 0 if xi = yi and δ(xi, yi) = 1 otherwise. Addition on ∆α is
defined as follows. Set

(x1, x2, . . .) + (y1, y2, . . .) = (z1, z2, . . .)

where z1 = x1 + y1 mod q1, and for each j ≥ 2, zj = xj + yj + rj−1 mod qj
with rj−1 = 0 if xj−1 + yj−1 + rj−2 < qj−1 and rj−1 = 1 otherwise (we set
r0 = 0). Define fα : ∆α → ∆α by

fα((x1, x2, . . .)) = (x1, x2, x3, . . .) + (1, 0, 0, . . .).

The dynamical system fα : ∆α → ∆α is the α-adic adding machine map.
Note that fα is one-to-one and onto.

The following theorem provides a characterization for when a continuous
map on a compact topological space is topologically conjugate to an adding
machine. See also [7].

Theorem 2.1 ([3, Theorem 2.3]). Let α = 〈j1, j2, . . .〉 be a sequence of
integers with ji ≥ 2 for each i. Let mi = j1j2 · · · ji for each i. Let f : X → X
be a continuous map of a compact topological space X. Then f is topologically
conjugate to fα if and only if the following hold:

(1) For each positive integer i, there is a cover Pi of X consisting of
mi pairwise disjoint, nonempty, clopen sets which are cyclically per-
muted by f .

(2) For each positive integer i, Pi+1 partitions Pi.
(3) If mesh (Pi) denotes the maximum diameter of an element of the

cover Pi, then mesh (Pi)→ 0 as i→∞.

The following theorem from [4] proves the existence of SAMs.

Theorem 2.2 ([4, Theorem 3.1]). Let α = 〈p1, p2, · · · 〉 be a sequence of
integers greater than 1. The set of parameters s, such that for the tent map
fs the restriction of fs to the closure of the orbit of c = 1/2 is topologically
conjugate to fα : ∆α → ∆α, is dense in [

√
2, 2].

Given f ∈ A, there exists a nested hierarchy H = {Pn | n ∈ N} of
partitions of ω(c) satisfying conditions (1), (2), and (3) of Theorem 2.1. For
ease of notation, the following hold for each n ∈ N:

• The collection Pn equals {Pn,i}|Pn|−1
i=0 .

• The unique element of Pn containing c is denoted Pn,0.
• For each i = 1, . . . , |Pn| − 1, Pn,i = f(Pn,i−1).

Note that f(Pn,|Pn|−1) = Pn,0 and ci ∈ Pn,i for each i = 1, . . . , |Pn| − 1.
A set S ⊂ [0, 1] is said to straddle x ∈ [0, 1] if S contains points lying on

both sides of x but does not contain x.

Proposition 2.3. Let f ∈ A be a symmetric tent map. Then for each
n ∈ N the partition Pn of ω(c) from H contains an element straddling c.
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Proof. It suffices to assume f is leo (i.e., has slope greater than
√

2). Fix
n ∈ N and assume that no element of Pn straddles c. Then for each 1 ≤ i ≤
|Pn| − 1, [Pn,i] lies entirely on one side of c. Hence f |[Pn,i] is one-to-one and
onto [Pn,i+1] for each 1 ≤ i ≤ |Pn|−2, and f([Pn,|Pn|−1]) = [Pn,0] in a one-to-
one manner. Since f([Pn,0]) = [Pn,1], it follows that fk·|Pn|([Pn,0]) = [Pn,0]
for all k ∈ N. As f is locally eventually onto, this is a contradiction. Thus
every partition Pn of ω(c) must contain an element straddling c.

In contrast to Proposition 2.3, given an infinitely renormalizable logistic
map f ∈ A and a partition Pn ∈ H the collection {[Pn,k]}

|Pn|−1
k=0 of convex

hulls is pairwise disjoint, i.e., no element from Pn straddles c.

2.3. Inverse limit spaces. Given a continuum (compact connected
metric space) I and a continuous map f : I → I, the associated inverse
limit space (I, f) is defined by

(I, f) = {x = (x0, x1, . . .) | xn ∈ I and f(xn+1) = xn for all n ∈ N}
and has metric

d(x, y) =
∞∑
i=0

|xi − yi|
2i

.

The map f̂ : (I, f) → (I, f) given by f̂((x0, x1, . . .)) = (f(x0), x0, x1, . . .)
is called the induced homeomorphism on (I, f). For x ∈ (I, f), πi(x) = xi
denotes the ith projection of x. The backward itinerary of a point x ∈ (I, f)
is defined coordinatewise by Ii(x), where Ii(x) = 1 if xi > c, Ii(x) = 0 if
xi < c, and Ii(x) = ∗ if xi = c.

As in [6], for each x ∈ (I, f) such that xi 6= c for all i > 0, set

τR(x) = sup{n ≥ 1 | In−1(x)In−2(x) · · · I1(x) = e1e2 · · · en−1 and
#{1 ≤ i ≤ n | ei = 1} is even}

and

τL(x) = sup{n ≥ 1 | In−1(x)In−2(x) · · · I1(x) = e1e2 · · · en−1 and
#{1 ≤ i ≤ n | ei = 1} is odd}.

Note that in general, τL(x) and/or τR(x) can be infinite. For each x ∈ (I, f),
set Γ (x) = {y ∈ (I, f) | Ii(y) = Ii(x) for all i ≥ 1}.

As we focus on unimodal bonding maps, our inverse limit spaces are
atriodic (i.e., contain no homeomorphic copies of the letter Y); hence we
may use the following definition. A point x ∈ (I, f) is an endpoint of (I, f)
provided for every pair A and B of subcontinua of (I, f) with x ∈ A ∩ B,
either A ⊂ B or B ⊂ A. Barge and Martin characterize endpoints using the
concept of ε-crooked. Namely, if f : [c, d]→ [a, b] is a continuous surjection
(not necessarily unimodal), p ∈ [c, d], and ε > 0, then f is ε-crooked with
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respect to p provided p does not separate f−1([a, a+ ε]) from f−1([b− ε, b])
in [c, d].

Theorem 2.4 ([2, Theorem 1.4]). Let I be a closed interval, and let
f : I → I be continuous. Then p = (p0, p1, . . .) is an endpoint of (I, f) if
and only if for each positive integer i, each interval Ji with pi ∈ int(Ji),
and each ε > 0, there is a positive integer N such that if pi+N ∈ Ji+N and
fN (Ji+N ) = Ji, then fN is ε-crooked with respect to pi+N .

3. Endpoints and embedded adding machines. In Theorem 3.4
we characterize the endpoints of (I, f) where f ∈ A. In Theorem 3.5 and
Corollary 3.6 we precisely define the collection of all endpoints of (I, f)
where f is an infinitely renormalizable logistic map. Here and throughout
the remainder of the paper, I denotes the core [c2, c1].

Definition 3.1. For a unimodal map f , we define Ef := {(x0, x1, . . .) ∈
(I, f) | xi ∈ ω(c, f) for all i ∈ N}. When the map f is clearly understood in
the context, we simply denote this set E .

Lemma 3.2. Let f be a unimodal map with K(f) 6= 10∞ and suppose
x = (x0, x1, . . .) ∈ (I, f) \ E. Then x is not an endpoint of (I, f).

Proof. If c is not recurrent andK(f) 6= 10∞, then (I, f) has no endpoints.
We thus assume that c is recurrent. Let x ∈ (I, f) \ E . We may choose i ∈ N
such that xi /∈ ω(c, f) and since c is recurrent we have {cn | n ≥ 0} ⊂ ω(c, f).
Thus we may choose an interval Ji with xi in the interior of Ji and such
that Ji ∩ ω(c, f) = ∅. Fix ε > 0 and N ∈ N. Let Ji+N 3 xi+N be such
that fN (Ji+N ) = Ji. Since {cn | n ≥ 0} ∩ Ji = ∅, we see that fN |Ji+N is
monotone and hence fN is not ε-crooked with respect to xi+N .

If no such Ji+N exists, use the continuity of f to obtain an interval
V 3 xi+N such that fN (V ) ⊂ Ji. Set Ji = fN (V ) and Ji+N = V . Then fN

maps Ji+N monotonically onto Ji. It follows from Theorem 2.4 that x is not
an endpoint of (I, f).

Bruin [6] provides the following characterization for endpoints.

Proposition 3.3 ([6, Proposition 2]). Let f be a unimodal map and
x ∈ (I, f) be such that xi 6= c for all i ≥ 0. Then x is an endpoint of
(I, f) if and only if τR(x) = ∞ and x0 = supπ0(Γ (x)) (or τL(x) = ∞ and
x0 = inf π0(Γ (x))).

Theorem 3.4 demonstrates that fewer conditions suffice in the case where
f ∈ A.

Theorem 3.4. Let f ∈ A and x ∈ E be such that xi 6= c for all i ≥ 0.
Then x is an endpoint of (I, f) if and only if τR(x) =∞ or τL(x) =∞.
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Proof. The forward direction follows immediately from Proposition 3.3.
We thus assume that x is not an endpoint of (I, f). Then there exist sub-
continua A and B of (I, f) such that x ∈ A ∩B, A \B 6= ∅, and B \A 6= ∅.
For all i, we set Ai = πi(A) and Bi = πi(B). We set Ji = Ai ∪Bi and since
xi ∈ Ai ∩ Bi, it follows that Ji is an interval in I. Let Ji = [ai, bi]. Since
A \ B 6= ∅ and B \ A 6= ∅, there exists an i ∈ N such that whenever j ≥ i,
then Aj \Bj 6= ∅ and Bj \Aj 6= ∅. Fix this particular i ∈ N and choose ε > 0
small such that [ai, ai + ε] lies in one of Ai \ Bi or Bi \ Ai and [bi − ε, bi]
lies in the other. Then for each α ∈ N, fα(Ai+α) = Ai, fα(Bi+α) = Bi, and
xi+α ∈ Ai+α∩Bi+α. Thus xi+α separates f−α([ai, ai+ε]) and f−α([bi−ε, bi])
for all α ∈ N. That is, for each α ∈ N, fα : Ji+α → Ji fails to be ε-crooked
with respect to xi+α.

Let H = {Pm}m≥1 be a nested hierarchy of partitions of ω(c). Because
mesh(Pm) → 0, there exists N ∈ N such that the element PN,j of PN
containing xi lies completely in (ai + ε, bi − ε), and moreover j 6= 0.

Thus xi+j ∈ PN,0. Note that f j is not monotone on 〈xi+j ; c〉. If f j

were monotone on that interval, then f j(Ji+j \ 〈c;xi+j〉) = Ji, since f j is
symmetric about c and cj ∈ (ai+ε, bi−ε). But then xi+j would not separate
f−j([ai, ai + ε]) and f−j([bi − ε, bi]), a contradiction.

Note that as xi 6= ck for any k ≥ 0, there exists M > N such that
xi /∈ PM,j (else xi = cj). Hence we may always find M > N and k > j such
that xi ∈ PM,k. Now suppose that PM is fixed with M > N and xi ∈ PM,k.
Then we may find n > k such that whenever I(f(p)) begins e1 · · · en, then
p ∈ [PM,0].

Suppose either τR(x) =∞ or τL(x) =∞. Then there exists L > n such
that IL+i−1(x) · · · Ii(x) = e1 · · · eL. Hence xi+L ∈ PM,0, cL ∈ PM,k, and fL

is monotone on 〈xi+L; c〉. Consider Ji+L. If Ji+L 3 c, then the monotonicity
of fL on the interval 〈xi+L; c〉 forces fL : Ji+L → Ji to be ε-crooked with
respect to xi+L, a contradiction. If c /∈ Ji+L, then as xi+L ∈ int(Ji+L) and
fL maps 〈xi+L; c〉monotonically into (ai+ε, bi−ε), fL : Ji+L → Ji will again
be ε-crooked with respect to xi+L. Hence τR(x) <∞ and τL(x) <∞.

In Theorem 3.4 we assume xi 6= c for all i ≥ 0. In the case where xi = c
for some i, we note that this can occur for at most one i, as c is nonperiodic.
Hence if xi = c for some i ≥ 0, set y = f̂−(i+1)(x). Then x is an endpoint
of (I, f) if and only if y is an endpoint of (I, f). As yi 6= c for all i ≥ 0 and
y ∈ E , we may check whether y is an endpoint using Theorem 3.4.

Theorem 3.5. Let f be an infinitely renormalizable logistic map and let
x ∈ E be such that xi 6= c for all i ≥ 0. Then τR(x) =∞ or τL(x) =∞.

Proof. As f is an infinitely renormalizable logistic map, it follows that
f ∈ A. Since x ∈ E with xi 6= c for all i ≥ 0, we have x0 ∈ ω(c) and
x0 6= cj for all j ≥ 0. Let H = {Pn}n≥1. Suppose x0 ∈ Pn,j for some
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n, j ∈ N. Then there exist m > n and k > j such that x0 ∈ Pm,k (else
x0 ∈ PN,j for all N ≥ n, implying x0 = cj , a contradiction). As the collection
{[Pn,i]}|Pn|−1

i=0 of convex hulls is pairwise disjoint for each n ∈ N, all points y ∈
E with y0 ∈ [Pm,k] have backward itineraries with Ik−1(y)Ik−2(y) · · · I1(y) =
e1e2 · · · ek−1. Note that m, k ∈ N may be chosen arbitrarily large such that
x0 ∈ Pm,k; hence at least one of τR(x) or τL(x) is infinite.

Corollary 3.6. Let f be an infinitely renormalizable logistic map. Then
E is precisely the collection of endpoints of (I, f).

The following definitions and basic results are used in Section 4.

Definition 3.7. Given a unimodal map f and j ∈ N, we define Vj to
be the maximal open interval containing c1 for which f j is monotone on Vj .
For x ∈ (I, f) set Ax = {k | xk ∈ Vk}.

Clearly Vj ⊆ Vk for all j ≥ k. For x ∈ (I, f), if xj ∈ Vj , then the
itineraries of xj and c1 agree for at least j − 1 iterates under f ; thus x1 and
cj must lie on the same side of c. If xj ∈ Vj−1 \ Vj , then x1 and cj lie on
opposite sides of c. In both of these cases, as xj ∈ Vj−1, it follows that xj−i
and ci+1 lie on the same side of c for i = 0, . . . , j − 2.

Proposition 3.8. Let f be a unimodal map and x ∈ E be such that
xi 6= c for all i ≥ 0. Then τR(x) < ∞ and τL(x) < ∞ if and only if
|Ax| <∞.

Proof. Assume |Ax| < ∞. Then there exists a maximal k such that
xk ∈ Vk, and thus for all j > k there exists 0 ≤ mj ≤ j − 1 such that cmj+1

and xj−mj lie on opposite sides of c. Hence τR(x) <∞ and τL(x) <∞.
Now assume |Ax| = ∞. Then there exist infinitely many k such that

xk ∈ Vk and Ik(x)Ik−1(x) · · · I1(x) = e1e2 · · · ek. Hence either τR(x) = ∞
or τL(x) =∞.

Corollary 3.9. Let f ∈ A and x ∈ E be such that xi 6= c for all i ≥ 0.
Then x is an endpoint of (I, f) if and only if |Ax| =∞.

4. Non-endpoints and strange adding machines. In this section
we use the SAM scheme provided in [4] to prove the following theorem.

Theorem 4.1. For each symmetric tent map g constructed from an
SAM scheme as in [4] with g|ω(c) topologically conjugate to an adding ma-
chine, the set of endpoints of (I, g) is a proper subset of E.

We next provide an outline for the construction of a symmetric tent
map g obtained by an SAM scheme [4], define a specific nested hierarchy of
partitions that exists for the strange adding machine embedded in g, and
then use this hierarchy to locate non-endpoints lying in E . We recall the
following definitions and results from [4].
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Definition 4.2 ([4, Definition 2.1]). Given a symmetric tent map f , an
SAM scheme for f of length s + t + 1 is a collection C1 of disjoint, closed
subintervals of [0, 1],

C1 = {L2, L1, R1, R2, A1, . . . , As, B1, . . . , Bs, Y1, . . . , Yt}
such that each of the following holds:

• L2 < L1 < {c} < R1 < R2 (i.e., L2 lies to the left of L1).
• For each i = 1, . . . , s, Ai ∩ [L2 ∪R2] = ∅ and Bi ∩ [L2 ∪R2] = ∅. Also,

for each i = 1, . . . , t, Yi ∩ [L2 ∪R2] = ∅.
• f(L1) = f(R1) = A1 and f(L2) = f(R2) = B1.
• For each i = 1, . . . , s− 1, f(Ai) = Ai+1 and f(Bi) = Bi+1.
• f(As) = f(Bs) = Y1.
• For each i = 1, . . . , t− 1, f(Yi) = Yi+1.
• The set As∪Bs straddles c, but for each i = 1, . . . , s−1 the set Ai∪Bi

does not straddle c.
• f(Yt) = [L2 ∪R2].

Definition 4.3 ([4, Definition 2.2]). Let f be a symmetric tent map
and suppose

C1 = {L1
2, L

1
1, R

1
1, R

1
2, A

1
1, . . . , A

1
s1 , B

1
1 , . . . , B

1
s1 , Y

1
1 , . . . , Y

1
t1}

and
C2 = {L2

2, L
2
1, R

2
1, R

2
2, A

2
1, . . . , A

2
s2 , B

2
1 , . . . , B

2
s2 , Y

2
1 , . . . , Y

2
t2}

are SAM schemes for f . Then C2 is a refinement of C1 provided the following
hold.

• Each interval in the collection C2 is a subset of an interval in the
collection C1.
• L2

2 ⊂ L1
1, L2

1 ⊂ L1
1, R2

1 ⊂ R1
1, and R2

2 ⊂ R1
1.

• For each i = 1, . . . , s2 − 1, A2
i ∪B2

i is contained in one of the intervals
in the collection C1.
• One of the two intervals A2

s2 , B2
s2 is contained in L1

2 and the other
interval is contained in R1

2.

We now begin with an arbitrary symmetric tent map f with slope greater
than

√
2 and let α = 〈p1, p2, . . .〉 be a sequence of integers with pi ≥ 2 for

all i. As is shown in [4], we may let C1 be an SAM scheme for f of length
p1 · · · pd for some d ∈ N. Again as in [4], we may obtain a sequence {Cn}n≥1

of refinements such that C2 has length p1 · · · pd+1, C3 has length p1 · · · pd+2,
etc. For each n ∈ N, denote

Cn = {Ln2 , Ln1 , Rn1 , Rn2 , An1 , . . . , Ansn
, Bn

1 , . . . , B
n
sn
, Y n

1 , . . . , Y
n
tn}.

By the proof of [4, Lemma 2.5], the refinement Cn+1 of Cn is chosen such
that An+1

1 ⊂ An1 , Bn+1
1 ⊂ An1 , and if we set S = MBn

1 · · ·Bn
sn
Y n

1 · · ·Y n
tn
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where M ∈ {Ln2 , Rn2}, then An+1
1 and Bn+1

1 both “permute through” (by
the map f) the elements of Cn in the following order:

(4.1) An1 · · ·Ansn
Y n

1 · · ·Y n
tn S · · ·S︸ ︷︷ ︸
pd′+1−2 times

(Ln2 ∪Rn2 )Bn
1 · · ·Bn

sn
Y n

1 · · ·Y n
tn .

Here p1 · · · pd′ = sn+tn+1 is the length of Cn and p1 · · · pd′+1 = sn+1+tn+1+1
is the length of Cn+1. Note that sn+1 = (pd′+1 − 1)(tn + sn + 1) and tn+1 =
tn + sn. The only disagreement in the “permutations” of An+1

1 and Bn+1
1

occurs in the sn+1th position, denoted above by Ln2 ∪Rn2 , where one traces
through Ln2 and the other traces through Rn2 . It follows that Y n+1

1 ⊂ Bn
1

and Y n+1
sn+1 ⊂ Y n

1 .
As in [4], for n ∈ N, set Cn to be the collection of all x ∈ [0, 1] such that

the forward orbit of x under f lies in
⋃
J∈Cn J . Note that each point in the

forward orbit of x ∈ Cn lies in exactly one element of Cn. Let C =
⋂
n≥1 Cn.

Remark 4.4. Given n ∈ N and an SAM scheme Cn, set Mn = [Ln2 ∪Rn2 ]
and use this set to replace the sets Ln2 , L

n
1 , R

n
1 , and Rn2 . This new collection

of sets will be denoted

Dn = {Mn, An1 , . . . , A
n
sn
, Bn

1 , . . . , B
n
sn
, Y n

1 , . . . , Y
n
tn}.

Thus, for each n ∈ N, f acts on the collection of points C in the following
way.

• f(Mn ∩C) = (An1 ∪Bn
1 ) ∩C.

• For each i = 1, . . . , sn − 1, f((Ani ∪Bn
i ) ∩C) = (Ani+1 ∪Bn

i+1) ∩C.
• f((Ansn

∪Bn
sn

) ∩C) = Y n
1 ∩C.

• For each i = 1, . . . , tn − 1, f(Y n
i ∩C) = Y n

i+1 ∩C.
• f(Y n

tn ∩C) = Mn ∩C.

As in [4] we identify an interval J , a natural projection ϕ : [0, 1] → J ,
and a unimodal map g : J → J such that g(ϕ(x)) = ϕ(f(x)) for all x ∈ C.
As g : J → J is conjugate to a symmetric tent map, we thus consider
g to be a symmetric tent map with turning point c. Note that the map
ϕ preserves order; that is, if A < B with both A,B in Dn for some n,
then ϕ(A) < ϕ(B) where both ϕ(A) and ϕ(B) are intervals in J . By the
construction of g, ϕ(C) = ω(c, g) and g|ω(c) is topologically conjugate to
gα : ∆α → ∆α (see [4]).

We now use the SAM scheme, ϕ, and g from above to obtain a nested
hierarchy {Pϕn }n≥1 of partitions of ω(c, g) such that for each n ∈ N, the
sn + tn + 1 elements of Pϕn are labeled as follows:

• Pn,0 = ϕ(Mn ∩C).
• Pn,i = ϕ((Ani ∪Bn

i ) ∩C) for i = 1, . . . , sn.
• Pn,i = ϕ(Y n

i−sn
∩C) for i = sn + 1, . . . , sn + tn.
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Proposition 4.5. The hierarchy of partitions {Pϕn }n≥1 satisfies the three
conditions of Theorem 2.1.

Proof. Let g be as above. As g(ϕ(x)) = ϕ(f(x)) for all x ∈ C, by Remark
4.4 we have the following for each n ∈ N:

• g(Pn,0) = g(ϕ(Mn∩C)) = ϕ(f(Mn∩C)) = ϕ((An1 ∪Bn
1 )∩C) = Pn,1.

• For each i = 1, . . . , sn − 1, g(Pn,i) = g(ϕ((Ani ∪Bn
i ) ∩C))

= ϕ(f((Ani ∪Bn
i ) ∩C)) = ϕ((Ani+1 ∪Bn

i+1) ∩C) = Pn,i+1.
• g(Pn,sn) = g(ϕ((Ansn

∪Bn
sn

) ∩C)) = ϕ(f((Ansn
∪Bn

sn
) ∩C))

= ϕ(Y n
1 ∩C) = Pn,sn+1.

• For each i = 1, . . . , tn−1, g(Pn,sn+i) = g(ϕ(Y n
i ∩C)) = ϕ(f(Y n

i ∩C)) =
ϕ(Y n

i+1 ∩C) = Pn,sn+i+1.
• g(Pn,sn+tn) = g(ϕ(Y n

tn ∩C)) = ϕ(f(Y n
tn ∩C)) = ϕ(Mn ∩C) = Pn,0.

As the intervals in Dn are pairwise disjoint and ϕ preserves order on Dn,
it follows that the elements of Pϕn are pairwise disjoint. By the construction
of C each element of Pϕn is nonempty and clopen. It is shown in the proof
of [4, Theorem 3.1] that mesh(Pϕn )→ 0.

Since ϕ is the natural projection and Dn+1 refines Dn for each n ∈ N, it
follows that Pϕn+1 refines Pϕn .

Given a symmetric tent map f and a sequence α = 〈p1, p2, . . .〉 of integers
with each pi ≥ 2, we have produced a symmetric tent map g such that g|ω(c)

is topologically conjugate to the adding machine gα : ∆α → ∆α. We also
precisely described a nested hierarchy {Pϕn }n≥1 of partitions that identify the
adding machine embedded in g. Further, the construction in [4, Theorem 3.1]
allows g to be taken arbitrarily close to f .

We next establish that the set of endpoints of (I, g) is a proper subset
of E . First a few observations. Fix n ∈ N. Then Pn+1,sn+1+sn+1 ⊆ Pn,sn+1.
By construction csn ∈ ϕ(Ansn

∩ C) and the only element of Pϕn straddling
c is Pn,sn . Thus there exists an x1 ∈ Pn,sn such that 〈x1; csn〉 3 c; namely,
x1 ∈ ϕ(Bn

sn
∩C) and if x ∈ E is such that π1(x) = x1, then xsn ∈ Vsn−1\Vsn .

Proposition 4.6. Let g be the symmetric tent map constructed above
and {Pϕn }n≥1 be the hierarchy of partitions of ω(c, g). Then there exists
x0 ∈ ω(c, g) such that for all n ∈ N, x0 ∈ Pn,sn+sn−1+···+s1+1, and there
exists a unique point x ∈ E with π0(x) = x0. Moreover, xi 6= c for all i ≥ 0
and |Ax| <∞.

Proof. Recall that for each n ∈ N, Pn,sn+1 ⊇ Pn+1,sn+1+sn+1. Further, by
the construction of the partition Cn+1 from Cn, if Cn has length p1 · · · pd′ and
Cn+1 has length p1 · · · pd′+1, then sn+1 = (pd′+1−1)(sn+ tn+ 1). It thus fol-
lows, for each n ∈ N, that Pn,sn+1 ⊇ Pn+1,sn+1+sn+1 ⊇ Pn+2,sn+2+sn+1+sn+1.
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We can extend this to obtain an infinite sequence of nested clopen sets

P1,s1+1 ⊇ P2,s2+s1+1 ⊇ P3,s3+s2+s1+1 ⊇ · · · ,
and as each set is nonempty, their intersection is nonempty. Thus there
exists a point x0 ∈ ϕ(C) = ω(c, g) such that x0 ∈ Pn,sn+sn−1+···+s1+1 for all
n, and hence x0 6= ci for all i ≥ 0. As g|ω(c) has a well-defined inverse (see
Section 2), we may uniquely choose x ∈ E with π0(x) = x0 and xi 6= c for
all i ≥ 0.

For each n ∈ N, if x0 ∈ Pn,sn+sn−1+···+s1+1 then x1 ∈ Pn+1,sn+1+sn+···+s1 .
As Pn+1,sn+1+sn+···+s1 = ϕ(Y n+1

sn+···+s1 ∩ C) and Y n+1
sn

⊂ Bn
sn

, we see that
xsn+···+s1 ∈ Vsn−1 \ Vsn for all n. Hence xs1 /∈ Vs1 and s1 /∈ Ax. For each
n > s1, n ∈ Ax only if xn ∈ P1,1; the only coordinates of x lying in P1,1

are of the form xk·(s1+t1+1)+s1 , where k ∈ N. Thus it suffices to check only
these coordinates to determine which values of n are contained in the set Ax.
By (4.1), xk·(s1+t1+1)+s1 ∈ Vs1−1 \ Vs1 for all k = 0, 1, . . . , pd′+1 − 2, where
(pd′+1 − 1)(s1 + t1 + 1) = s2. Further, we have xs2+s1 ∈ Vs2−1 \ Vs2 . Thus
n /∈ Ax for each s1 ≤ n ≤ s2 + s1. Similarly, for each n > s2 + s1, n ∈ Ax
only if xn ∈ P2,1. The only coordinates of x lying in P2,1 are of the form
xk·(s2+t2+1)+s2+s1 , where k ∈ N. As above, it suffices to check only these
coordinates when determining the values of n lying in Ax; we conclude that
n /∈ Ax for all s2 + s1 ≤ n ≤ s3 + s2 + s1. Recursively we obtain |Ax| <∞.

Proof of Theorem 4.1. Given the symmetric tent map g constructed
above and the nested hierarchy {Pϕn }n≥1 of partitions of ω(c, g), there exists
a point x0 ∈ ω(c, g) such that for all n ∈ N, x0 ∈ Pn,sn+sn−1+···+s1+1. By
Proposition 4.6 and Corollary 3.9, the point x = (x0, x1, . . .) ∈ E is not an
endpoint of (I, g). By Lemma 3.2, the set of endpoints of (I, g) is thus a
proper subset of E .

As f was an arbitrary symmetric tent map with slope greater than
√

2
and g can be constructed arbitrarily close to f , it follows that the set of
parameters for which g|ω(c) is topologically conjugate to an adding machine
with the set of endpoints of (I, g) a proper subset of E , is dense in [

√
2, 2].

Standard techniques then show that the set of parameters for which this is
true is dense in [1, 2].

We close with the following observation.

Proposition 4.7. Let g be a symmetric tent map constructed from an
SAM scheme as in [4] such that g|ω(c) is topologically conjugate to an adding
machine. Then neither the set of endpoints of (I, g) nor its complement in
E is closed.

Proof. Let x = (x0, x1, x2, . . .) ∈ E be a non-endpoint of (I, g) and y =
(y0, y1, y2, . . .) ∈ E be an endpoint of (I, g). Thus x0, y0 ∈ ω(c) and ω(y0) =
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ω(c). Hence there exists an increasing sequence {ki} of positive integers such
that gki(y0)→ x0. Thus ĝki(y)→ x, and as ĝki(y) is an endpoint of (I, g) for
all i ∈ N, it follows that the set of endpoints of (I, g) is not closed. A similar
argument will show the complement of the endpoints in E is not closed.
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[13] S. Štimac, A classification of inverse limit spaces of tent maps with finite critical

orbit, Topology Appl. 154 (2007), 2265–2281.

Lori Alvin, Karen Brucks
Department of Mathematical Sciences
University of Wisconsin at Milwaukee
Milwaukee, WI 53201-0413, U.S.A.
E-mail: lmgolner@uwm.edu

kmbrucks@uwm.edu

Received 4 March 2010;
in revised form 13 May 2010

http://dx.doi.org/10.1016/j.topol.2003.07.006
http://dx.doi.org/10.1017/S0143385705000635
http://dx.doi.org/10.1016/S0166-8641(98)00054-6
http://dx.doi.org/10.1016/j.topol.2009.08.030
http://dx.doi.org/10.4064/fm177-2-1
http://dx.doi.org/10.2140/agt.2009.9.1049
http://dx.doi.org/10.1016/j.topol.2007.03.003

	Introduction
	Background
	Unimodal maps
	Adding machines
	Inverse limit spaces

	Endpoints and embedded adding machines
	Non-endpoints and strange adding machines

