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Stretched shadings and a Banach measure
that is not scale-invariant
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Richard D. Mabry (Shreveport, LA)

Abstract. It is shown that if A ⊂ R has the same constant shade with respect to
all Banach measures, then the same is true of any similarity transformation of A and the
shade is not changed by the transformation. On the other hand, if A ⊂ R has constant
µ-shade with respect to some fixed Banach measure µ, then the same need not be true of
a similarity transformation of A with respect to µ. But even if it is, the µ-shade might be
changed by the transformation. To prove such a µ exists, a Hamel basis with some weak
closure properties with respect to multiplication is used to construct sets with some conve-
nient scaling properties. The notion of shade-almost invariance is introduced, aiding in the
construction of a variety of Banach measures, in particular, one that is not scale-invariant.

1. Introduction. Let L denote the family of Lebesgue measurable sub-
sets of the set R of real numbers and let λ denote the usual Lebesgue measure
on L.

A Banach measure on R is an isometry-invariant total extension of λ,
i.e., an isometry-invariant extension of λ defined on 2R. It is well known that
Banach measures exist as a consequence of the axiom of choice and that they
are only finitely additive. (In this paper, unless explicitly noted, a measure
will be assumed to be only finitely additive.) Let B denote the class of all
Banach measures on R.

It is also known that Banach measures on R exist that are scale-invariant
(see [19, Cor. 11.5] and [9]). What seems not to be known up to now, or at
least not mentioned, is whether Banach measures exist which are not scale-
invariant. That such measures do indeed exist is the main result of this paper
(Section 10).

Of course the Lebesgue measure λ is scale-invariant; the question is
whether or not Banach measures should inherit that property directly from λ
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or perhaps have it as a consequence of isometry-invariance. In [9] it is
shown that scale-invariant Banach measures do exist (in R2 as well as R;
see also [13] and [19, Cor. 11.5]) but there is no corresponding proof or sug-
gestion that Banach measures do not come already equipped with this prop-
erty. By comparison, the Lebesgue measure on Rn gets its scale-invariance
gratis—it is the unique translation-invariant countably additive measure de-
fined on the Lebesgue measurable sets and normalizing [0, 1]n; its invariance
with respect to all other isometries and its respect for similarity are natural
consequences. But this is not the case for Banach measures, as they lack
countable additivity. This sort of thing is noted following Theorem 11.21
in [19], where it is pointed out that there exist total extensions of λ which
are translation-invariant but not reflection-invariant. (A more general result
is proved in [18].)

To see how much we can stretch things, we try to be somewhat general
where convenient, obtaining examples of Banach measures in which scale-
invariance is violated in different, fairly customizable fashions. To do this
we exploit properties of sets we call shade-almost invariant. Our examples
of such sets are created using Hamel bases, their shade-almost invariance
being used to extend λ, creating large families of distinct Banach measures.
By giving our Hamel bases some additional algebraic properties, we make
our resulting Banach measures have some convenient properties with respect
to scaling. Along the way, we explore some interesting behavior of shadings
under similarity transformations.

Most of our set-theoretic notation is fairly standard. The rationals and
integers are denoted by Q and Z, respectively. The cardinality of a set X is
denoted by |X|. The cardinality of the continuum is denoted by c, as is the
least ordinal with this cardinality. If X and Y are subsets of reals, we let
X + Y denote {x + y : x ∈ X, y ∈ Y }. When x ∈ R, x + Y is synonymous
with {x} + Y . Similarly, X − Y and x − Y have the obvious meanings,
xY = {xy : y ∈ Y }, and combinations of these notations are freely used.
Symmetric differences of sets are indicated by 4 and we emphasize disjoint
unions with ].

The term “scale-invariance” has the traditional meaning here. We shall
deal exclusively with subsets of the real line, so for us a measure m is scale-
invariant if m(hS) = |h|m(S) whenever h ∈ R and S is m-measurable.

2. Basic properties of shadings

Definition 2.1. For a fixed t ∈ [0, 1], a subset A of R is said to be a
shading of R, and to have shade (or shade-density) equal to t, if

(1) µ(A ∩ E) = tµ(E)
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for every bounded E ∈ L and every µ ∈ B. We then write sh(A) = t. (This
notion was introduced in [10].)

We will show (Theorem 4.1) that if A ⊂ R has constant shade and
g : R → R is any similarity transformation, then sh(g(A)) = sh(A). Thus,
a stretch does not affect constant shade-density. This is easy to prove and
has an intuitive appeal (if intuition can be brought to bear on such shady
consequences of the axiom of choice). Supposing, for instance, that A has
shade 1/3, we may think of A as taking up 1/3 of each interval, no matter
how small. Stretching A uniformly by any amount should not change that.
But we shall see that this view (which is only heuristic) depends also on the
“uniformity with respect to µ” in the definition of shade. We will make the
last statement more precise (it is the main point of this article) in Section 4.

Definition 2.2. For a fixed µ ∈ B we call A ⊂ R a µ-shading with
µ-shade equal to t, and write shµ(A) = t, if µ(A ∩ E) = tµ(E) for each
bounded E ∈ L. (To be more specific, A has constant µ-shade in this case.)

It is clear that sh(A) = t iff shµ(A) = t for all µ ∈ B.
In the definitions of shading and µ-shading, it is equivalent to require

that (1) hold whenever E is a bounded interval. (This is explicitly shown
for shadings in [10]—see, in particular, Definition 3.7 in conjunction with
Theorem 3.11 there—but easily extends to µ-shadings.) In this paper we
will mainly concern ourselves with sets of constant shade or µ-shade, but it
is possible for a set to have, for example, smoothly varying shade. In fact, for
any continuous ϕ : R→ [0, 1], there exists a set F ⊂ R having the property
that

(2) lim
µ(J)→0

µ(F ∩ J)/µ(J) = ϕ(x)

for every µ ∈ B, where J represents a bounded interval containing x. It
then makes sense to write sh(F ) = ϕ (see Thm. 5.7 in [10]). Similarly, for a
fixed µ ∈ B, the notation shµ(F ) = ϕ has the obvious meaning. Shade is an
extension of the usual Lebesgue density.

For other basic properties of shadings, see [10]. For an introduction to the
main ideas and motivations behind various extensions of Lebesgue measure,
see [2] or [3]. For an extensive look, see [19] or [7].

3. Shadings versus µ-shadings. There are examples of sets that show
the distinction between shadings and µ-shadings is not vacuous.

Definition 3.1. A set A ⊂ R is called Archimedean if there is a dense
set of translators {x} for which A+ x = A. (This term was coined in [17].)

It is easy to prove (as in [10, Thm. 6.1]; see also Corollary 5.4 in the
present paper) that for every Archimedean set A and every µ ∈ B, the set A
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has constant µ-shade. (See [14] for more results concerning Banach measures
and Archimedean sets.)

Definition 3.2. Let G be a group of transformations on R. A set A ⊂ R
is called almost G-invariant if |A4 f(A)| < c for every f ∈ G. The set A is
simply called almost invariant when G is the group of all isometries on R.
(See, e.g., [7, p. 9] or [8, p. 76].)

It is easy to prove (Corollary 5.5) that if A ⊂ R is almost invariant, then
A has constant µ-shade for any fixed µ ∈ B. (It suffices for A to be almost
G-invariant when G contains a dense set of translations.)

So Archimedean sets and almost invariant sets are “uniformly dense”
with respect to any fixed µ ∈ B. But it turns out that in either of these
two classes of sets, there exist a set A and Banach measures µ1, µ2 for which
shµ1(A) 6= shµ2(A), so neither Archimedean sets nor almost invariant sets are
guaranteed to be shadings (although they can be). Hence one cannot reason-
ably associate any specific, fixed density (in our sense, at least) with such A.
Indeed, this sort of situation can be extreme—in [6] an almost invariant set
C ⊂ R is constructed, along with a family {νt}t∈[0,1] of isometry-invariant
countably additive extensions of λ, for which νt(C ∩ E) = tλ(E) for each
t and for any bounded E ∈ L. Since each such νt can be extended to a
Banach measure µt, we have shµt(C) = t for each t ∈ [0, 1]. (For the set C,
take any of the sets denoted by Aγ in [6]; see the final paragraphs in that
paper.) Although not originally constructed to be so, this C can easily be
made Archimedean. Indeed, for any set B ⊂ R, the set B+Q is Archimedean
with dense set of translators Q. If B is almost invariant then so is B + Q,
and furthermore, |(B + Q)4B| < c. The shade of any noncontinuum set is
zero ([10, Lemma 4.5]) so shµ(B + Q) = shµ(B) for any µ ∈ B. Therefore,
if C is the example in [6], the set C + Q is both Archimedean and almost
invariant and has the property that for each t ∈ [0, 1] there exists a µt ∈ B
for which shµt(C + Q) = t.

At the other extreme, Neu proves in [15, Thm. 2.2] that if S is an almost
isometry-invariant shading, then sh(S) = 0 or 1.

4. The main problem. Keith Neu asked (private communication) the
following, circa 2004: Is the µ-shade of a µ-shading necessarily preserved un-
der a similarity transformation? That is, is it true that shµ(g(A)) = shµ(A)
whenever A is a µ-shading and g is a similarity transformation? We answer
this question in the negative (Theorem 10.1). Our counterexample will be
Archimedean but not almost invariant. A few years after reading an earlier
draft of this paper, Neu (private communication) devised a slick counterex-
ample that is almost invariant.
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Specifically, we will show the existence of a Banach measure µ, an Archi-
medean set A ⊂ R and h > 0 such that shµ(A) 6= shµ(hA). We shall see that
the pair of numbers shµ(A) and shµ(hA) can be any values at all in [0, 1] for
fairly arbitrary values of h.

First, in the opposite direction, we prove an easy but revealing result,
namely that if a set A has constant shade t, then so does any similarity
transformation of A. We prove a slightly stronger result because it is not
much extra trouble.

Theorem 4.1. If g is a similarity transformation on R and F is a ϕ-
shading of R, where ϕ : R → [0, 1], then sh(g(F )) = ϕ ◦ g−1. In particular,
if ϕ(x) = t is a constant function, then sh(g(F )) = sh(F ) = t.

Proof. Let µ ∈ B and let g(x) = ax+ b for reals b and a 6= 0. For X ⊂ R,
consider the set function µg defined by

µg(X) =
1
|a|
µ(g(X)) =

1
|a|
µ(aX + b) =

1
|a|
µ(aX).

It is easy to see that µg extends Lebesgue measure, since µ itself does: if
E ∈ L, then g(E) ∈ L and λ(g(E)) = |a|λ(E), hence µg(E) = (1/|a|)µ(aE)
= (1/|a|)λ(aE) = λ(E). Also, the isometry-invariance of µ easily yields
the isometry-invariance of µg, so µg(f(X)) = µg(X). The fact that µ is
defined for all subsets of R yields the same for µg, hence µg is itself a Banach
measure. As such, it must be that (2) holds with µg in place of µ, since F is
a ϕ-shading. Fixing a bounded interval J and x ∈ J , we have

µ(g(F ) ∩ J)
µ(J)

=
µ(g(F ∩ g−1(J)))

µ(J)
=
|a|µg(F ∩ g−1(J))

µ(J)

=
|a|µg(F ∩ g−1(J))
|a|µg(g−1(J))

.

Clearly, g−1(x) ∈ g−1(J) and µ(g−1(J)) → 0 as µ(J) → 0. Since F is a ϕ-
shading, the last term approaches ϕ(g−1(x)) as µ(J)→ 0, and that finishes
the proof.

The rest of this paper is devoted to showing that in the theorem just
proved, shade cannot be replaced with µ-shade. We will need some prelimi-
naries first.

5. Shade-almost invariance. Denote by Z the class of sets having
shade zero in R. It is clear that Z is an ideal in R, and that Z is G-invariant
when G is the group of isometries on R. We also note that Z is not a σ-ideal.
One can see this via a set W (h0), defined later (Definition 7.1), having the
following property: there is a positive number h0 such that for any q ∈ Q,
qh0 +W (h0) ∈ Z but

⋃
q∈Q(qh0 +W (h0)) = R 6∈ Z.
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Definition 5.1. For subsets A andB of R, we write A + B if A4B ∈ Z.
We will then say that A and B are shade-almost equal. (One could also say
that A and B are “not a shade different”.) Two sets A and B will be called
shade-almost disjoint if A ∩B + ∅.

Clearly, A + ∅ iff A ∈ Z. We do not make use of it, but we note that the
relation + is an equivalence relation on R

Definition 5.2. For a group G of isometries on R, we say that A is
shade-almost G-invariant if A + g(A) for each isometry g ∈ G. If G is the
group of all isometries on R, we simply say that A is shade-almost invariant.

We observe that shade-almost invariance is weaker than almost invari-
ance: as already noted, in [10, Lemma 4.5] it is shown that if |Y | < c then
sh(Y ) = 0, but that the set W (h0) (Def. 7.1 again) has shade zero, while
|W (h0)| = c. We also note that for any shade-almost invariant set A and Ba-
nach measure µ, the µ-shade of A is constant. For completeness, we include
a short, easy proof of this, using slightly weaker assumptions.

Theorem 5.3. Suppose G is a group of isometries on R that includes a
dense set of translations. Let µ ∈ B and suppose that A is a shade-almost
G-invariant subset of R. Then A has constant µ-shade.

Proof. Recall that ] denotes a disjoint union. Suppose J1 and J2 are any
two nonempty bounded intervals in R. We first assume that λ(J1) = λ(J2).
Let 0 < ε < λ(J1). Choose a translation g ∈ G such that λ(g(J1)4 J2) < ε.
Then

µ(A ∩ J1) = µ(g(A ∩ J1)) = µ(g(A) ∩ g(J1))
= µ([(g(A) ∩A) ] (g(A) \A)] ∩ g(J1))
= µ((g(A) ∩A) ∩ g(J1)) + µ((g(A) \A) ∩ g(J1))
≤ µ(A ∩ g(J1)) + µ((g(A)4A) ∩ g(J1)) = µ(A ∩ g(J1))
≤ µ(A ∩ (J2 ∪ g(J1))) = µ(A ∩ [J2 ] (g(J1) \ J2)])
= µ(A ∩ J2) + µ(A ∩ (g(J1) \ J2))
≤ µ(A ∩ J2) + µ(g(J1) \ J2) ≤ µ(A ∩ J2) + ε,

and it follows that µ(A∩ J1) ≤ µ(A∩ J2). A symmetric argument (obtained
by reversing the roles of J1 and J2 and replacing g with g−1) shows that
µ(A ∩ J2) ≤ µ(A ∩ J1). Therefore, we have µ(A ∩ J1) = µ(A ∩ J2) when
λ(J1) = λ(J2).

In the case that the intervals J1 and J2 are of different sizes, let δ > 0
and cover each Ji by letting

⊎Ni
k=1 I

(k)
i ⊂ Ji ⊂

⊎Ni
k=0 I

(k)
i , where for each fixed

i = 1, 2, the Ii(k) are all half-open intervals of size δ. From the previous case
concerning intervals of equal length, we may choose t ∈ [0, 1] such that
tδ = µ(A ∩ I(k)

i ) for each i = 1, 2 and 0 ≤ k ≤ Ni. We obtain the following
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two inequalities:

Nitδ ≤ µ(A ∩ Ji) ≤ (Ni + 1)tδ, Niδ ≤ µ(Ji) ≤ (Ni + 1)δ

Dividing these gives

Ni

Ni + 1
t ≤ µ(A ∩ Ji)

µ(Ji)
≤ Ni + 1

Ni
t,

and now letting δ → 0 (so that Ni →∞ for each i = 1, 2) leads to

µ(A ∩ Ji)
µ(Ji)

= t,

and that proves the claim.

Corollary 5.4. If A is Archimedean and µ ∈ B, then A is a µ-shading.

Corollary 5.5. If A is almost invariant and µ ∈ B, then A is a µ-
shading.

The proofs of these two corollaries follow easily by choosing the appro-
priate G in Theorem 5.3. In the case of Archimedean sets it is the dense
set of translations corresponding to the definition of an Archimedean set.
(As already mentioned, Corollary 5.4 is given in [10, Thm 6.1].) For almost
invariant sets, G is arbitrary, so long as it contains a dense set of trans-
lations; “almost invariant” can then be replaced by “almost G-invariant” in
Corollary 5.5.

In Section 6 we use the notion of shade-almost invariance to generate
Banach measures with some convenient properties.

6. Shady extensions. One way to construct countably additive-iso-
metry invariant extensions of λ is to add to the domain L of λ those sets
generated by L and a fixed almost invariant set having inner measure zero
and full outer measure. Such measures can then be extended to Banach
measures. As we will see, something similar can be done using shade-almost
invariant sets. But Banach measures already do so much that we need not
always construct new ones from scratch when we want them to have certain
properties—we can often start with “existing” ones.

Lemma 6.1. Suppose B is a shade-almost invariant subset of R that does
not have shade zero. Then there exists a ν ∈ B for which shν(B) = 1.

Proof. The assumptions onB, along with Theorem 5.3, allow us to choose
µ′ ∈ B such that b := shµ′(B) > 0. Consider the algebra Abdd of all bounded
subsets of R. Define the set function µ on Abdd by means of the equality
µ(S) = (1/b)µ′(S ∩B) for each S ∈ Abdd. Extend µ to a measure ν defined
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on all subsets of R by means of the equality

(3) ν(X) =
∑
i∈Z

µ(X ∩ [i, i+ 1)).

Clearly, ν is well defined, since µ′ is defined on all subsets of R and b > 0.
To see that ν extends Lebesgue measure, first note that for any bounded
λ-measurable set E, we have

ν(E) =
1
b
µ′(E ∩B) =

1
b
(shµ′ B)µ(E) = λ(E)(4)

so ν and λ agree on the bounded λ-measurable sets. Using (3) and the
σ-finiteness of λ, we see that ν and λ agree on the unbounded λ-measurable
sets as well.

As to invariance, if g is any isometry on R and S ⊂ R is bounded, we
have µ(g(S)) = (1/b)µ′(B∩g(S)) = (1/b)µ′(g−1(B)∩S) = (1/b)µ′(B∩S) =
µ(S), showing that µ is isometry-invariant on Abdd. (Observe that we used
the shade-almost invariance of B and the boundedness of S to assert that
µ′(g−1(B) ∩ S) = µ′(B ∩ S).) The invariance of ν follows from its definition
in terms of µ, so we have shown that ν ∈ B. Finally, as to the ν-shade
of B, observe that for any bounded λ-measurable E we have ν(E ∩ B) =
µ(E ∩ B) = (1/b)µ′(E ∩ B), so (4) shows that shν(B) = 1, completing the
proof of Lemma 6.1.

We only need finite sequences in the following lemma, but the proof goes
through for all denumerable sequences as well.

Lemma 6.2. Let {t0, t1, t2, . . .} ⊂ [0, 1] be a sequence (finite or denumer-
able) such that

∑
i ti = 1 and let B0, B1, B2, . . . be shade-almost invariant

subsets of R such that the following conditions hold:

(i) the Bi are pairwise shade-almost disjoint;
(ii) none of the Bi has shade zero.

Then there exists a µ ∈ B for which each of the Bi is a µ-shading with
shµ(Bi) = ti, i = 0, 1, 2, . . . .

Proof. For each i, apply Lemma 6.1 and condition (ii) to obtain µi ∈ B
such that shµi(Bi) = 1 for each i. The shade-almost disjointness of the Bi
implies that shµi(Bj) = 0 for each i 6= j. It follows that if we define the
function µ on 2R by means of µ(S) =

∑
i tiµi(S) for each S ⊂ R, then µ is

in B and satisfies the conclusion of the lemma.

7. Shadings from Hamel bases. Let H be any Hamel basis for R
over Q, injectively well-ordered as {hα : α < c}. Consider H to be fixed
until otherwise stated.
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Each x ∈ R has a unique representation as

(5) x =
∑
α<c

qα(x)hα,

where qα(x) ∈ Q and all but finitely many of the qα(x) are zero. We may
think of qα as the projection of x onto the αth axis of the infinite-dimensional
vector space R over Q (with basis H). (Few would call qα a true projection,
as it is not linear in the strict sense. The function qα : R → R is, however,
an additive function.)

The next definition plays a key role in what follows.

Definition 7.1. For K ⊂ H, let W (K) denote the set of all reals whose
expansion (5) with respect to H involves no members of K, i.e.,

(6) W (K) = {x ∈ R : qα(x) = 0 ∀hα ∈ K}.
Another way to put it is thatW (K) is the linear span or hull (over the ra-

tionals) of the basis elementsH\K. ForK given explicitly as a finite sequence
{k0, k1, . . . , kn} we drop the braces and simply write W (k0, k1, . . . , kn) for
W (K). We will employ a few other notations for convenience. For a sequence
Q0, Q1, . . . , Qn of subsets of rationals, let

A(Q0, Q1, . . . , Qn) = W (h0, h1, . . . , hn) +Q0h0 +Q1h1 + · · ·+Qnhn.

Thus x ∈ A(Q0, Q1, . . . , Qn) if and only if qα(x) ∈ Qα for each α ∈ [0, n].
Let A+ = A(Q+), where Q+ is the set of (strictly) positive rationals, and
similarly define A− = A(Q−), where Q− = −Q+. (Our sequences {Qα} are
finite, though transfinite ones still make sense.)

Lemma 7.2. The set W (K) has shade zero whenever K is nonempty.

The preceding lemma follows from [10, Example 4.8]. Something a bit
stronger is proved next, in Lemma 7.3.

While it is not needed here, it is interesting to note that for each K ⊂ H,
the set W (K) is homogeneous in the sense of Emil Borel [1]: X ⊂ R is
homogeneous if whenever x, y ∈ X, then X + x− y = X. Erdős and Marcus
show in [5, Lemma 2] that every nontrivial homogeneous set has shade zero,
from which Lemma 7.2 follows. (Of course, the term “shade” was not used
in [5].)

It is easy to show that A+ has shade 1/2. (This is mentioned in [10,
Example 4.8]; the proof is easy.) Another useful fact is the following

Lemma 7.3. If Q ⊂ Q is bounded and hα ∈ H, the set {x : qα(x) ∈ Q}
has shade zero.

Proof. It suffices to prove this for α = 0. Then {x : qα(x) ∈ Q} = A(Q).
We may assume Q ⊂ (r, s)∩Q for rationals r < s. Let Qr = (−∞, r)∩Q and
Qs = (s,∞) ∩ Q. Then A(Qs) = sh0 + A(Q+) and A(Qr) = rh0 − A(Q+),
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so the invariance properties of Banach measures imply that sh(A(Qr)) =
sh(A(Qs)) = 1/2. Therefore, since the sets A(Q), A(Qr) and A(Qs) are
disjoint, it follows that for any µ ∈ B and any bounded E ∈ L, we have

µ(E ∩A(Q)) ≤ µ(E)− µ(E ∩A(Qr))− µ(E ∩A(Qs))

= µ(E)− 1
2
µ(E)− 1

2
µ(E) = 0.

We have used translation and reflection invariance of Banach measures in
the preceding proof, but we note that the result holds using only translation
invariance: Since Q ⊂ Q is bounded, there exist countably many disjoint
translates Q+qk of Q with each translator qk rational. The sets qkh0 +A(Q)
are disjoint, congruent and Archimedean, hence each has shade zero.

Intuitively, one might think of A+ (and similarly, A(Qr), A(Qs)) as being
analogous to a “half-plane”, or perhaps more aptly, the space of reals lying on
one side of a “hyperplane” in an infinite-dimensional Hamelbild of the reals.
In this way, it makes some sense that the reals are “evenly split”, forming
a 1/2-shading. Likewise, when Q is bounded, the reals in A(Q) might be
thought of as lying in a “strip” bounded by two such parallel hyperplanes,
and so have an arbitrarily small measure relative to the entire space. (We
shall subsequently see that further extension of such geometric analogies can
be unwise.)

Continuing along these lines, let us employ notations of the form A∗+,
A+−−, A++∗−, etc., so that +,−, ∗ correspond to the sets of rationals Q+,
Q−, Q, respectively. So, for instance, A+∗− represents A(Q+,Q,Q−), the set
of real x whose coefficients q0(x) and q2(x) in (5) are, respectively, positive
and negative, and the coefficient q1(x) is arbitrary. Clearly, trailing asterisks
can be omitted: A+∗− = A+∗−∗ = A+∗−∗∗, etc.

Now consider the set A++. One might suspect that this set must have
shade 1/4, as it is the intersection of A+∗ (= A+) and A∗+, each of which
has shade 1/2. In terms of hyperplanes, one might be tempted to imagine
this set as a “quadrant” of a Hamel-based vector space. However, to dispel
such a notion, let us be reminded not to imagine Hamel basis vectors as
being in any way “mutually orthogonal” (1). The same can be said of the
eight sets A±±±—one might think that they should each have shade 1/8.
Each of these eight sets is Archimedean with a dense set of translators given
by W (h0, h1, h2), so each has some constant µ-shade for each fixed µ ∈ B.
For such µ the µ-shade of any of A±±, A±±±, etc., can be no greater than
1/2, however, other than that restriction, we will see in Section 8 that any
µ-shades for these sets are possible.

(1) This point was made to the author by Alexander Kharazishvili during the 24th
Summer Symposium in Real Analysis at the University of North Texas.
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Meanwhile, it is immediately clear that it is impossible that all eight
of the sets A±±± have shade zero, or even µ-shade zero for some partic-
ular µ. To assume otherwise, it follows by finite additivity that the union
of all eight sets has µ-shade zero as well. But this union is the comple-
ment in R of W (h0, h1, h2), which does have shade zero, and we would be
forced to conclude that the reals have shade zero, contrary to the obvious
fact that sh(R) = 1. What is less obvious (but intuitively reasonable) is
that none of the eight sets A±±± has shade zero. We will prove this in
Section 8.

Definition 7.4. Fix a set of ordinals M ⊂ [0, c) and to each α ∈ M
associate a sign σ(α) ∈ {−1, 1}. Denote by AM,σ the set of all x ∈ R for
which, in the Hamel expansion (5) of x, σ(α)qα(x) > 0 for all α ∈M . Notice
that AM,−σ = −AM,σ; let AM,±σ = AM,σ ∪AM,−σ.

This is simply a generalization of sets we have introduced before, more
precisely defined (even if less intuitively notated). As an example, let M =
{1, 3}, σ(1) = 1, and σ(3) = −1. Then AM,σ = A∗+∗− = A(Q,Q+,Q,Q−),
which is the set of reals whose Hamel basis expansions have positive coeffi-
cients of h1 and negative coefficients of h3, and AM,±σ = A∗+∗− ∪A∗−∗+.

Notice that, in general, −AM,±σ = AM,±σ and that AM,σ and AM,−σ
are Archimedean with a dense set of translators being W ({hα : α ∈ M}).
But it is translations by the rest of the reals that give such sets interesting
properties, as we see in the next result.

Lemma 7.5. The sets AM,±σ in Definition 7.4 are shade-almost invari-
ant.

Proof. Fix M and σ. The result is trivial if M = ∅, so we may assume
otherwise. Let A and W denote AM,σ and W ({hα : α ∈ M}), respectively.
We first show that that t + A + A for any t ∈ R. We already noted that if
t ∈W , then we have t+A = A, so suppose that t 6∈W . It suffices to show that
(t+A)4A is contained in a finite union of the “strips” alluded to previously.
Specifically, since t 6∈W we can write t =

∑
α∈M ′ rαhα +w for some w ∈W

and rational rα 6= 0, where M ′ is a finite subset of M (since the Hamel
expansion of t involves only finitely many α). Then (t+A)4A ⊂

⋃
α∈M ′{x :

qα(x) ∈ Qα}, where Qα = Q∩(0, rα] if rα > 0 and Qα = Q∩ [rα, 0) if rα < 0.
It follows from Lemma 7.3 that (t+A)4A + ∅.

That takes care of translations. Looking at reflections, it is now clear
that for any t ∈ R, t − A = −((−t) + A) + −A. This means that for any
isometry g on R we have g(A ] (−A)) + A ] (−A).

8. Some custom-built Banach measures. The results in this section
can probably be generalized a great deal, but we settle for the situation at
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hand pertaining to our particular Archimedean sets. Refer to Definitions 7.1
and 7.4 for what follows.

In this section G denotes the group of all isometries on R, M is a fixed
subset of [0, c) with 2 ≤ |M | ≤ ℵ0, and A = AM,±σ.

Obviously A and Ac cannot both have shade zero, but the main hurdle
in what follows is to show that neither can have shade zero. To prove this
we will find a Banach measure µ with respect to which each of A and Ac has
positive shade, i.e., shµ(A) > 0 and shµ(Ac) > 0.

Definition 8.1. For α ∈ M , consider sets of the form W (hα) +Qαhα,
where each Qα is a bounded subset of Q. Define TM to be the ideal generated
by all such W (hα) +Qαhα, α ∈M .

Each W (hα) + Qαhα in Definition 8.1 is a “Hamel cylinder” of sorts,
contained in one of our “strips” mentioned earlier. It is clear by Lemma 7.3
that each W (hα) +Qαhα has shade zero, so TM ⊂ Z.

Theorem 8.2. Let θ ∈ [0, 1]. Then there exists a Banach measure µθ for
which shµ(A) = θ.

Proof. Note that −A = A, since −AM,σ = AM,−σ. The following clearly
hold:

(i) g(A)4A = g(Ac)4Ac ∈ TM for any g ∈ G;
(ii) A 6∈ TM and Ac 6∈ TM .

The proof of Lemma 7.5 implies property (ii), which says that A and (there-
fore) Ac are TM -almost invariant. Property (ii) holds since any member
of TM differs from A and Ac by sets of reals x having arbitrarily large values
of |qα(x)| for each α ∈ M . It is straightforward to verify that the family
G(A) of all translates and reflections of A generates a G-invariant algebra
A(A) whose members are sets having one of the forms

N1, (A \N1) ∪N2, (Ac \N1) ∪N2, R \N1 (N1, N2 ∈ TM ).

This allows us to define a finitely additive G-invariant probability measure
νθ on A(A) by means of the assignments

νθ(N1) = 0, νθ((A\N1)∪N2) = θ, νθ((Ac\N1)∪N2) = 1−θ, νθ(R\N1) = 1,

where θ is any fixed number in [0, 1]. That νθ is well defined can be verified
directly using the aforementioned properties of TM .

For the convenience of directly applying a result of Marczewski concern-
ing products of probability measures, we define the probability measure space
(L0, λ0) as follows. Let L0 = {Z + E0 : E0 ∈ L and E0 ⊂ [0, 1)}, and define
λ0(Z+E0) = λ(E0). (The space (L0, λ0) is, in essence, the Lebesgue measure
space on [0, 1).) We now show that the probability measure spaces (A(A), νθ)
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and (L0, λ0) are almost independent in the sense of Marczewski [11], mean-
ing that if X ∈ A(A) and E0 ∈ L0 with νθ(X) 6= 0 and λ0(E0) 6= 0, then
X ∩ E0 6= ∅.

To see this, let β ∈ [0, c) \ M and let HM = {hβ} ∪ {hα : α ∈ M}.
(The added element hβ will be used only to simplify a portion of the proof
ahead.) First notice that if X ∈ A(A) with νθ(X) > 0, then X = PM +WM ,
where WM is the span (over the rationals) of H \ HM , PM is countable
(formed of certain linear combinations, over Q, of the set of basis elements
HM ), and PM is dense in R (obvious, thanks to the addition of hβ). Notice
also that R = QM +WM , where QM is the set (still countable) of all linear
combinations, over Q, of the basis elementsHM . This shows that the reals are
covered by countably many translates of WM , so we know that WM cannot
have measure zero. We will use the following well-known fact (it follows from
the Lebesgue density theorem).

Lemma 8.3. Let E ⊂ R be a set of positive Lebesgue measure. Then
λ(R \ (E + T )) = 0 whenever T is a dense set.

Now suppose that E ∩ X = ∅, where X is as postulated just earlier
and E = Z + E0 is a set of positive measure in L0 (equivalently, E0 is a
set of positive Lebesgue measure in [0, 1)). Then E ∩ (x + WM ) = ∅ for
each x ∈ PM , hence (E − x) ∩WM = ∅ for each such x. But this means
that (E − PM ) ∩WM is empty. Since E has positive Lebesgue measure, it
follows from Lemma 8.3 that E − PM = R \N for some set N of Lebesgue
measure zero. But then, since (E−PM )∩WM = ∅, it follows that WM ⊂ N ,
implying WM has Lebesgue measure zero, which we already know not to be
the case. This contradiction finally establishes that E ∩X 6= ∅, and in turn
that (A(A), νθ) and (L0, λ0) are almost independent measure spaces.

This enables us to define a measure µ0 on the algebra A0(A) generated by
A(A) ∪ L0 that is the multiplicative extension of νθ and λ0. (See Theorem I
in [11].) In particular, we have

µ0(A ∩ (Z + E0)) = νθ(A)λ0(Z + E0) = θλ(E0)

when Z + E0 ∈ L0.
Note that (A0(A), µ0) is a G-invariant measure space. The algebra A′(A)

generated by A(A)∪L consists of sets of the form
⊎
k∈Z Yk∩ [k, k+1), where

Yk ∈ A0(A) for each k. We can then define the G-invariant measure µ′ on
A′(A) by means of the equality

µ′
( ⊎
k∈Z

(Yk ∩ [k, k + 1))
)

=
∑
k∈Z

µ0(Yk).

Clearly, the measure µ′ is well defined, extends the Lebesgue measure, is
G-invariant, and has the property that µ′(A ∩ E) = θλ(E) for any E ∈ L.
Since µ′ is G-invariant, it can be extended (via the Invariant Extension



108 R. D. Mabry

Theorem [19, Thm. 10.8]) to a Banach measure µ. This, at last, proves that
the set A is a µ-shading with shµ(A) = θ.

Corollary 8.4. The set AM,σ cannot have shade zero for any choice
of σ. In particular, none of the eight sets A±±± has shade zero.

Proof. By choosing θ ∈ (0, 1), we see that neither A nor Ac can be a set
of shade zero. Since shµ(A) = 2 shµ(AM,σ), the conclusion follows.

We note that if |M | = 1, then sh(AM,σ) = 1/2. Also, despite warnings
that, for example, shµ(A++ ∪ A−−) need not equal 1/2, it is clear that this
does indeed happen for certain µ. Likewise, toward the other extreme, if
|M | = ℵ0, then despite the seemingly thinned-out nature of any resulting
AM,σ (being akin to the set R cut by half denumerably many times), such
sets still do not have shade zero, though they can have µ-shade zero (or
one). In fact, if one wishes to consider even larger M , even with |M | = c
(or to simply shorten the proof of Theorem 8.2, avoiding the paragraphs
surrounding Lemma 8.3), one can consider suitably tailored Hamel bases
that are Bernstein sets for obtaining the independence needed for applying
Marczewski’s theorem. (Such H do exist and are called Burstin sets [12].)

9. A Hamel basis with a weak closure property. To prove our
main result we find a way to control how our Ai are stretched. We do so by
controlling certain multiplicative properties of the underlying Hamel basisH.
(See [4, Thm. 2.1/Lemma 2.2] for another application of products in Hamel
bases to invariant extensions of Lebesgue measure.) Up to now, no special
properties of H have been required, but in this section we impose restrictions
on H that we leave in place until the end of the paper.

We will use a result ([16, Theorem 2.1.1]) that is possibly well known
and whose proof is straightforward enough to omit. We note first that if E
is an algebraic subfield of a field F, then F always has a Hamel basis over E.
(The proof of this fact is also routine.)

Lemma 9.1. For n ≥ 2 let F0 ( F1 ( · · · ( Fn be a properly inclusive
sequence of algebraic fields (i.e., a tower), and let Hi be a Hamel basis for
the field Fi over the proper subfield Fi−1 for i = 1, . . . , n. Then the set of
products

H =
n∏
i=1

Hi = {h1 · · ·hn : hi ∈ Hi}

is a Hamel basis for Fn over F0.

We apply the lemma with n = 2 as follows. From now on, let F2 = R,
F1 = Q[ 3

√
2], and F0 = Q. (F1 is the smallest field containing Q and 3

√
2.)
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Then
H1 = {1, 3

√
2, 3
√

4}
is a basis for F1 over Q; for each member e of F1 there are unique rationals
q0, q1, q2 for which e = q0 · 1 + q1 · 3

√
2 + q2 · 3

√
4. Let H2 be any basis for R

over F1 for which 1 ∈ H2 (this is always possible). We will henceforth let

H = H1H2

denote the Hamel basis for F2 = R over F0 = Q whose existence is asserted
in Lemma 9.1. Notice that we have H1 ⊂ H. In our injective well-ordering
{hα}α<c of H, we may and do assume that

h0 = 1, h1 = 3
√

2, h2 = 3
√

4,

which we desire for later convenience of notation.
The basis H1 has the following convenient property, a weak sort of mul-

tiplicative closure:

k, k′ ∈ H1 ⇒ kk′ = qk′′ for some q ∈ Q and k′′ ∈ H1.

We are particularly interested in the products h1h for h ∈ H. If h ∈ H1 =
{h0, h1, h2}, this amounts to the cyclicity:

h1h0 = h1, h2
1 = h2, h1h2 = 2h0.

Otherwise, for h ∈ H \H1, we see that h1h is itself a member of H \H1, so
that the expansion of h1h involves no members of H1. That is,

qα(h1h) = 0 for α ∈ {0, 1, 2} and h ∈ H \H1.

(Recall that qα is defined by (5).) What must be emphasized is that the ex-
pansion of 3

√
2h involves no member of H1 for h 6∈ H1, while the expansion of

3
√

2h involves only members of H1 when h ∈ H1. Furthermore, qα( 3
√

2h) ≥ 0
for α ∈ {0, 1, 2} and h ∈ H1.

For the rest of this paper, let

(7) A0 = A∗++ ∪A∗−−, A1 = A+∗+ ∪A−∗−, A2 = A++∗ ∪A−−∗.
(See Section 7 for the relevant definitions.)

By regarding the properties just mentioned, with this basis H our sets
A0, A1, A2 enjoy the following cyclical properties under stretching by the
factor of 3

√
2:

(8) 3
√

2A0 = A1,
3
√

2A1 = A2,
3
√

2A2 = A0.

We establish some other useful properties of A0, A1, A2 in Section 10.

10. A Banach measure that is not scale-invariant. The main mo-
tivation for this paper is the following theorem.

Theorem 10.1. There exists a Banach measure µ, an Archimedean set
A (thereby a µ-shading), and h ∈ R such that shµ(hA) 6= shµ(A).
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The proof of Theorem 10.1 will be easy once we establish some useful
properties of the sets A0, A1, A2 defined by (7) in Section 9. By Lemma 7.5,
each of these three sets is shade-almost invariant. Each is of the form AM,±σ
with |M | = 2, so by Theorem 8.2 none has shade zero.

We can now construct a measure having convenient properties on
A0, A1, A2.

Lemma 10.2. Let t0, t1, t2, t3 be any real numbers chosen from [0, 1] such
that t0 + t1 + t2 + t3 = 1. Then there exists a Banach measure µ for which
shµ(Ai) = ti + t3 for i = 0, 1, 2.

Proof. LetB0 = A−++∪A+−−,B1 = A+−+∪A−+−,B2 = A++−∪A−−+,
B3 = A+++ ∪A−−−. Then B0, B1, B2, B3 have the following properties.

(i) The sets B0, B1, B2, B3 are pairwise shade-almost disjoint. (They
are pairwise disjoint.)

(ii) None of B0, B1, B2, B3 has shade zero. (This follows from Corol-
lary 8.4.)

Therefore, by Lemma 6.2, there is a Banach measure µ for which shµ(Bi) = ti
for i = 0, 1, 2, 3. Finally, for i = 0, 1, 2, the set Ai is the shade-almost disjoint
union of Bi and B3, hence shµ(Ai) = shµ(Bi ∪B3) = ti + t3.

We do not need it here, but the following answers a question posed in
[10, Problem 3].

Corollary 10.3. There exist Archimedean sets which are not shadings.

Proof. The sets A0, A1, A2 serve as examples, since Lemma 10.2 shows
that their µ-shades depend on the particular µ.

The set C+Q mentioned earlier also serves as such an example, as would
any shade-almost invariant Archimedean set that does not have shade zero
or one.

Proof of Theorem 10.1. WithH the Hamel basis constructed in Section 9,
let A = A2 and h = h1 = 3

√
2. Letting µ be the measure obtained in

Lemma 10.2 and noting that hA2 = A0, we find that shµ(A2) = t2 + t3
but shµ(hA2) = shµ(A0) = t0 + t3, which need not equal t2 + t3.

It is instructive (or at least, amusing) to consider some extreme examples
of Theorem 10.1. For instance, we can let t0 = 1 and t1 = t2 = t3 = 0, so that
for the corresponding µ constructed via Theorem 10.1, we have shµ(A2) = 0
while shµ(hA2) = 1. Also, it is not difficult to see that for any nonzero ratio-
nal q, the µ-shade of the Ai is equal to that of qAi (for any µ). Therefore, qh
can be any size, so that qhA2 can be either a dilation or a contraction of A2.
And qh can be arbitrarily close to 1, showing that a stretch (or contraction)
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by the smallest amount can still give an extreme change in the µ-shade den-
sity. Also, using the same example, we can consider the set A = A2∩ (0,∞),
which has (constant) µ-shade zero, whereas hA has µ-shade equal to 1 on
(0,∞) but 0 on (−∞, 0). Scandalous!

Such possibilities were alluded to in the abstract: a similarity transfor-
mation of a set of constant µ-shade might not have constant µ-shade. How
far can this behavior be stretched? Employing other extension fields of Q,
such as Q[ n

√
2] for large n, more fun (or mockery) can certainly be had, by

allowing greater varieties of µ-shades to result from a single transformation
(with different µ). In this way, given an arbitrary step function f with values
in [0, 1] and only finitely many jumps, one can construct a set B ⊂ R and
Banach measure µ for which shµ(B) = 1/2 (say) but shµ(xB) = f for some
x > 0. By considering different fields and/or building “taller towers” in the
construction of the Hamel bases via Lemma 9.1, one can get infinitely many
basis elements into the act (since Lemma 6.2 holds for countably many Bi).
It should then be possible to pass from step functions to continuous func-
tions, using techniques similar to those used for creating continuously varying
shadings in [10, Thm. 5.7] or [14, Thm. 4.1].

How far can this go? Is it possible that given two different continuous
f1, f2 : R→ [0, 1] there exists a set B ⊂ R, a Banach measure µ, and x > 0
for which shµ(B) = f1 and shµ(xB) = f2? For such f1 and f2, do there exist
Banach measures µ1 and µ2 for which shµ1(B) = f1 and shµ2(B) = f2? If
these sorts of examples are possible, can one go further and devise sets that
are more universal, such as a single set B for which there is a Banach measure
µ such that for each continuous f there is an x for which shµ(xB) = f?

In all of this fun, we must bear in mind that these sets have µ-shades for
particular µ ∈ B, as opposed to all Banach measures. It merely shows that
these Banach measures are not able to agree on the density of these sets. In
that respect, these measures are “not very good” at measuring such sets, one
(e.g., [3]) might say.

Aside from such diverting examples, we more importantly have shown
the following main result.

Corollary 10.4. There exists a Banach measure on R that is not scale-
invariant.

Proof. Our measure µ, constant h, and setA constructed in Theorem 10.1
witness the statement of the corollary. To see this more explicitly, consider
the set S = A ∩ I, where I is any bounded interval. The corollary follows if
µ(hS) 6= hµ(S). Indeed, on the one hand we have µ(hS) = µ((hA) ∩ (hI))
= shµ(hA)λ(hI) = (shµ(hA))hλ(I). But on the other hand we have hµ(S) =
hµ(A∩I) = h shµ(A)λ(I). The equality of these quantities would imply that
shµ(A) = h shµ(A), and would then contradict Theorem 10.1.



112 R. D. Mabry

11. Conclusion. It now must be pointed out that if µ is an “improved”
Banach measure on R, i.e., one that is scale-invariant, then the µ-shade of
a µ-shading is unaffected by a similarity transformation. More precisely, we
have the following theorem, the proof of which we leave as an easy exercise
for the reader.

Theorem 11.1. If µ is an improved Banach measure on R and A is a
µ-shading of R, then g(A) is also a µ-shading and shµ(g(A)) = shµ(A) for
every similarity transformation g on R.

Speaking of “improved measures” (cf. [2]), it might seem reasonable to in-
corporate scale-invariance into the definition of a shading, especially in view
of Theorem 11.1. After all, reflection-invariance is included even though a
similar definition can be given using only translation-invariance. But using
translation-invariance alone yields results that are in some fundamental ways
unsatisfying. For example, in spite of the fact that A+ ] (−A+) + R, one
cannot claim, without making use of reflection-invariance, that A+ should
be viewed as “half” of the line in any measure-theoretic sense considered
here, because translation-invariant total extensions of λ can be constructed
with respect to which A+ has any shade (in a similar way to Lemma 6.2,
using the fact that x + A+ + A+ for all x ∈ R). Fortunately, we have
reflection-invariance available as another inuitively appealing condition. We
want our extensions of λ to have as many as possible of the properties we
consider desirable in λ, so we include the reflection-invariance in our exten-
sions because—well, because we can. So, if the result of Theorem 10.1 seems
unreasonable (especially in view of the remarks following it), we have Theo-
rem 11.1 to settle the matter, and perhaps we should indeed insist upon this
improvement in the definition of shadings (because we can). On the other
hand, in neither [2] nor [3] is this improvement mentioned, so perhaps tastes
will differ in this regard!
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