O-minimal fields with standard part map

by
Jana Maříková (Macomb, IL)

Abstract

Let R be an o-minimal field and V a proper convex subring with residue field \boldsymbol{k} and standard part (residue) map st: $V \rightarrow \boldsymbol{k}$. Let $\boldsymbol{k}_{\text {ind }}$ be the expansion of \boldsymbol{k} by the standard parts of the definable relations in R. We investigate the definable sets in $\boldsymbol{k}_{\text {ind }}$ and conditions on (R, V) which imply o-minimality of $\boldsymbol{k}_{\text {ind }}$. We also show that if R is ω-saturated and V is the convex hull of \mathbb{Q} in R, then the sets definable in $\boldsymbol{k}_{\text {ind }}$ are exactly the standard parts of the sets definable in (R, V).

1. Introduction. Throughout, R is an o-minimal field, that is, an ominimal expansion of a real closed field, and V is a proper convex subring with maximal ideal \mathfrak{m}, ordered residue field $\boldsymbol{k}=V / \mathfrak{m}$, and standard part (residue) map st: $V \rightarrow \boldsymbol{k}$. This map induces a map st: $V^{n} \rightarrow \boldsymbol{k}^{n}$ and for $X \subseteq R^{n}$ we put st $X:=\operatorname{st}\left(X \cap V^{n}\right)$. By $\boldsymbol{k}_{\text {ind }}$ we denote the ordered field \boldsymbol{k} expanded by the relations st X with $X \in \operatorname{Def}^{n}(R), n=1,2, \ldots$ Unless indicated otherwise, by "definable" we mean "definable with parameters in the structure R ".

The most important case of a convex subring of R is the convex hull

$$
\mathcal{O}:=\left\{x \in R:|x| \leq q \text { for some } q \in \mathbb{Q}^{>0}\right\}
$$

of \mathbb{Q} in R. If $V=\mathcal{O}$, then the ordered field \boldsymbol{k} is archimedean and we identify \boldsymbol{k} with its image in the ordered field \mathbb{R} of real numbers via the unique ordered field embedding of \boldsymbol{k} into \mathbb{R}. In particular, if R is ω-saturated and $V=\mathcal{O}$, then $\boldsymbol{k}=\mathbb{R}$.

We consider the following questions:
(1) Under what conditions on (R, V) is $\boldsymbol{k}_{\text {ind }}$ o-minimal?
(2) How complicated are the definable relations in $\boldsymbol{k}_{\text {ind }}$ in terms of the basic relations st X with definable $X \subseteq R^{n}$?

Here is a brief history of these problems. In 1983, Cherlin and Dickmann [3] proved quantifier elimination for real closed fields with a proper convex

2010 Mathematics Subject Classification: Primary 03C64.

Key words and phrases: o-minimal structures, residue field.
subring. In 1995 van den Dries and Lewenberg [7] identified the notion of T-convex subring of an o-minimal field as a suitable analogue of convex subring of a real closed field (here T is the theory of the given o-minimal field). A convex subring V of R is said to be $\operatorname{Th}(R)$-convex if $f(V) \subseteq V$ for every continuous \emptyset-definable function $f: R \rightarrow R$. The situation when V is a $\operatorname{Th}(R)$-convex subring of R is well-understood; see [7] and [5]. In particular, $\boldsymbol{k}_{\text {ind }}$ is o-minimal in that case.

The structure $\boldsymbol{k}_{\text {ind }}$ is not always o-minimal, as the example on page 128 shows. However, $\boldsymbol{k}_{\text {ind }}$ is always weakly o-minimal: By a theorem of Baizhanov in [2] (see also [1), (R, V) is weakly o-minimal, and by an argument just as in the proof of Lemma 4.1, every $Y \subseteq \boldsymbol{k}$ definable in $\boldsymbol{k}_{\text {ind }}$ equals st X for some $X \subseteq V$ definable in (R, V). Hrushovski, Peterzil and Pillay observe in [11] that if R is sufficiently saturated and $V=\mathcal{O}$, then $\boldsymbol{k}_{\text {ind }}$ is o-minimal, because then $\boldsymbol{k}=\mathbb{R}$ and for expansions of the ordered field \mathbb{R} weak ominimality is the same as o-minimality. However, [11] gives no information about question (2) in that situation, which includes cases where \mathcal{O} is not $\mathrm{Th}(R)$-convex; we say more about this in the remark on page 117 .

Good cell decomposition. In [14 we answered (2) for the situation in [11] by means of good cell decomposition, which also gives the o-minimality of $\mathbb{R}_{\text {ind }}$ without using [2]. In the present paper we obtain good cell decomposition (and thus o-minimality of $\boldsymbol{k}_{\text {ind }}$) under more general first-order assumptions on the pair (R, V). More precisely, suppose $(R, V) \models \Sigma_{\mathrm{i}}$ where Σ_{i} is defined below. Theorem 2.21 says that then the subsets of \boldsymbol{k}^{n} definable in $\boldsymbol{k}_{\text {ind }}$ are the finite unions of differences st $X \backslash$ st Y, where $X, Y \subseteq R^{n}$ are definable. It follows that $\boldsymbol{k}_{\text {ind }}$ is o-minimal. Theorem 2.21 is proved in the same way as the corresponding theorem in [14], except that uses of saturation in [14] are replaced by uses of Σ_{i}. Also the proof of Lemma 4.1 in [14] does not generalize to our setting, and this is replaced here by a more elementary proof of Lemma 2.4 below.

The following conditions on (R, V) are related to good cell decomposition. To state these, let $I:=\{x \in R:|x| \leq 1\}$, and for $X \subseteq R^{1+n}$ and $r \in R$, put

$$
X(r):=\left\{x \in R^{n}:(r, x) \in X\right\} .
$$

We let $\mathfrak{m}^{>r}:=\{x \in \mathfrak{m}: x>r\}$ for $r \in \mathfrak{m}$. We define the conditions $\mathcal{I}, \Sigma_{\mathbf{i}}$, $\Sigma_{\mathrm{d}}, \Sigma$, and \mathcal{C} on pairs (R, V) as follows:
(\mathcal{I}) if $X, Y \subseteq I^{n}$ are definable, then there is a definable $Z \subseteq I^{n}$ such that st $X \cap$ st $Y=\operatorname{st} Z$;
$\left(\Sigma_{\mathrm{i}}\right)$ if $X \subseteq I^{1+n}$ is definable and $X(r) \subseteq X(s)$ for all $r, s \in I$ with $r \leq s$, then there is $\epsilon_{0} \in \mathfrak{m}^{>0}$ such that st $X\left(\epsilon_{0}\right)=$ st $X(\epsilon)$ for all $\epsilon \in \mathfrak{m}^{>\epsilon_{0}} ;$
$\left(\Sigma_{\mathrm{d}}\right)$ if $X \subseteq I^{1+n}$ is definable and $X(r) \supseteq X(s)$ for all $r, s \in I$ with $r \leq s$, then there is $\epsilon_{0} \in \mathfrak{m}^{>0}$ such that st $X\left(\epsilon_{0}\right)=$ st $X(\epsilon)$ for all $\epsilon \in \mathfrak{m}^{>\epsilon_{0}}$;
(Σ) if $X \subseteq I^{1+n}$ is definable, then there is $\epsilon_{0} \in \mathfrak{m}^{>0}$ such that st $X\left(\epsilon_{0}\right)=$ st $X(\epsilon)$ for all $\epsilon \in \mathfrak{m}^{>\epsilon_{0}}$;
(\mathcal{C}) the $\boldsymbol{k}_{\text {ind }}$-definable closed subsets of \boldsymbol{k}^{n} are exactly the sets st X with definable $X \subseteq R^{n}$.

One should add here "for all n and X, Y " as initial clause to \mathcal{I}, and likewise with the other conditions. In Section 3 we prove that for all (R, V),
a) $\mathcal{I} \Leftrightarrow \Sigma_{i}$;
b) $\Sigma_{\mathrm{i}} \Rightarrow \boldsymbol{k}_{\text {ind }}$ is o-minimal;
c) $\Sigma \Rightarrow \mathcal{C}$.

In a subsequent paper with van den Dries [8] we shall prove the converse of c), and also $\Sigma_{\mathrm{i}} \Longrightarrow \mathcal{C}$, yielding $\Sigma_{\mathrm{i}} \Leftrightarrow \Sigma$. More recently, the second author shows in [15] the converse of b), so Σ_{i} really yields a first-order axiomatization of the structures (R, V) with o-minimal $\boldsymbol{k}_{\text {ind }}$.

Our definition of \mathcal{I} is not of first-order nature, but by a) it is equivalent to first-order conditions. Similarly \mathcal{C} will turn out to be equivalent to first order conditions by c) and its converse in [8].

In Section 3 we also show that (R, V) satisfies Σ if any of the following holds:
(i) $\operatorname{cofinality}(\mathfrak{m})>2^{|\boldsymbol{k}|}$;
(ii) V is T-convex, where $T:=\operatorname{Th}(R)$;
(iii) R is ω-saturated and $V=\mathcal{O}$.

Traces. Call a set $X \subseteq R^{n}$ a trace if $X=Y \cap R^{n}$ for some definable n ary relation Y in some elementary extension of R, where we allow parameters from that elementary extension to define Y. In Section 4 we assume that R is ω-saturated and $V=\mathcal{O}$, and under these assumptions we characterize the definable sets in $\mathbb{R}_{\text {ind }}$ in terms of traces. As a corollary we show that if R is ω-saturated and $V=\mathcal{O}$, then

$$
\operatorname{Def}^{n}\left(\mathbb{R}_{\mathrm{ind}}\right)=\left\{\operatorname{st} X: X \in \operatorname{Def}^{n}(R, \mathcal{O})\right\}
$$

We do not know if the analogue of this corollary holds under the more general first-order assumption Σ. We do know that if V is $\operatorname{Th}(R)$-convex, then, for all n,

$$
\operatorname{Def}^{n}\left(\boldsymbol{k}_{\text {ind }}\right)=\left\{\text { st } X: X \in \operatorname{Def}^{n}(R, V)\right\} .
$$

Remark. In 1996 van den Dries [4] asked the following question: Let L be a language extending the language of ordered rings, and let $T(L, \mathbb{R})$ be the set of all sentences true in all L-expansions of the real field. Call R pseudo-real if $R \models T(L, \mathbb{R})$. Is every o-minimal field pseudo-real?

If R has an archimedean model, then R is pseudo-real, but the converse fails. Consider for example a proper elementary extension of the real field and extend its language by a name for an element $\lambda>\mathbb{R}$. Then the theory of R in the extended language does not have an archimedean model but R is of course pseudo-real as a structure for this extended language.

In 2006 Lipshitz and Robinson [12] considered the ordered Hahn field $\mathbb{R}\left(\left(t^{\mathbb{Q}}\right)\right)$ with operations given by overconvergent power series, and they proved its o-minimality. In 2007 Hrushovski and Peterzil [10] showed that this Lipshitz-Robinson field is not pseudo-real. It is easy to see that if R is a model of the theory T of the Lipshitz-Robinson field, then $\mathcal{O} \subseteq R$ is not T-convex.

Preliminaries. We assume familiarity with o-minimal structures and their basic properties; see for example [6]. Throughout, we let m, n range over the set $\mathbb{N}=\{0,1,2, \ldots\}$ of natural numbers. Given a one-sorted structure $\mathcal{M}=(M ; \cdots)$ we let $\operatorname{Def}^{n}(\mathcal{M})$ be the boolean algebra of definable subsets of M^{n}. Let K be an ordered field. For $x \in K$ we put $|x|:=\max \{x,-x\}$, for $a=\left(a_{1}, \ldots, a_{n}\right) \in K^{n}$ we put

$$
|a|:=\max \left\{\left|a_{i}\right|: i=1, \ldots, n\right\} \quad \text { if } n>0, \quad|a|:=0 \quad \text { if } n=0
$$

and for $a, b \in K^{n}$ we put $d(a, b):=|a-b|$. A box in K^{n} is a cartesian product of open intervals

$$
\left(a_{1}-\delta, a_{1}+\delta\right) \times \cdots \times\left(a_{n}-\delta, a_{n}+\delta\right)
$$

where $a=\left(a_{1}, \ldots, a_{n}\right) \in K^{n}$ and $\delta \in K^{>0}$. A V-box in R^{n} is a box in R^{n} as above where $a \in V^{n}$ and $\delta \in V^{>\mathfrak{m}}$. So if $B \subseteq R^{n}$ is a V-box, then $B \subseteq V^{n}$ and st B contains a box in \boldsymbol{k}^{n}.

An interval is always a nonempty open interval (a, b) in R, or in \mathbb{R}, or in \boldsymbol{k}, as specified. We already defined $I:=\{x \in R:|x| \leq 1\}$ and more generally, for each ordered field K we put $I(K):=\{x \in K:|x| \leq 1\}$. For $a \in R^{n}$ and definable nonempty $X \subseteq R^{n}$ we set

$$
d(a, X):=\inf \{d(a, x): x \in X\}
$$

and likewise for $a \in \boldsymbol{k}^{n}$ and definable nonempty $X \subseteq \boldsymbol{k}^{n}$ when $\boldsymbol{k}_{\text {ind }}$ is o-minimal. A set $X \subseteq R^{n}$ is said to be V-bounded if there is $a \in V^{>0}$ such that $|x| \leq a$ for all $x \in X$. (For $V=\mathcal{O}$ this is the same as strongly bounded.) The hull of $X \subseteq \boldsymbol{k}^{n}$ is the set $X^{h}:=\operatorname{st}^{-1}(X) \subseteq V^{n}$.

Given sets X, Y and $S \subseteq X \times Y$ we put

$$
S(x):=\{y \in Y:(x, y) \in S\}
$$

If X is a subset of an ambient set M that is understood from the context, then

$$
X^{c}:=\{x \in M: x \notin X\} .
$$

We often use the following projection maps for $m \leq n$:

$$
\begin{array}{ll}
p_{m}^{n}: R^{n} \rightarrow R^{m}, & \left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{m}\right), \\
\pi_{m}^{n}: \boldsymbol{k}^{n} \rightarrow \boldsymbol{k}^{m}, & \left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{m}\right) .
\end{array}
$$

Given a map $f: X \rightarrow Y$ we let

$$
\Gamma f:=\{(x, y) \in X \times Y: f(x)=y\}
$$

denote its graph.

2. Good cell decomposition

2.1. General facts on standard part sets. Recall that R is an ominimal field and V is a proper convex subring of R. We begin with some results requiring no extra assumption on (R, V). A very useful fact of this kind is the V-box lemma (Corollary 2.5).

Lemma 2.1. If $X \subseteq R^{n}$ is definable, then st X is closed.
Proof. Let $X \subseteq R^{n}$ be definable and assume towards a contradiction that we have an $a \in \operatorname{cl}($ st $X) \backslash$ st X. Take $a^{\prime} \in R^{n}$ such that st $a^{\prime}=a$. Then, by o-minimality of $R, d\left(a^{\prime}, X\right)$ exists in R and $d\left(a^{\prime}, X\right)>\mathfrak{m}$. So there is a neighborhood $U \subseteq \boldsymbol{k}^{n}$ of a with $U \cap$ st $X=\emptyset$, a contradiction.

Let St_{n} be the collection of all sets st X with definable $X \subseteq R^{n}$. Note that if $X, Y \in \mathrm{St}_{n}$, then $X \cup Y \in \mathrm{St}_{n}$; if $X \in \mathrm{St}_{m}$ and $Y \in \mathrm{St}_{n}$, then $X \times Y \in \mathrm{St}_{m+n}$. The next lemma is almost obvious. To state it we use the projection maps $\pi=\pi_{m}^{m+n}: \boldsymbol{k}^{m+n} \rightarrow \boldsymbol{k}^{m}$ and $p=p_{m}^{m+n}: R^{m+n} \rightarrow R^{m}$.

Lemma 2.2. Let $X \in \operatorname{St}_{m+n}$. Then
(1) if X is bounded, then $\pi(X) \in \mathrm{St}_{m}$;
(2) if $X=$ st X^{\prime} where the set $X^{\prime} \subseteq R^{m+n}$ is definable in R and satisfies $X^{\prime} \cap p^{-1}\left(V^{m}\right) \subseteq V^{m+n}$, then $\pi(X) \in \mathrm{St}_{m}$.
Lemma 2.3. If $X \subseteq R$ is definable, then st X is a finite union of intervals and points in \boldsymbol{k}.

Proof. This is immediate from the o-minimality of R.
Below, p is the projection map $R^{n+1} \rightarrow R^{n}$ given by $p\left(x_{1}, \ldots, x_{n+1}\right)=$ $\left(x_{1}, \ldots, x_{n}\right)$.

Lemma 2.4.
$\left(A_{n}\right)$ If $D \subseteq V^{n+1}$ is a V-box, and $f: Y \rightarrow R$, where $Y \subseteq V^{n}$, is definable and continuous with $f(Y) \subseteq V$, then there is a V-box $B \subseteq D$ with $B \cap \Gamma f=\emptyset$.
(B_{n}) If $D \subseteq V^{n}$ is a V-box, and \mathcal{C} is a decomposition of D, then there is $C \in \mathcal{C}$ such that C contains a V-box.

Proof. It is clear that $\left(B_{1}\right)$ holds. We first show that $\left(B_{n}\right)$ implies $\left(A_{n}\right)$. Let $f: Y \rightarrow V$ be definable and continuous, with $Y \subseteq V^{n}$, and let

$$
D=\left(a_{1}, b_{1}\right) \times \cdots \times\left(a_{n+1}, b_{n+1}\right) \subseteq V^{n+1}
$$

be a V-box. Take $p, q \in V$ such that $a_{n+1}<p<q<b_{n+1}$ and

$$
q-p, p-a_{n+1}, b_{n+1}-q>\mathfrak{m},
$$

and pick $\delta>\mathfrak{m}$ with $\delta<\min \left\{p-a_{n+1},(q-p) / 2, b_{n+1}-q\right\}$. Define

$$
\begin{aligned}
& X(p):=\left\{x \in p_{n}^{n+1} D \cap Y: f(x) \in(p-\delta, p+\delta)\right\}, \\
& X(q):=\left\{x \in p_{n}^{n+1} D \cap Y: f(x) \in(q-\delta, q+\delta)\right\},
\end{aligned}
$$

and note that $X(p) \cap X(q)=\emptyset$. Take a decomposition \mathcal{C} of R^{n} such that \mathcal{C} partitions the sets $p_{n}^{n+1} D, X(p)$, and $X(q)$. By $\left(B_{n}\right)$, there is $C \in \mathcal{C}$ such that $C \subseteq p_{n}^{n+1} D$ and C contains a V-box P. Then $P \times(p-\delta, p+\delta)$ or $P \times(q-\delta, q+\delta)$ yields the desired V-box B.

Next, we show that $\left(A_{n}\right)$ and $\left(B_{n}\right)$ imply (B_{n+1}). Let $D \subseteq V^{n+1}$ be a V-box and let \mathcal{C} be a decomposition of D. Then $p_{n}^{n+1} \mathcal{C}$ is a decomposition of $p_{n}^{n+1} D$ and by $\left(B_{n}\right)$ we can take $C \in \mathcal{C}$ such that $p_{n}^{n+1} C$ contains a V-box P. Let C_{1}, \ldots, C_{k} be the cells in \mathcal{C} such that $p_{n}^{n+1} C=p_{n}^{n+1} C_{i}$ for $i=1, \ldots, k$. After restricting the functions $p_{n}^{n+1} C \rightarrow R$ used to define C_{1}, \ldots, C_{k} to P we see that it is enough to prove the following:

Let $f_{1}, \ldots, f_{m}: P \rightarrow V$ be definable and continuous and let $p, q \in V$ be such that $p<q$ and $|q-p|>\mathfrak{m}$. Then there is a V-box $B \subseteq P \times(p, q)$ with $B \cap \Gamma f_{j}=\emptyset$ for all j.

For $m=1$ this statement follows from $\left(A_{n}\right)$, and for $m>1$ it follows by a straightforward induction on m using again $\left(A_{n}\right)$.

Corollary 2.5 (V-Box Lemma). Let $X \subseteq R^{n}$ be definable and let $D \subseteq \boldsymbol{k}^{n}$ be a box such that $D \subseteq$ st X. Then X contains a V-box B with st $B \subseteq D$.

Proof. We may assume that $X \subseteq V^{n}$, and that $\operatorname{cl}(D) \subseteq$ st X. Pick a V-box $D^{\prime} \subseteq R^{n}$ such that st $D^{\prime}=\operatorname{cl}(D)$, and take a decomposition \mathcal{C} of R^{n} which partitions both D^{\prime} and X. By Lemma 2.4 , we can take $C \in \mathcal{C}$ such that $C \subseteq D^{\prime}$ and C contains a V-box B. It is clear that $B \cap X \neq \emptyset$, otherwise D would contain a box whose intersection with st X is empty. So $B \subseteq C \subseteq X$.

Corollary 2.6. If $X \subseteq R^{n}$ is definable, then $\mathrm{st} X \cap$ st X^{c} has empty interior in \boldsymbol{k}^{n}.

By [1], $\boldsymbol{k}_{\text {ind }}$ is weakly o-minimal. MacPherson, Marker and Steinhorn define in [13] a notion of dimension for weakly o-minimal structures:

Definition 2.7. Let M be a weakly o-minimal structure, and let $X \subseteq M^{n}$ be definable in M. If $X \neq \emptyset$, then $\operatorname{dim}_{w}(X)$ is the largest integer $k \in\{0, \ldots, n\}$ for which there is a projection map

$$
p: M^{n} \rightarrow M^{k}, \quad\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{\lambda(1)}, \ldots, x_{\lambda(k)}\right)
$$

where $1 \leq \lambda(1)<\cdots<\lambda(k) \leq n$, such that $\operatorname{int}(p X) \neq \emptyset$. We set $\operatorname{dim}_{w}(\emptyset)=-\infty$.

Note that if M is o-minimal, then the above notion of dimension agrees with the usual dimension for o-minimal structures.

Corollary 2.8. $\operatorname{dim}_{w}(\operatorname{st} X) \leq \operatorname{dim} X$ for V-bounded $X \in \operatorname{Def}^{n}(R)$.
2.2. Good cells. We define good cells in analogy with [14, and we state some results needed in the proof of good cell decomposition. We omit proofs that are as in [14].

Definition 2.9. Given functions $f: X \rightarrow R$ with $X \subseteq R^{n}$, and $g: C \rightarrow \boldsymbol{k}$ with $C \subseteq \boldsymbol{k}^{n}$, we say that f induces g if f is definable (so X is definable), $C^{h} \subseteq X, f \mid C^{h}$ is continuous, $f\left(C^{h}\right) \subseteq V$ and $\Gamma g=\operatorname{st}(\Gamma f) \cap(C \times \boldsymbol{k})$.

Lemma 2.10. Let $C \subseteq \boldsymbol{k}^{n}$ and suppose $g: C \rightarrow \boldsymbol{k}$ is induced by the function $f: X \rightarrow R$ with $X \subseteq R^{n}$. Then g is continuous.

Proof. Assume towards a contradiction that g is not continuous at $c \in C$. Let $r \in \boldsymbol{k}^{>0}$ be such that for every neighborhood $B \subseteq \boldsymbol{k}^{n}$ of c there is $b \in B \cap C$ with $|g(c)-g(b)| \geq r$. Pick $c^{\prime} \in R^{n}$ with $\operatorname{st}\left(c^{\prime}\right)=c$ and define

$$
Y:=\left\{x \in X:\left|f\left(c^{\prime}\right)-f(x)\right| \geq r^{\prime} / 2\right\}
$$

where $r^{\prime} \in R^{>0}$ is such that $\operatorname{st}\left(r^{\prime}\right)=r$. Then $d\left(c^{\prime}, Y\right)$ exists in R. If $d\left(c^{\prime}, Y\right)$ is infinitesimal then, since Y is closed, there is $y \in Y$ such that $\operatorname{st}(y)=\operatorname{st}\left(c^{\prime}\right)$, a contradiction with f inducing a function. Hence $d\left(c^{\prime}, Y\right)>\mathfrak{m}$, but this yields a neighborhood $B \subseteq \boldsymbol{k}^{n}$ of c such that $g(B \cap C) \subseteq(g(c)-r, g(c)+r)$, a contradiction.

For $C \subseteq \boldsymbol{k}^{n}$ we let $G(C)$ be the set of all $g: C \rightarrow \boldsymbol{k}$ that are induced by some definable $f: X \rightarrow R$ with $X \subseteq R^{n}$.

Lemma 2.11. Let $1 \leq j(1)<\cdots<j(m) \leq n$ and define $\pi: \boldsymbol{k}^{n} \rightarrow \boldsymbol{k}^{m}$ by

$$
\pi\left(x_{1}, \ldots, x_{n}\right)=\left(x_{j(1)}, \ldots, x_{j(m)}\right)
$$

Let $C \subseteq \boldsymbol{k}^{n}$ and suppose $g \in G(\pi C)$. Then $\left.g \circ \pi\right|_{C} \in G(C)$.
Definition 2.12. Let $i=\left(i_{1}, \ldots, i_{n}\right)$ be a sequence of zeros and ones. Good i-cells are subsets of \boldsymbol{k}^{n} obtained by recursion on n as follows:
(i) For $n=0$ and i the empty sequence, the one-point space \boldsymbol{k}^{0} is the only good i-cell, and for $n=1$, a good (0)-cell is a singleton $\{a\}$ with $a \in \boldsymbol{k}$; a good (1)-cell is an interval in \boldsymbol{k}.
(ii) Let $n>0$ and assume inductively that good i-cells are subsets of \boldsymbol{k}^{n}. A good $(i, 0)$-cell is a set $\Gamma h \subseteq \boldsymbol{k}^{n+1}$ where $h \in G(C)$ and $C \subseteq \boldsymbol{k}^{n}$ is a good i-cell. A good $(i, 1)$-cell is either a set $C \times \boldsymbol{k}$, or a set $(-\infty, f) \subseteq \boldsymbol{k}^{n+1}$, or a set $(g, h) \subseteq \boldsymbol{k}^{n+1}$, or a set $(f,+\infty) \subseteq \boldsymbol{k}^{n+1}$, where $f, g, h \in G(C), g<h$, and C is a good i-cell.

One verifies easily that a good i-cell is open in \boldsymbol{k}^{n} iff $i_{1}=\cdots=i_{n}=1$, and that if $i_{1}=\cdots=i_{n}=1$, then every good i-cell is homeomorphic to \boldsymbol{k}^{n}. A good cell in \boldsymbol{k}^{n} is a good i-cell for some sequence $i=\left(i_{1}, \ldots, i_{n}\right)$ of zeros and ones.

Lemma 2.13. Let $C \subseteq \boldsymbol{k}^{n}$ be a good $\left(i_{1}, \ldots, i_{n}\right)$-cell, and let $k \in\{1, \ldots, n\}$ be such that $i_{k}=0$. Let $\pi: \boldsymbol{k}^{n} \rightarrow \boldsymbol{k}^{n-1}$ be given by

$$
\pi\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{n}\right)
$$

Then $\pi(C) \subseteq \boldsymbol{k}^{n-1}$ is a good cell, $\pi \mid C: C \rightarrow \pi(C)$ is a homeomorphism, and if $E \subseteq \pi(C)$ is a good cell, so is its inverse image $\pi^{-1}(E) \cap C$.
2.3. More on good cells. We prove here that $(R, V) \models \mathcal{I}$ iff $(R, V) \models$ Σ_{i} (see page 116 for definitions of \mathcal{I} and Σ_{i}). This implies that if $(R, V) \models \Sigma_{\mathrm{i}}$, then good cells in \boldsymbol{k}^{n} are differences of standard parts of definable subsets of R^{n}.

It is not difficult to show that if $(R, V) \models \mathcal{I}$, then for all n and all definable $X, Y \subseteq R^{n}$ there is a definable $Z \subseteq R^{n}$ such that st $X \cap$ st $Y=$ st Z : Set $J(\boldsymbol{k}):=(-1,1) \subseteq \boldsymbol{k}$ and $J:=(-1,1) \subseteq R$. We shall use the definable homeomorphism

$$
\tau_{n}: R^{n} \rightarrow J^{n}:\left(x_{1} \ldots, x_{n}\right) \mapsto\left(\frac{x_{1}}{\sqrt{1+x_{1}^{2}}}, \ldots, \frac{x_{n}}{\sqrt{1+x_{n}^{2}}}\right)
$$

and we also let τ_{n} denote the homeomorphism

$$
\tau_{n}: \boldsymbol{k}^{n} \rightarrow J(\boldsymbol{k})^{n}:\left(x_{1} \ldots, x_{n}\right) \mapsto\left(\frac{x_{1}}{\sqrt{1+x_{1}^{2}}}, \ldots, \frac{x_{n}}{\sqrt{1+x_{n}^{2}}}\right)
$$

One easily checks that $\tau_{1}: R \rightarrow J$ induces $\tau_{1}: \boldsymbol{k} \rightarrow J(\boldsymbol{k})$, and that for $X \in \operatorname{Def}^{n}(R)$,

$$
\tau_{n}(\operatorname{st} X)=\operatorname{st}\left(\tau_{n} X\right) \cap J(\boldsymbol{k})^{n}
$$

moreover,

$$
\tau_{n}^{-1}\left(\operatorname{st}(X) \cap J(\boldsymbol{k})^{n}\right)=\operatorname{st}\left(\tau_{n}^{-1}(X)\right) \quad \text { for } X \subseteq J(\boldsymbol{k})^{n}
$$

where $\tau_{n}^{-1}: J^{n} \rightarrow R^{n}$ and $\tau_{n}^{-1}: J(\boldsymbol{k})^{n} \rightarrow \boldsymbol{k}^{n}$ are the inverse functions of $\tau_{n}: R^{n} \rightarrow J^{n}$ and of $\tau_{n}: \boldsymbol{k}^{n} \rightarrow J(\boldsymbol{k})^{n}$ respectively.

Suppose (R, V) satisfies \mathcal{I}. To see that then for all n and all $X, Y \in$ $\operatorname{Def}^{n}(R)$ there is $Z \in \operatorname{Def}^{n}(R)$ such that $\mathrm{st} X \cap \operatorname{st} Y=\operatorname{st} Z$, let $X, Y \in$
$\operatorname{Def}^{n}(R)$. Then $\tau_{n} X, \tau_{n} Y \subseteq J^{n}$, so we can take $Z \in \operatorname{Def}^{n}(R)$ such that

$$
\operatorname{st}\left(\tau_{n} X\right) \cap \operatorname{st}\left(\tau_{n} Y\right)=\operatorname{st} Z
$$

We claim that

$$
\text { st } X \cap \operatorname{st} Y=\operatorname{st}\left(\tau_{n}^{-1}\left(Z \cap J^{n}\right)\right) .
$$

To prove this it is enough to show that

$$
\begin{equation*}
\tau_{n}(\operatorname{st} X \cap \operatorname{st} Y)=\tau\left(\operatorname{st}\left(\tau_{n}^{-1}\left(Z \cap J^{n}\right)\right)\right) \tag{1}
\end{equation*}
$$

Now the right-hand side of (1) is equal to

$$
\operatorname{st}\left(Z \cap J^{n}\right) \cap J(\boldsymbol{k})^{n}=\operatorname{st}(Z) \cap J(\boldsymbol{k})^{n},
$$

and we have

$$
\tau_{n}(\text { st } X \cap \operatorname{st} Y)=\operatorname{st}\left(\tau_{n} X\right) \cap \operatorname{st}\left(\tau_{n} Y\right) \cap J(\boldsymbol{k})^{n} .
$$

In view of $\operatorname{st}\left(\tau_{n} X\right) \cap \operatorname{st}\left(\tau_{n} Y\right)=\operatorname{st} Z$ this gives (1).
In a similar way the condition Σ_{i} implies its "unrestricted version", i.e. the variant obtained by substituting R for I. We shall often use these facts tacitly.

Lemma 2.14. Suppose (R, V) satisfies \mathcal{I}. Then $(R, V) \models \Sigma_{\mathrm{i}}$.
Proof. Let $X \subseteq I^{1+n}$ be definable and increasing in the first variable. Towards proving that X satisfies the conclusion of Σ_{i} we may assume that X is closed.

Claim 1. There is $\epsilon_{0} \in \mathfrak{m} \geq 0$ such that

$$
\operatorname{st}(X) \cap\left(\{0\} \times I(\boldsymbol{k})^{n}\right)=\operatorname{st}\left(X \cap\left(\left[0, \epsilon_{0}\right] \times I^{n}\right)\right) .
$$

We set $Y:=\{0\} \times I^{n}$ and take a definable $Z \subseteq I^{n+1}$ with st $X \cap$ st $Y=$ st Z. We may assume that Z is closed and nonempty, and we set $\epsilon_{1}:=$ $\sup \{d(z, X): z \in Z\}$ and $\epsilon_{2}:=\sup \{d(z, Y): z \in Z\}$. Then $\epsilon_{1}, \epsilon_{2} \in \mathfrak{m} \geq 0$, and we claim that $\epsilon_{0}:=\epsilon_{1}+\epsilon_{2}$ works. Clearly,

$$
\operatorname{st}\left(X \cap\left(\left[0, \epsilon_{0}\right] \times I^{n}\right)\right) \subseteq \operatorname{st}(X) \cap\left(\{0\} \times I(\boldsymbol{k})^{n}\right)
$$

So let $a \in \operatorname{st} X \cap \operatorname{st} Y$. Then $a=\operatorname{st}(z)$ with $z \in Z$. We have $d(z, X) \leq \epsilon_{1}$ and $d(z, Y) \leq \epsilon_{2}$. Since Z is closed and V-bounded, we can take $x \in X$ and $y \in Y$ such that $d(x, z) \leq \epsilon_{1}, d(y, z) \leq \epsilon_{2}$. Then $d(x, y) \leq \epsilon_{1}+\epsilon_{2}=\epsilon_{0}$, and it follows that

$$
a=\operatorname{st}(x) \in \operatorname{st}\left(X \cap\left(\left[0, \epsilon_{0}\right] \times I^{n}\right)\right) .
$$

This proves Claim 1. Let ϵ_{0} be as in Claim 1.
Claim 2. st $X(\epsilon)=\operatorname{st} X\left(\epsilon_{0}\right)$ for all $\epsilon \in \mathfrak{m} \geq \epsilon_{0}$.
It is clear that st $X\left(\epsilon_{0}\right) \subseteq$ st $X(\epsilon)$ for all $\epsilon \in \mathfrak{m}^{\geq \epsilon_{0}}$. To prove the other inclusion, let $a \in \operatorname{st} X(\epsilon)$. Then

$$
(0, a) \in \operatorname{st}(X) \cap\left(\{0\} \times I(\boldsymbol{k})^{n}\right),
$$

hence

$$
(0, a) \in \operatorname{st}\left(X \cap\left(\left[0, \epsilon_{0}\right] \times I^{n}\right)\right)
$$

by Claim 1. Because X is increasing in the first variable, this implies $(0, a) \in$ st $X\left(\epsilon_{0}\right)$.

Lemma 2.15. $\Sigma_{\mathrm{i}} \Rightarrow \mathcal{I}$.
Proof. Suppose (R, V) satisfies Σ_{i}. Let $X, Y \subseteq I^{n}$ be definable and nonempty. For $\epsilon \in R^{\geq 0}$ define

$$
Y^{\epsilon}:=\left\{x \in R^{n}: d(x, Y) \leq \epsilon\right\} .
$$

We claim that

$$
\bigcup_{\epsilon} \mathrm{st}\left(X \cap Y^{\epsilon}\right)=\mathrm{st} X \cap \mathrm{st} Y,
$$

where ϵ ranges over all positive infinitesimals. If $a \in \operatorname{st}\left(X \cap Y^{\epsilon}\right)$, then clearly $a \in \operatorname{st} X$ and $a \in \operatorname{st} Y$. If $a \in \operatorname{st} X \cap$ st Y, then we can take $a^{\prime} \in X$ and $a^{\prime \prime} \in Y$ such that $\operatorname{st}\left(a^{\prime}\right)=\operatorname{st}\left(a^{\prime \prime}\right)=a$ and $d\left(a^{\prime}, a^{\prime \prime}\right)<\epsilon$ for some $\epsilon \in \mathfrak{m}^{>0}$. Hence $a^{\prime} \in X \cap Y^{\epsilon}$.

Now by Σ_{i}, there is a positive infinitesimal ϵ_{0} such that

$$
\operatorname{st}\left(X \cap Y^{\epsilon_{0}}\right)=\bigcup_{\epsilon} \operatorname{st}\left(X \cap Y^{\epsilon}\right)
$$

The proofs of the following two lemmas are similar to the proofs of their counterparts in [14].

Lemma 2.16. Suppose (R, V) satisfies \mathcal{I}, and let $X \subseteq R^{n}$ and $f: X \rightarrow R$ be definable, and put

$$
X^{-}:=\{x \in X: f(x)<V\}, \quad X^{+}:=\{x \in X: f(x)>V\}
$$

Then st X^{-}and st X^{+}belong to St_{n}.
Corollary 2.17. If (R, V) satisfies \mathcal{I}, and $X \subseteq R^{n}$ and $g: X \rightarrow R$ are definable, then $\operatorname{st}\{x \in X: g(x) \in \mathfrak{m}\} \in \mathrm{St}_{n}$.

Conversely, if the conclusion of this corollary holds for all n and definable $g: X \rightarrow R$ with $X \subseteq R^{n}$, then (R, V) satisfies \mathcal{I}. To see this, let $X, Y \subseteq V^{n}$ be definable with $Y \neq \emptyset$. Assume the conclusion of the corollary holds for the function $x \mapsto d(x, Y): X \rightarrow R$. Then we have a definable $Z \subseteq V^{n}$ such that st $Z=\operatorname{st}\{x \in X: d(x, Y) \in \mathfrak{m}\}$. This gives st $X \cap$ st $Y=$ st Z.

From now on until the end of Section 2 we assume $(R, V) \vDash \Sigma_{\mathrm{i}}$. The following lemma is now proved as in [14.

Lemma 2.18. Every good cell in \boldsymbol{k}^{n} is of the form $X \backslash Y$ with $X, Y \in \mathrm{St}_{n}$.
2.4. Good cell decomposition. We obtain good cell decomposition, namely, if $X_{1}, \ldots, X_{m} \subseteq R^{n}$ are definable, then there is a finite partition of \boldsymbol{k}^{n} into good cells that partitions every st X_{i}. A consequence of this is that the $\boldsymbol{k}_{\text {ind }}$-definable subsets of \boldsymbol{k}^{n} are finite unions of differences st $X \backslash$ st Y, where $X, Y \in \operatorname{Def}^{n}(R)$.

The proof of the following lemma is again as in 14 .
Lemma 2.19. Let $C \subseteq \boldsymbol{k}^{n}$ be a good i-cell, let $X \subseteq R^{n+1}$ be definable and suppose $k \in\{1, \ldots, n\}$ is such that $i_{k}=0$. Define $\bar{\pi}: \boldsymbol{k}^{n+1} \rightarrow \boldsymbol{k}^{n}$ by

$$
\pi(x)=\left(x_{1}, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{n+1}\right)
$$

Then $\pi(\operatorname{st}(X) \cap(C \times \boldsymbol{k}))$ is a difference of sets in St_{n}.
A good decomposition of $I(\boldsymbol{k})^{n}$ is a special kind of partition of $I(\boldsymbol{k})^{n}$ into finitely many good cells. The definition is by recursion on n :
(i) a good decomposition of $I(\boldsymbol{k})$ is a collection

$$
\left\{\left(c_{0}, c_{1}\right),\left(c_{1}, c_{2}\right), \ldots,\left(c_{k}, c_{k+1}\right),\left\{c_{0}\right\},\left\{c_{1}\right\}, \ldots,\left\{c_{k}\right\},\left\{c_{k+1}\right\}\right\}
$$

of intervals and points in \boldsymbol{k} where $c_{0}<c_{1}<\cdots<c_{k}<c_{k+1}$ are real numbers with $c_{0}=-1$ and $c_{k+1}=1$;
(ii) a good decomposition of $I(\boldsymbol{k})^{n+1}$ is a finite partition \mathcal{D} of $I(\boldsymbol{k})^{n+1}$ into good cells such that $\left\{\pi_{n}^{n+1} C: C \in \mathcal{D}\right\}$ is a good decomposition of $I(\boldsymbol{k})^{n}$.
Theorem 2.20 (Good Cell Decomposition).
$\left(A_{n}\right)$ Given any definable $X_{1}, \ldots, X_{m} \subseteq I^{n}$, there is a good decomposition of $I(\boldsymbol{k})^{n}$ partitioning each set st X_{i}.
$\left(B_{n}\right)$ If $f: X \rightarrow I$, with $X \subseteq I^{n}$, is definable, then there is a good decomposition \mathcal{D} of $I(\boldsymbol{k})^{n}$ such that for every open $C \in \mathcal{D}$, either the set $\operatorname{st}(\Gamma f) \cap(C \times \boldsymbol{k})$ is empty, or f induces a function $g: C \rightarrow I(\boldsymbol{k})$.
The proof uses the lemmas above and is very similar to that of Theorem 4.3 in [14].

A good decomposition of \boldsymbol{k}^{n} is a special kind of partition of \boldsymbol{k}^{n} into finitely many good cells. The definition is by recursion on n :
(i) a good decomposition of $\boldsymbol{k}^{1}=\boldsymbol{k}$ is a collection

$$
\left\{\left(c_{0}, c_{1}\right),\left(c_{1}, c_{2}\right), \ldots,\left(c_{k}, c_{k+1}\right),\left\{c_{1}\right\}, \ldots,\left\{c_{k}\right\}\right\}
$$

of intervals and points in \boldsymbol{k}, where $c_{1}<\cdots<c_{k} \in \boldsymbol{k}$ and $c_{0}=-\infty$, $c_{k+1}=\infty$;
(ii) a good decomposition of \boldsymbol{k}^{n+1} is a finite partition \mathcal{D} of \boldsymbol{k}^{n+1} into good cells such that $\left\{\pi_{n}^{n+1} C: C \in \mathcal{D}\right\}$ is a good decomposition of \boldsymbol{k}^{n}.

The following corollary and theorem are proved just as in [14].

Corollary 2.21. If $X_{1}, \ldots, X_{m} \subseteq R^{n}$ are definable, then there is a good decomposition of \boldsymbol{k}^{n} partitioning every st X_{i}.

Theorem 2.22. The $\boldsymbol{k}_{\text {ind }}$-definable subsets of \boldsymbol{k}^{n} are exactly the finite unions of sets st $X \backslash$ st Y with $X, Y \in \operatorname{Def}^{n}(R)$.

As in [14] we find that the standard part of a partial derivative of a definable function is almost everywhere equal to the corresponding partial derivative of the standard part of the function:

Theorem 2.23. Let $f: Y \rightarrow R$ with $Y \subseteq R^{n}$ be definable with V-bounded graph. Then there is a good decomposition \mathcal{D} of \boldsymbol{k}^{n} that partitions st Y such that if $D \in \mathcal{D}$ is open and $D \subseteq$ st Y, then f is continuously differentiable on an open definable $X \subseteq Y$ containing D^{h}, and $f, \partial f / \partial x_{1}, \ldots, \partial f / \partial x_{n}$, as functions on X, induce functions $g, g_{1}, \ldots, g_{n}: D \rightarrow \boldsymbol{k}$ such that g is C^{1} and $g_{i}=\partial g / \partial x_{i}$ for all i.
3. The conditions $\mathcal{C}, \Sigma_{\mathrm{i}}, \Sigma_{\mathrm{d}}$ and Σ. In this section we show that $\Sigma_{\mathrm{i}} \& \Sigma_{\mathrm{d}}$ implies \mathcal{C}, we prove that various conditions imply Σ, and we give an example showing that $\boldsymbol{k}_{\text {ind }}$ is not always o-minimal.
3.1. Closed and definably connected sets. The conditions Σ_{d} and \mathcal{C} on pairs (R, V) are stated on page 116. Note that if (R, V) satisfies \mathcal{C}, then $\boldsymbol{k}_{\text {ind }}$ is o-minimal by Lemma 2.3. For (R, V) to satisfy \mathcal{C} it suffices that for each n the closed $\boldsymbol{k}_{\text {ind }}$-definable subsets of $I(\boldsymbol{k})^{n}$ are exactly the sets st X with definable $X \subseteq I^{n}$. (This follows by means of the homeomorphisms τ_{n}.)

Proposition 3.1. Suppose $(R, V) \vDash \Sigma_{\mathrm{i}}$ and $(R, V) \vDash \Sigma_{\mathrm{d}}$. Then (R, V) satisfies \mathcal{C}. (In particular, $\Sigma \Rightarrow \mathcal{C}$.)

Proof. The result will follow from Corollary 2.21 once we show that the closure of a good cell in \boldsymbol{k}^{n} is of the form st X for some definable $X \subseteq R^{n}$. Let ϵ range over all positive infinitesimals, and let $C \subseteq \boldsymbol{k}^{n}$ be a good cell.

Claim. There is $r_{0} \in R^{>\mathfrak{m}}$ and a definable $X \subseteq\left(0, r_{0}\right) \times R^{n}$ such that

$$
0<r<r^{\prime}<r_{0} \Rightarrow X\left(r^{\prime}\right) \subseteq X(r), \quad \text { st }\left(\bigcap_{\epsilon} X(\epsilon)\right)=C
$$

where ϵ ranges over all positive infinitesimals.
This claim follows by the same argument as the corresponding claim in the proof of Proposition 5.1 in [14]. Let $X \subseteq\left(0, r_{0}\right) \times R^{n}$ be as in the Claim. Then, since $(R, V) \models \Sigma_{\mathrm{d}}$, we can take $\epsilon \in \mathfrak{m}^{>0}$ such that st $X(\epsilon)=\operatorname{cl}(C)$.

For $Z \subseteq V^{n}$ we let $Z^{h}:=\mathrm{st}^{-1}(\mathrm{st} Z)$.
Proposition 3.2. Suppose (R, V) satisfies \mathcal{C}, and let $X \subseteq V^{n}$ be definable and definably connected in R. Then st X is definably connected.

Proof. Assume to the contrary that st X is not definably connected. Then st $X=$ st $Y_{1} \dot{U}$ st Y_{2} for some definable, nonempty $Y_{1}, Y_{2} \subseteq R^{n}$. We may assume that Y_{1}, Y_{2} are closed. Let

$$
q:=\inf \left\{d\left(y, \text { st } Y_{2}\right): y \in \operatorname{st} Y_{1}\right\}
$$

Since st Y_{1}, st Y_{2} are closed and bounded, $q \in \boldsymbol{k}^{>0}$. Define

$$
X_{1}:=\left\{x \in R^{n}: d\left(x, Y_{1}\right) \leq q / 4\right\} \quad \text { and } \quad X_{2}:=\left\{x \in R^{n}: d\left(x, Y_{2}\right) \leq q / 4\right\}
$$

Then X_{1}, X_{2} are closed and disjoint, and $Y_{1}^{h} \subseteq X_{1}, Y_{2}^{h} \subseteq X_{2}$. Since $X^{h}=$ $Y_{1}^{h} \cup Y_{2}^{h}$, we have $X=\left(X \cap X_{1}\right) \cup\left(X \cap X_{2}\right)$, where $X \cap X_{1}, X \cap X_{2}$ are nonempty, disjoint, and closed in X, a contradiction with X being definably connected.
3.2. Conditions implying Σ. In the next lemma we use the following convention. Let $C \subseteq R^{n}$ be an $\left(i_{1}, \ldots, i_{n}\right)$-cell of dimension k. Let $\lambda:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ be such that

$$
1 \leq \lambda(1)<\cdots<\lambda(k) \leq n
$$

and $i_{\lambda(1)}=\cdots=i_{\lambda(k)}=1$. We define
$C_{0}:=\left\{a \in R^{k}:\right.$ there is $x \in C$ such that $\left.x_{\lambda(1)}=a_{1} \& \ldots \& x_{\lambda(k)}=a_{k}\right\}$.
Then C_{0} is the homeomorphic image of C under a coordinate projection $p: R^{n} \rightarrow R^{k}$. For a definable C^{1}-function $f: C \rightarrow R$ we let $\hat{f}: C_{0} \rightarrow R$ be defined by $\hat{f}(p(x))=f(x)$ where $x \in C$. We denote by $\frac{\partial f}{\partial x_{j}}(a)$, where $a \in C$ and $j \in\{1, \ldots, k\}$, the j th partial derivative of \hat{f} at $p(a)$.

Lemma 3.3. Suppose cofinality $(\mathfrak{m})>2^{|\boldsymbol{k}|}$. Then (R, V) satisfies Σ.
Proof. Let $X \in \operatorname{Def}^{1+n}(R)$. By cell decomposition we may assume that X is an $\left(i_{1}, \ldots, i_{n+1}\right)$-cell satisfying for every $k=1, \ldots, n+1$ the following: If $p_{k}^{n+1} X=(f, g)$, then all $\partial f / \partial x_{i}, \partial g / \partial x_{i}$ have constant sign on $p_{k-1}^{n+1} X$. If $p_{k}^{n+1} X=\Gamma f$, then all $\partial f / \partial x_{i}$ have constant sign on $\left(p_{k-1}^{n+1} X\right)_{0}$.

Now there are $2^{|\boldsymbol{k}|}$ distinct subsets of \boldsymbol{k}^{n}. Let $f: \mathfrak{m}^{>0} \rightarrow \mathcal{P}\left(\boldsymbol{k}^{n}\right)$, where $\mathcal{P}\left(\boldsymbol{k}^{n}\right)$ is the power set of \boldsymbol{k}^{n}, be given by $\epsilon \mapsto$ st $X(\epsilon)$. Assume to the contrary that for every $\epsilon_{1} \in \mathfrak{m}^{>0}$ we can find $\epsilon_{2} \in \mathfrak{m}^{>\epsilon_{1}}$ such that st $X\left(\epsilon_{1}\right) \neq$ st $X\left(\epsilon_{2}\right)$. Then the above assumption on X yields a cofinal subset of \mathfrak{m} such that f is injective on this subset, a contradiction.

Note that, together with 5.3 and 6.4 in [5], this lemma implies that if V is a T-convex subring of R, then $(R, V) \models \Sigma$.

Lemma 3.4. Let R be ω-saturated. Then $(R, \mathcal{O}) \vDash \Sigma$.
Proof. Let $X \subseteq R^{1+n}$ be defined over $a \in R^{k}$. Since R is ω-saturated, we can take $\epsilon \in \mathfrak{m}$ such that $\epsilon>\delta$ for every $\delta \in \operatorname{dcl}(a)$ with $\delta<\mathbb{Q}^{>0}$. Then for every $\epsilon^{\prime} \in \mathfrak{m}^{>\epsilon}, \operatorname{tp}\left(\epsilon^{\prime} \mid a\right)=\operatorname{tp}(\epsilon \mid a)$, and, in particular, st $X\left(\epsilon^{\prime}\right)=\operatorname{st} X(\epsilon)$.

Otherwise we could find $x \in$ st $X\left(\epsilon^{\prime}\right) \triangle$ st $X(\epsilon)$ and a box $B=\left(p_{1}, q_{1}\right) \times \cdots \times$ $\left(p_{n}, q_{n}\right) \subseteq \mathbb{R}^{n}$ with $p_{i}, q_{i} \in \mathbb{Q}$ such that $x \in B$ and either $\operatorname{cl}(B) \cap$ st $X(\epsilon)=\emptyset$ or $\operatorname{cl}(B) \cap$ st $X\left(\epsilon^{\prime}\right)=\emptyset$. Then $B^{\prime}=\left(p_{1}, q_{1}\right) \times \cdots \times\left(p_{n}, q_{n}\right) \subseteq R^{n}$ is such that $B^{\prime} \cap X(\epsilon)=\emptyset$ and $B^{\prime} \cap X\left(\epsilon^{\prime}\right) \neq \emptyset$, or vice versa, a contradiction. -

We saw in Section 2 that if $(R, V) \models \Sigma_{\mathrm{i}}$, then $\boldsymbol{k}_{\text {ind }}$ is o-minimal. However, the following example shows that $\boldsymbol{k}_{\text {ind }}$ is not always o-minimal.

Example. Let $\mathbb{R}_{\exp }$ be the real exponential field and let R be a proper elementary extension. Take $\lambda \in R$ such that $\lambda>\mathbb{R}$, and let V be the smallest convex subring of R containing λ, i.e.

$$
V:=\left\{y:|y|<\lambda^{n} \text { for some } n\right\}
$$

and let \boldsymbol{k} be the corresponding residue field. We define $\log : R^{>0} \rightarrow R$ to be the inverse function of $\exp : R \rightarrow R^{>0}$. Then $\log \left(V^{>0}\right)=V$ and it induces an increasing and injective function $\boldsymbol{k}^{>0} \rightarrow \boldsymbol{k}$, which, for simplicity, we shall also denote by \log. Now the set $\left\{\operatorname{st}(\lambda)^{n}: n \in \mathbb{N}\right\}$ is cofinal in $\boldsymbol{k}^{>0}$, hence $\left\{\log \operatorname{st}(\lambda)^{n}: n \in \mathbb{N}\right\}$ is cofinal in $\log \boldsymbol{k}^{>0}$. So the set $\log \boldsymbol{k}^{>0}$ is definable in $\boldsymbol{k}_{\text {ind }}$, but, because $\log \operatorname{st}(\lambda)^{n}=n \log \operatorname{st}(\lambda)$, it is not cofinal in $\boldsymbol{k}^{>0}$, nor does it have a supremum. It follows that $\boldsymbol{k}_{\text {ind }}$ cannot be o-minimal, nor does (R, V) satisfy Σ_{i}.
4. Traces. Recall from the Introduction that a set $X \subseteq R^{n}$ is a trace if $X=Y \cap R^{n}$ for some n-ary relation Y defined in some elementary extension of R using parameters from that extension. Note that every $X \in \operatorname{Def}^{n}(R)$ is a trace, and that if $X, Y \subseteq R^{n}$ are traces, then so are $X \cup Y, X \cap Y$ and X^{c}. An example of a trace is $V \subseteq R$: take an element λ in an elementary extension of R such that $V<\lambda<R^{>V}$. Then $V=(-\lambda, \lambda) \cap R$ where the interval $(-\lambda, \lambda)$ is taken in the extension.

We let R^{*} be the expansion of R by all traces $X \subseteq R^{n}$, for all n. By the main result of [1] every subset of R^{n} definable in R^{*} is a trace. It follows that every subset of R^{n} definable in (R, V) is a trace.

LEMMA 4.1. Let \boldsymbol{k}^{*} be the expansion of the ordered field \boldsymbol{k} by the sets st $X \subseteq \boldsymbol{k}^{n}$ for all traces $X \subseteq R^{n}$ and all n. Then, for all n,

$$
\operatorname{Def}^{n}\left(\boldsymbol{k}^{*}\right)=\left\{\text { st } X: X \subseteq R^{n} \text { is a trace }\right\}
$$

Proof. We first show that for every n, the collection

$$
\mathcal{C}_{n}:=\left\{\text { st } X: X \subseteq R^{n} \text { is a trace }\right\}
$$

is a boolean algebra on \boldsymbol{k}^{n}. It is clear that

$$
\text { st } X_{1} \cup \text { st } X_{2}=\operatorname{st}\left(X_{1} \cup X_{2}\right)
$$

for all traces $X_{1}, X_{2} \subseteq R^{n}$. To see that \mathcal{C}_{n} is closed under complements, let
$X \subseteq R^{n}$ be a trace, and note that

$$
(\operatorname{st} X)^{c}=\operatorname{st}\left\{y \in R^{n}: d(y, x)>\mathfrak{m} \text { for every } x \in X\right\}
$$

Since \mathfrak{m} is a trace, the set $\left\{y \in R^{n}: d(y, x)>\mathfrak{m}\right.$ for all $\left.x \in X\right\}$ is definable in R^{*}, hence, by [1], it is itself a trace. We conclude that the sets st X, where $X \subseteq R^{n}$ is a trace, are the elements of a boolean algebra on \boldsymbol{k}^{n}.

Now let $X \subseteq R^{n}$ be a trace, and let $0 \leq m \leq n$. We may assume that $X \subseteq V^{n}$ (since V is a trace). Then $\pi_{m}^{n}(\operatorname{st} X)=\operatorname{st}\left(p_{m}^{n} X\right)$, and by [1], $p_{m}^{n} X$ is a trace.

It follows from Lemma 4.1 and [2] that \boldsymbol{k}^{*} is weakly o-minimal.
Lemma 4.2. Let S_{1} be a weakly o-minimal structure and S_{2} an o-minimal structure on the same underlying ordered set S. Suppose for every n and for every $X_{1} \in \operatorname{Def}^{n}\left(S_{1}\right)$ there is $X_{2} \in \operatorname{Def}^{n}\left(S_{2}\right)$ such that $X_{1} \triangle X_{2}$ has empty interior in S^{n}. Then $\operatorname{Def}^{n}\left(S_{1}\right) \subseteq \operatorname{Def}^{n}\left(S_{2}\right)$ for all n.

Proof. We proceed by induction on n. Let $n=1$. If $X \subseteq S$ is a finite union of convex sets, and $Y \subseteq S$ is a finite union of points and intervals, then either $X \triangle Y$ is finite, or $X \triangle Y$ has nonempty interior. It follows that $\operatorname{Def}^{1}\left(S_{1}\right) \subseteq \operatorname{Def}^{1}\left(S_{2}\right)$ and, in particular, S_{1} is o-minimal.

So assume $\operatorname{Def}^{k}\left(S_{1}\right) \subseteq \operatorname{Def}^{k}\left(S_{2}\right)$ for $k=1, \ldots, n$. Since S_{1} and S_{2} are o-minimal, it suffices to show that every S_{1}-cell in S^{n+1} is definable in S_{2}. It is even enough to prove this for S_{1}-cells Γg; here $g: C \rightarrow S$ is a continuous and S_{1}-definable function on an S_{1}-cell $C \subseteq S^{n}$. Let Γg be such an S_{1}-cell.

First, suppose C is an open cell. By the inductive assumption $C \in$ $\operatorname{Def}^{n}\left(S_{2}\right)$ and we can take $X \in \operatorname{Def}^{n+1}\left(S_{2}\right)$ with $X \subseteq C \times S$ such that $(-\infty, g) \triangle X$ does not contain a box. Let $p: S^{n+1} \rightarrow S^{n}$ be given by $p\left(x_{1}, \ldots, x_{n+1}\right)=\left(x_{1}, \ldots, x_{n}\right)$. For $X, Y \subseteq S^{n+1}$ we say that $X<Y$ if for all $a \in S^{n}$ and $(a, x) \in X,(a, y) \in Y$ we have $x<y$. Now take an S_{2}-decomposition \mathcal{D} of S^{n+1} which partitions X, and let C_{1}, \ldots, C_{k} be the open cells in $p \mathcal{D}$ with $C_{i} \subseteq p X$. We claim that $\Gamma\left(g \mid C_{i}\right) \in \operatorname{Def}^{n+1}\left(S_{2}\right)$ for every i.

So let $i \in\{1, \ldots, k\}$, and let D_{1}, \ldots, D_{l} be the open cells in \mathcal{D} with $D_{j} \subseteq X$ and $p D_{j}=C_{i}$ for all j. If $D_{j}=\left(f_{j}, g_{j}\right)$ and $D_{j} \cap \Gamma\left(g \mid C_{i}\right) \neq \emptyset$ for some $j \in\{1, \ldots, l\}$, then there is $x \in C_{i}$ with $g(x)<g_{j}(x)$. Then, by continuity of g and g_{j}, we obtain a box $B \subseteq X \backslash(-\infty, g)$, a contradiction. So $D_{j} \cap \Gamma g=\emptyset$, and, in particular, $D_{j}<\Gamma\left(g \mid C_{i}\right)$ for every j.

Let $d \in\{1, \ldots, l\}$ be such that $D_{j}<D_{d}=\left(f_{d}, g_{d}\right)$ for all $j \neq d$. If $g_{d}<$ $g \mid C_{i}$ on a subset of C_{i} with nonempty interior, then, again by continuity of g and g_{d}, we find a box $B \subseteq(-\infty, g)$ with $\Gamma\left(g_{d} \mid p B\right)<B$. Since B intersects X in only at most finitely many cells of the form Γh, where $h: C_{i} \rightarrow S$ is continuous, we can find a box $B^{\prime} \subseteq(-\infty, g) \backslash X$, a contradiction. So
$g_{d}=g \mid C_{i}$ outside a subset of C_{i} with empty interior, hence $g_{d}=g \mid C_{i}$ by continuity of g and g_{d}.

We have shown that $\Gamma\left(g \mid C_{i}\right)$ is S_{2}-definable for all $i=1, \ldots, k$. It is easy to check that then

$$
\Gamma g=\operatorname{cl}\left(\bigcup_{i=1}^{k} \Gamma\left(g \mid C_{i}\right)\right) \cap\left(C_{i} \times S\right)
$$

hence $\Gamma g \in \operatorname{Def}^{n+1}\left(S_{2}\right)$.
So let $\Gamma g \in \operatorname{Def}^{n+1}\left(S_{2}\right)$ be an $\left(i_{1}, \ldots, i_{n}, 0\right)$-cell with $i_{k}=0$ where $1 \leq$ $k \leq n$, and let

$$
q: S^{n+1} \rightarrow S^{n}:\left(x_{1}, \ldots, x_{n+1}\right) \mapsto\left(x_{1}, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{n+1}\right)
$$

By the inductive assumption, $q(\Gamma g) \in \operatorname{Def}^{n}\left(S_{2}\right)$. We define Γg in S_{2} as

$$
\left\{(x, y): x \in C \text { and }\left(x_{1}, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{n}, y\right) \in q(\Gamma g)\right\}
$$

The main result of this section is Theorem 4.4 where we assume that R is ω-saturated and $V=\mathcal{O}$. This assumption is essential: Suppose $\boldsymbol{k}_{\text {ind }}$ is o-minimal but \boldsymbol{k} is not isomorphic to \mathbb{R}. Then \boldsymbol{k} has a nonempty bounded convex subset X without a least upper bound in \boldsymbol{k}, so X is not definable in $\boldsymbol{k}_{\text {ind }}$. However, $X^{h} \subseteq R$ is a trace, and so $X=$ st Y for some trace set $Y \subseteq R^{n}$.

In the rest of this section we assume that R is ω-saturated and

 $V=\mathcal{O}$. In particular, $\boldsymbol{k}=\mathbb{R}$.Lemma 4.3. Let $Y \subseteq R^{n}$ be a trace. Then there is a definable $Z \subseteq R^{n}$ such that st $Y \triangle$ st Z has empty interior in \mathbb{R}^{n}.

Proof. Take an elementary extension R^{\prime} of R with a definable set $Y^{\prime} \subseteq R^{\prime n}$ such that $Y=Y^{\prime} \cap R^{n}$. Then Y^{\prime} is defined in R^{\prime} by a formula $\phi(a, y)$ where $a \in R^{\prime m}$ and $\phi(x, y)$ is a formula in the language of R, $x=\left(x_{1}, \ldots, x_{m}\right), y=\left(y_{1}, \ldots, y_{n}\right)$. By ω-saturation of R we can take $b \in R^{m}$ such that $\operatorname{tp}(b \mid \emptyset)=\operatorname{tp}(a \mid \emptyset)$. Let $Z \subseteq R^{n}$ be defined in R by $\phi(b, y)$. Then $Y \cap \mathcal{O}^{n} \subseteq \bigcup_{\epsilon} Z^{\epsilon}$, where ϵ ranges over all positive infinitesimals and

$$
Z^{\epsilon}:=\left\{y \in R^{n}: d(y, Z) \leq \epsilon\right\} .
$$

Otherwise there would be $y \in Y \cap \mathcal{O}^{n}$ such that $d(y, Z)>\mathfrak{m}$, so for some \mathcal{O}-box $P \subseteq R^{n}$, we would have $P \cap Y \neq \emptyset$ and $P \cap Z=\emptyset$, a contradiction with $\operatorname{tp}(b \mid \emptyset)=\operatorname{tp}(a \mid \emptyset)$.

It follows that st $Y \subseteq$ st Z. We claim that int(st $Y \triangle$ st $Z)=\emptyset$. Otherwise, we can take a box $B \subseteq \mathbb{R}^{n}$ such that $B \subseteq$ st $Z \backslash$ st Y, so the V-box lemma yields an \mathcal{O}-box $P \subseteq Z$ such that $P \cap Y=\emptyset$, contradicting $\operatorname{tp}(b \mid \emptyset)=$ $\operatorname{tp}(a \mid \emptyset)$.

Theorem 4.4. For all n,

$$
\operatorname{Def}^{n}\left(\mathbb{R}_{\mathrm{ind}}\right)=\left\{\text { st } X: X \subseteq R^{n} \text { is a trace }\right\}
$$

Proof. By Lemma 4.1,

$$
\left\{\text { st } X: X \subseteq R^{n} \text { is a trace }\right\}=\operatorname{Def}^{n}\left(\mathbb{R}^{*}\right)
$$

for all n, and it is clear that $\operatorname{Def}^{n}\left(\mathbb{R}_{\text {ind }}\right) \subseteq \operatorname{Def}^{n}\left(\mathbb{R}^{*}\right)$. So let $X \subseteq R^{n}$ be a trace. By Lemma 4.3, we can take $Y \in \operatorname{Def}^{n}(R)$ such that $\operatorname{int}($ st $X \triangle$ st Y) $=\emptyset$, hence, by Lemma 4.2, $\operatorname{Def}^{n}\left(\mathbb{R}^{*}\right) \subseteq \operatorname{Def}^{n}\left(\mathbb{R}_{\text {ind }}\right)$.

Corollary 4.5. $\operatorname{Def}^{n}\left(\mathbb{R}_{\mathrm{ind}}\right)=\left\{\operatorname{st} X: X \in \operatorname{Def}^{n}(R, \mathcal{O})\right\}$ for all n.
Proof. It is clear that $\left\{\operatorname{st} X: X \in \operatorname{Def}^{n}(R, \mathcal{O})\right\} \subseteq \operatorname{Def}^{n}\left(\mathbb{R}^{*}\right)$, so by Theorem4.4, $\left\{\right.$ st $\left.X: X \in \operatorname{Def}^{n}(R, \mathcal{O})\right\} \subseteq \operatorname{Def}^{n}\left(\mathbb{R}_{\text {ind }}\right)$. To see that

$$
\operatorname{Def}^{n}\left(\mathbb{R}_{\mathrm{ind}}\right) \subseteq\left\{\operatorname{st} X: X \in \operatorname{Def}^{n}(R, \mathcal{O})\right\}
$$

recall that the $\mathbb{R}_{\text {ind }}$-definable subsets of \mathbb{R}^{n} are finite unions of sets st $Y \backslash$ st Z, where $Y, Z \in \operatorname{Def}^{n}(R)$, and observe that

$$
\text { st } Y \backslash \operatorname{st} Z=\operatorname{st}\{x \in Y: d(x, Z)>\mathfrak{m}\}
$$

and that \mathfrak{m} is definable in the structure (R, \mathcal{O}).

5. Open problems

1. We showed that if cofinality $(\mathfrak{m})>2^{|\boldsymbol{k}|}$, then $(R, V) \models \Sigma$. Conversely, if $(R, V) \models \Sigma$, is there an elementary extension of (R, V) satisfying this inequality?
2. Does an analogue of Corollary 4.5 hold under more general conditions, for example $(R, V) \models \Sigma$?
3. Let R be an ω-saturated elementary extension of the Lipshitz-Robinson structure. Are the definable sets of $\mathbb{R}_{\text {ind }}$ just the semialgebraic sets?

Remark. An earlier version of this paper included a question by Lou van den Dries and Jonathan Kirby: Let R be ω-saturated and $V=\mathcal{O}$; is $\mathbb{R}_{\text {ind }}$ elementarily equivalent to a definable reduct of R ?

However, a negative answer to this question follows from an observation by Tom Foster in [9]: Let R be an ω-saturated model of the real exponential field, and let R^{\prime} be the $\left(+, \cdot,<, x^{c}\right)$-reduct of the expansion of R by a function symbol x^{c} for the R-definable function

$$
x^{c}: R^{>0} \rightarrow R^{>0}: x \mapsto \exp (c \log x)
$$

where $c \in R^{>\mathcal{O}}$. Then R^{\prime} is o-minimal and power-bounded. On the other hand, the function

$$
(0, \infty) \rightarrow R^{>0}: x \mapsto(1+x / c)^{c}
$$

is definable in R^{\prime}, and the image of its graph under the residue map corresponding to \mathcal{O} yields the graph of the exponential in $\mathbb{R}_{\text {ind }}$.

Acknowledgments. This paper contains some of the results in the author's PhD thesis. The author would like to thank her advisor Lou van den Dries for advice.

References

[1] Y. Baisalov et B. Poizat, Paires de structures o-minimales, J. Symbolic Logic 63 (1998), 570-578.
[2] B. S. Baizhanov, Expansion of an o-minimal model by unary convex predicates, in: Researches in Theory of Algebraic Systems, T. Nurmagambetov (ed.), Karaganda State Univ., 1995, 3-23.
[3] G. Cherlin and M. A. Dickmann, Real closed rings II: Model theory, Ann. Pure Appl. Logic 25 (1983), 213-231.
[4] L. van den Dries, O-minimal structures, in: Logic: from Foundations to Applications (Staffordshire, 1993), Oxford Sci. Publ., Oxford Univ. Press, New York, 1996, 137-185.
[5] -, T-convexity and tame extensions II, J. Symbolic Logic 62 (1997), 14-34; Erratum, ibid. 63 (1998), 1597.
[6] -, Tame Topology and o-Minimal Structures, London Math. Soc. Lecture Note Ser. 248, Cambridge Univ. Press, 1998.
[7] L. van den Dries and A. H. Lewenberg, T-convexity and tame extensions, J. Symbolic Logic 60 (1995), 74-102.
[8] L. van den Dries and J. Maříková, Triangulation in o-minimal fields with standard part map, Fund. Math. 209 (2010), 133-155.
[9] T. Foster, The first order theory of raising to an infinite power, preprint.
[10] E. Hrushovski and Y. Peterzil, A question of van den Dries and a theorem of Lipshitz and Robinson; not everything is standard, J. Symbolic Logic 72 (2007), 119-122.
[11] E. Hrushovski, Y. Peterzil and A. Pillay, Groups, measures and the NIP, J. Amer. Math. Soc. 21 (2008), 563-596.
[12] L. Lipshitz and Z. Robinson, Overconvergent real closed quantifier elimination, Bull. London Math. Soc. 38 (2006), 897-906.
[13] D. Macpherson, D. Marker and C. Steinhorn, Weakly o-minimal structures and real closed fields, Trans. Amer. Math. Soc. 352 (2000), 5435-5483.
[14] J. Maříková, The structure on the real field generated by the standard part map on an o-minimal expansion of a real closed field, Israel J. Math. 171 (2009), 175-195.
[15] —, O-minimal residue fields of o-minimal fields, arXiv:1001.1575.

```
Jana Maříková
Department of Mathematics, WIU
476 Morgan Hall, 1 University Circle
Macomb, IL 61455, U.S.A.
E-mail: J-Marikova@wiu.edu
```

