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Abstract. Let R be an o-minimal field and V a proper convex subring with residue
field k and standard part (residue) map st : V → k. Let kind be the expansion of k by
the standard parts of the definable relations in R. We investigate the definable sets in
kind and conditions on (R, V ) which imply o-minimality of kind. We also show that if R is
ω-saturated and V is the convex hull of Q in R, then the sets definable in kind are exactly
the standard parts of the sets definable in (R, V ).

1. Introduction. Throughout, R is an o-minimal field, that is, an o-
minimal expansion of a real closed field, and V is a proper convex subring
with maximal ideal m, ordered residue field k = V/m, and standard part
(residue) map st : V → k. This map induces a map st : V n → kn and for
X ⊆ Rn we put stX := st(X ∩ V n). By kind we denote the ordered field
k expanded by the relations stX with X ∈ Defn(R), n = 1, 2, . . . . Unless
indicated otherwise, by “definable” we mean “definable with parameters in
the structure R”.

The most important case of a convex subring of R is the convex hull

O := {x ∈ R : |x| ≤ q for some q ∈ Q>0}
of Q in R. If V = O, then the ordered field k is archimedean and we identify
k with its image in the ordered field R of real numbers via the unique ordered
field embedding of k into R. In particular, if R is ω-saturated and V = O,
then k = R.

We consider the following questions:

(1) Under what conditions on (R, V ) is kind o-minimal?
(2) How complicated are the definable relations in kind in terms of the

basic relations stX with definable X ⊆ Rn?

Here is a brief history of these problems. In 1983, Cherlin and Dickmann [3]
proved quantifier elimination for real closed fields with a proper convex
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subring. In 1995 van den Dries and Lewenberg [7] identified the notion of
T -convex subring of an o-minimal field as a suitable analogue of convex
subring of a real closed field (here T is the theory of the given o-minimal
field). A convex subring V of R is said to be Th(R)-convex if f(V ) ⊆ V for
every continuous ∅-definable function f : R→ R. The situation when V is a
Th(R)-convex subring of R is well-understood; see [7] and [5]. In particular,
kind is o-minimal in that case.

The structure kind is not always o-minimal, as the example on page 128
shows. However, kind is always weakly o-minimal: By a theorem of Baizhanov
in [2] (see also [1]), (R, V ) is weakly o-minimal, and by an argument just as
in the proof of Lemma 4.1, every Y ⊆ k definable in kind equals stX for
some X ⊆ V definable in (R, V ). Hrushovski, Peterzil and Pillay observe
in [11] that if R is sufficiently saturated and V = O, then kind is o-minimal,
because then k = R and for expansions of the ordered field R weak o-
minimality is the same as o-minimality. However, [11] gives no information
about question (2) in that situation, which includes cases where O is not
Th(R)-convex; we say more about this in the remark on page 117.

Good cell decomposition. In [14] we answered (2) for the situation
in [11] by means of good cell decomposition, which also gives the o-minimality
of Rind without using [2]. In the present paper we obtain good cell decom-
position (and thus o-minimality of kind) under more general first-order as-
sumptions on the pair (R, V ). More precisely, suppose (R, V ) |= Σi where
Σi is defined below. Theorem 2.21 says that then the subsets of kn definable
in kind are the finite unions of differences stX \ stY , where X,Y ⊆ Rn

are definable. It follows that kind is o-minimal. Theorem 2.21 is proved in
the same way as the corresponding theorem in [14], except that uses of
saturation in [14] are replaced by uses of Σi. Also the proof of Lemma 4.1
in [14] does not generalize to our setting, and this is replaced here by a more
elementary proof of Lemma 2.4 below.

The following conditions on (R, V ) are related to good cell decomposi-
tion. To state these, let I := {x ∈ R : |x| ≤ 1}, and for X ⊆ R1+n and
r ∈ R, put

X(r) := {x ∈ Rn : (r, x) ∈ X}.
We let m>r := {x ∈ m : x > r} for r ∈ m. We define the conditions I, Σi,
Σd, Σ, and C on pairs (R, V ) as follows:

(I) if X,Y ⊆ In are definable, then there is a definable Z ⊆ In such
that stX ∩ stY = stZ;

(Σi) if X ⊆ I1+n is definable and X(r) ⊆ X(s) for all r, s ∈ I with
r ≤ s, then there is ε0 ∈ m>0 such that stX(ε0) = stX(ε) for all
ε ∈ m>ε0 ;
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(Σd) if X ⊆ I1+n is definable and X(r) ⊇ X(s) for all r, s ∈ I with
r ≤ s, then there is ε0 ∈ m>0 such that stX(ε0) = stX(ε) for all
ε ∈ m>ε0 ;

(Σ) if X ⊆ I1+n is definable, then there is ε0 ∈ m>0 such that stX(ε0) =
stX(ε) for all ε ∈ m>ε0 ;

(C) the kind-definable closed subsets of kn are exactly the sets stX with
definable X ⊆ Rn.

One should add here “for all n and X,Y ” as initial clause to I, and likewise
with the other conditions. In Section 3 we prove that for all (R, V ),

a) I ⇔ Σi;
b) Σi ⇒ kind is o-minimal;
c) Σ⇒ C.

In a subsequent paper with van den Dries [8] we shall prove the converse of c),
and also Σi =⇒ C, yielding Σi ⇔ Σ. More recently, the second author shows
in [15] the converse of b), so Σi really yields a first-order axiomatization of
the structures (R, V ) with o-minimal kind.

Our definition of I is not of first-order nature, but by a) it is equivalent
to first-order conditions. Similarly C will turn out to be equivalent to first
order conditions by c) and its converse in [8].

In Section 3 we also show that (R, V ) satisfies Σ if any of the following
holds:

(i) cofinality(m) > 2|k|;
(ii) V is T -convex, where T := Th(R);

(iii) R is ω-saturated and V = O.

Traces. Call a set X ⊆ Rn a trace if X = Y ∩Rn for some definable n-
ary relation Y in some elementary extension of R, where we allow parameters
from that elementary extension to define Y . In Section 4 we assume that
R is ω-saturated and V = O, and under these assumptions we characterize
the definable sets in Rind in terms of traces. As a corollary we show that if
R is ω-saturated and V = O, then

Defn(Rind) = {stX : X ∈ Defn(R,O)}.
We do not know if the analogue of this corollary holds under the more
general first-order assumption Σ. We do know that if V is Th(R)-convex,
then, for all n,

Defn(kind) = {stX : X ∈ Defn(R, V )}.
Remark. In 1996 van den Dries [4] asked the following question: Let

L be a language extending the language of ordered rings, and let T (L,R)
be the set of all sentences true in all L-expansions of the real field. Call R
pseudo-real if R |= T (L,R). Is every o-minimal field pseudo-real?
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If R has an archimedean model, then R is pseudo-real, but the converse
fails. Consider for example a proper elementary extension of the real field
and extend its language by a name for an element λ > R. Then the theory
of R in the extended language does not have an archimedean model but R
is of course pseudo-real as a structure for this extended language.

In 2006 Lipshitz and Robinson [12] considered the ordered Hahn field
R((tQ)) with operations given by overconvergent power series, and they
proved its o-minimality. In 2007 Hrushovski and Peterzil [10] showed that
this Lipshitz–Robinson field is not pseudo-real. It is easy to see that if R is
a model of the theory T of the Lipshitz–Robinson field, then O ⊆ R is not
T -convex.

Preliminaries. We assume familiarity with o-minimal structures and
their basic properties; see for example [6]. Throughout, we letm,n range over
the set N = {0, 1, 2, . . . } of natural numbers. Given a one-sorted structure
M = (M ; · · · ) we let Defn(M) be the boolean algebra of definable subsets
of Mn. Let K be an ordered field. For x ∈ K we put |x| := max{x,−x}, for
a = (a1, . . . , an) ∈ Kn we put

|a| := max{|ai| : i = 1, . . . , n} if n > 0, |a| := 0 if n = 0,

and for a, b ∈ Kn we put d(a, b) := |a−b|. A box in Kn is a cartesian product
of open intervals

(a1 − δ, a1 + δ)× · · · × (an − δ, an + δ),

where a = (a1, . . . , an) ∈ Kn and δ ∈ K>0. A V -box in Rn is a box in Rn as
above where a ∈ V n and δ ∈ V >m. So if B ⊆ Rn is a V -box, then B ⊆ V n

and stB contains a box in kn.
An interval is always a nonempty open interval (a, b) in R, or in R, or

in k, as specified. We already defined I := {x ∈ R : |x| ≤ 1} and more
generally, for each ordered field K we put I(K) := {x ∈ K : |x| ≤ 1}. For
a ∈ Rn and definable nonempty X ⊆ Rn we set

d(a,X) := inf{d(a, x) : x ∈ X},
and likewise for a ∈ kn and definable nonempty X ⊆ kn when kind is
o-minimal. A set X ⊆ Rn is said to be V -bounded if there is a ∈ V >0 such
that |x| ≤ a for all x ∈ X. (For V = O this is the same as strongly bounded.)
The hull of X ⊆ kn is the set Xh := st−1(X) ⊆ V n.

Given sets X,Y and S ⊆ X × Y we put

S(x) := {y ∈ Y : (x, y) ∈ S}.
If X is a subset of an ambient set M that is understood from the context,
then

Xc := {x ∈M : x 6∈ X}.
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We often use the following projection maps for m ≤ n:

pnm : Rn → Rm, (x1, . . . , xn) 7→ (x1, . . . , xm),
πnm : kn → km, (x1, . . . , xn) 7→ (x1, . . . , xm).

Given a map f : X → Y we let

Γf := {(x, y) ∈ X × Y : f(x) = y}
denote its graph.

2. Good cell decomposition

2.1. General facts on standard part sets. Recall that R is an o-
minimal field and V is a proper convex subring of R. We begin with some
results requiring no extra assumption on (R, V ). A very useful fact of this
kind is the V -box lemma (Corollary 2.5).

Lemma 2.1. If X ⊆ Rn is definable, then stX is closed.

Proof. Let X ⊆ Rn be definable and assume towards a contradiction
that we have an a ∈ cl(stX) \ stX. Take a′ ∈ Rn such that st a′ = a. Then,
by o-minimality of R, d(a′, X) exists in R and d(a′, X) > m. So there is a
neighborhood U ⊆ kn of a with U ∩ stX = ∅, a contradiction.

Let Stn be the collection of all sets stX with definable X ⊆ Rn. Note
that if X,Y ∈ Stn, then X ∪ Y ∈ Stn; if X ∈ Stm and Y ∈ Stn, then
X × Y ∈ Stm+n. The next lemma is almost obvious. To state it we use the
projection maps π = πm+n

m : km+n → km and p = pm+n
m : Rm+n → Rm.

Lemma 2.2. Let X ∈ Stm+n. Then

(1) if X is bounded, then π(X) ∈ Stm;
(2) if X = stX ′ where the set X ′ ⊆ Rm+n is definable in R and satisfies

X ′ ∩ p−1(V m) ⊆ V m+n, then π(X) ∈ Stm.

Lemma 2.3. If X ⊆ R is definable, then stX is a finite union of intervals
and points in k.

Proof. This is immediate from the o-minimality of R.

Below, p is the projection map Rn+1 → Rn given by p(x1, . . . , xn+1) =
(x1, . . . , xn).

Lemma 2.4.

(An) If D ⊆ V n+1 is a V -box, and f : Y → R, where Y ⊆ V n, is definable
and continuous with f(Y ) ⊆ V , then there is a V -box B ⊆ D with
B ∩ Γf = ∅.

(Bn) If D ⊆ V n is a V -box, and C is a decomposition of D, then there
is C ∈ C such that C contains a V -box.
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Proof. It is clear that (B1) holds. We first show that (Bn) implies (An).
Let f : Y → V be definable and continuous, with Y ⊆ V n, and let

D = (a1, b1)× · · · × (an+1, bn+1) ⊆ V n+1

be a V -box. Take p, q ∈ V such that an+1 < p < q < bn+1 and

q − p, p− an+1, bn+1 − q > m,

and pick δ > m with δ < min{p− an+1, (q − p)/2, bn+1 − q}. Define

X(p) := {x ∈ pn+1
n D ∩ Y : f(x) ∈ (p− δ, p+ δ)},

X(q) := {x ∈ pn+1
n D ∩ Y : f(x) ∈ (q − δ, q + δ)},

and note that X(p) ∩X(q) = ∅. Take a decomposition C of Rn such that C
partitions the sets pn+1

n D, X(p), and X(q). By (Bn), there is C ∈ C such
that C ⊆ pn+1

n D and C contains a V -box P . Then P × (p − δ, p + δ) or
P × (q − δ, q + δ) yields the desired V -box B.

Next, we show that (An) and (Bn) imply (Bn+1). Let D ⊆ V n+1 be a
V -box and let C be a decomposition of D. Then pn+1

n C is a decomposition of
pn+1
n D and by (Bn) we can take C ∈ C such that pn+1

n C contains a V -box P .
Let C1, . . . , Ck be the cells in C such that pn+1

n C = pn+1
n Ci for i = 1, . . . , k.

After restricting the functions pn+1
n C → R used to define C1, . . . , Ck to P

we see that it is enough to prove the following:
Let f1, . . . , fm : P → V be definable and continuous and let p, q ∈ V be

such that p < q and |q− p| > m. Then there is a V -box B ⊆ P × (p, q) with
B ∩ Γfj = ∅ for all j.

For m = 1 this statement follows from (An), and for m > 1 it follows by
a straightforward induction on m using again (An).

Corollary 2.5 (V -Box Lemma). Let X ⊆ Rn be definable and let
D ⊆ kn be a box such that D ⊆ stX. Then X contains a V -box B with
stB ⊆ D.

Proof. We may assume that X ⊆ V n, and that cl(D) ⊆ stX. Pick a
V -box D′ ⊆ Rn such that stD′ = cl(D), and take a decomposition C of
Rn which partitions both D′ and X. By Lemma 2.4, we can take C ∈ C
such that C ⊆ D′ and C contains a V -box B. It is clear that B ∩ X 6= ∅,
otherwise D would contain a box whose intersection with stX is empty. So
B ⊆ C ⊆ X.

Corollary 2.6. If X ⊆ Rn is definable, then stX ∩ stXc has empty
interior in kn.

By [1], kind is weakly o-minimal. MacPherson, Marker and Steinhorn
define in [13] a notion of dimension for weakly o-minimal structures:
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Definition 2.7. Let M be a weakly o-minimal structure, and let
X ⊆Mn be definable in M . If X 6= ∅, then dimw(X) is the largest inte-
ger k ∈ {0, . . . , n} for which there is a projection map

p : Mn →Mk, (x1, . . . , xn) 7→ (xλ(1), . . . , xλ(k)),

where 1 ≤ λ(1) < · · · < λ(k) ≤ n, such that int(pX) 6= ∅. We set
dimw(∅) = −∞.

Note that if M is o-minimal, then the above notion of dimension agrees
with the usual dimension for o-minimal structures.

Corollary 2.8. dimw(stX) ≤ dimX for V -bounded X ∈ Defn(R).

2.2. Good cells. We define good cells in analogy with [14], and we
state some results needed in the proof of good cell decomposition. We omit
proofs that are as in [14].

Definition 2.9. Given functions f : X→R with X ⊆Rn, and g : C→ k
with C ⊆ kn, we say that f induces g if f is definable (so X is definable),
Ch ⊆ X, f |Ch is continuous, f(Ch) ⊆ V and Γg = st(Γf) ∩ (C × k).

Lemma 2.10. Let C ⊆ kn and suppose g : C → k is induced by the
function f : X → R with X ⊆ Rn. Then g is continuous.

Proof. Assume towards a contradiction that g is not continuous at c ∈ C.
Let r ∈ k>0 be such that for every neighborhood B ⊆ kn of c there is
b ∈ B ∩ C with |g(c)− g(b)| ≥ r. Pick c′ ∈ Rn with st(c′) = c and define

Y := {x ∈ X : |f(c′)− f(x)| ≥ r′/2},
where r′ ∈ R>0 is such that st(r′) = r. Then d(c′, Y ) exists in R. If d(c′, Y ) is
infinitesimal then, since Y is closed, there is y ∈ Y such that st(y) = st(c′),
a contradiction with f inducing a function. Hence d(c′, Y ) > m, but this
yields a neighborhood B ⊆ kn of c such that g(B ∩C) ⊆ (g(c)− r, g(c) + r),
a contradiction.

For C ⊆ kn we let G(C) be the set of all g : C → k that are induced by
some definable f : X → R with X ⊆ Rn.

Lemma 2.11. Let 1 ≤ j(1) < · · · < j(m) ≤ n and define π : kn → km by

π(x1, . . . , xn) = (xj(1), . . . , xj(m)).

Let C ⊆ kn and suppose g ∈ G(πC). Then g ◦ π|C ∈ G(C).

Definition 2.12. Let i = (i1, . . . , in) be a sequence of zeros and ones.
Good i-cells are subsets of kn obtained by recursion on n as follows:

(i) For n = 0 and i the empty sequence, the one-point space k0 is the
only good i-cell, and for n = 1, a good (0)-cell is a singleton {a}
with a ∈ k; a good (1)-cell is an interval in k.
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(ii) Let n > 0 and assume inductively that good i-cells are subsets of kn.
A good (i, 0)-cell is a set Γh ⊆ kn+1 where h ∈ G(C) and C ⊆ kn

is a good i-cell. A good (i, 1)-cell is either a set C × k, or a set
(−∞, f) ⊆ kn+1, or a set (g, h) ⊆ kn+1, or a set (f,+∞) ⊆ kn+1,
where f, g, h ∈ G(C), g < h, and C is a good i-cell.

One verifies easily that a good i-cell is open in kn iff i1 = · · · = in = 1,
and that if i1 = · · · = in = 1, then every good i-cell is homeomorphic to kn.
A good cell in kn is a good i-cell for some sequence i = (i1, . . . , in) of zeros
and ones.

Lemma 2.13. Let C ⊆ kn be a good (i1, . . . , in)-cell, and let k ∈ {1, . . . , n}
be such that ik = 0. Let π : kn → kn−1 be given by

π(x1, . . . , xn) = (x1, . . . , xk−1, xk+1, . . . , xn).

Then π(C) ⊆ kn−1 is a good cell, π|C : C → π(C) is a homeomorphism,
and if E ⊆ π(C) is a good cell, so is its inverse image π−1(E) ∩ C.

2.3. More on good cells. We prove here that (R, V ) |= I iff (R, V ) |=
Σi (see page 116 for definitions of I and Σi). This implies that if (R, V ) |= Σi,
then good cells in kn are differences of standard parts of definable subsets
of Rn.

It is not difficult to show that if (R, V ) |= I, then for all n and all
definableX,Y ⊆ Rn there is a definable Z ⊆ Rn such that stX∩ stY = stZ:
Set J(k) := (−1, 1) ⊆ k and J := (−1, 1) ⊆ R. We shall use the definable
homeomorphism

τn : Rn → Jn : (x1 . . . , xn) 7→
(

x1√
1 + x2

1

, . . . ,
xn√

1 + x2
n

)
,

and we also let τn denote the homeomorphism

τn : kn → J(k)n : (x1 . . . , xn) 7→
(

x1√
1 + x2

1

, . . . ,
xn√

1 + x2
n

)
.

One easily checks that τ1 : R → J induces τ1 : k → J(k), and that for
X ∈ Defn(R),

τn(stX) = st(τnX) ∩ J(k)n;

moreover,

τ−1
n (st(X) ∩ J(k)n) = st(τ−1

n (X)) for X ⊆ J(k)n,

where τ−1
n : Jn → Rn and τ−1

n : J(k)n → kn are the inverse functions of
τn : Rn → Jn and of τn : kn → J(k)n respectively.

Suppose (R, V ) satisfies I. To see that then for all n and all X,Y ∈
Defn(R) there is Z ∈ Defn(R) such that stX ∩ stY = stZ, let X,Y ∈
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Defn(R). Then τnX, τnY ⊆ Jn, so we can take Z ∈ Defn(R) such that

st(τnX) ∩ st(τnY ) = stZ.

We claim that
stX ∩ stY = st(τ−1

n (Z ∩ Jn)).

To prove this it is enough to show that

(1) τn(stX ∩ stY ) = τ(st(τ−1
n (Z ∩ Jn))).

Now the right-hand side of (1) is equal to

st(Z ∩ Jn) ∩ J(k)n = st(Z) ∩ J(k)n,

and we have

τn(stX ∩ stY ) = st(τnX) ∩ st(τnY ) ∩ J(k)n.

In view of st(τnX) ∩ st(τnY ) = stZ this gives (1).
In a similar way the condition Σi implies its “unrestricted version”, i.e.

the variant obtained by substituting R for I. We shall often use these facts
tacitly.

Lemma 2.14. Suppose (R, V ) satisfies I. Then (R, V ) |= Σi.

Proof. Let X ⊆ I1+n be definable and increasing in the first variable.
Towards proving that X satisfies the conclusion of Σi we may assume that
X is closed.

Claim 1. There is ε0 ∈ m≥0 such that

st(X) ∩ ({0} × I(k)n) = st(X ∩ ([0, ε0]× In)).

We set Y := {0}× In and take a definable Z ⊆ In+1 with stX ∩ stY =
stZ. We may assume that Z is closed and nonempty, and we set ε1 :=
sup{d(z,X) : z ∈ Z} and ε2 := sup{d(z, Y ) : z ∈ Z}. Then ε1, ε2 ∈ m≥0,
and we claim that ε0 := ε1 + ε2 works. Clearly,

st(X ∩ ([0, ε0]× In)) ⊆ st(X) ∩ ({0} × I(k)n).

So let a ∈ stX ∩ stY . Then a = st(z) with z ∈ Z. We have d(z,X) ≤ ε1
and d(z, Y ) ≤ ε2. Since Z is closed and V -bounded, we can take x ∈ X and
y ∈ Y such that d(x, z) ≤ ε1, d(y, z) ≤ ε2. Then d(x, y) ≤ ε1 + ε2 = ε0, and
it follows that

a = st(x) ∈ st(X ∩ ([0, ε0]× In)).

This proves Claim 1. Let ε0 be as in Claim 1.

Claim 2. stX(ε) = stX(ε0) for all ε ∈ m≥ε0.

It is clear that stX(ε0) ⊆ stX(ε) for all ε ∈ m≥ε0 . To prove the other
inclusion, let a ∈ stX(ε). Then

(0, a) ∈ st(X) ∩ ({0} × I(k)n),
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hence
(0, a) ∈ st(X ∩ ([0, ε0]× In))

by Claim 1. Because X is increasing in the first variable, this implies (0, a) ∈
stX(ε0).

Lemma 2.15. Σi ⇒ I.

Proof. Suppose (R, V ) satisfies Σi. Let X,Y ⊆ In be definable and
nonempty. For ε ∈ R≥0 define

Y ε := {x ∈ Rn : d(x, Y ) ≤ ε}.

We claim that ⋃
ε

st(X ∩ Y ε) = stX ∩ stY,

where ε ranges over all positive infinitesimals. If a ∈ st(X∩Y ε), then clearly
a ∈ stX and a ∈ stY . If a ∈ stX ∩ stY , then we can take a′ ∈ X and
a′′ ∈ Y such that st(a′) = st(a′′) = a and d(a′, a′′) < ε for some ε ∈ m>0.
Hence a′ ∈ X ∩ Y ε.

Now by Σi, there is a positive infinitesimal ε0 such that

st(X ∩ Y ε0) =
⋃
ε

st(X ∩ Y ε).

The proofs of the following two lemmas are similar to the proofs of their
counterparts in [14].

Lemma 2.16. Suppose (R, V ) satisfies I, and let X ⊆ Rn and f : X → R
be definable, and put

X− := {x ∈ X : f(x) < V }, X+ := {x ∈ X : f(x) > V }.

Then stX− and stX+ belong to Stn.

Corollary 2.17. If (R, V ) satisfies I, and X ⊆ Rn and g : X → R are
definable, then st{x ∈ X : g(x) ∈ m} ∈ Stn.

Conversely, if the conclusion of this corollary holds for all n and definable
g : X → R with X ⊆ Rn, then (R, V ) satisfies I. To see this, let X,Y ⊆ V n

be definable with Y 6= ∅. Assume the conclusion of the corollary holds for
the function x 7→ d(x, Y ) : X → R. Then we have a definable Z ⊆ V n such
that stZ = st{x ∈ X : d(x, Y ) ∈ m}. This gives stX ∩ stY = stZ.

From now on until the end of Section 2 we assume (R, V ) |= Σi.
The following lemma is now proved as in [14].

Lemma 2.18. Every good cell in kn is of the form X\Y with X,Y ∈ Stn.
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2.4. Good cell decomposition. We obtain good cell decomposition,
namely, if X1, . . . , Xm ⊆ Rn are definable, then there is a finite partition of
kn into good cells that partitions every stXi. A consequence of this is that
the kind-definable subsets of kn are finite unions of differences stX \ stY ,
where X,Y ∈ Defn(R).

The proof of the following lemma is again as in [14].

Lemma 2.19. Let C ⊆ kn be a good i-cell, let X ⊆ Rn+1 be definable
and suppose k ∈ {1, . . . , n} is such that ik = 0. Define π : kn+1 → kn by

π(x) = (x1, . . . , xk−1, xk+1, . . . , xn+1).

Then π(st(X) ∩ (C × k)) is a difference of sets in Stn.

A good decomposition of I(k)n is a special kind of partition of I(k)n into
finitely many good cells. The definition is by recursion on n:

(i) a good decomposition of I(k) is a collection

{(c0, c1), (c1, c2), . . . , (ck, ck+1), {c0}, {c1}, . . . , {ck}, {ck+1}}
of intervals and points in k where c0 < c1 < · · · < ck < ck+1 are
real numbers with c0 = −1 and ck+1 = 1;

(ii) a good decomposition of I(k)n+1 is a finite partition D of I(k)n+1

into good cells such that {πn+1
n C : C ∈ D} is a good decomposition

of I(k)n.

Theorem 2.20 (Good Cell Decomposition).

(An) Given any definable X1, . . . , Xm ⊆ In, there is a good decomposi-
tion of I(k)n partitioning each set stXi.

(Bn) If f : X → I, with X ⊆ In, is definable, then there is a good decom-
position D of I(k)n such that for every open C ∈ D, either the set
st(Γf) ∩ (C × k) is empty, or f induces a function g : C → I(k).

The proof uses the lemmas above and is very similar to that of Theo-
rem 4.3 in [14].

A good decomposition of kn is a special kind of partition of kn into finitely
many good cells. The definition is by recursion on n:

(i) a good decomposition of k1 = k is a collection

{(c0, c1), (c1, c2), . . . , (ck, ck+1), {c1}, . . . , {ck}}
of intervals and points in k, where c1 < · · · < ck ∈ k and c0 = −∞,
ck+1 =∞;

(ii) a good decomposition of kn+1 is a finite partition D of kn+1 into
good cells such that {πn+1

n C : C ∈ D} is a good decomposition
of kn.

The following corollary and theorem are proved just as in [14].
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Corollary 2.21. If X1, . . . , Xm ⊆ Rn are definable, then there is a
good decomposition of kn partitioning every stXi.

Theorem 2.22. The kind-definable subsets of kn are exactly the finite
unions of sets stX \ stY with X,Y ∈ Defn(R).

As in [14] we find that the standard part of a partial derivative of a
definable function is almost everywhere equal to the corresponding partial
derivative of the standard part of the function:

Theorem 2.23. Let f : Y → R with Y ⊆ Rn be definable with V -bounded
graph. Then there is a good decomposition D of kn that partitions stY such
that if D ∈ D is open and D ⊆ stY , then f is continuously differentiable
on an open definable X ⊆ Y containing Dh, and f, ∂f/∂x1, . . . , ∂f/∂xn, as
functions on X, induce functions g, g1, . . . , gn : D → k such that g is C1 and
gi = ∂g/∂xi for all i.

3. The conditions C, Σi, Σd and Σ. In this section we show that
Σi & Σd implies C, we prove that various conditions imply Σ, and we give
an example showing that kind is not always o-minimal.

3.1. Closed and definably connected sets. The conditions Σd and
C on pairs (R, V ) are stated on page 116. Note that if (R, V ) satisfies C, then
kind is o-minimal by Lemma 2.3. For (R, V ) to satisfy C it suffices that for
each n the closed kind-definable subsets of I(k)n are exactly the sets stX
with definable X ⊆ In. (This follows by means of the homeomorphisms τn.)

Proposition 3.1. Suppose (R, V ) |= Σi and (R, V ) |= Σd. Then (R, V )
satisfies C. (In particular, Σ⇒ C.)

Proof. The result will follow from Corollary 2.21 once we show that the
closure of a good cell in kn is of the form stX for some definable X ⊆ Rn.
Let ε range over all positive infinitesimals, and let C ⊆ kn be a good cell.

Claim. There is r0 ∈ R>m and a definable X ⊆ (0, r0)×Rn such that

0 < r < r′ < r0 ⇒ X(r′) ⊆ X(r), st
(⋂
ε

X(ε)
)

= C,

where ε ranges over all positive infinitesimals.

This claim follows by the same argument as the corresponding claim in
the proof of Proposition 5.1 in [14]. Let X ⊆ (0, r0)×Rn be as in the Claim.
Then, since (R, V ) |= Σd, we can take ε ∈ m>0 such that stX(ε) = cl(C).

For Z ⊆ V n we let Zh := st−1(stZ).

Proposition 3.2. Suppose (R, V ) satisfies C, and let X ⊆ V n be defin-
able and definably connected in R. Then stX is definably connected.
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Proof. Assume to the contrary that stX is not definably connected.
Then stX = stY1 ∪̇ stY2 for some definable, nonempty Y1, Y2 ⊆ Rn. We
may assume that Y1, Y2 are closed. Let

q := inf{d(y, stY2) : y ∈ stY1}.
Since stY1, stY2 are closed and bounded, q ∈ k>0. Define

X1 := {x ∈ Rn : d(x, Y1) ≤ q/4} and X2 := {x ∈ Rn : d(x, Y2) ≤ q/4}.
Then X1, X2 are closed and disjoint, and Y h

1 ⊆ X1, Y h
2 ⊆ X2. Since Xh =

Y h
1 ∪ Y h

2 , we have X = (X ∩ X1) ∪ (X ∩ X2), where X ∩ X1, X ∩ X2 are
nonempty, disjoint, and closed in X, a contradiction with X being definably
connected.

3.2. Conditions implying Σ. In the next lemma we use the follow-
ing convention. Let C ⊆ Rn be an (i1, . . . , in)-cell of dimension k. Let
λ : {1, . . . , n} → {1, . . . , n} be such that

1 ≤ λ(1) < · · · < λ(k) ≤ n
and iλ(1) = · · · = iλ(k) = 1. We define

C0 := {a ∈ Rk : there is x ∈ C such that xλ(1) = a1 & . . . &xλ(k) = ak}.
Then C0 is the homeomorphic image of C under a coordinate projection
p : Rn → Rk. For a definable C1-function f : C → R we let f̂ : C0 → R be
defined by f̂(p(x)) = f(x) where x ∈ C. We denote by ∂f

∂xj
(a), where a ∈ C

and j ∈ {1, . . . , k}, the jth partial derivative of f̂ at p(a).

Lemma 3.3. Suppose cofinality(m) > 2|k|. Then (R, V ) satisfies Σ.

Proof. Let X ∈ Def1+n(R). By cell decomposition we may assume that
X is an (i1, . . . , in+1)-cell satisfying for every k = 1, . . . , n+ 1 the following:
If pn+1

k X = (f, g), then all ∂f/∂xi, ∂g/∂xi have constant sign on pn+1
k−1X. If

pn+1
k X = Γf , then all ∂f/∂xi have constant sign on (pn+1

k−1X)0.
Now there are 2|k| distinct subsets of kn. Let f : m>0 → P(kn), where

P(kn) is the power set of kn, be given by ε 7→ stX(ε). Assume to the
contrary that for every ε1 ∈ m>0 we can find ε2 ∈ m>ε1 such that stX(ε1) 6=
stX(ε2). Then the above assumption on X yields a cofinal subset of m such
that f is injective on this subset, a contradiction.

Note that, together with 5.3 and 6.4 in [5], this lemma implies that if V
is a T -convex subring of R, then (R, V ) |= Σ.

Lemma 3.4. Let R be ω-saturated. Then (R,O) |= Σ.

Proof. Let X ⊆ R1+n be defined over a ∈ Rk. Since R is ω-saturated,
we can take ε ∈ m such that ε > δ for every δ ∈ dcl(a) with δ < Q>0. Then
for every ε′ ∈ m>ε, tp(ε′|a) = tp(ε|a), and, in particular, stX(ε′) = stX(ε).
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Otherwise we could find x ∈ stX(ε′)4stX(ε) and a box B = (p1, q1)×· · ·×
(pn, qn) ⊆ Rn with pi, qi ∈ Q such that x ∈ B and either cl(B)∩ stX(ε) = ∅
or cl(B)∩ stX(ε′) = ∅. Then B′ = (p1, q1)×· · ·× (pn, qn) ⊆ Rn is such that
B′ ∩X(ε) = ∅ and B′ ∩X(ε′) 6= ∅, or vice versa, a contradiction.

We saw in Section 2 that if (R, V ) |= Σi, then kind is o-minimal. However,
the following example shows that kind is not always o-minimal.

Example. Let Rexp be the real exponential field and let R be a proper
elementary extension. Take λ ∈ R such that λ > R, and let V be the smallest
convex subring of R containing λ, i.e.

V := {y : |y| < λn for some n},

and let k be the corresponding residue field. We define log : R>0 → R to be
the inverse function of exp: R → R>0. Then log(V >0) = V and it induces
an increasing and injective function k>0 → k, which, for simplicity, we shall
also denote by log. Now the set {st(λ)n : n ∈ N} is cofinal in k>0, hence
{log st(λ)n : n ∈ N} is cofinal in log k>0. So the set log k>0 is definable
in kind, but, because log st(λ)n = n log st(λ), it is not cofinal in k>0, nor
does it have a supremum. It follows that kind cannot be o-minimal, nor does
(R, V ) satisfy Σi.

4. Traces. Recall from the Introduction that a set X ⊆ Rn is a trace if
X = Y ∩Rn for some n-ary relation Y defined in some elementary extension
ofR using parameters from that extension. Note that everyX ∈ Defn(R) is a
trace, and that if X,Y ⊆ Rn are traces, then so are X∪Y , X∩Y and Xc. An
example of a trace is V ⊆ R: take an element λ in an elementary extension
of R such that V < λ < R>V . Then V = (−λ, λ) ∩ R where the interval
(−λ, λ) is taken in the extension.

We let R∗ be the expansion of R by all traces X ⊆ Rn, for all n. By the
main result of [1] every subset of Rn definable in R∗ is a trace. It follows
that every subset of Rn definable in (R, V ) is a trace.

Lemma 4.1. Let k∗ be the expansion of the ordered field k by the sets
stX ⊆ kn for all traces X ⊆ Rn and all n. Then, for all n,

Defn(k∗) = {stX : X ⊆ Rn is a trace}.

Proof. We first show that for every n, the collection

Cn := {stX : X ⊆ Rn is a trace}

is a boolean algebra on kn. It is clear that

stX1 ∪ stX2 = st(X1 ∪X2)

for all traces X1, X2 ⊆ Rn. To see that Cn is closed under complements, let



O-minimal fields with standard part map 129

X ⊆ Rn be a trace, and note that

(stX)c = st{y ∈ Rn : d(y, x) > m for every x ∈ X}.

Since m is a trace, the set {y ∈ Rn : d(y, x) > m for all x ∈ X} is definable
in R∗, hence, by [1], it is itself a trace. We conclude that the sets stX, where
X ⊆ Rn is a trace, are the elements of a boolean algebra on kn.

Now let X ⊆ Rn be a trace, and let 0 ≤ m ≤ n. We may assume that
X ⊆ V n (since V is a trace). Then πnm(stX) = st(pnmX), and by [1], pnmX
is a trace.

It follows from Lemma 4.1 and [2] that k∗ is weakly o-minimal.

Lemma 4.2. Let S1 be a weakly o-minimal structure and S2 an o-mini-
mal structure on the same underlying ordered set S. Suppose for every n
and for every X1 ∈ Defn(S1) there is X2 ∈ Defn(S2) such that X14X2 has
empty interior in Sn. Then Defn(S1) ⊆ Defn(S2) for all n.

Proof. We proceed by induction on n. Let n = 1. If X ⊆ S is a finite
union of convex sets, and Y ⊆ S is a finite union of points and intervals,
then either X4Y is finite, or X4Y has nonempty interior. It follows that
Def1(S1) ⊆ Def1(S2) and, in particular, S1 is o-minimal.

So assume Defk(S1) ⊆ Defk(S2) for k = 1, . . . , n. Since S1 and S2 are
o-minimal, it suffices to show that every S1-cell in Sn+1 is definable in S2. It
is even enough to prove this for S1-cells Γg; here g : C → S is a continuous
and S1-definable function on an S1-cell C ⊆ Sn. Let Γg be such an S1-cell.

First, suppose C is an open cell. By the inductive assumption C ∈
Defn(S2) and we can take X ∈ Defn+1(S2) with X ⊆ C × S such that
(−∞, g) 4 X does not contain a box. Let p : Sn+1 → Sn be given by
p(x1, . . . , xn+1) = (x1, . . . , xn). For X,Y ⊆ Sn+1 we say that X < Y if
for all a ∈ Sn and (a, x) ∈ X, (a, y) ∈ Y we have x < y. Now take an
S2-decomposition D of Sn+1 which partitions X, and let C1, . . . , Ck be the
open cells in pD with Ci ⊆ pX. We claim that Γ(g|Ci) ∈ Defn+1(S2) for
every i.

So let i ∈ {1, . . . , k}, and let D1, . . . , Dl be the open cells in D with
Dj ⊆ X and pDj = Ci for all j. If Dj = (fj , gj) and Dj ∩ Γ(g|Ci) 6= ∅
for some j ∈ {1, . . . , l}, then there is x ∈ Ci with g(x) < gj(x). Then, by
continuity of g and gj , we obtain a box B ⊆ X \ (−∞, g), a contradiction.
So Dj ∩ Γg = ∅, and, in particular, Dj < Γ(g|Ci) for every j.

Let d ∈ {1, . . . , l} be such that Dj < Dd = (fd, gd) for all j 6= d. If gd <
g|Ci on a subset of Ci with nonempty interior, then, again by continuity of
g and gd, we find a box B ⊆ (−∞, g) with Γ(gd|pB) < B. Since B intersects
X in only at most finitely many cells of the form Γh, where h : Ci → S
is continuous, we can find a box B′ ⊆ (−∞, g) \ X, a contradiction. So
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gd = g|Ci outside a subset of Ci with empty interior, hence gd = g|Ci by
continuity of g and gd.

We have shown that Γ(g|Ci) is S2-definable for all i = 1, . . . , k. It is easy
to check that then

Γg = cl
( k⋃
i=1

Γ(g|Ci)
)
∩ (Ci × S),

hence Γg ∈ Defn+1(S2).
So let Γg ∈ Defn+1(S2) be an (i1, . . . , in, 0)-cell with ik = 0 where 1 ≤

k ≤ n, and let

q : Sn+1 → Sn : (x1, . . . , xn+1) 7→ (x1, . . . , xk−1, xk+1, . . . , xn+1).

By the inductive assumption, q(Γg) ∈ Defn(S2). We define Γg in S2 as

{(x, y) : x ∈ C and (x1, . . . , xk−1, xk+1, . . . , xn, y) ∈ q(Γg)}.

The main result of this section is Theorem 4.4, where we assume that
R is ω-saturated and V = O. This assumption is essential: Suppose kind is
o-minimal but k is not isomorphic to R. Then k has a nonempty bounded
convex subset X without a least upper bound in k, so X is not definable
in kind. However, Xh ⊆ R is a trace, and so X = stY for some trace set
Y ⊆ Rn.

In the rest of this section we assume that R is ω-saturated and
V = O. In particular, k = R.

Lemma 4.3. Let Y ⊆ Rn be a trace. Then there is a definable Z ⊆ Rn

such that stY 4 stZ has empty interior in Rn.

Proof. Take an elementary extension R′ of R with a definable set
Y ′ ⊆ R′n such that Y = Y ′ ∩ Rn. Then Y ′ is defined in R′ by a for-
mula φ(a, y) where a ∈ R′m and φ(x, y) is a formula in the language of R,
x = (x1, . . . , xm), y = (y1, . . . , yn). By ω-saturation of R we can take b ∈ Rm
such that tp(b|∅) = tp(a|∅). Let Z ⊆ Rn be defined in R by φ(b, y). Then
Y ∩ On ⊆

⋃
ε Z

ε, where ε ranges over all positive infinitesimals and

Zε := {y ∈ Rn : d(y, Z) ≤ ε}.

Otherwise there would be y ∈ Y ∩ On such that d(y, Z) > m, so for some
O-box P ⊆ Rn, we would have P ∩ Y 6= ∅ and P ∩ Z = ∅, a contradiction
with tp(b|∅) = tp(a|∅).

It follows that stY ⊆ stZ. We claim that int(stY 4stZ) = ∅. Otherwise,
we can take a box B ⊆ Rn such that B ⊆ stZ \ stY , so the V -box lemma
yields an O-box P ⊆ Z such that P ∩ Y = ∅, contradicting tp(b|∅) =
tp(a|∅).
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Theorem 4.4. For all n,

Defn(Rind) = {stX : X ⊆ Rn is a trace}.

Proof. By Lemma 4.1,

{stX : X ⊆ Rn is a trace} = Defn(R∗),
for all n, and it is clear that Defn(Rind) ⊆ Defn(R∗). So let X ⊆ Rn be a
trace. By Lemma 4.3, we can take Y ∈ Defn(R) such that int(stX 4 stY )
= ∅, hence, by Lemma 4.2, Defn(R∗) ⊆ Defn(Rind).

Corollary 4.5. Defn(Rind) = {stX : X ∈ Defn(R,O)} for all n.

Proof. It is clear that {stX : X ∈ Defn(R,O)} ⊆ Defn(R∗), so by
Theorem 4.4, {stX : X ∈ Defn(R,O)} ⊆ Defn(Rind). To see that

Defn(Rind) ⊆ {stX : X ∈ Defn(R,O)},
recall that the Rind-definable subsets of Rn are finite unions of sets stY \stZ,
where Y,Z ∈ Defn(R), and observe that

stY \ stZ = st{x ∈ Y : d(x, Z) > m},
and that m is definable in the structure (R,O).

5. Open problems

1. We showed that if cofinality(m) > 2|k|, then (R, V ) |= Σ. Conversely,
if (R, V ) |= Σ, is there an elementary extension of (R, V ) satisfying
this inequality?

2. Does an analogue of Corollary 4.5 hold under more general conditions,
for example (R, V ) |= Σ?

3. Let R be an ω-saturated elementary extension of the Lipshitz–Robin-
son structure. Are the definable sets of Rind just the semialgebraic
sets?

Remark. An earlier version of this paper included a question by Lou
van den Dries and Jonathan Kirby: Let R be ω-saturated and V = O; is
Rind elementarily equivalent to a definable reduct of R?

However, a negative answer to this question follows from an observation
by Tom Foster in [9]: Let R be an ω-saturated model of the real exponential
field, and let R′ be the (+, ·, <, xc)-reduct of the expansion of R by a function
symbol xc for the R-definable function

xc : R>0 → R>0 : x 7→ exp(c log x),

where c ∈ R>O. Then R′ is o-minimal and power-bounded. On the other
hand, the function

(0,∞)→ R>0 : x 7→ (1 + x/c)c
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is definable in R′, and the image of its graph under the residue map corre-
sponding to O yields the graph of the exponential in Rind.
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