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Abstract. There exist very few examples of spaces exhibiting pathologies of Brouwer’s
Dimensionsgrad, Dg.

For each natural number n≥1 and each pair of ordinals α, β with n≤α≤β≤ω(c+),
where ω(c+) is the first ordinal of cardinality c+, we construct a continuum Sn,α,β such that

(a) dimSn,α,β = n;
(b) trDgSn,α,β = trDg0 Sn,α,β = α;
(c) trindSn,α,β = trInd0 Sn,α,β = β;
(d) if β < ω(c+), then Sn,α,β is separable and first countable;
(e) if n = 1, then Sn,α,β can be made chainable or hereditarily decomposable;
(f) if α = β < ω(c+), then Sn,α,β can be made hereditarily indecomposable;
(g) if n = 1 and α = β < ω(c+), then Sn,α,β can be made chainable and hereditarily

indecomposable.

In particular, we answer the question raised by Chatyrko and Fedorchuk whether every
non-degenerate chainable space has Dimensionsgrad equal to 1. Moreover, we establish
results that enable us to compute the Dimensionsgrad of a number of spaces constructed
by Charalambous, Chatyrko, and Fedorchuk.

1. Introduction. In this paper all spaces are completely regular and T1,
and a continuum is a non-empty, compact connected space. Let A,B be
disjoint closed subsets of a space X and C a closed subset of X disjoint
from A ∪B. Then C is called a (zero) partition between A and B if (C is a
zero subset of X and) there are disjoint open subsets U, V of X such that
A ⊂ U,B ⊂ V and X \ C = U ∪ V ; and C is called a (zero) cut between A
and B if (C is a zero subset of X and) every continuum that meets both A
and B meets C. Evidently, every (zero) partition is a (zero) cut.

The definitions of the dimension functions Ind, Ind0, Dg, and Dg0 are
quite similar: IndX, Ind0X, DgX, or Dg0X equals −1 iff X = ∅. For a
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non-empty normal space X, IndX (respectively, Ind0X, DgX, Dg0X) is
the smallest non-negative integer n for which between any pair of disjoint
closed sets A and B of X, there is a partition (respectively, zero partition,
cut, zero cut) C with IndC (respectively, Ind0C, DgC, Dg0C) ≤ n − 1, if
such an integer exists. If no such integer exists, we set IndX (respectively,
Ind0X, DgX, Dg0X) = ∞. If in the above definition of Ind, we stipulate
that the set A is a singleton, we obtain the definition of ind. In [5, 6, 22]
we used Ind0 as a tool for estimating ind and Ind. Dg or Dimensionsgrad is
Brouwer’s original definition of dimension [3]. Dg0, which is introduced here,
is a useful tool for computing Dimensionsgrad.

Transfinite extensions of the above dimension functions are obtained in
the usual manner. Thus, for example, if X is a non-empty normal space,
trDg0X is the smallest ordinal α for which between any pair of disjoint
closed sets A and B of X, there is a zero cut C with trDg0C < α, if such
an ordinal exists. If no such ordinal exists, we set trDg0X =∞. Evidently,
trind ≤ trInd ≤ trInd0, Dg ≤ Ind and trDg ≤ trDg0 ≤ trInd0. Hence, if
trindX = trInd0X, then trindX = trIndX = trInd0X.

It was thought for a surprisingly long time that Dg agrees with Ind on lo-
cally connected separable metric spaces. However, for any given n > 1, Fedor-
chuk and van Mill [20] constructed an n-dimensional locally connected Polish
space with Dg equal to 1. On the positive side, we have the equality dim = Dg
for compact metric spaces by Fedorchuk, Levin, and Shchepin [19], and the
inequality dim ≤ Dg for compact Hausdorff spaces by Fedorchuk [16]. In
the same paper, Fedorchuk presented a first countable and separable com-
pact space with dim = 2 and Dg = ∞. In another paper [17], he pre-
sented an example of a first countable and separable compact space B with
2 = dimB < DgB = 3 < indB = IndB = 4. Our aim in this paper is to
obtain a clearer picture of the gap between dim and Dg, as well as the gap
between Dg and Ind, on the class of compact spaces.

In [11] Chatyrko and Fedorchuk showed that the chainable spaces I2, I3 of
Chatyrko [8], which satisfy ind I2 = Ind I2 = 2 and ind I3 = Ind I3 = 3, have
Dimensionsgrad equal to 1. They then raised the question whether DgX = 1
for every non-degenerate chainable continuum X. In the same paper, they
constructed a compact space with dim = 1 < Dg = 2 < ind = Ind = 3.

In [5] Charalambous presented a chainable space Xn, n = 1, 2, . . . , with
1 ≤ DgXn < indXn = IndXn = n, leaving the precise value of DgXn an
open problem for n > 2. We show that DgXn = 1.

In 1968 Fedorchuk [15] invented the method of resolutions, and con-
structed the first examples of first-countable and separable compact spaces
with non-coinciding dimensions dim and ind. For the n-dimensional sphere
Sn and the n-dimensional torus Tn, he constructed first-countable sepa-
rable compact spaces RTn(Sn), proved that dimRT 2(S2) = 2 and 3 ≤



Dimensionsgrad, resolutions, and chainable continua 245

indRT 2(S2) ≤ 4, and stated that dimRTn(Sn) = n and 2n−1≤ indRTn(Sn)
≤ 2n. The space B with Dg = 3 mentioned above is a ring-like resolution of
the form RT 2(S2). We prove that, in fact, DgRTn(Sn) = 2n − 1 whenever
RTn(Sn) is ring-like.

2. Preliminaries: continua, maps, and dimensions. In this paper
a map means a continuous function. The interval [0, 1] is denoted by I, its
cardinality by c, the real numbers by R, and the set of natural numbers by N.
For a cardinal number m, ω(m) denotes the least ordinal of cardinality m. For
terms not explicitly defined here, the reader is directed to the monographs
by Engelking [13, 14] and van Mill [26].

A continuum is said to be decomposable if it is the union of two proper
subcontinua; otherwise, it is called indecomposable. A subcontinuum P of a
space X is said to be terminal if every continuum Q ⊂ X that meets P satis-
fies P ⊂ Q or Q ⊂ P . A space X is hereditarily indecomposable, abbreviated
to HI, if none of its subcontinua is decomposable, or equivalently, if each of
its subcontinua is terminal. X is hereditarily decomposable, abbreviated to
HD, if each of its non-degenerate subcontinua is decomposable.

If f : X → Y is a function and A ⊂ X, the small image of A is defined as

f#(A) = {y ∈ Y : f−1(y) ⊂ A} = Y \ f(X \A).

A map f : X → Y is said to be

• monotone if every point-inverse under f is a continuum;
• atomic if every point-inverse under f is a terminal subcontinuum of X;
• ring-like if for each point x ∈ X and each open set U 3 x, every

neighborhood V of f(x) contains an open set V ′ 3 f(x) such that
bdV ′ ⊂ f#(U);
• fully closed if for each point y ∈ Y and each finite covering of f−1(y) by

sets U1, . . . , Un open in X, the set {y}∪
⋃n
i=1 f

#(Ui) is a neighborhood
of y.

Note that monotone maps and atomic maps are surjective since any con-
tinuum is, by definition, non-empty. As is easily checked, a closed monotone
map f : X → Y is atomic iff P = f−1f(P ) for each continuum P ⊂ X such
that f(P ) is non-degenerate.

2.1. Proposition. Let f : X → Y be a closed monotone map, and
A,B, F ⊂ X be closed sets with pairwise disjoint images under f . If F
is a cut in X between A and B, then f(F ) is a cut in Y between f(A) and
f(B). The converse is true if f is moreover atomic.

2.2. Remarks. (1) Suppose that f : X → Y is a closed ring-like map,
and P ⊂ X is closed. It is easily shown that if f(P ) is connected and
contains more than one point, then P = f−1f(P ) (see [18, II.1.15]). We shall
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frequently use this fact in the following form: If Q ⊂ f(P ) is connected, and
contains more than one point, then f−1(Q) ⊂ P . It follows that if Y = f(X)
is connected and contains more than one point, then f is irreducible.

(2) If f : X → Y is a fully closed map, then f#(U) is open in Y for every
open subset U of X, and this means that f is a closed map.

2.3. Proposition. Suppose that f : X → Y is a perfect fully closed
map onto a connected space Y that contains more than one point. If f is
ring-like, then it is atomic.

Proof. It suffices to show that each point-inverse f−1(y) is connected. If
the compact space f−1(y) is not connected, there are disjoint open setsG and
H of X each intersecting f−1(y) and such that f−1(y) ⊂ G ∪H 6= X. Take
open neighborhoods U, V of y with clU, clV ⊂ {y}∪f#(G)∪f#(H), bdU ⊂
f#(G), and bdV ⊂ f#(H). It is readily seen that {y} ∪ (f#(G) ∩ V ) =
clV \ f#(H) and {y} ∪ (f#(H) ∩ U) = clU \ f#(G). Hence,

{y} ∪ (f#(G) ∩ V ) ∪ (f#(H) ∩ U) ⊃ U ∩ V 3 y

is a non-trivial clopen subset of the connected space Y .

In a compact space quasi-components coincide with components, and this
implies the following well-known lemma (cf. [13, Theorem 6.2.24]).

2.4. Lemma. Let E,F be closed subsets of a compact space X such that
no subcontinuum of X meets both E and F . Then there exist disjoint closed
subsets A,B of X such that E ⊂ A, F ⊂ B and X = A ∪B.

2.5. Proposition. Every atomic, fully closed map f : X → Y onto a
locally compact space Y is ring-like.

Proof. To show that f is ring-like, consider open neighborhoods U of x
in X and V of y = f(x) in Y . We can assume that clV is compact and
f−1(y) 6⊂ U . As f is fully closed, Uy = [U ∩ f−1(y)] ∪ f−1f#(U) ⊂ U
is an open neighborhood of x (see [18, II.1.6(5)]). As f is perfect, F =
f−1(clV )\Uy is compact. As f is atomic, each component of F is contained
either in f−1(y) or inX\f−1(y). By Lemma 2.4, there are disjoint closed sets
A,B ⊂ F with f−1(y) \ U ⊂ A, F \ f−1(V ) ⊂ B, and F = A ∪ B. Observe
that f(A) ∩ f(B) = ∅ and y ∈ f(A) ⊂ V \ f(B). Now, for any open set V ′
with f(A) ⊂ V ′ ⊂ clV ′ ⊂ V \ f(B), we have bdV ′ ⊂ f#(Uy) = f#(U), and
f is ring-like.

2.6. Corollary. Suppose that f : X → Y is a perfect, fully closed map
onto a connected, locally compact space Y that contains more than one point.
Then f is ring-like iff it is atomic.
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2.7. Remarks. (1) There are several conditions which define fully closed
maps in an equivalent way (see [18, Section II.1]). For example, a closed map
f : X → Y is fully closed iff f(A)∩f(B) is a discrete subspace of Y whenever
A,B ⊂ X are disjoint closed sets.

(2) If f is a fully closed map from a compact metric space, then only
countably many point-inverses under f are non-degenerate (see [18, Propo-
sition II.3.10]). On the other hand, if f is a map from a compact space X
onto a metric space, each point-inverse under f is metrizable, and only count-
ably many point-inverses are non-degenerate, then X is metrizable—it is not
difficult to exhibit a countable network or even a countable base for X.

Consider a map f : X → Y . For a dimension function d, d f usually
denotes the supremum of the set {d f−1(y) : y ∈ Y }. In this paper, however,
it is more convenient to adopt the definition

d f = sup{d f−1(M) : M is a discrete closed subset of Y }.
This clearly agrees with the usual definition if d is dim, ind, or trind, and
if Y is compact. Moreover, if d is one of Ind, Ind0, trInd or trInd0 and
d f−1(M) <∞ for some discrete subset M of Y , then d f−1(M) = d f−1(y)
for some y ∈ M (cf. Proposition 7.1.21 of [14]). Thus, the two definitions
agree when d f <∞.

2.8. Theorem (Fedorchuk, see [18, Theorem III.2.4]). If f is a fully
closed map from a normal space X, then dimX ≤ max{dim f(X),dim f}.

The advantage of Ind0 over other inductive dimensions lies in the follow-
ing.

2.9. Countable sum theorem for Ind0 (Charalambous [4], Ivanov
[21]). Suppose that X =

⋃∞
i=1 Fi is a normal space, and Fi are zero subsets

of X. If Ind0 Fi ≤ n for every i, then Ind0X ≤ n.

The foregoing theorem implies that if U is a cozero subset of a normal
space X, then Ind0 U ≤ Ind0X.

The next three results are proved in [6, Section 2].

2.10. Lemma. Let α ≥ 0 be an ordinal, m ≥ 0 an integer, and E a closed
subset of a normal space X. Suppose that trInd0E ≤ α, and Ind0 F ≤ m
for every closed subset F of X disjoint from E. Then trInd0X ≤ α+m. If
α is a limit ordinal > 0, then trInd0X ≤ α.

2.11. Lemma. Let E be a zero subset of a normal space X. Suppose that
A,B are disjoint closed subsets of X, and L is a zero partition in E between
E ∩ A and E ∩ B. Then there are disjoint cozero subsets G,H of X such
that A ⊂ G, B ⊂ H, E \L ⊂ G∪H, and clG∩clH ⊂ L. Furthermore, there
is a zero partition M in X between A and B with M \E ⊂ X \ (clG∪ clH)
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and M ∩ E = L. If Ind0(X \ E) ≤ m < ∞, then M can be chosen with
Ind0(M \ L) ≤ m− 1.

2.12. Proposition. Let f : X → Y be a fully closed map from a non-
empty normal space X onto a space Y with Ind0 Y < ∞. Suppose that
f(A)∩ f(B) is a zero subset of Y for every two disjoint closed subsets A,B
of X. Then trInd0X ≤ trInd0 f + Ind0 Y .

We now turn to the behaviour of Dimensionsgrad under maps. Recall
that a space is punctiform if it does not contain non-degenerate continua.

2.13. Lemma. Let f : X → Y be a fully closed map from a normal space
X onto a punctiform space Y . Then trDgX = trDg f .

Proof. Consider disjoint closed subsets A,B of X. Let M = f(A)∩f(B)
and N = f−1(M). M is discrete by Remark 2.7(1), and trDgN ≤ trDg f .
Take a cut L in N between A∩N and B∩N with trDgL < trDg f . Observe
that any subcontinuum of X is contained in a single point-inverse of f .
Hence L is a cut in X between A and B, and trDgX ≤ trDg f . That
trDgX ≥ trDg f is evident.

2.14. Proposition. Let f : X → Y be a fully closed map from a normal
space X onto a space Y with 0 ≤ m = Ind0 Y < ∞. Suppose that f(A) ∩
f(B) is a zero subset of Y for every two disjoint closed subsets A,B of X.
Then trDgX ≤ trDg f +Ind0 Y . If moreover m > 0, any two disjoint closed
subsets of X are separated by a zero partition with trDg < trDg f + Ind0 Y .

Proof (by induction on m). By Lemma 2.13, we can assume that m > 0.
Consider disjoint closed subsets A,B of X. They are respectively embedded
in cozero sets G,H ⊂ X with clG ∩ clH = ∅. Because f is fully closed,
M = f(clG) ∩ f(clH) is a discrete zero set—see Remark 2.7(1). Then Z =
Y \ M is a cozero subset of Y , and the countable sum theorem for Ind0

implies that Ind0 Z ≤ Ind0 Y = m. There are disjoint cozero sets U, V ⊂ Z
such that f(clG) ∩ Z ⊂ U , f(clH) ∩ Z ⊂ V , and Ind0 L ≤ m − 1, where
L = Z \ (U ∪ V ). Let K = L∪M and F = X \ (f−1(U)∪ f−1(V )∪G∪H).
By the countable sum theorem, Ind0K ≤ m − 1. By the obvious induction
hypothesis, trDg f−1(K) ≤ trDg f +m− 1. Clearly, the subset F of f−1(K)
is a zero partition in X between A and B, and trDgF ≤ trDg f + m − 1.
Hence trDgX ≤ trDg f + Ind0 Y .

2.15. Lemma. Let X be a normal space, and E ⊂ X a zero subset with
trInd0E ≤ α and trDg(X \ E) ≤ α (respectively, trDg0(X \ E) ≤ α). If no
subcontinuum of X meets both E and X \E, then trDgX ≤ α (respectively,
trDg0X ≤ α).

Proof (by induction on α). As the result is evident for α = −1, we can
suppose α ≥ 0. Consider disjoint closed subsets A,B of X. Let L be a zero
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partition in E between A∩E and B∩E with trInd0 L < α. By Lemma 2.11,
there are disjoint cozero subsets G,H of X such that A ⊂ G,B ⊂ H and
clG ∩ clH ⊂ L. Let M be a cut (respectively, zero cut) in X \ E between
clG\E and clH \E with trDgM < α (trDg0M < α). Evidently N = L∪M
is a closed (zero) subset of X. Let K be a subcontinuum of X that meets
both A and B. Then K ⊂ E or K ⊂ X\E, and so K meets L orM . Thus, N
is a cut between A and B. By the obvious induction hypothesis, trDgN < α
(trDg0N < α). Hence trDgX ≤ α (trDg0X ≤ α).

3. Resolutions. Suppose we are given a space X and, for each x ∈ X, a
map hx : X \ {x} → Yx. The resolution space R = R(X,Yx) = R(X,Yx, hx)
is the set

⋃
{{x} × Yx : x ∈ X} equipped with the topology generated by all

sets of the form

U ⊗x V = {x} × V ∪
⋃
{{y} × Yy : y ∈ U ∩ h−1

x (V )},

where U is open in X, x ∈ U , and V is open in Yx. The resolution map
π : R→ X is the map that sends (x, y) to x. If each Yx is compact, then π is
fully closed. If X and each Yx is compact or first countable, then so is R.

Resolutions were introduced by Fedorchuk in [15], and a thorough treat-
ment of fully closed maps and resolutions can be found in [18]. A variant of
resolutions for which it is relatively easy to compute inductive dimensions
was recently introduced in [6], where all results quoted below can be found.

Let C be the class of all remainders of compactifications of [0, 1). Then
X ∈ C iff X is a subspace of a compact space X• such that X∗ = X• \X is
a dense subset of X• homeomorphic with [0, 1). For every X ∈ C, we shall
assume that some X• has been fixed, and we shall frequently identify the
corresponding X∗ with [0, 1). Note that if X ∈ C, then X is necessarily a
continuum, and if X is first countable then so is X•. The class C contains
every metric continuum.

Suppose we are given a compact space X and, for each x ∈ X, a space
Yx ∈ C and a continuous map hx : X → I with h−1

x (1) = {x} whenever {x}
is a Gδ-subset of X. Suppose further that Yx = {1}, Y •x = I, and hx(X) =
{1} whenever {x} is not a Gδ-subset of X. We shall treat the restrictions
hx|(X \ {x}) as maps into Y •x . The resolution space S = S(X,Yx, hx) is
the closed subspace

⋃
{{x} × Yx : x ∈ X} of R(X,Y •x , hx|(X \ {x})), and

the resolution map σ : S → X is the function that sends (x, y) to x. The
topology of S is generated by the sets of the form σ−1(U), where U is open
in X, together with the sets

O(x, V ) = {x} × (V ∩ Yx) ∪ σ−1(h−1
x (V )),

where {x} is a Gδ-subset of X, V is open in Y •x , and V ∩ Yx 6= ∅.
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When X is first countable, the sets O(x, V ) form a base for the topology
of S.

3.1. Proposition. Let X be a compact space. Then S is compact and
the resolution map σ : S → X is monotone, fully closed, and ring-like. If X
and each Yx is first countable then so is S. If uncountably many Yx contain
more than one point, then S is not metrizable.

Suppose that X is a non-degenerate continuum. Then S is a continuum,
and it is separable whenever X is. If X and all non-degenerate Yx are hered-
itarily decomposable or hereditarily indecomposable, then so is S. If X is a
member of C, then so is S.

We usually abbreviate S(X,Yx, hx) to S, S(X), or S(X,Yx). If Yx = Y
for each x ∈ X, S(X,Yx, hx) is denoted by SY (X), and it is called a standard
resolution. Analogous notation and terminology is adopted for R(X,Yx, hx).
Note that R(X,Yx, hx) is called a ring-like resolution if the corresponding
resolution map is ring-like.

The construction of S(X,Yx, hx) is useful even if X is not first countable.
For a metrizable X, however, it is possible to choose the maps hx so that
S(X,Yx, hx) acquires additional features.

Let X be a compact metrizable space and, for each x ∈ X, let Yx be a
member of C. Let X0 = X \

⋃
{U ⊂ X : U is open and countable} be the

set of all condensation points of X. Then X \ X0 is clearly countable. If
X is uncountable, then X0 is a non-empty perfect subset of X. Moreover,
the collection of all non-empty perfect subsets of X has cardinality c, and
therefore, can be written in the form {Fα : α < ω(c)} with {α : Fα = X0}
cofinal in ω(c). Equip X with a well-ordering of the same type as ω(c) and,
for α < ω(c), let xα be the first element of Fα \ {xβ : β < α}. Evidently,
xα 6= xβ whenever α 6= β, and {xα : α < ω(c)} = X0. There are maps
hxα : X → I such that h−1

xα (1) = {xα} and hxα(Fα) = I (cf. [6, Lemma 5]).
For all other points x of X, we let hx : X → I be any map with h−1

x (1) = {x}.
Henceforth, it will be understood that if X is an uncountable compact metric
space, the maps hx in the construction of S(X,Yx, hx) have been chosen as
just described. A weak resolution S(X,Yx, hx) will mean one constructed as
described just before Proposition 3.1.

3.2. Proposition. Let X be a compact metrizable space.

(1) If F ⊂ S(X) is a closed set such that σ(F ) is uncountable, then F
contains a point-inverse of σ.

(2) If X is a continuum and F is a partition in S(X), then F contains
a point-inverse of σ.

(3) If Yx is separable for each x ∈ X \X0, then S(X) is separable.
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Proof. If F ⊂ S(X) is a closed set with σ(F ) uncountable, then σ(F )
contains a Cantor set, and Fα ⊂ σ(F ) for an α < ω(c). Now, for every open
set V ⊂ Y •xα that intersects Yxα , h−1

xα (V ) intersects Fα because hxα(Fα) = I.
Hence, each O(xα, V ) intersects F , and it follows that σ−1(xα) ⊂ F .

For (2) in case σ(F ) is countable, see [6, the proof of Proposition 7].
Assume that X is uncountable, and P is a countable dense subset of X0.

For each x∈X0, hx is surjective, and therefore h−1
x (V ) intersects P whenever

V ⊂Y •x is an open set with V ∩Yx 6= ∅. Clearly, σ−1(X0) is separable. If Yx
is separable for each x 6∈X0, then so is σ−1(X\X0), and hence also S(X).

4. Inverse invariance of chainability. A chain is a finite collection
of sets U1, . . . , Un such that Ui ∩Uj 6= ∅ iff |i− j| ≤ 1. A non-empty normal
space X is said to be chainable if every open cover of X can be refined by
an open (or equivalently, closed) chain. Any chainable space X is clearly
a continuum, and dimX = 1 unless X is a single point. In this paper, an
element x of a chainable space X is called an end point if every open cover of
X can be refined by an open (or equivalently closed) chain {U1, . . . , Un} such
that x ∈ U1. In [2] Bing gave an example of a metric chainable continuum
without end points.

The pseudo-arc is the only (up to homeomorphism) non-degenerate met-
ric HI chainable continuum (Bing [1]). It will be denoted by P. Since every
subcontinuum of a chainable continuum is chainable, every non-degenerate
subcontinuum of P is a pseudo-arc. The pseudo-arc is homogeneous ([1]),
and each of its elements is an end point ([2]).

This section contains partial answers to the following general question.

4.1. Problem. Suppose that f : X → Y is an atomic, fully closed map,
Y is chainable, and every point-inverse of f is chainable. Is X chainable?
Under what circumstances is X chainable?

It is interesting to note here the example by Davis and Ingram [12] of a
map from a non-chainable atriodic continuum onto a chainable continuum
whose unique non-trivial point-inverse is an arc. This map is fully closed,
but is not atomic.

4.2. Proposition (cf. [8, Lemma 1], [5, Proposition 3], [6, Proposi-
tion 3]). Suppose that I is a linearly ordered continuum. If f : X → I is a
fully closed atomic map with chainable point-inverses, then X is chainable.
If moreover t is an end point of I and x is an end point of f−1(t), then x is
an end point of X.

Proof. In view of Corollary 2.6, f is ring-like, and X is chainable by [6,
Proposition 3]). The assertion on end points is clear from the proof of that
result.
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Thus, we have a satisfactory answer to Problem 4.1 if Y is the unit
interval. The question naturally arises if in Proposition 4.2 we can replace I
with a space such as P. The following is an answer in a very particular case.
It will enable us, however, to deduce that certain spaces constructed with
the method of resolution are chainable.

4.3. Proposition. Suppose that X is a hereditarily indecomposable con-
tinuum, and T1, . . . , Tn ⊂ X are pairwise disjoint pseudo-arcs. If the map
that collapses the continua T1, . . . , Tn to points transforms X onto a pseudo-
arc, then X is itself a pseudo-arc.

Proof. Let f : X → P be the map that collapses T1 = f−1(p1), . . . , Tn =
f−1(pn) to points p1, . . . , pn ∈ P. Then X is metrizable by Remark 2.7(2).

We apply induction on n. Assume n = 1. Consider the hyperspace C(X)
of subcontinua of X. It is endowed with the Vietoris topology, which is also
induced by the Hausdorff metric %H corresponding to any metric % on X.
C(X) admits a Whitney map, i.e. a continuous function µ : C(X)→ R such
that (1) µ({x}) = 0 for every x ∈ X, and (2) µ(P ) < µ(Q) whenever
P  Q (see [26, pp. 103–109]). As X is an HI continuum, each Whitney level
µ−1(t), 0 ≤ t ≤ µ(X), is an upper semicontinuous decomposition of X (see
[26, Corollary 1.11.17]). The natural quotient projection X → X/µ−1(t) is
moreover open (see [26, Exercise 1.11.23 and its solution, pp. 108 and 538]).
Thus, each µ−1(t) is a continuous decomposition of X. The Hausdorff metric
%H restricted to µ−1(t) is compatible with the quotient topology onX/µ−1(t)
(cf. [26, Exercise 1.11.17, p. 108]).

Now, let t0 = µ(T1) and D = µ−1(t0). Consider the quotient space X/D,
and the open, perfect quotient map q : X → X/D. As 0 < t0 < µ(X), X/D
is a non-degenerate metric continuum. Since q is closed and monotone, X/D
is HI. Observe that every continuum D ∈ D is a pseudo-arc. Indeed, either
D = T1, or D 6= T1 and the restriction f |D is an embedding into P. Since the
decomposition {T1} ∪ {{x} : x ∈ X \ T1} is finer than D, there is a quotient
map g : P → X/D such that q = g ◦ f . Any point-inverse of g is either
{p1} = f(T1) or f(D), where T1 6= D ∈ D. Hence, g is a monotone map
and X/D is chainable by a theorem of Bing [1]. Thus, X has a continuous
decomposition D into pseudo-arcs, and X/D is a pseudo-arc. These two facts
imply that X is a pseudo-arc (Lewis [24, Theorem 3]).

Assume that n > 1. Let g : X → Y be the map that collapses only T1 to
a point, and h : Y → P a map such that h ◦ g = f . As g is monotone, the
continuum Y is HI. Since h collapses pseudo-arcs g(T2), . . . , g(Tn), Y and X
are pseudo-arcs by the obvious induction hypothesis.

For each ordinal α > 0, we define a class Pα of (topological types of)
non-degenerate continua as follows:
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(a) X ∈ P1 iff X is a pseudo-arc;
(b) for α > 1, X ∈ Pα iff there exists an atomic fully closed map

f : X → P such that for each p ∈ P either f−1(p) is a singleton or
f−1(p) ∈ Pβ for some non-zero ordinal β < α.

It is clear that Pα ⊂ Pβ for α ≤ β, Pω(c+) =
⋃

0<α<ω(c+) Pα, and
Pα = Pω(c+) for α ≥ ω(c+). The map f in the above statement (b) is
ring-like by Proposition 2.5, and irreducible by Remark 2.2(1). Using trans-
finite induction, one easily checks that members of Pα are first countable,
separable HI continua.

4.4. Lemma. Suppose that α > 0 is an ordinal, and f : X → P is an
atomic map from a compact space X. If f has only finitely many non-
degenerate point-inverses each of which belongs to Pα, then X is in Pα.

Proof. X is an HI continuum since f is atomic. For α = 1, the only
non-degenerate point-inverses of f are pseudo-arcs, and hence the asser-
tion of this lemma is a consequence of Proposition 4.3. Assume α > 1,
and let T1 = f−1(p1), . . . , Tn = f−1(pn) ∈ Pα be the only non-degenerate
point-inverses. For each i ∈ {1, . . . , n}, there is a fully closed, atomic map
gi : Ti → P such that each non-degenerate point-inverse g−1

i (p) is in Pβpi ,
where βpi < α. Consider the decomposition D of X into all point-inverses of
gi, i = 1, . . . , n, and all the remaining single points in X \ (T1 ∪ · · · ∪ Tn),
and let q : X → X/D be the quotient projection. It is easily checked that
D is upper semicontinuous, and hence X/D is a continuum. Evidently, X/D
is HI, and q is fully closed. As X is HI, each D ∈ D is a terminal subcon-
tinuum of X, and q is atomic. D is finer than the decomposition of X into
point-inverses of f , and there is a map h : X/D → P such that f = h ◦ q.
Clearly, h compresses only the images q(Ti) to points, and each q(Ti) is
homeomorphic to P. By Proposition 4.3, X/D is a pseudo-arc. Therefore,
q maps X onto a pseudo-arc, and X ∈ Pα.

4.5. Theorem. Every member of Pα is a chainable continuum all of
whose elements are end points.

Proof (by induction on α). If α = 1, then X ∈ Pα is a pseudo-arc, and we
are done. Take an ordinal α > 1, and assume that the theorem is true for each
non-zero β < α and each continuum in Pβ . Take any X ∈ Pα and any x ∈ X.
Then there is an atomic, fully closed map f : X → P such that for each p ∈ P,
the pre-image f−1(p) is degenerate or belongs to Pβp for some βp < α. In
order to prove that X is chainable, take a finite open cover U of X. The set
M = P \

⋃
{f#(U) : U ∈ U} is finite (see [18, proof of Theorem III.2.4]). For

each p ∈ P\M , shrink f−1(p) to a point to obtain a space Y , a quotient map
g : X → Y , and a map h : Y → P such that h ◦ g = f . Then g is closed (see
the proof of (5)⇒(6) of the statement II.1.6 in [18]), Y is compact, and h
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is atomic. Lemma 4.4 guarantees that Y ∈ Pβ , where β = max{βp : p ∈M}
< α. The family V = {g#(U) : U ∈ U} is an open cover of Y , and by the
induction hypothesis, V has an open chain refinement {W1, . . . ,Wn} such
that g(x) ∈W1. Finally, the sets g−1(W1) 3 x, g−1(W2), . . . , g−1(Wn) form
an open chain refinement of U .

4.6. Corollary. Every weak standard resolution SP(P) is a non-metriz-
able, first countable, separable, hereditarily indecomposable chainable contin-
uum.

4.7. Remark. Chatyrko [7] resolved P in a manner resembling the con-
struction of the weak SP(P), obtained a space B1, and asked if B1 is a
chainable continuum with indB1 = 2. As his resolution map B1 → P is
atomic and fully closed, and every point-inverse of the map is homeomor-
phic to P, B1 is certainly chainable. Note that in [6] we have shown that
every resolution SP(P) in the stronger sense has indSP(P) = Ind0 SP(P) = 2.
It will follow from Corollary 5.3 in the present paper that DgSP(P) = 2, too.
In fact, SP(P) will be the continuum S2 of Theorem 5.7.

5. Continua with dim < trDg = trind = trInd0. A space X is said
to be non-Suslinian if there exists an uncountable collection of pairwise
disjoint non-degenerate subcontinua of X.

5.1. Proposition. If X is a non-Suslinian, compact metric space, then
there is a point s ∈ S(X) with an open neighborhood U such that every
cut in S(X) between A = S(X) \ U and any closed set B ⊂ S(X) with
s ∈ intB ⊂ B ⊂ U contains a point-inverse of σ : S(X)→ X.

Proof. Let B be a countable base for X, and P an uncountable family
of pairwise disjoint non-degenerate subcontinua of X. We can assume there
is a number ε > 0 such that diamP > ε for each P ∈ P. Let V = {V ∈ B:
V meets countably many P ∈ P} and K = X \

⋃
V. Then the collection

Q = {P ∈ P : P ⊂ K} is uncountable, and each open set V ⊂ X with
V ∩K 6= ∅ meets uncountably many P ∈ Q. Take x ∈ P0 ∈ Q, s ∈ σ−1(x),
and put U = σ−1(B(x, ε/2)).

Assume that B ⊂ U is a closed neighborhood of s, and F ⊂ X is a cut
in S(X) between A = S(X) \ U and B. As σ is ring-like, there is an open
neighborhood V ′ of x such that clV ′ ⊂ B(x, ε/2) and bdV ′ ⊂ f#(intB).
Observe that σ(F ) \ V ′ is a cut in X between X \ B(x, ε/2) and clV ′.
Indeed, if L is a subcontinuum of X and L \B(x, ε/2) 6= ∅ 6= L∩ clV ′, then
it follows from Lemma 2.4 that a certain component M of L\V ′ meets both
X \B(x, ε/2) and bdV ′. So, σ−1(M) meets both A and B, σ−1(M) meets F ,
and M ⊂ L meets σ(F ) \ V ′.
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Now, V ′ meets uncountably many P ∈ Q which have diamP > ε, and
hence none of them is contained in B(x, ε/2). Therefore, each P ∈ Q with
V ′ ∩ P 6= ∅ meets the cut σ(F ) \ V ′. Thus, σ(F ) is uncountable, and F
contains a point-inverse of σ by Proposition 3.2(1).

5.2. Corollary. Suppose that X is a non-Suslinian, compact metric
space, and trDg Yx ≥ α (respectively, trindYx ≥ α) for each x ∈ X. Then
trDgS(X,Yx) ≥ α+ 1 (respectively, trindS(X,Yx) ≥ α+ 1).

Using the foregoing corollary and Proposition 2.14, we obtain

5.3. Corollary. If X is a non-Suslinian, one-dimensional, compact
metric space, and Y ∈ C, then trDgSY (X) = trDg Y + 1.

5.4. Remark. The statements 5.1–5.3 also hold true for some Suslinian
spaces X. Mazurkiewicz [25] constructed a locally connected, metric Suslini-
an (hence, one-dimensional) continuum X which is not rim-countable at any
point. Thus, each point x ∈ X has an open neighborhood Vx such that every
partition in X between X \ Vx and {x} is uncountable. As is easily seen, in
locally connected Polish spaces the notions of a cut and of a partition are
equivalent (cf. [13, Problems 6.3.3(a) and 6.3.11]). The proof of Proposition
5.1 works because, when we replace B(x, ε/2) with Vx, the cut σ(F ) \ V ′ in
X is a partition between A = X \ Vx and clV ′, and hence it is uncountable.

5.5. Proposition. Suppose that f : X → Y is a closed, monotone ring-
like map onto a σ-compact metric space Y with dimY ≥ n > 0. Let

µ = µ(Y ) = min{trDg f−1(L) : L ⊂ Y is a non-degenerate continuum}.

Then trDgX ≥ µ+ n− 1.

Proof (by induction on n). By the countable sum theorem (see [14, The-
orems 1.5.3 and 1.7.7]), Y contains a compact subspace with dim ≥ n.
We can therefore assume that Y is compact. Note that, as f is monotone,
f−1(L) is a continuum for every continuum L ⊂ Y . Thus, µ ≥ 1. For n = 1,
choosing L with µ = trDg f−1(L), we obtain trDgX ≥ trDg f−1(L) =
µ + n − 1. Assume that n > 1 and that the result holds for smaller in-
tegers ≥ 1. Let A,B ⊂ Y be disjoint closed sets such that every cut in
Y between A and B has Dg = dim ≥ n − 1. If D is a cut between f−1(A)
and f−1(B), then f(D) is a cut between A and B by Proposition 2.1. Hence,
dim f(D) = Dg f(D) ≥ n − 1. Now, f(D) contains a connected component
K such that dimK ≥ n − 1 and, because f is ring-like, f−1(K) ⊂ D.
Applying the induction hypothesis to f |f−1(K) : f−1(K) → K, we obtain
trDgD ≥ trDg f−1(K) ≥ µ(K) + n − 2 ≥ µ + n − 2. Hence trDgX ≥
µ+ n− 1.
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5.6. Corollary. Let X be a compact metric space with 0 < dimX <∞
and Y ∈ C. Then

trDg Y + dimX − 1 ≤ trDgSY (X) ≤ trDg Y + dimX

even for the weak version of SY (X). If X is additionally hereditarily inde-
composable, and SY (X) is a resolution in the stronger sense, then

trDgSY (X) = trDg Y + dimX.

Proof. That trDgSY (X) ≤ trDg Y + dimX follows from Proposition
2.14. If L is a non-degenerate subcontinuum of X, then σ−1(L) contains
a copy of Y . Consequently, µ(X) ≥ trDg Y . If X is HI and SY (X) is a
resolution in the stronger sense, then L is non-Suslinian, trDg σ−1(L) ≥
trDg Y + 1 by Corollary 5.2, and µ(X) ≥ trDg Y + 1.

5.7. Theorem. For every ordinal α > 0 of cardinality ≤ c there exists a
separable, first countable, chainable, hereditarily indecomposable continuum
Sα ∈ C∩Pα such that trDgSα = trindSα = trInd0 Sα = α and each element
in Sα is an end point.

Proof (by induction on α). We put Sα = P for α = 1. Assuming Sα has
been constructed, we put Sα+1 = SSα(P) ∈ Pα+1. By Proposition 3.1, Sα+1

is a separable, first countable HI member of C. Theorem 4.5 implies that
Sα+1 is chainable and each of its elements is an end point. Corollary 5.2
yields α + 1 ≤ trDgSα+1 and α + 1 ≤ trindSα+1. By Proposition 2.12,
trInd0 Sα+1 ≤ α + 1, and hence all three inductive dimension functions are
equal to α+ 1 for Sα+1.

Let α be a limit ordinal, and assume that Sβ have been constructed for
each β < α. Take a Cantor set F ⊂ P, and choose distinct points xβ ∈ F
for β < α. We put Yxβ = Sβ for β < α, and Yx are singletons for other
points x ∈ P. Then Sα = S(P, Yx) ∈ Pα obviously satisfies α ≤ trDgSα
and α ≤ trindSα. We obtain trInd0 σ

−1(F ) ≤ α by Proposition 2.12, and
trInd0 Sα ≤ α by Lemma 2.10. Finally, Theorem 4.5 yields chainability with
the end point property.

5.8. Remarks. (1) It is worth recalling here that any first countable
compact space X has cardinality ≤ c (see [13, Corollary 3.1.30]), and hence
if X has trindX <∞ (respectively, trIndX <∞), then also the cardinality
of trindX (respectively, trIndX) is ≤ c (see [14, Theorems 7.1.6 and 7.1.17]).

(2) Chatyrko and Fedorchuk [11] asked whether DgX = 1 for every
non-degenerate chainable continuum X (see also Chatyrko [9, Question 6] in
Open Problems in Topology II ). Thus, Theorem 5.7 is a negative answer to
their question.

(3) Theorem 5.7 provides a positive answer in the realm of first countable
spaces to Pasynkov’s question [27] whether for every ordinal α, there exists
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a chainable continuum with trind = α. Note that in [6] we have constructed
a first countable, separable, HD chainable continuum Sα with trindSα =
trInd0 Sα = α, for each α of cardinality ≤ c.

5.9. Theorem. For each natural number n ≥ 1 and each ordinal α ≥ n
of cardinality ≤ c there exists a separable, first countable, hereditarily inde-
composable continuum Sn,α ∈ C such that dimSn,α = n and trDgSn,α =
trindSn,α = trInd0 Sn,α = α.

Proof. By a theorem of Bing, there is a metric HI continuum Sn,n with
dimSn,n = n (see van Mill [26, Corollary 3.8.3]). For α > n we construct Sn,α
in the same way as we constructed Sα in the proof of Theorem 5.7, setting
Sn,α+1 = SSn,α(P), and in the case of a limit ordinal α, letting Yxβ = Sn,β
for β < α. The inequality dimSn,α ≥ n is obvious, and that dimSn,α ≤ n
follows from Theorem 2.8.

To construct our next series of examples, we shall use the Cantor fan
J ⊂ R2. It is the union of all segments with endpoints (0, 1), (c, 0) ∈ R2,
where c are elements of the ternary Cantor set C ⊂ I. J is obviously non-
Suslinian.

5.10. Theorem. For every ordinal α > 0 of cardinality ≤ c there exists
a separable, first countable, hereditarily decomposable continuum Sα ∈ C such
that dimSα = 1 and trDgSα = trindSα = trInd0 Sα = α.

Proof. We construct Sα as in the proof of Theorem 5.7, but we use the
Cantor fan J instead of P. We obtain dimSα ≤ 1 by Theorem 2.8.

5.11. Corollary. There is a hereditarily decomposable continuum (re-
spectively, a chainable continuum with an end point) Sω(c+) such that
dimSω(c+) = 1 and trDgSω(c+) = trindSω(c+) = trInd0 Sω(c+) = ω(c+).

Proof. Consider the long segment L of length α = ω(c+) (cf. [13, Problem
3.12.19]). Let W and W1 be, respectively, the sets of all ordinals and all
non-limit ordinals ≤ α in L. Each β ∈ W1 is a Gδ-point of L, and we let
Yβ be the space Sβ ∈ C of Theorem 5.10 (respectively, 5.7). For all other
points x of L, we let Yx = {1}. Let Sα be a weak resolution S(L, Yx). Then
Sα is an HD continuum (respectively, a chainable continuum with an end
point) by Proposition 3.1 (respectively, 4.2). It is clear that dimSα = 1,
trDgSα ≥ α and trindSα ≥ α. For the inequality trInd0 Sα ≤ α, see [6,
proof of Corollary 5].

6. Extending cuts. The main result of this section is a lemma on ex-
tending zero cuts. It is an indispensable tool for proving the two theorems
of this section as well as other results that are needed for computing the
Dimensionsgrad of continua in our final section.
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6.1. Lemma. Let X be a compact space, A,B ⊂ X disjoint closed sets,
and X1, X2, . . . , Xn, . . . ⊂ X pairwise disjoint open subcontinua. If each Xn

meets both A and B, then so does a certain subcontinuum of X \
⋃
n∈NXn.

Proof. If no subcontinuum of X0 = X \
⋃
n∈NXn meets both A and

B, then by Lemma 2.4, there are disjoint closed sets E,F ⊂ X0 such that
A∩X0 ⊂ E, B∩X0 ⊂ F , and X0 = E∪F . Then there are disjoint open sets
U, V ⊂ X such that A∪E ⊂ U and B∪F ⊂ V . Since X = U ∪V ∪

⋃
n∈NXn

is compact, a certain Xn is contained in U ∪ V , contradicting the fact that
Xn is connected.

6.2. Lemma. Let f : X → Y be an atomic, fully closed map onto a
locally compact and collectionwise Hausdorff space Y . Let A,B ⊂ X be dis-
joint closed sets with S = f(A)∩f(B) a zero subset of Y . Let E be a cut in
T = f−1(S) between A ∩ T and B ∩ T , V ⊂ X an open set with E ⊂ V ⊂
X \ (A∪B), and W ⊂ Y an open neighborhood of S. Then there is an open
neighborhood W ′ of S such that clW ′ ⊂ W is the sum of compact subsets
of Y , bdW ′ ⊂ f#(V ), and for every continuum K ⊂ X \ f−1(S ∪ f#(V ))
that meets both A and B, f(K) is disjoint from clW ′.

Proof. Since f is fully closed, the set (V ∩ T ) ∪ f−1(f#(V )) is open in
X (cf. [18, II.1.6]). So, we can assume that V \ T = f−1(f#(V )). As S is
a discrete set and Y is locally compact and collectionwise Hausdorff, there
is a discrete collection {Gs : s ∈ S} of open subsets of Y with s ∈ Gs and
clGs ⊂ W compact. It therefore suffices to find a collection {Ws : s ∈ S}
of open sets Ws such that s ∈ Ws ⊂ Gs, bdWs ⊂ f#(V ), and for every
continuum K ⊂ X \ f−1(S ∪ f#(V )) that meets both A and B, f(K) is
disjoint from clWs.

Write {s} =
⋂
n∈NWn, whereWn is open and clWn+1 ⊂Wn ⊂ Gs. Since

f is ring-like by Proposition 2.5, we can assume that bdWn ⊂ f#(V ). If
K ⊂ X\f−1(S∪f#(V )) is a continuum, then either f(K)∩clW1 = ∅ or f(K)
is contained in someWn\clWn+1. If there is noWs with the properties listed
in the previous paragraph, we can assume that for each n there is a continuum
Kn ⊂ f−1(Wn \ clWn+1) \ f−1(f#(V )) = f−1(Wn \ clWn+1) \V that meets
both A and B. Now, it follows from Lemma 6.1 that T∩cl(

⋃
n∈NKn) contains

a continuum L that meets both A and B. Therefore L meets E, and V meets
some Kn. This contradiction proves the lemma.

Suppose that X is a space and F is a family of closed subspaces of X.
Then F is called a strong cut (partition) system for X if ∅ ∈ F and for every
pair of disjoint closed sets A,B ⊂ X there is a cut (partition) F ∈ F in X
between A and B.

6.3. Lemma on extending cuts. Let f : X → Y be an atomic, fully
closed map onto a locally compact and collectionwise Hausdorff space Y . Let
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A,B ⊂ X be disjoint closed sets with S = f(A) ∩ f(B) a zero subset of Y .
Suppose that E is a zero cut in T = f−1(S) between A ∩ T and B ∩ T ,
and F is a strong system of zero cuts for Y . Then, for each n ∈ N, there
is Fn ∈ F with Fn ⊂ Y \ S such that the family {Fn : n ∈ N} is discrete in
Y \ S and E ∪

⋃
n∈N f

−1(Fn) constitutes a zero cut in X between A and B.

Proof. For n = 1, 2, . . . , there are cozero subsets Vn and zero subsets Zn
of X with clVn+1 ⊂ Zn ⊂ Vn ⊂ X \ (A ∪B) and E =

⋂
n∈N Vn =

⋂
n∈N Zn.

Applying Lemma 6.2, we obtain open setsWn ⊂ Y such that clWn+1 ⊂Wn,
clW1 is the sum of compact subspaces of Y , bdWn ⊂ f#(Vn), S =

⋂
n∈NWn,

and for every continuumK ⊂ X\f−1(S∪f#(Vn)) that meets both A and B,
f(K) is disjoint from clWn. Note that bdWn is disjoint from both f(A) and
f(B). Let F1 ∈ F be a cut between f(A)∪clW1 and f(B)\W1. For n > 1, let
Jn = clWn−1 \ (Wn∪f#(Vn−1)) ⊂Wn−1 \clWn. Observe that Jn is the sum
of compact spaces, and no component L of Jn meets both f(A) and f(B)—
otherwise the continuum K = f−1(L) ⊂ X \ f−1(S ∪ f#(Vn−1)) would meet
both A and B. By Lemma 2.4, there are disjoint closed sets An, Bn ⊂ Y
such that f(A) ∩ Jn ⊂ An, f(B) ∩ Jn ⊂ Bn, and Jn = An ∪ Bn. Now,
A′n = (Y \Wn−1)∪clWn∪An and Bn are disjoint and closed subsets of Y . Let
Fn ∈ F be a cut between A′n and Bn. Then Fn ⊂ f#(Vn−1)∩ (Wn−1 \ clWn)
for n > 1, and F1 ∩ clW1 = ∅. It follows that the family {Fn : n ∈ N} is
discrete in Y \ S, the set F = E ∪

⋃
n∈N f

−1(Fn) is disjoint from A ∪ B,
and F =

⋂
n∈N[Zn ∪

⋃n+1
m=1 f

−1(Fm)]. As each Zn ∪
⋃n+1
m=1 f

−1(Fm) is a zero
subset of X, so is F .

Let K ⊂ X be a continuum which meets both A and B. It remains
to show that K meets F . This is clear if K meets T , and we can suppose
K ∩ T = ∅ and K = f−1(f(K)). If f(K) meets f(B) only outside W1,
then f(K) meets F1 and K meets f−1(F1) ⊂ F . Thus, we can assume that
for some n0 > 1, f(K) meets f(B) ∩ Jn0 . Now, if f(K) does not meet
f(A) ∩ Jn0 , then it meets bdWn0−1 or bdWn0 . In any case, f(K) meets
both A′n0

and Bn0 . Hence, f(K) meets Fn0 and K meets f−1(Fn0) ⊂ F .
Thus, F is a zero cut between A and B.

6.4. Lemma. If Y is a rim-finite, paracompact, locally compact space,
then the family of all closed discrete subsets constitutes a strong partition
system for Y .

Proof. Consider disjoint closed sets A,B of Y . Then Y has a locally finite
open cover {Vi : i ∈ I}, where each clVi is compact with either A∩ clVi = ∅
or B ∩ clVi = ∅. Take a closed cover {Fi : i ∈ I} of Y with Fi ⊂ Vi. As
each Fi is compact, there is an open set Ui with Fi ⊂ Ui ⊂ clUi ⊂ Vi and
bdUi finite. Let U =

⋃
{Ui : Ui ∩ A 6= ∅}. Then the discrete set bdU ⊂⋃

{bdUi : Ui ∩A 6= ∅} is a partition between A and B.
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For the next result, it is useful to recall that in a normal space a zero set
is simply a closed Gδ-set. Also, paracompactness implies collectionwise nor-
mality, and paracompactness is an inverse invariant under perfect maps [13].

6.5. Theorem. Let f : X → Y be an atomic, fully closed map onto a
rim-finite, first countable, locally compact, paracompact space Y . Suppose
that every point-inverse of f contains an element of countable character.
Then trDg0X ≤ max{1, trDg0 f}.

Proof. Since Y is collectionwise normal and first countable, every discrete
closed subspace of Y is a Gδ-set, and hence a zero subset of Y . By Lemma
6.4, the family F of all discrete closed subsets of Y is a strong partition
system of zero sets for Y . Hence trDg0 Y ≤ 1. If trDg0 f = 0, then f is a
homeomorphism and the result clearly holds. Assume that α = trDg0 f ≥ 1.
Consider disjoint non-empty closed sets A,B ⊂ X. Since f is fully closed,
S = f(A) ∩ f(B) is discrete, and hence it is a zero subset of Y . Then
T = f−1(S) has trDg0 T ≤ α, and there is a zero cut E in T between
A ∩ T and B ∩ T , where trDg0E < α. By the lemma on extending cuts,
E is contained in a zero cut F in X between A and B, where F \ E =⋃
n∈N f

−1(Fn), Fn ∈ F for each n, and the family {Fn : n ∈ N} is discrete
in Y \ S. Note that the last property implies that each f−1(Fn) is clopen
in F . For each y ∈ Fn, let xy ∈ f−1(y) be a point of countable character.
Put G = E ∪{xy : y ∈ Fn, n ∈ N}. For each n, the set {xy : y ∈ Fn} is a zero
set of the normal space X, and so is (F \ f−1(Fn))∪{xy : y ∈ Fn}. Hence G
is a zero set as the intersection of countably many zero sets.

Take a continuum K ⊂ X that meets both A and B. As F is a cut
between A and B, there is a point x0 ∈ K ∩ F . If x0 ∈ E, then K meets G.
If x0 /∈ E, we have f(x0) ∈ Fn0 for a certain n0. Then K = f−1f(K), and
xf(x0) ∈ f−1(f(x0)) ∩ G ⊂ K ∩ G. Thus, in any case K meets G, and G is
a zero cut between A and B. Since each non-degenerate subcontinuum of G
is contained in E, we have trDg0G = trDg0E < α. We have shown that
trDg0X ≤ α.

By an obvious modification of the foregoing proof, we obtain

6.6. Theorem. Let f : X → Y be an atomic fully closed map onto a
non-degenerate linearly ordered continuum Y that contains a dense subset
of points of countable character. Suppose that every non-degenerate point-
inverse of f is a Gδ-subset of X and contains an element of countable
character. Then trDg0X = max{1, trDg0 f}.

It is interesting to look for other classes of one-dimensional compact
metric spaces Y for which the inequality trDg0X ≤ max{1, trDg0 f} holds
for any atomic, fully closed map f : X → Y from a first countable space X.
One such space is Y = S × I, where S stands for {0} ∪ {1/n : n ∈ N}.
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Note that the inequality fails if Y is the Cantor fan J (by Corollary 5.2) or
Mazurkiewicz’s Suslinian continuum of Remark 5.4.

6.7. Corollary. If f : X → S× I is an atomic, fully closed map from
a first countable space X, then trDg0X = max{1, trDg0 f}.

Proof. Write α = max{1, trDg0 f}, and consider the map g : S × I → Y
that collapses the segment {0}× I to a point. Observe that the composition
h = g ◦ f is an atomic fully closed map. Indeed, if A,B ⊂ X are disjoint
closed sets, then f(A) ∩ f(B) is finite and h(A) ∩ h(B) ⊂ g(f(A) ∩ f(B)) ∪
{g(0, 0)}—cf. Remark 2.7(1). It is clear that T = f−1({0} × I) is a terminal
subcontinuum of X, and h is atomic. By Theorem 6.5, we have trDg0 T ≤ α,
and hence trDg0 h = α. As Y is rim-finite, we again obtain trDg0X =
max{1, trDg0 h} = α.

Given a dimension function d and a classM of maps, one says that the
theorem on dimension lowering maps holds inM if dX ≤ dY +d f for each
map f : X → Y inM (cf. [14, Theorems 1.12.4, 3.3.10, and 4.3.4]). We end
this section with an example which shows that the theorem on dimension-
lowering maps does not hold for Dimensionsgrad and maps between compact
spaces. This is no surprise because there are analogous counter-examples also
for ind, Ind, and Ind0 (see Chatyrko [10], Krzempek [23]).

6.8. Example. Let C be a Cantor set, and consider the first countable
compact space X = SI(C × I). The space is separable by Proposition 3.2(3).
We have DgX = Dg0X = indX = Ind0X = 2 by Corollary 5.2 and Propo-
sition 2.12. Each component P of X has DgP = Dg0 P = 1 by Theorem
6.5, and Proposition 3.2(2) implies that indP = Ind0 P = 2. Let us consider
the map f : X → C which collapses each component of X to a point. Then
DgX = Dg0X = 2 > 1 = DgC + Dg f = Dg0C + Dg0 f .

7. Continua with trDg < trind = trInd0. In this section we present
the second part of the main results of this paper.

7.1. Remark. In [5] Charalambous constructed a sequence of chain-
able spaces Xn, n = 1, 2, . . . , and showed that 1 ≤ DgXn < indXn =
Ind0Xn = n for n > 1. The space Xn is closely related to the space Sn
of Theorem 7.2. More precisely: X1 = I, Xn+1 is obtained by resolving I
at each point x ∈ (0, 1) into Xn, and the resolution map Xn+1 → I is
atomic and fully closed. It therefore follows from Theorem 6.5 that, in fact,
DgXn = Dg0Xn = 1.

7.2. Theorem. For every ordinal α > 0 of cardinality ≤ c there exists
a chainable, separable, first countable, hereditarily decomposable continuum
Sα ∈ C such that DgSα = Dg0 Sα = 1, trindSα = trInd0 Sα = α, and Sα
has an end point.
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Proof. We construct Sα as in the proof of Theorem 5.7, using I instead
of P. Briefly, for non-limit ordinals, S1 = I and Sα+1 = SSα(I). For a limit
ordinal α, we choose distinct points xβ , β < α, belonging to a Cantor set
F ⊂ I and set Sα = S(I, Yx), where Yxβ = Sβ and Yx is a singleton for
x /∈ {xβ : β < α}.

Dg0 Sα ≤ 1 by Theorem 6.5, Proposition 3.2(2) implies that trindSα ≥ α,
and Sα is a chainable continuum with an end point by Proposition 4.2. That
trInd0 Sα ≤ α is shown as in the proof of Theorem 5.7.

7.3. Corollary. There exists a chainable, hereditarily decomposable
continuum Sω(c+) with an end point and such that DgSω(c+) =Dg0 Sω(c+) =1
and trindSω(c+) = trInd0 Sω(c+) = ω(c+).

Proof. Sω(c+) is constructed as in the proof of Corollary 5.11. We obtain
1 ≤ DgSω(c+) ≤ Dg0 Sω(c+) = 1 by Theorem 6.6.

7.4. Corollary. Let n ≥ 1 be a natural number, and α, β ordinals with
n ≤ α ≤ β ≤ ω(c+). Then there exists a continuum Sn,α,β such that

(a) dimSn,α,β = n;
(b) trDgSn,α,β = trDg0 Sn,α,β = α;
(c) trindSn,α,β = trInd0 Sn,α,β = β;
(d) if β < ω(c+), then Sn,α,β is separable and first countable;
(e) if n = 1, then Sn,α,β is chainable (respectively, hereditarily decom-

posable).

Proof. We shall construct S1,α,β only in the chainable case (an analogous
proof using Theorem 5.10 yields HD examples). By Theorem 5.7 or—in case
α = ω(c+)—by Corollary 5.11, there exists a chainable continuum Pα with
an end point pα and such that trDgPα = trindPα = trInd0 Pα = α. By
Theorem 7.2 or Corollary 7.3, there exists a chainable continuum Qβ with
an end point qβ , DgQβ = Dg0Qβ = 1, and trindQβ = trInd0Qβ = β. When
we identify the points pα and qβ in the (disjoint) sum Pα ⊕ Qβ , we obtain
the desired continuum S1,α,β .

For n > 1, we take points p ∈ In and q ∈ S1,α,β . Identifying p and q in
the sum In ⊕ S1,α,β , we obtain Sn,α,β .

The rest of this paper is devoted to estimating the Dimensionsgrad of
resolutions S(X) where X is made of Euclidean cubes. H will denote the
subspace of [0, 1]N consisting of all points with finitely many non-zero co-
ordinates; it will be equipped with the metric induced by the sup-norm,
‖x‖ = supi∈N |xi|. For n = 0, 1, 2, . . . , an n-cube Q will mean a subspace of H
of the form Q = {x : ai ≤ xi ≤ bi}, where ai ≤ bi and the set J = {i : ai < bi}
has cardinality n. The empty set is regarded as a (−1)-cube. If Q is empty or
a singleton, then ∂Q = ∅, otherwise, ∂Q denotes the combinatorial bound-
ary of Q, i.e. the union of the 2n (n − 1)-cubes {x ∈ Q : xj = aj} and
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{x ∈ Q : xj = bj}, j ∈ J . A cube will mean an n-cube for some n. The inter-
section of an n-cube with an m-cube is a cube of dimension ≤ min{m,n}.
A space of type at most n will mean a (necessarily locally compact) subspace
of H that has a locally finite cover consisting of (necessarily countably many)
cubes of dimension at most n. For a space Y of type at most n, we assume
that a particular locally finite cover Q consisting of cubes of dimension at
most n has been assigned to Y , and we define ∂Y =

⋃
Q∈Q ∂Q. Clearly,

∂Y is a space of type at most n − 1. A space of type 1 can be readily ex-
pressed as a locally finite countable union of arcs any two of which intersect
in a finite set, together with a discrete countable subset. The intersection
of a space of type at most m with a space of type at most n is a space of
type at most min{m,n}. In a space Y of type at most n, closed balls are of
type at most n, and every point is the center of arbitrarily small closed balls
which are finite unions of cubes of dimension at most n. Finally, note that
the union of a locally finite collection of spaces of type at most n is a space
of type at most n.

7.5. Lemma. If Y is a space of type at most n ≥ 0, then the collection
of all closed subspaces of Y that are of type at most n−1 constitutes a strong
partition system for Y .

Proof. Consider disjoint closed sets A,B of Y . Let L be a partition be-
tween A,B. The locally compact, paracompact Lindelöf space Y has a lo-
cally finite open cover {Vm : m ∈ N}, where each clVm is compact with either
L ∩ clVm = ∅ or (A ∪ B) ∩ clVm = ∅. Take a closed cover {Fm : m ∈ N} of
Y with Fm ⊂ Vm. As each Fm is compact, there is a finite union Bm ⊂ Y
of cubes of dimension at most n such that Fm ⊂ intBm ⊂ Bm ⊂ Vm. Then
Z =

⋃
{Bm : Fm ∩ L 6= ∅} is of type at most n, and ∂Z is of type at most

n− 1. It is easily seen that ∂Z is a partition in Y between A and B.

7.6. Theorem. Let f : X → Y be an atomic, fully closed map onto
a subspace Y of H of type at most n, where n and trInd0 f are positive
and every point-inverse of f contains a point of countable character. Then
trDg0X ≤ trInd0 f + n− 1.

Proof (by induction on n). For n = 1, the assertion follows from Theorem
6.5. Let n > 1. Consider disjoint closed sets A,B ⊂ X. Then S = f(A)∩f(B)
is a discrete zero subset of the perfectly normal space Y , and T = f−1(S)
is a zero subset of X with trInd0 T ≤ trInd0 f . Let E be a zero cut in T
between A∩T and B∩T with trInd0E < trInd0 f . By Lemmas 7.5 and 6.3,
there is a discrete (in Y \S) collection {Fm : m ∈ N} consisting of subspaces
of Y \ S that are closed subspaces of Y of type at most n − 1 such that
F = E ∪

⋃
m∈N f

−1(Fm) constitutes a zero cut in X between A and B. As
{Fm : m ∈ N} is a discrete cover of Z =

⋃
m∈N Fm, Z is also of type at most
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n−1. By an obvious induction hypothesis, trDg0 f
−1(Z) ≤ trInd0 f +n−2.

Note that trInd0E ≤ trInd0 f + n − 2, and Lemma 2.15 applies, yielding
trDg0 F ≤ trInd0 f + n− 2. Hence, trDg0X ≤ trInd0 f + n− 1 as desired.

7.7. Corollary. For any natural numbers m and n, let Y be an n-
dimensional subspace of H of type at most n, and f : S → Y an atomic,
fully closed map with m-dimensional metric point-inverses. Then

DgS = Dg0 S = m+ n− 1.

Proof. By Proposition 5.5, DgS ≥ m+n−1 since clearly µ(Y ) ≥ m. On
the other hand, Ind0 f = m and therefore Dg0 S ≤ m + n − 1 by Theorem
7.6.

Note that the corollary holds if S is any weak resolution SX(Y ) or any
ring-like RX(Y ), where X = Im, Sm, or Tm and Y = In, Sn, or Tn. On the
other hand, in [6] we have proved that for the same X and Y , every SX(Y )
in the stronger sense has ind = Ind0 = m+ n.
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