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Abstract. We study a generalized notion of a homogeneous skew-product extension
of a probability-preserving system in which the homogeneous space fibres are allowed to
vary over the ergodic decomposition of the base. The construction of such extensions rests
on a simple notion of ‘direct integral’ for a ‘measurable family’ of homogeneous spaces,
which has a number of precedents in older literature. The main contribution of the present
paper is the systematic development of a formalism for handling such extensions, includ-
ing non-ergodic versions of the results of Mackey describing ergodic components of such
extensions, of the Furstenberg–Zimmer structure theory and of results of Mentzen describ-
ing the structure of automorphisms of such extensions when they are relatively ergodic.
We then offer applications to two structural results for actions of several commuting
transformations: firstly to describing the possible joint distributions of three isotropy fac-
tors corresponding to three commuting transformations; and secondly to describing the
characteristic factors for a system of double non-conventional ergodic averages. Although
both applications are modest in themselves, we hope that they point towards a broader
usefulness of this formalism in ergodic theory.
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1. Introduction. This work is concerned with probability-preserving
actions T : Γ y (X,µ) of locally compact second countable topological
groups on standard Borel probability spaces. We often denote such an action
by (X,µ, T ) if the group is understood.

One of the more versatile constructions by which a more complicated
system may be built from comparatively simple ingredients is the homoge-
neous skew-product (see, for example, Examples 2.21 in Glasner [28]). From
some given Γ -system (Y, ν, S), a compact group G and a closed subgroup
K ≤ G, and a measurable cocycle ρ : Γ × Y → G for the action S, we form
the system (Y ×G/K, ν ⊗mG/K , T ) by setting

T γ(y, gK) := (Sγy, ρ(γ, y)gK) for γ ∈ Γ.

A well-developed theory of such systems is available in case the base
system (Y, ν, S) is ergodic (much of which can be extended to the setting in
which ν is only quasi-invariant under S; see [7]). In addition to providing a
wealth of example systems, such homogeneous skew-products over ergodic
base systems acquire a greater significance through the structure theory de-
veloped by Zimmer in [49, 48] and Furstenberg in [22]. This is concerned
with the failure of relative weak mixing of extensions (see, for example, Def-
inition 9.22 in Glasner [28]). Relative weak mixing is a strengthening of the
condition of relative ergodicity which has numerous consequences for how
this extension may be joined to others. An understanding of these conse-
quences and of the ways in which relative weak mixing can fail is crucial to
Furstenberg’s approach to Szemerédi’s Theorem ([22]; see also the excellent
treatment in [23]). The core result of Furstenberg and Zimmer is an inverse
theorem according to which an extension of ergodic systems fails to be rela-
tively weakly mixing if and only if it contains a non-trivial subextension that
can be coordinatized as a homogeneous skew-product: thus, homogeneous
skew-products are identified as precisely the ‘obstructions’ to relative weak
mixing within other extensions.
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However, in many applications in which this ergodicity of the base sys-
tem fails, this simple homogeneous skew-product construction is not quite
general enough, and the Furstenberg–Zimmer theory outlined above is not
available without modification.

In this paper we shall extend the definition of homogeneous skew-product
to a more general class of systems by the simple artifice of allowing the fibre
Gy/Ky, in addition to the cocycle ρ(y), to vary as a function of the base
point y ∈ Y . This leads to a definition of an extension of (Y, ν, S) given as
an action of the group on a ‘direct integral’ of homogeneous space fibres over
(Y, ν). It is relatively simple to settle on a definition of ‘measurability’ for
such an assignment of fibres, and to turn this idea into a rigorous definition.

The study of such measurably-varying groups is certainly not new. It is
already alluded to during the introduction to Section 6.1 of Guichardet’s
book [29] in the context of ‘measurable current groups’ and their represen-
tation theory, motivated in turn by considerations from algebraic quantum
field theory. A number of more recent works have studied constructions of
this nature explicitly. For example, in [15] Conze and Raugi analyze the er-
godic decomposition of various σ-finite measures associated to an extension
of a non-singular ergodic base transformation by a locally compact non-
compact group, invoking for their description a measurably-varying family
of subgroups of that fibre group. However, in their setting the need for a
measurably-varying family of groups is related to the possibly non-smooth
structure of the Borel equivalence relation of conjugacy on the collection of
all such subgroups, an issue which disappears upon restriction to the case of
compact fibre groups, and so the results that they develop are still rather dis-
connected from the present paper. Perhaps closest to our present emphasis
is the emergence of measurably-varying subgroups of a fixed compact group
in the analysis of measurably-varying Mackey groups for certain non-ergodic
self-joinings of an ergodic system, which underlies some known approaches
to the study of non-conventional ergodic averages; see, in particular, Section
3.2 in Meiri [35], the proof of Lemma 9.2 in Furstenberg and Weiss [27], and
Section 6.8 in Ziegler [47].

More generally, a need to extend known machinery for different kinds of
ergodic system to their non-ergodic relatives has been felt in other areas:
consider, for example, Downarowicz’ discussion in [16] of ‘assignments’ for
his study of simplices of invariant measures for topological systems on zero-
dimensional metric spaces, and the work of Fisher, Witte-Morris and Whyte
on cocycle superrigidity for non-ergodic systems [18]. The careful study of
such non-ergodic settings also has many parallels with the analysis of direct
integrals in the infinite-dimensional representation theory of locally compact
groups or von Neumann and C∗-algebras (nicely introduced, for instance, in
Arveson [1]), although we will not explore this connection further here.
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Notwithstanding the diversity of these previous developments, within
structural ergodic theory the treatment of extensions with varying homoge-
neous space fibres seems to have stayed largely immersed in other analyses,
such as those cited above. Although it is intuitively clear that the funda-
mental structural results for the ergodic case of homogeneous skew-product
extensions should admit natural generalizations, it seems that this has not
yet been carried out. In fact, after setting up the right definitions we will find
that it is largely routine to extend both the results of Mackey ([33]) on the
invariant factor of the extended system and also the Furstenberg–Zimmer
theory to this setting. We lay out the details of this generalization in the
first part of this paper. More interesting is the extension of the results of
Mentzen [36] on the possible structure of an automorphism of an isomet-
ric extension of ergodic systems: we generalize this by presenting structure
theorems for factors and automorphisms of a relatively ergodic extension by
measurably-varying compact homogeneous spaces.

Although this generalization is as much a matter of care as new ideas, it
pays off by broadening the applicability of the theory of homogeneous skew-
products to settings in which an assumption of base ergodicity is unavailable.
This arises, in particular, when considering an action of a larger group T :
Γ y (X,µ) restricted to some subgroup Λ ≤ Γ . Although a routine appeal
to the ergodic decomposition can often justify the assumption that T is
ergodic overall, if we disintegrate further to guarantee that the restricted
action T �Λ is ergodic then T γ for γ ∈ Γ \ Λ need not preserve the resulting
disintegrands of µ. As a consequence, if we are concerned with how the Λ-
subaction sits within the whole original action, we may be forced to retain
a system for which this subaction of Λ is not ergodic.

In this paper we offer two closely-related applications meeting this de-
scription. For both cases we specialize to Γ = Zd. These two applications
are relatively simple, and are included largely to illustrate the arguments
made possible by the formalism described above, but they also exemplify
much more general questions on which we suspect these methods will shed
light in the future.

Given a Zd-system X = (X,µ, T ) we can consider the σ-subalgebra ΣT �Γ

X
of sets left invariant by the subaction of T corresponding to some subgroup
Γ ≤ Zd. As is standard in the category of standard Borel spaces, this can
be identified up to µ-negligible sets with the σ-algebra generated by a factor
map ζT

�Γ

0 : X → ZT
�Γ

0 to some new system on which the subaction of Γ
is trivial. Although individually these new systems can still be quite com-
plicated, a possibly more tractable task is to describe their possible joint
distributions within the original system. If Γ,Λ ≤ Zd are two subgroups
then it is easy to show that ζT

�Γ

0 and ζT
�Λ

0 are relatively independent over
ζT

�(Γ+Λ)

0 , but for three or more subgroups matters become more complicated.
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Clearly given three subgroups Γ1, Γ2, Γ3 ≤ Zd we see that ζT
�Γ1

0 and ζT
�Γ2

0

both contain ζT
�(Γ1+Γ2)

0 , and similarly for other pairs, and so a näıve candi-
date for a generalization of the above result could be that the three isotropy
factors ζT

�Γi
0 are relatively independent over the smaller triple of factors

ζT
�(Γi+Γj)

0 ∨ ζT �(Γi+Γk)

0 (the factor generated by ζT
�(Γi+Γj)

0 and ζT
�(Γi+Γk)

0 to-
gether) as (i, j, k) ranges over permutations of (1, 2, 3). If we denote the
target Zd-system of this joint factor map by Wi (so this is a joining of
ZT

�(Γi+Γj)

0 and ZT
�(Γi+Γk)

0 ) and let αi : ZT
�Γi

0 → Wi be the factor map de-
fined by ζT

�(Γi+Γj)

0 ∨ ζT �(Γi+Γk)

0 = αi ◦ ζT
�Γi

0 , then these factors are arranged
as in the following commutative diagram:

X
ζT

�Γ1
0

wwppppppppppppp

ζT
�Γ2

0��

ζT
�Γ3

0

''NNNNNNNNNNNNN

ZT
�Γ1

0

α1

��

ZT
�Γ2

0

α2

��

ZT
�Γ3

0

α3

��
W1

�� &&NNNNNNNNNNN W2

xxppppppppppp

&&NNNNNNNNNNN W3

xxppppppppppp

��

ZT
�(Γ1+Γ2)

0 ZT
�(Γ1+Γ3)

0 ZT
�(Γ2+Γ3)

0

In fact the näıve conjecture that the factors ζT
�Γi

0 are relatively indepen-
dent over their further factors αi is false, but ‘not by very much’: we will
see that it can fail only in a very restricted way. In general, the three factors
ζT

�Γi
0 are relatively independent over some subextensions of these ‘natu-

ral candidate’ factors αi, and these subextensions can be coordinatized by
measurable compact fibre groups subject to certain further restrictions.

Here we will examine this when d = 3 and Γi is the cyclic subgroup Zei
in the direction of a basis vector ei, but it seems clear that our methods
can be extended both to more general subgroups of Abelian groups and
(probably with considerably more work) to larger numbers of subgroups.

Theorem 1.1 (Joint distributions of three isotropy factors). Let X =
(X,µ, T ) be a Z3-system and write Ti := T ei for i = 1, 2, 3. Let Wi be the
target of the joint factor map αi := ζ

Ti,Tj
0 ∨ζTi,Tk0 , where ζTi,Tj0 := ζT

�(Zei+Zej)

0 ,
let Wi be its underlying standard Borel space and let Tj |αi be the restriction
of Tj to the factor αi. Between the single isotropy factors ζTi0 : X → ZTi0

and the smaller factors αi : X → Wi there are three intermediate factors
φi ◦ ζTi0 : X→ Vi, where

X
ζ
Ti
0−−→ ZTi0

φi−→ Vi →Wi,



138 T. Austin

such that

• the triple of factors ζTi0 is relatively independent over the triple φi ◦ζTi0

under µ;
• there exist compact metrizable group data Gi,• on Wi invariant under

the restriction of the whole action T to the factor space Wi, a cocy-
cle τij : Wi → Gi,• invariant under the restriction of Tk to Wi and
a cocycle τik : Wi → Gi,• invariant under the restriction of Tj to Wi

such that we can coordinatize the extension Vi → Wi as the exten-
sion of Wi by the measurable compact fibre groups Gi,• with the lifted
actions defined by

Tj |φi◦ζTi0

(wi, gi) = (Tj |αi(wi), τij(wi) · gi)

and
Tk|φi◦ζTi0

(wi, gi) = (Tk|αi(wi), gi · τik(wi)).

We will generally denote a coordinatization of the extension Vi → Wi

as above by the commutative diagram

Vi

  B
BB

BB
BB

B
oo

∼= //Wi n (Gi,•,mGi,• , τij , τ
op
ik )

canonical
vvlllllllllllllll

Wi

where we use the superscript op to denote a cocycle that acts on fibres by
right multiplication, and we have suppressed mention of the transforma-
tion Ti since by definition its restriction to Vi is the identity.

Although our final conclusion here yields measurably-varying fibre groups
Gi,• that are invariant under the whole action T—and so would be constant
if we had assumed that the overall action T is ergodic—the analysis leading
to this conclusion will go via homogeneous space fibres of possibly greater
variability, for the reason described earlier that at first we will only be able
to assume that the fibres are invariant under the subaction Ti.

The same is true of our second application. This is to a special case of
the problem of describing the ‘minimal characteristic factors’ for the non-
conventional ergodic averages

1
N

N∑
n=1

d∏
i=1

fi ◦ Tni

associated to a d-tuple of commuting actions Ti : Z y (X,µ) and functions
f1, . . . , fd ∈ L∞(µ). Let us write X = (X,µ, T ) for the Zd-system given by
these one-dimensional actions in the coordinate directions.

The question of convergence in L2(µ) for such averages was first settled
when d = 2 by Conze and Lesigne in [12], and since then a number of other
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works have addressed other versions or relatives of this question [45, 27, 30],
culminating in Host and Kra’s detailed analysis of the case in which Ti = T i

for some fixed T in [31] (see also Ziegler [47]) and Tao’s recent proof in [42]
of convergence for arbitrary d. We direct the reader to [6] for a more detailed
discussion of this problem and an alternative proof of convergence.

Here we will consider in the case d = 2 an important part of these
developments: the theory of ‘characteristic factor-tuples’ for such averages.
In our setting, a pair of factors ξi : X→ Yi is ‘characteristic’ if

1
N

N∑
n=1

(f1 ◦ Tn1 ) · (f2 ◦ Tn2 )− 1
N

N∑
n=1

Eµ(f1 ◦ Tn1 | ξ1) · Eµ(f2 ◦ Tn2 | ξ2)→ 0

in L2(µ) as N → ∞ for any f1, f2 ∈ L∞(µ). Clearly given such a pair
of factors, the problem of proving convergence reduces to the case when
each fi is ξi-measurable, and this reduction forms an important first step in
many of the known proofs of convergence. Although characteristic factors
are well-understood in some special cases, the more recent proofs of general
convergence in [42, 43, 6] proceed by first heavily modifying the original
system and only then asking after the characteristic factors (or their finitary
analog in Tao’s proof in [42]), and so our knowledge of the characteristic
factors of the original system remains incomplete except in some special
cases [45, 31, 19, 47]. More is known in the case d = 2 from the work of Conze
and Lesigne [12], and in addition the following very precise description of the
characteristic factors when d = 2 has achieved folkloric currency since that
work appeared. However, a complete proof seems to be surprisingly subtle,
and we shall give such a proof as our second application of our non-ergodic
machinery for extensions by homogeneous spaces.

Theorem 1.2 (Characteristic factors for double non-conventional aver-
ages). Given a Z2-system X = (X,µ, T1, T2), let Wi be the target system of

the factor αi := ζTi0 ∨ ζ
T1T

−1
2

0 with underlying standard Borel space Wi. Then
X admits a characteristic pair of factors ξi : X→ Yi with underlying stan-
dard Borel spaces Yi that extend the factors X →Wi and can be described
as follows: there are

• a T -invariant measurable family of compact fibre groups G•,

• a T1-ergodic cocycle σ : ZT1T
−1
2

0 → G• that is ergodic for the restricted
action of T1,
• and a pair of cocycles τi : ZT3−i

0 → G• ergodic for the restricted action
of Ti

such that we can coordinatize these probability spaces as
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(Y1, (ξ1)#µ)

((PPPPPPPPPPPP
oo

∼= // (W1, (α1)#µ) n (G•,mG•)

canonical mapttjjjjjjjjjjjjjjjj

(W1, (α1)#µ)

so that the restricted actions are given by

restriction of T1: (w1, g) 7→
(
T1|α1(w1), σ(ζT1T

−1
2

0 (w1)) · g
)
,

restriction of T2: (w, g) 7→
(
T2|α1(w1), σ(ζT1T

−1
2

0 (w1)) ·g ·τ2(ζT1
0 (w1))

)
,

and similarly

(Y2, (ξ2)#µ)

((PPPPPPPPPPPP
oo

∼= // (W2, (α2)#µ) n (G•,mG•)

canonical mapttjjjjjjjjjjjjjjjj

(W2, (α2)#µ)

with

restriction of T1: (w2, g) 7→
(
T1|α2(w2), σ(ζT1T

−1
2

0 (w2))·g ·τ1(ζT2
0 (w2))

)
,

restriction of T2: (w2, g) 7→
(
T2|α2(w2), σ(ζT1T

−1
2

0 (w2)) · g
)
.

We suspect that our methods should extend to offer at least some de-
scription of characteristic factor-tuples for larger numbers of commuting
transformations, although we also suspect that it will become rapidly more
complicated.

In summary, the body of this paper is organized as follows.
In Section 2 we recall some definitions and standard results from group

theory, measure theory and ergodic theory that we will need later in the
paper, and in doing so set up some convenient notation.

Section 3 introduces our definitions of measurable families of homoge-
neous space data and their direct integrals.

In Section 4 we cover quite briskly the main definitions and results of
the non-ergodic Mackey theory, and then in Section 5 we treat similarly the
non-ergodic version of the Furstenberg–Zimmer inverse theory.

In Section 6 we pursue a slightly less standard consequence of the Mackey
theory, using it first to describe the possible factors and groups of automor-
phisms of an extension by homogeneous space data, and then translating
this into conditions on an automorphism of a base system that it be liftable
to an automorphism of an extension. This generalizes the classical work of
Mentzen [36] in the case of ergodic systems, and will be important for the
applications of the theory that follow.

In Section 7 we present our two applications, to the joint three-fold
distributions of isotropy factors and to double characteristic factors.
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Finally, in Section 8 we discuss some further possible applications of this
machinery.

2. Background and notation

2.1. Measurable functions and probability kernels. We will work
exclusively in the category of standard Borel probability spaces (X,ΣX , µ),
and so will often suppress mention of their σ-algebras.

Any Borel map φ : X → Y specifies a σ-subalgebra of ΣX in the form
of φ−1(ΣY ). Two such maps φ : X → Y and ψ : X → Z are equivalent
if the σ-subalgebras of ΣX that they generate are equal up to µ-negligible
sets, in which case we shall write φ ' ψ; this clearly defines an equivalence
relation among Borel maps with domainX. As is standard, in the category of
standard Borel spaces equivalence classes of such Borel maps are in bijective
correspondence with equivalence classes of σ-subalgebras under the relation
of equality modulo the σ-ideal of µ-negligible sets. A treatment of these
classical issues may be found, for example, in Chapter 2 of Glasner [28].

A measure-preserving Borel map π : (X,µ) → (Y, ν) contains another
such map ψ : (X,µ)→ (Z, θ) if π−1(ΣY ) ⊇ ψ−1(ΣZ) up to µ-negligible sets.
In this case we shall write π % ψ or ψ - π, and sometimes say that ψ is
µ-virtually a function of φ or that it is µ-virtually φ−1(ΣY )-measurable. It
is again a classical fact that in the category of standard Borel spaces this
notion of containment is equivalent to the existence of a factorizing Borel
map φ : (Y, ν) → (Z, θ) with ψ = φ ◦ π µ-almost everywhere, and that a
measurable analog of the Schroeder–Bernstein Theorem holds: π ' ψ if and
only if in each direction such a φ may be chosen that is invertible away from
some negligible subsets of the domain and target. It is clear that (up to set-
theoretic niceties) this defines a partial order on the class of '-equivalence
classes of Borel maps out of the given space (X,µ).

Measure-respecting Borel maps from one probability space to another
comprise the simplest class of morphisms between such spaces, but in this
paper we shall sometimes find ourselves handling also a weaker class of
morphisms. Suppose that Y and X are standard Borel spaces. Then by a
probability kernel from Y to X we understand a function P : Y ×ΣX → [0, 1]
such that

• the map y 7→ P (y,A) is ΣY -measurable for every A ∈ ΣX ;
• the map A 7→ P (y,A) is a probability measure on ΣX for every y ∈ Y .

Intuitively, such a kernel amounts to a ‘randomized map’ from Y to X:
rather than specify a unique image in X for each point y ∈ Y , it specifies
only a probability distribution P (y, · ) from which a point of X could be
chosen. The first of the above conditions is then the natural sense in which
this assignment of a probability distribution is measurable in y; indeed, a



142 T. Austin

popular alternative definition of probability kernel is as a measurable func-
tion from Y to the set PrX of Borel probability measures on X. In ergodic
theory this notion lies behind that of a ‘quasifactor’ (which assumes also
a certain equivariance of this map): see, for example, Chapter 8 of Glas-
ner [28], where this alternative convention and notation are used. We will
write P : Y

p→ X when P is a probability kernel from Y to X.
Given a kernel P : Y

p→ X and a probability measure ν on Y , we define
the measure P#ν on X by

P#ν(A) :=
�

Y

P (y,A) ν(dy);

this measure on X can be interpreted as the law of a member of X selected
randomly by first selecting a member of Y with law ν and then selecting
a member of X with law P (y, · ). By analogy with the case of a function
between measurable spaces, we will refer to this as the pushforward of ν
by P . This extends standard deterministic notation: given a measurable
function φ : Y → X, we may associate to it the deterministic probability
kernel given by P (y, · ) = δφ(y) (the point mass at the image of y under φ),
and now P#ν is the usual pushforward measure φ#ν.

Certain special probability kernels naturally serve as adjoints to factor
maps, in the sense of the following theorem.

Theorem 2.1. Suppose that Y and X are standard Borel spaces, that
µ is a probability measure on X and that φ : X → Y is a measurable
factor map. Then, denoting the pushforward φ#µ by ν, there is a ν-almost
surely unique probability kernel P : Y

p→ X such that µ = P#ν and which
represents the conditional expectation with respect to φ: for any f ∈ L1(µ),
the function

x1 7→
�

X

f(x)P (φ(x1),dx)

is a version of the µ-conditional expectation of f with respect to φ−1(ΣY ).
We also write that this P represents the disintegration of µ over φ. A

general probability kernel P : Y
p→ X represents the disintegration over φ

of some measure that pushes forward onto ν if and only if
	
A P (x, · ) ν(dy)

and
	
B P (y, · ) ν(dy) are mutually singular whenever A ∩B = ∅.

Proof. See Theorem 6.3 in Kallenberg [32].

2.2. Systems, subactions and factors. In this paper we shall spend a
great deal of time passing up and down from systems to extensions or factors.
Moreover, sometimes one system will appear as a factor of a ‘larger’ system
in several different ways (most obviously, when we work with a system that
appears under each coordinate projection from some self-joining). For this
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reason the notational abuse of referring to one system as a factor of another
but leaving the relevant factor map to the understanding of the reader,
although popular and useful in modern ergodic theory, seems dangerous
here, and we shall carefully avoid it. In its place we substitute the alternative
abuse, slightly safer in our circumstances, of often referring only to the
factor maps we use, and leaving either their domain or target systems to
the reader’s understanding. Let us first set up some notation to support this
practice.

If Γ is a locally compact second countable topological group, by a Γ -
system (or, if Γ is clear, just a system) we understand a jointly measurable
probability-preserving action T : Γ y (X,µ) on a standard Borel prob-
ability space. We will often alternatively denote this space and action by
(X,µ, T ), or by a corresponding single boldface letter such as X. If Λ ≤ Γ
we denote by T �Λ : Λ y (X,µ) the action defined by (T �Λ)γ := T γ for
γ ∈ Λ, and refer to this as a subaction, and if X = (X,µ, T ) is a Γ -system
we write similarly X�Λ for the system (X,µ, T �Λ) and refer to it as a sub-
action system.

A factor from one system (X,µ, T ) to another (Y, ν, S) is a Borel map
π : X → Y with π#µ = ν and π ◦ T = S ◦ π. Given such a factor, we
sometimes write T |π to denote the action S with which T is intertwined
by π.

In this paper, given a globally invariant σ-subaglebra in X, a choice
of factor π : X → Y generating that σ-subalgebra will sometimes be re-
ferred to as a coordinatization of the σ-subalgebra. Importantly for us, some
choices of a coordinatizing factor π may reveal some underlying structure
more clearly than others, and so we will sometimes need to pass between
coordinatizing factors. Given one coordinatization π : X → Y and an iso-
morphism ψ : Y → Z, we shall sometimes refer to the composition ψ ◦ π
as a recoordinatization of π. We will also extend this terminology to that
of coordinatizations and recoordinatizations of families of factors of a sys-
tem in the obvious way in terms of the appropriate commutative diagram
of isomorphisms.

Given a Γ -system X = (X,µ, T ), the σ-algebra ΣT
X of sets A ∈ ΣX for

which µ(A4T γ(A)) = 0 for all γ ∈ Γ is T -invariant, so defines a factor of X.
More generally, if Γ is Abelian and Λ ≤ Γ then we can consider the σ-algebra
ΣT �Λ

X generated by all T �Λ-invariant sets: we refer to this as the Λ-isotropy
factor and write ZT

�Λ

0 for some new system that we adopt as the target for
a factor map ζT

�Λ

0 that generates ΣT �Λ

X , and ZT
�Λ

0 for the standard Borel
space underlying ZT

�Λ

0 . Note that in this case the Abelianness condition (or,
more generally, the condition that ΛEΓ ) is needed for this to be a globally
T -invariant factor. If T1 and T2 are two commuting actions of the same
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Abelian group Γ on (X,µ) then we can define a third action T1T
−1
2 by setting

(T1T
−1
2 )γ := T γ1 T

γ−1

2 , and in this case we may write ζT1=T2
0 : X→ ZT1=T2

0 in

place of ζT1T
−1
2

0 : X→ ZT1T
−1
2

0 . If S ⊆ Γ and Λ is the group generated by S,
we will sometimes write ZT

�S

0 in place of ZT
�Λ

0 , and similarly.
An important construction of new systems from old is that of relatively

independent products. If Y = (Y, ν, S) is some fixed system and πi : Xi =
(Xi, µi, Ti) → Y is an extension of it for i = 1, . . . , k then we define the
relatively independent product of the systems Xi over their factor maps πi
to be the system∏

{π1=···=πk}

Xi =
( ∏
{π1=···=πk}

Xi,
⊗

{π1=···=πk}

µi, T1 × · · · × Tk
)

where∏
{π1=···=πk}

Xi := {(x1, . . . , xk) ∈ X1 × · · · ×Xk : π1(x1) = · · · = πk(xk)},

⊗
{π1=···=πk}

µi =
�

Y

k⊗
i=1

Pi(y, · ) ν(dy)

and Pi : Y
p→ Xi is a probability kernel representing the disintegration of µi

over πi. In case k = 2 we will write this instead as X1 ×{π1=π2} X2, and in
addition if X1 = X2 = X and π1 = π2 = π then we will abbreviate this
further to X×π X, and similarly for the individual spaces and measures.

2.3. Measurable selectors. At several points in this paper we need
to appeal to some basic results on the existence of measurable selectors,
often as a means of making rigorous a selection of representatives of one or
another kind of data above the ergodic components of a non-ergodic system.

Theorem 2.2. Suppose that (X,ΣX) and (Y,ΣY ) are standard Borel
spaces, that A ⊆ X is Borel and that π : X → Y is a Borel surjection. Then
the image π(A) lies in the νc-completion of ΣY for every Borel probability
measure ν on (Y,ΣY ) with completion νc, and for any such ν there is a map
f : B → A with domain B ∈ ΣY such that B ⊆ π(A), νc(π(A) \B) = 0 and
π ◦ f = idB.

Proof. See, for example, 423O and its consequence 424X(h) in Frem-
lin [21].

Definition 2.3 (Measurable selectors). We refer to a map f as given
by the above theorem as a measurable selector for the set A.

Remark. We should stress that this is only one of several versions of
the ‘measurable selector theorem’, due variously to von Neumann, Jankow,
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Lusin and others. Note in particular that in some other versions a map f is
sought that selects points of A for strictly all points of π(A). In the above
generality we cannot guarantee that a strictly-everywhere selector f is Borel,
but only that it is Souslin-analytic and hence universally measurable (of
course, from this the above version follows at once). On the other hand, if the
map π|A is countable-to-one, then a version of the result due to Lusin does
guarantee a strictly-everywhere Borel selector f . This version has already
played a significant rôle in our corner of ergodic theory in the manipulation
of the Conze–Lesigne equations (see, for example, [12, 27, 10]), and so we
should be careful to distinguish it from the above. A thorough account of
all these different results and their proofs can be found in Sections 423, 424
and 433 of Fremlin [21].

In the right circumstances it is possible to strengthen Theorem 2.2 to
obtain a Borel selector that is invariant under a group of transformations,
by making use of a coordinatization of the invariant factor.

Proposition 2.4. Suppose that (X,ΣX) and (Y,ΣY ) are standard Borel
spaces, A ⊆ X is Borel and π : X → Y is a surjective Borel map, and in
addition that T : Γ y (X,ΣX) is a jointly measurable action of a locally
compact second countable group such that π is a factor map, so π◦T γ = Sγ◦π
for some jointly measurable action S : Γ y (Y,ΣY ), and that A is T -
invariant. Then for any S-invariant probability measure ν on (Y,ΣY ) with
completion νc there are an S-invariant set B ∈ ΣY such that B ⊆ π(A) and
νc(π(A) \B) = 0 and an S-invariant map f : B → A such that π ◦ f = idB.

Proof. Let f0 : B0 → A be an ordinary measurable selector as given by
Theorem 2.2, and let ν be any S-invariant probability measure on (Y,ΣY ).
This B0 must be ν-almost S-invariant, simply because π(A) is T -invariant
and νc(B4π(A)) = 0. Using local compactness and second countability, let
(Fi)i≥1 be a countable compact cover of Γ , and also let mΓ be a left-invariant
Haar measure on Γ . From the joint measurability of T it follows that the
set

B :=
{
y ∈ Y : mΓ {γ ∈ Γ : Sγ(y) ∈ Y \B0} = 0

}
=
⋂
i≥1

{
y ∈ Y : mΓ {γ ∈ Fi : Sγ(y) ∈ B0} = mΓ (Fi)

}
is Borel, T -invariant and satisfies ν(B0 4B) = 0.

We now let ζ : (Y,ΣY , ν) → (Z,ΣZ , θ) be any coordinatization of the
invariant factor ΣT

Y ; it is easy to see that this may be chosen so that there
exists some C ∈ ΣZ such that B = ζ−1(C). We can now use B and ζ to ‘tidy
up’ our original selector f0. Indeed, by the S-invariance of ζ and the fact that
for every y ∈ B we have Sγ(y) ∈ B0 for some (indeed, almost all) γ ∈ Γ ,
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we must have ζ(B0) ⊇ C. Therefore by applying the ordinary Measurable
Selector Theorem a second time we can find a Borel subset D ∈ ΣZ with
D ⊆ C and θ(C \ D) = 0 and a Borel section η : D → B0 such that
ζ ◦ η = idD; and so now replacing B0 with B and the map f0 with f : y 7→
f0(η(ζ(y))) completes the proof.

Definition 2.5 (Invariant measurable selectors). We refer to a map f
as given by the above proposition as a T -invariant measurable selector for
the set A.

2.4. Background from group theory. We collect here some standard
group-theoretic definitions and results for future reference.

Definition 2.6 (Core). If G is a group and H ≤ G we denote by
CoreG(H) the core of H in G: the largest subgroup of H that is normal
in G. It is clear that this exists and equals

⋂
g∈G g

−1Hg. If G is compact
and H is closed then so is CoreG(H).

If CoreG(H) = {1G} we shall write that H is core-free in G.

Definition 2.7 (Full one-dimensional projections; slices). Given two
groups G1 and G2 and a subgroup M ≤ G1 × G2, and writing πi : G1 ×
G2 → Gi for the two coordinate projections, we say that M has full one-
dimensional projections if πi(M) = Gi for i = 1, 2.

We refer to the subgroups

H1 := π1(M ∩ (G1 × {1G2})) and H2 := π2(M ∩ ({1G1} ×G2))

as the first and second slices of M respectively.

It is a classical observation of Goursat (see, for example, Section 1.6
of Schmidt [40]) that M has full one-dimensional projections and trivial
first and second slices if and only if it is the graph of an isomorphism Φ :
G2 → G2. If the slices are non-trivial, we do at least have the following.

Lemma 2.8. If M ≤ G1 ×G2 has full one-dimensional projections then
its slices satisfy Hi EGi for i = 1, 2.

Proof. By symmetry it suffices to treat the case i = 1. Let r1 ∈ G1. Since
π1(M) = G1 we can find r2 ∈ G2 such that (r1, r2) ∈ M . It is now easy to
check that

r1H1 = {g ∈ G1 : (r−1
1 g, e) ∈M} = {g ∈ G1 : (r1, r2)(r−1

1 g, e) ∈M}
= {g ∈ G1 : (g, r2) ∈M} = {g ∈ G1 : (gr−1

1 , e)(r1, r2) ∈M}
= {g ∈ G1 : (gr−1

1 , e) ∈M} = H1r1.

Since r1 was arbitrary, H1 is normal, as required.
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Given a compact group G or one of its homogeneous spaces G/H we
shall always consider it endowed with its usual Borel structure and Haar
probability measure, which we shall denote by mG or mG/H .

If U is a compact metrizable group then we write ClosU for its collec-
tion of closed subsets endowed with the Vietoris topology (see, for exam-
ple, 2.7.20, 3.12.27 and 4.5.23 of Engelking [17]; as is standard, this is also
compact and metrizable) and the associated standard Borel structure and
Lat U ⊆ ClosU for the further Veitoris-closed subfamily of closed subgroups
with its induced standard Borel structure. In this setting of subgroups of
compact metrizable groups, the Vietoris topology is easily seen to coincide
with the Fell topology and the Chabauty topology, both of which also com-
monly appear in the study of lattices of closed subgroups; see Subsection 2.1
of Conze and Raugi [15] and the references given there. This topology and
Borel structure can be understood in terms of Haar measures in the following
standard way.

Lemma 2.9. The Vietoris topology and measurable structure on Lat U
coincide with the pullbacks of the vague topology and measurable structure
under the Haar-measure map H 7→ µH .

3. Direct integrals of homogeneous-space data. In this section
we give the rigorous definition of a ‘direct integral’ of measurably-varying
homogeneous spaces and of the lifted transformation acting on it, and es-
tablish some of their elementary properties. We build such an extension X
as a union of different fibres Gy/Ky above each y ∈ Y , the fibre actually
depending only on ζS0 (y) ∈ ZS0 , and we extend S to an action T on X using
a cocycle constrained to lie at (almost) every point in the relevant fibre. We
enforce a suitable measurable structure by drawing Gy and Ky from among
the compact subgroups of some fixed ‘repository’ group, subject to the con-
dition Ky ≤ Gy, measurably for the Vietoris measurable structure on such
subgroups.

Definition 3.1 (Measurable homogeneous space data). Let Y be a stan-
dard Borel space and U a fixed compact metrizable group. By measurable
compact group data on Y with fibre repository U we understand a map
Y → Lat U : y 7→ Gy that is measurable for the Vietoris Borel structure
on Lat U . We shall usually denote such a map by G•, and will often omit
explicit mention of the fibre repository U . More generally, by measurable
compact homogeneous space data on Y with fibre repository U we under-
stand a pair (G•,K•) of measurable compact group data with repository U
such that Ky ≤ Gy for every y. We shall usually denote this pair instead by
G•/K•, and think of it as a measurable assignment of the compact homo-
geneous space Gy/Ky to each point y ∈ Y .
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Definition 3.2 (Direct integral of measurable homogeneous space data).
Given a standard Borel probability space (Y, ν) and measurable compact
homogeneous space data as above, we shall define their direct integral to be
the subset

{(y, gKy) : y ∈ Y, g ∈ Gy} ⊆ Y × ClosU,

which we denote by Y nG•/K•. This is easily verified to be standard Borel
for the relevant product measurable structure, and we will always assume it
to be endowed with the restriction of that measurable structure.

On this space we define the direct integral measure ν nmG•/K• by

ν nmG•/K•(A) :=
�

Y

δy ⊗mGy/Ky(A ∩ ({y} ×Gy/Ky)) ν(dy).

Given another measurable assignment of subgroup data H• ≤ G•, we
define analogously the direct integrals (Y nH•\G•, νnmH•\G•) of the spaces
of right-cosets and (Y n(H•\G•/K•), νnmH•\G•/K•) of the spaces of double
cosets.

Remark. We will rarely remark again on the assumption that the fibre
repository U be metrizable, but this will always be implicit. This ensures
that the above construction keeps us within the category of standard Borel
spaces (and it will be a natural consequence of the non-ergodic Furstenberg–
Zimmer theory applied to such spaces), and will occasionally be important
for proofs (such as in Lemma 3.7 below). One could attempt to construct an
extended theory that allows non-metrizable fibre groups and works instead
in the larger category of perfect measure spaces (see 342K of Fremlin [20]),
but we will not do so here.

Definition 3.3 (Cocycle-sections). Suppose that (Y, ν), U and G•/K•
are as above, that Γ is a locally compact second countable group and that
S : Γ y (Y, ν), and suppose further that the group data y 7→ Gy and y 7→ Ky

are S-invariant. Then a cocycle-section of G• over S is a measurable cocycle
ρ : Γ × Y → U over S such that ρ(γ, y) ∈ Gy for every γ ∈ Γ and y ∈ Y .
We shall denote such a cocycle-section by ρ : Γ × Y → G•.

Remark. Note that in the setting of a general locally compact second
countable group Γ , the definition that ρ be a cocycle over S demands only
that ρ(γ1γ2, y) = ρ(γ1, S

γ2y) · ρ(γ2, y) for ν-almost every y ∈ Y for strictly
every γ1 and γ2 (see, for instance, Section 4.2 of Zimmer [50]), where the
negligible set of ‘bad’ y is allowed to vary with (γ1, γ2); and that by con-
vention two cocycles are equivalent if they agree ν-almost surely for strictly
every γ. In view of this, we lose no generality in asking that ρ(γ, y) ∈ Gy for
strictly every y and γ, rather than for almost every y for strictly every γ,
since in the latter case we may simply adjust ρ to equal 1 on the Borel set
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where it falls outside the specified repository, and this changes each ρ(γ, · )
on only a ν-negligible set for strictly every γ.

Finally, we can define our class of extensions.

Definition 3.4 (Extensions by measurable homogeneous space data).
Suppose that Y = (Y, ν, S) and G•/K• are as above, that the group data
y 7→ Gy and y 7→ Ky are S-invariant and that ρ : Γ × Y → G• is a
cocycle-section over S. Then the extension of Y by the data (G•/K•, ρ) is
the action T of Γ on (Y nG•/K•, ν nmG•/K•) given by

T γ(y, gKy) := (Sγy, ρ(γ, y)gKy);

it is routine to verify that this is measurable and measure-preserving.
We will often denote this extended system by Y n (G•/K•,mG•/K• , ρ).

It clearly admits Y as a factor simply by projecting out the fibre coordi-
nate; we will refer to this as the canonical factor map. The data G•/K•
and cocycle-section ρ are together relatively ergodic if the extension Y n
(G•/K•,mG•/K• , ρ)→ Y through the canonical map is relatively ergodic.

Remarks. 1. In light of the Peter–Weyl Theorem (treated in most stan-
dard texts on compact group representations, such as in Section III.3 of
Bröcker and tom Dieck [11]) all compact metrizable groups can be realized
isomorphically, albeit highly non-uniquely, as closed subgroups of a suitably
large direct product of unitary groups, say U :=

∏
n≥1 U(n)N. This suggests

that such a direct product should suffice as a compact repository for all
purposes, and indeed this can be proved with just a little work; however,
this result seems to contribute little to the theory, and so we will not present
it here. Note, however, that it is also precisely such direct products of uni-
tary groups that will emerge naturally as repositories in the non-ergodic
Furstenberg–Zimmer inverse theory of Section 5 below.

2. In view of the condition that G• and K• are S-invariant, given a
coordinatization ζS0 : Y → ZS0 of the S-isotropy factor we could alternatively
work with compact measurable group data defined initially as functions
on the space ZS0 and then lifted through ζS0 . We will occasionally use this
alternative description when it is notationally convenient.

The following related definition will also occasionally be useful.

Definition 3.5 (Opposite extensions by measurable group data). If Y,
G• and ρ are as above, then they also define an extended action T on
(Y nG•, ν nmG•) by

T γ(y, g) := (Sγy, gρ(γ, y)−1);

this is the opposite extension of Y by the data (G•, ρ), and we will denote
this T by S n ρop.
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Remark. In fact we always have

Y n (G•, ρ)

canonical
%%KKKKKKKKKK

oo
∼= // Y n (G•, ρop)

canonical
xxrrrrrrrrrrr

Y

through the fibrewise isomorphism (y, g) 7→ (y, g−1). The use of opposite
extensions will matter to us in situations where we have two different actions
on the extended space, one by a cocycle and one by an opposite cocycle.

Before leaving this section, it is worth noting one way in which some
redundancy in the above definition can be removed.

Definition 3.6. Homogeneous space data G•/K• over (Y, ν) is core-free
if Ky is core-free in Gy almost everywhere.

Lemma 3.7. Suppose Y := (Y, ν, S) is a Γ -system, that G•/K• are mea-
surable S-invariant homogeneous space data on Y with repository U and
that ρ : Γ × Y → G• is a cocycle-section over S. If in addition the group
Ky is normal in Gy for ν-almost every y, then there are a fibre reposi-
tory U ′, measurable S-invariant group data G′ on Y and a measurable S-
invariant family of isomorphisms Ψy : Gy/Ky → G′y such that the map
(y, gKy) 7→ (y, Ψy(gKy)) defines an isomorphism of extensions

Y n (G•/K•,mG•/K• , ρ)

canonical
((QQQQQQQQQQQQQQ

oo
∼= // Y n (G′•,mG′• , ρ

′)

canonical
wwpppppppppppp

Y

with (γ, y) 7→ ρ′(γ, y) := Ψy(ρ(γ, y)) : Γ × Y → G′.

Proof. This rests on the construction of the new fibre repository for
the quotient groups G•/K•. For y ∈ Y let Hy ≤ L2(mU ) be the separa-
ble Hilbert subspace of square-integrable functions on U invariant under
left rotation by Ky. This is an S-invariant measurable family of separable
Hilbert spaces (in the sense familiar from the analysis of group representa-
tions and von Neumann algebras; see, for instance, Mackey [34]), and so we
can partition Y into S-invariant measurable subsets A1, A2, . . . , A∞ and for
each n ∈ N ∪ {∞} select an S-invariant measurable family of isomorphisms
Φy : Hy → H′n for y ∈ An, where H′n is some fixed n-dimensional reference
complex Hilbert space and H′1 ≤ H′2 ≤ · · · ≤ H′∞.

Now let πy : Gy y H∞ for y ∈ An be the representation that results
from first restricting the left-regular representation of Gy on L2(mU ) to Hy

(which is possible when K•EG•, hence almost everywhere), then composing
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with Φy to obtain a representation on H′n and finally extending this to act
on H′∞ by acting trivially on H′∞ 	 H′n.

This defines an S-invariant measurable family of representations πy of Gy
for y ∈ Y outside some ν-conegligible subset, and such that Ky = kerπy
almost surely. Next, it is easy to see that the decomposition of πy into
finite-dimensional representations given by the Peter–Weyl Theorem is mea-
surable in y (for example, since they may recovered as the spectral pro-
jections of each of a countable dense subfamily of all the measurable se-
lections over y of πy-invariant compact operators on H∞). Hence this de-
composition gives a measurable family of continuous homomorphic embed-
dings G• →

∏
n≥1 U(n)N with kernels K•, and so letting G′• be the image

group data of these embeddings they define a measurable family of iso-
morphisms Ψ• such that defining ρ′ as above and applying Ψ• fibrewise on
Y nG•/K• gives the desired isomorphism of extensions.

Corollary 3.8. If X = Y n (G•/K•,mG•/K• , ρ) is an extension by
homogeneous space data, then it is isomorphic (as an extension of Y through
the canonical map) to an extension by core-free homogeneous space data.

Proof. Let U be the repository and let Ly :=
⋂
g∈Gy g

−1Kyg be the
pointwise core of Ky in Gy. First observe that for any u ∈ U the set{

(G,K) : u ∈
⋂
g∈G

g−1Kg
}

= {(G,K) : K 3 gug−1 ∀g ∈ G}

is open in (Lat U)2, since if (K,G) does not lie in this set then there are
a closed set V1 ⊆ U with non-empty interior and an open set V2 ⊆ U such
that K ∩ V1 = ∅, G ∩ V2 6= ∅ and V2uV

−1
2 ⊆ V1. It follows that the map

(Lat U)2 → Lat U : (G,K) 7→
⋂
g∈G g

−1Kg is measurable, and hence that
L• is measurable group data.

Now by the preceding lemma we can select a measurable family of em-
beddings of the groups Gy/Ly into a suitably modified repository to obtain
an isomorphism of systems

Y n (G•/L•,mG•/L• , ρ)

canonical
((QQQQQQQQQQQQQQ

oo
∼= // Y n (G′•,mG′• , ρ

′)

canonical
wwpppppppppppp

Y

corresponding to a continuous group isomorphism Gy/Ly → G′y at almost
every y. Under these isomorphisms the subgroups Ky ≤ Gy correspond
measurably to some K ′y ≤ G′y so that (G′y,K

′
y) ∼= (Gy/Ly,KyLy/Ly), and

so observing from its definition that LyKy/Ly is always core-free in Gy/Ly,
this completes the proof.
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4. Mackey theory in the non-ergodic setting. We will now move
on to a more detailed analysis of extensions by homogeneous space data, and
more specifically of their invariant factors and relatively ergodic measures.
Many of the ideas that follow are nearly direct translates to our setting of
those of Mackey in the case of an ergodic base system, and we will follow
quite closely their treatment in Section 3.5 of Glasner [28].

In fact, more is true: earlier work on multiple recurrence and non-conven-
tional ergodic averages has already encountered the possibility of a mea-
surably-varying Mackey group within an extension of a non-ergodic base
system by a fixed overall group. This technicality arises in the work of
Meiri [35] on correlation sequences arising from probability-preserving sys-
tems, of Furstenberg and Weiss [27] on certain polynomial non-conventional
ergodic averages and more recently in Ziegler’s approach in [47] to conver-
gence of linear non-conventional averages for powers of a single transforma-
tion. For example, during the analysis in [27] a homogeneous skew-product
extension of ergodic systems (X,µ, T ) = (Y, ν, S) n (G,mG, ρ) is three-fold
joined to itself, to give a measure on X3 that is invariant for a transfor-
mation of the form T r × T s × T t but which is not ergodic for that trans-
formation. This system is now coordinatized as an extension of an action
on Y 3 by the group and cocycle (G3, (ρ(r), ρ(s), ρ(t))), but since the base is
no longer ergodic the description of the ergodic components of the overall
system requires the possibility that the Mackey group can vary among the
closed subgroups of G3 (a possibility that is then discounted by an argument
showing that they are all actually conjugate, and so may in fact be taken
to be constant; we shall see a similar trick in Subsection 7.4 below).

The only extra subtlety for which we must allow here is that the overall
group G• now also varies measurably. This will require us to work rather
harder in setting up the proof, although the overall idea is very similar to
those mentioned above. For this reason, although we have included complete
proofs here, we refer the reader to these other sources, and also Section 3.5
of Glasner [28], for relevant background.

4.1. Ergodic decompositions and Mackey group data. Mackey
theory describes the invariant factor of an extension X = Yn(G•,mG• , ρ) in
terms of the invariant factor of Y and the data (G•,mG• , ρ) of the extension.
Here it will prove convenient to treat G• as varying over the factor space ZS0
of ergodic components, lifted to Y for the purpose of defining the extended
system.

Theorem 4.1 (Mackey Theorem in the non-ergodic case). Suppose that
X is the group-data extension Y n (G•,mG• , ρ) and that ζS0 : Y → ZS0 is a
coordinatization of the base isotropy factor, and let π : X = Y nG• → Y and
θ : ZS0 nG• → ZS0 be the canonical factor maps. Then there are measurable
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subgroup data K• ≤ G• on ZS0 , a T -invariant map

φ : (X,µ)→ (ZS0 , ζ
S
0 #ν) n (K•\G•,mK•\G•)

and a section b : Y → G• such that

(1) φ coordinatizes ZT0 and the following diagram commutes:

Y nG•
φ //

canonical

��

ZS0 nK•\G•

canonical
��

Y
ζS0 // ZS0

(2) φ(y, g) = (ζS0 (y),KζS0 (y)b(y)g) for µ-almost every (y, g);
(3) the cocycle-section (γ, y) 7→ b(Sγy)ρ(γ, y)b(y)−1 takes a value in

KζS0 (y) for ν-almost every y for every γ;
(4) (Conjugate minimality) if K ′• ≤ G• is another measurable assign-

ment of compact subgroup data on ZS0 and b′ : Y → G• another
section such that the cocycle-section (γ, y) 7→ b′(Sγy)ρ(γ, y)b′(y)−1

takes a value in K ′
ζS0 (y)

for ν-almost every y for every γ, then there

is a section c : ZS0 → G• such that

c(s) ·K ′s · c(s)−1 ≥ Ks

for (ζS0 )#ν-almost every s;
(5) if P : ZS0

p→ Y is a version of the disintegration of ν over ζS0 , then
the probability kernel (s,Ksg

′)
p7→ P (s, · ) nmb(•)−1Ksg′ is a version

of the disintegration of µ over φ.

Remark. Clearly with hindsight we can take the property (2) above as
defining φ; the point, however, is that we will obtain K• and φ first and
then show that φ takes this form for some b.

The proof of this theorem will require some initial constructions and an
enabling lemma concerning the measurable selection of generic points.

First let ζT0 : X→ ZT0 be some coordinatization of the isotropy factor of
the large system with the property that ζS0 ◦π factorizes through the natural
factor ξ : ZT0 → ZS0 in the sense of the commutative diagram

X
ζT0 //

π

��

ZT0

ξ
��

Y
ζS0 // ZS0

(it is a standard fact that this is possible; see, for example, Section 2.2 of
Glasner [28]).
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We need a formal way to work with the action by right multiplication of
the fibre Gy on itself (the difficulty being, of course, that global constructions
based on this pointwise-varying action need to be kept measurable). To this
end we define the map

τ0 : X ×{ζS0 ◦π=θ} (ZS0 nG•)→ X : ((y, g′), (s, g)) 7→ (y, g′g);

intuitively, τ0(x, (s, g)) gives the image of x under right multiplication by g,
which is an element of the group Gs over s = ζS0 (π(x)) that acts on the
fibre above π(x). This map τ0 can be well-defined only for those tuples with
s = ζS0 (π(x)), hence the need for the relative self-product in the specification
of its domain; however, with this restriction in place it is easily seen to be
measurable.

We can now work with the domain of τ0 as a system in its own right
under the action T × idZS0 nG• . It is clear that the measure µ ⊗{ζS0 ◦π=θ}
((ζS0 )#νnmG•) is (T × idZS0 nG•)-invariant and that τ0 itself is a factor map
from the resulting system onto (X,µ, T ).

From τ0 we now define the composition

τ : X ×{ζS0 ◦π=θ} (ZS0 nG•)
τ0→ X

ζT0→ ZT0 .

Heuristically this assigns to the pair (x, (s, g)) the ergodic component of
(X,µ, T ) that contains the image of x under the right multiplication by g
acting on its fibre. Of course, the whole point is that different points within
a single fibre of π will generally lie in different ergodic components, and this
map τ reports on this dependence.

Informally, the proof of Theorem 4.1 now proceeds by selecting a rep-
resentative p(s) ∈ X above each s ∈ ZS0 and then defining Ks to be the
subgroup of those g ∈ Gs such that the T -ergodic component of p(s) does
not change upon right multiplication by g inside the π-fibre of s: that is,
such that τ(p(s), (s, g)) = ζT0 (p(s)). We need p to select points that are
sufficiently ‘generic’ in the fibres above s, in the sense made precise by the
following lemma.

Lemma 4.2. In the setting of Theorem 4.1, we can find a Borel measur-
able section p : ZS0 → X of the factor map ζS0 ◦ π such that the probability
kernel

P (s,A) := mGs{g ∈ Gs : τ(p(s), (s, g)) ∈ A}, A ∈ ΣZT0 ,

is a version of the disintegration of (ζT0 )#µ over ξ : ZT0 → ZS0 .

Proof. We first define a probability kernel P ′ : X
p→ ZT0 by

P ′((y, g′), A) := mG
ζS0 (y)
{g ∈ GζS0 (y) : τ((y, g′), (ζS0 (y), g)) ∈ A}.
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Intuitively this takes a point x = (y, g′), replaces it with an average over the
fibre π−1{y}, regarded as a copy of the fibre group GζS0 (y), and then pushes
the resulting probability measure down to ZT0 .

It is easy to see that this satisfies the measurability conditions of a prob-
ability kernel, since we have

P ′((y, g′), A) = P ′′((y, g′), (ζT0 )−1(A))

where P ′′ : X
p→ X is the manifestly measurable probability kernel

P ′′((y, g′), · ) := (δy ⊗mG
ζS0 (y)

)( · ).

In addition the above definition implies that

P ′((y, g′), · ) = P ′((y, g′g), · ) = P ′((Sγy, ρ(γ, y)g′), · )
for any g ∈ GζS0 (y) and γ ∈ Γ , firstly in view of the averaging over GζS0 (y)

and secondly because we take the image under the invariant function ζT0 .
Therefore the function x 7→ P ′(x, · ), regarded as a Borel map from X to the
space of Borel probability measures on ZT0 with its usual Borel structure,
both factorizes through π and is then S-invariant. Therefore there is some
P : ZS0

p→ ZT0 such that P ′ = P ◦ ζS0 ◦ π, µ-almost surely. This P must be a
version of the disintegration of (ζT0 )#µ over ξ.

Setting

As := {x ∈ X : ζS0 (π(x)) = s and P ′(x, · ) = P (s, · )},
this is now the set of ‘generic points’ above s from which we need to select
p(s). From the above relation between P ′ and P we deduce that P (s,As) = 1
for (ζS0 )#ν-almost every s. In addition, since As is the section above s of the
Borel set

A := {(s, x) ∈ ZS0 ×X : ζS0 (π(x)) = s and P ′(x, · ) = P (s, · )},
by the Measurable Selector Theorem 2.2 we can choose a measurable se-
lector p of ζS0 ◦ π such that (s, p(s)) ∈ A for (ζS0 )#ν-almost every s. This
selector now has the properties claimed.

Proof of Theorem 4.1. (1) Given the measurable selector of the above
lemma, define

Ks := {g ∈ Gs : τ(p(s), (s, g)) = ζT0 (p(s))}.
It is clear from the definition of τ that τ(p(s), (s, g)) = ζT0 (p(s)) if and only if
τ(p(s), (s, gg′)) = τ(p(s), (s, g′)) for every g′ ∈ Gs, and hence Ks is a closed
subgroup of Gs for almost every s.

Also, we have

A := {(s, g) ∈ ZS0 ×G• : g ∈ Ks}
= {(s, g) ∈ ZS0 ×G• : τ(p(s), (s, g)) = ζT0 (p(s))},
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and so this is a Borel subset of ZS0 × G•. Letting U be the repository, it
follows that for any open V1, . . . , Vk ⊆ U and closed W ⊆ U we have

{s ∈ ZS0 : Ks ∩ Vi 6= ∅ ∀i ≤ k & Ks ∩W = ∅}

= θ
(
A ∩

⋂
i≤k

(ZS0 × Vi)
)∖
θ(A ∩ (ZS0 ×W ))

(recalling that θ is the projection onto the first coordinate), and so from
the Measurable Selector Theorem 2.2 this is a universally measurable set.
Allowing V1, . . . , Vk and U \ W to run over all finite strings drawn from
some countable collection of open subsets of U that generates the whole
topology, we deduce that the map s 7→ Ks is universally measurable, and
so after modifying it on a ν-negligible set if necessary we may assume it is
Borel.

Finally, it also follows from the fact that τ(p(s), (s, gg′)) = τ(p(s), (s, g′))
for every g′ ∈ Gs and g ∈ Ks that the map (s, g′) 7→ τ(p(s), (s, g′)) virtually
factorizes through the canonical factor

ZS0 nG• → ZS0 nK•\G•

to leave a map

α : ZS0 nK•\G• → ZT0 ,

and that this is injective away from some negligible set, since if α(s1,Ks1g1)
= α(s2,Ks2g2) then s1 = ξ(α(s1, g1)) = ξ(α(s2, g2)) = s2 and now

τ(p(s1), (s1, g1)) = τ(p(s1), (s1, (g1g−1
2 )g2)) = τ(p(s1), (s1, g2)),

which implies that g1g−1
2 ∈ Ks1 provided s1 did not lie in the negligible sub-

set of ZS0 on which we modified K• above. By another appeal to Theorem 2.2
the map α has a Borel virtual inverse, say

β : ZT0 → ZS0 nK•\G•.

Now φ := β ◦ ζT0 is a coordinatization of ZT0 for which the desired diagram
is commutative.

(2) From the construction of β and another measurable selection there
is a measurable map u : Y → K•\G• such that

φ(y, g) = φ
(
τ0
(
(y, 1G

ζS0 (y)
), (ζS0 (y), g)

))
= (ζS0 (y), u(y)g);

composing u with a measurable selector Y n K•\G• → Y n G• gives a
measurable map b : Y → G• such that φ(y, g) =

(
ζS0 (y),KζS0 (y)b(y)g

)
almost

everywhere.
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(3) Since φ is T -invariant we have(
ζS0 (y),KζS0 (y)b(S

γy)ρ(γ, y)1G
ζS0 (y)

)
=
(
ζS0 (Sγy),KζS0 (Sγy)b(S

γy)ρ(γ, y)1G
ζS0 (Sγy)

)
= φ(Sγy, ρ(γ, y)1G

ζS0 (y)
)

= φ(T (y, g)) = φ(y, g) =
(
ζS0 (y),KζS0 (y)b(y)1G

ζS0 (y)

)
ν-almost surely for any γ ∈ Γ , from which the required cohomology condi-
tion follows at once.

(4) Suppose that K ′• and b′ have the asserted properties, and let U be
the overall repository for our compact group data. Then the map

Y nG• → ClosU : (y, g) 7→ K ′
ζS0 (y)

b′(y)g

is a measurable map into a standard Borel space, and it is µ-almost surely
T -invariant from the property that b′(Sγy)ρ(γ, y)b′(y) lies almost surely in
K ′
ζS0 (y)

. Therefore, because φ coordinatizes the T -invariant factor, we know

that there is a Borel map f : ZS0 n (K•\G•)→ ClosU such that

K ′
ζS0 (y)

b′(y)g = f
(
ζS0 (y),KζS0 (y)b(y)g

)
for µ-almost every (y, g). In particular, it follows that for ν-almost every y,
it is the case that for mG

ζS0 (y)
-almost every g ∈ GζS0 (y) and mb(y)−1K

ζS0 (y)
b(y)-

almost every h ∈ b(y)−1KζS0 (y)b(y) we have

f
(
ζS0 (y),KζS0 (y)b(y)g

)
= f

(
ζS0 (y),KζS0 (y)b(y)hg

)
,

and hence

K ′
ζS0 (y)

b′(y)g = K ′
ζS0 (y)

b′(y)hg ⇒ K ′
ζS0 (y)

b′(y) = K ′
ζS0 (y)

b′(y)h.

Since (g, h) were chosen arbitrarily from a Haar-conegligible subset of GζS0 (y)

× b(y)−1KζS0 (y)b(y), it follows that for µ-almost every y we have

b(y)b′(y)−1 ·K ′
ζS0 (y)

· (b(y)b′(y)−1)−1 ≥ KζS0 (y).

This tells us that the set

{(s, c) ∈ ZS0 nG• : c ·K ′s · c−1 ≥ Ks}
(which is Borel for Borel versions of the measurable assignments K• and
K ′•) has non-empty fibre above (ζS0 )#ν-almost every s ∈ ZS0 , and so letting
c be a measurable selector for this set completes the argument.

(5) Finally, observe that for almost every (s,Ksg
′) that parameterizes a

T -ergodic component we have φ(y, g) = (s,Ksg
′) if and only if ζS0 (y) = s

and Ksb(y)g = Ksg
′, hence if and only if g ∈ b(y)−1Ksg

′. From this the last
conclusion follows at once.
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Definition 4.3 (Mackey data). We refer to the measurable group data
Ks given by the above theorem as Mackey group data of ρ over (Y, ν, S),
and to the section b as a Mackey section (note that in general the Mackey
group data is not unique, but is so up to S-invariant conjugacy, by part (4)
of the theorem).

From the above result for extensions by group data we can easily gener-
alize to extensions by homogeneous space data.

Corollary 4.4. Suppose that (X,µ, T )=(Y, ν, S)n(G•/H•,mG•/H• , ρ),
ζS0 : Y → ZS0 a coordinatization of the base isotropy factor and P : ZS0

p→ Y
a version of the disintegration of ν over ζS0 . Then there are subgroup data
K• ≤ G• and a cocycle-section b : Y → G• such that the factor map

φ : X → ZS0 n (K•\G•/H•) : (y, gHζS0 (y)) 7→ (ζS0 (y),KζS0 (y)b(y)gHζS0 (y))

is a coordinatization of the isotropy factor ζT0 : X → ZT0 , and the probability
kernel

(s,Ksg
′Hs)

p7→ P (s, · ) nmb(•)−1Ksg′Hs/Hs

is a version of the disintegration of µ over φ, where for any subset S ⊆ Gs
we write S/Hs := {gHs : g ∈ S}.

Proof. Let (X ′, µ′, T ′) := (Y, ν, S) n (G•, ρ) and π : (X ′, µ′, T ′) →
(X,µ, T ) the covering factor map, and now let K•, b and φ′ be given by ap-
plying Theorem 4.1 to the canonical factor map π′ : (X ′, µ′, T ′)→ (Y, ν, S).
Let φ be the map given by the above formula.

Since φ is manifestly T -invariant we need only show that it recoordina-
tizes the whole of ZT0 , and not a properly smaller factor. If f ∈ L∞(µ) is
T -invariant then f ◦ π is T ′-invariant, and so factorizes through the map φ′

given by Theorem 4.1. It follows that f virtually factorizes through φ.

4.2. More general lifted measures on homogeneous space exten-
sions. Theorem 4.1 describes the components of the ergodic decomposition
of µ n mG• under S n ρ, but in fact the same ideas can be used to de-
scribe all relatively (S n ρ)-ergodic lifts of ν. This stronger result, and its
corollary for extensions by homogeneous space data, will be important for
both the inverse theory to be developed in the next section and the study
of automorphisms of extensions in the section after that.

We first set up some simple enabling results concerning the collection of
lifts of a given probability measure on an extension by homogeneous space
data to measures on a covering extension by group data.

Definition 4.5 (Lift topology). Suppose that S : Γ y (Y, ν), G•/H•
is an S-invariant measurable homogeneous space data with repository U ,
ρ : Γ ×Y → G• is a cocycle-section and µ is an (Snρ)-invariant probability
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measure on Y nG•/H• that lifts µ, and let Q be the set of all further lifts
of µ to (S n ρ)-invariant probability measures on Y nG•. We define the lift
topology on Q as the weakest topology with respect to which the evaluation
functionals

µ′ 7→
�

YnG•

1A(y) · f(g)µ′(d(y, g))

are continuous for all A ∈ ΣY and continuous functions f : U → R.

The following is now routine.

Lemma 4.6. Under the lift topology Q is a non-empty compact convex
set.

Proof. It is easy to witness one member of Q (and so see that it is
non-empty):

µ′ :=
�

YnG•/H•

mgHy µ(d(y, gHy)).

Convexity is obvious, so we need only verify compactness. However, Q is a
closed subset of the larger convex set Q0 containing all lifts of µ to Y ×U , and
this set is easily seen to be a closed subset of the unit ball of L∞(µ;M(U))
(where M(U) is the Banach space of signed measures on U) in the weak∗

topology. Now the Banach–Alaoglu Theorem tells us that this larger set Q0

is compact and the proof is complete.

Remark. Of course, it is easy to construct examples of general exten-
sions of Borel actions (X,T )→ (Y, S) for which a given invariant probabil-
ity measure on Y has no invariant extension to X (indeed, with Y = {∗}
any Borel action on X with no invariant probability measure will do). The
nonemptiness assertion of the above lemma, though simple, is very much a
consequence of the isometric structure of the extensions in question.

Remark. An alternative route to topologizing Q (to be found, for ex-
ample, in Furstenberg’s paper [22] and Glasner’s book [28]) is to choose a
coordinatization of (Y, ν, S) as a homeomorphic action on a compact space
with an invariant Borel probability measure, and then simply introduce the
usual vague topology on our convex set of lifts. It is not hard to see that the
resulting topology is the same; we have chosen the present approach only
because it seems more intrinsic.

We can now approach the main results of this subsection.

Proposition 4.7. Suppose that S : Γ y (Y, ν), that G• are ZS0 -mea-
surable group data and ρ : Γ × Y → G• is a cocycle-section over S and that
X is the space Y n G• but equipped with some unknown (S n ρ)-invariant
and relatively ergodic lift µ of ν. Then there are subgroup data K• ≤ G• and
a section b : Y → G• such that µ = ν nmb(•)−1K•.
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Remark. Once again, the case with S ergodic is classical: it can be
found as Theorem 3.26 in Glasner [28].

Proof. Let T := S n ρ and consider again the extension of the Borel
system T : Γ y X given by

τ0 : X ×{ζS0 ◦π=θ} (ZS0 nG•)→ X.

In addition, let P : ZS0
p→ X be a version of the disintegration of the

unknown lift µ over ζS0 ◦ π. Now let

K ′s := {g ∈ Gs : τ0(P (s, · ), (s, g)) = P (s, · )};
this is a closed subgroup of Gs that is universally measurable in s by just
the same argument as in part (1) of the proof of Theorem 4.1, and is such
that

τ0(P (s, · ), (s, gg′)) = τ0(P (s, · ), (s, g′))
whenever g′ ∈ Gs and g ∈ K ′s. Adjusting K ′• on a negligible sub-
set of Y so that it is Borel, we still obtain that the composed kernel
(s, g)

p7→ τ0(P (s, · ), (s, g)) virtually factorizes through the canonical fac-
tor ZS0 n G• → ZS0 n K ′•\G• to a kernel P ′ : ZS0 n K ′•\G•

p→ X such that
P ′((s,K ′s), · ) = P (s, · ).

Now define another kernel P ′′ : ZS0
p→ X by

P ′′(s,A) :=
�

Ks\Gs

P ′((s,K ′sg), A) d(K ′sg), A ∈ ΣX .

This is an ‘averaged out’ version of P ′. It is also clearly S-invariant, satisfies
π#P

′′
#(ζS0 )#ν = ν, and now also satisfies

τ0(P ′′(s, · ), (s, g)) = P ′′(s, · ) for all g ∈ Gs;
hence P ′′#(ζS0 )#ν must simply be equal to ν nmG• .

Now, the measure P ′((s,K ′sg), · ) is T -ergodic for almost every (s, g)
(since it is a fibrewise right translate of P (s, · ) by some fixed element of
Gs), and so it follows that the integral

ν nmG• = P ′′#ζ
S
0 #ν =

�

ZS0

�

K′s\Gs

P ′((s,K ′sg), · ) d(K ′sg) ν(ds)

is a version of the ergodic decomposition of ν nmG• . By Theorem 4.1, K ′s
must be a version of the Mackey group data for ρ over (Y, ν, S), and hence
by part (3) of that theorem it follows that there is a section b′ : Y → G•
such that ρ′(γ, y) := b′(Sγy) · ρ(γ, y) · b′(y)−1 takes values in K ′

ζS0 (y)
almost

surely.
Now we finish the proof simply by applying the fibrewise recoordinatizing

isomorphism ψ : (y, g) 7→ (y, b′(y)g) from our original system (X,µ, T ) to
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the system (X,ψ#µ, S n ρ′). This map ψ must carry the (S n ρ)-ergodic
decomposition of ν nmG• to its (S n ρ′)-ergodic decomposition, and hence
each of the measures P ′((s,K ′sg), · ) to ergodic measures supported on the
disjoint sets {s}×K ′sg′. Since ρ′ almost surely takes values in Ks and these
components must integrate up to ν n mG• , it follows that ψ#P#(ζS0 )#ν =
ν nmK′•g(•) for some g : ZS0 → G•, and now applying ψ−1 to this equation
and replacing K• := g(•)−1K ′•g(•) and b := b′ · g gives the result.

Once again, the result for extensions by group data implies a version for
extensions by homogeneous space data through lifting to a covering group
extension and then descending again, just as for Corollary 4.4. The proof is
essentially the same, and so we omit it here.

Corollary 4.8. Suppose that S : Γ y (Y, ν), H• ≤ G• are ZS0 -
measurable group data and ρ : Γ × Y → G• is a cocycle-section over S and
X is the space Y nG•/H• but equipped with some unknown (Snρ)-invariant
and relatively ergodic lift µ of ν. Then there are subgroup data K• ≤ G• on
ZS0 and a section b : Y → G• such that µ = ν nmb(•)−1K•H•/H•.

Arguing exactly as in the classical case of an ergodic base system by
replacing some given group data G• with the Mackey group data K• and
recoordinatizing (see Corollary 3.27 in Glasner [28]), we obtain the following
corollary.

Corollary 4.9. Given a Γ -system Y = (Y, ν, S), measurable S-invari-
ant homogeneous space data G•/K• over Y and a cocycle-section ρ : Γ×Y →
G•, and defining X := Y n G•/K• and T := S n ρ, any (S n ρ)-relatively
ergodic lift µ of ν admits a recoordinatization

(X,µ, T )

canonical
$$H

HHHHHHHH
oo

∼= // Y n (G′•/H
′
•,mG′•/H

′
• , ρ
′)

canonical
vvmmmmmmmmmmmmmmm

Y

so that the implicit covering group extension Y n (G′•,mG′• , ρ
′)→ Y is also

relatively ergodic.

During the development of the inverse theory of the next section we
will use the preceding results in conjunction with the following elementary
lemma.

Lemma 4.10. Suppose that π : (X,µ, T ) → (Y, ν, S) is a relatively er-
godic extension of a not necessarily ergodic system, and that

(X,µ, T )
π(n)−−→ (Z(n), µ(n), T(n))

ξ(n)−−→ (Y, ν, S)
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for n = 1, 2, . . . is a sequence of intermediate extensions that are all coordi-
natizable as extensions by homogeneous-space data. Then the resulting joint
extension

(Z(1) × Z(2) × · · · , (π(1) ∨ π(2) ∨ · · · )#µ, T |π(1)∨π(2)∨···)→ (Y, ν, S)

is also coordinatizable as an extension by homogeneous-space data.

Remark. This is a straightforward extension of Lemma 8.4 in Fursten-
berg [22].

Proof. We know that for each n ≥ 1 there are some ZS0 -measurable
homogeneous-space data Gn,•/Hn,•, a cocycle-section ρn : Γ × Y → Gn,•
and a coordinatizing isomorphism

αn : (Z(n), µ(n), T(n))
∼=→ (Y, ν, S) n (Gn,•/Hn,•,mGn,•/Hn,•ρn).

Each αn ◦ π(n) is a factor map of X that gives a recoordinatization of the
factor associated to π(n) and takes the form (π, θn) for a suitable map θn :
X → Gn,•/Hn,•. Now we simply set G• :=

∏
n≥1Gn,•, H• :=

∏
n≥1Hn,•,

ρ := (ρn)n≥1 and θ := (θn)n≥1; it is clear that the map (π, θ) gives the desired
recoordinatization of (Z(1) × Z(2) × · · · , (π(1) ∨ π(2) ∨ · · · )#µ, T |π(1)∨π(2)∨···)
as an extension of Y by homogeneous-space data.

5. Relative weak non-mixing and isometric extensions of non-
ergodic systems. In this section we shall recount the main results of our
non-ergodic version of the Furstenberg–Zimmer inverse theory. Although
it seems that these non-ergodic analogs do not formally follow from their
ergodic predecessors, their proofs largely follow the original arguments of
Furstenberg and Zimmer, with a few judicious invocations of measurable
selectors along the way. For this reason our presentation here, as in the
preceding section, will be quite terse. The original papers [49, 48] and [22]
remain clear and thorough references for the classical results in the presence
of ergodicity, and we direct the reader to these for many of the original ideas.

The theory developed by Furstenberg and Zimmer considers an ergodic
extension of an ergodic system Y = (Y, ν, S). Given such an extension
π : X→ Y, this theory gives an account of the possible failure of ergodicity
of the relatively independent self-joining X ×π X (that is, of the ‘relative
weak mixing’ of X over π): it turns out that this occurs if and only if the
extension contains a non-trivial subextension that can be coordinatized as a
homogeneous skew-product. It is this result that we shall presently extend by
dropping the assumption that S be ergodic, and by working instead with ex-
tension by (possibly variable) homogeneous space data. Note, however, that
we will continue to assume relative ergodicity of X → Y: if this fails then
the arguments that follow derail quite quickly, and the best account of the
structure of the extension that can be given in this case seems to result from
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simply considering the relatively invariant subextension first, and then work-
ing with the remaining (necessarily relatively ergodic) extension over that.

In fact, here as in the ergodic setting just a little extra work will show that
once the failure of relative weak mixing is understood in this way, the same
structures account for the non-ergodicity of other relatively independent
joinings: given two extensions πi : Xi = (Xi, µi, Ti) → Yi, i = 1, 2, a
joining ν of Y1 and Y2 and a lift µ of ν to a joining of X1 and X2 under which
the copies of these two factors are relatively independent over the copies of
Y1 and Y2, then this larger joining µ can fail to be (T1 × T2)-ergodic only
if each of the extensions Xi → Yi contains a non-trivial subextension that
is coordinatizable as a homogeneous skew-product, and the homogeneous
spaces and cocycles of this skew-product are suitably related to each other.
The result above simply corresponds to the case X1 = X2, Y1 = Y2 and λ
the diagonal self-joining of the smaller system.

5.1. Generalized eigenfunctions and finite-rank modules. Key to
the reduction from the failure of relative weak mixing to non-trivial exten-
sions by homogeneous space data are the notions of finite rank modules and
isometric extensions. These definitions are taken almost unchanged from the
papers of Furstenberg [22] and Zimmer [48].

Definition 5.1 (Modules over factors and their rank). If π : (X,µ) →
(Y, ν) is an extension of standard Borel probability spaces and M is a closed
subspace of L2(µ), then we shall refer to M as a π-module if (h ◦ π) · f ∈M
whenever f ∈M and h ∈ L∞(ν).

If
	⊕
Y Hy ν(dy) is the direct integral decomposition of L2(µ) over π,

then subordinate to this we may form the direct integral decomposition	⊕
Y My ν(dy) of M over π; and now we shall write that M has rank r over π

if r ∈ {1, 2, . . . ,∞} is minimal such that dim My ≤ r for ν-almost every y.
If r <∞ we shall write that M has finite π-rank.

Definition 5.2 (Isometric extension). A system extension π : X → Y
is isometric if L2(µ) is generated as π-module by its finite rank T -invariant
π-submodules.

The following first step towards representing finite rank modules will be
crucial.

Lemma 5.3 (Orthonormal basis for a module). Suppose that M is a
rank-r π-module for some r < ∞. Then there is a tuple φ1, . . . , φr of func-
tions in M, none of them vanishing everywhere, and a measurable function
R : Y → {1, . . . , r} such that Eµ(φi · φj |π) = δi,j1{i,j≤R} and

(L∞(ν) ◦ π) · φ1 + · · ·+ (L∞(ν) ◦ π) · φr
is L2-dense in M.
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Proof. Let R(y) := dim My and decompose Y as
⋃
s≤r{y : R(y) = s}.

It is easy to check that R must be measurable, and the existence of suit-
able φi now follows just as in the classical case by considering the cells
{y : R(y) = s} separately: see Lemma 9.4 of Glasner [28]. It is clear that
none of the φi can vanish everywhere, else the module M would actually
have rank at most r − 1, contradicting our assumptions.

Definition 5.4. We refer to the function R above as the local rank
function of the module M.

The following lemma is trivial, but it will prove convenient to be able to
call on it explicitly.

Lemma 5.5. If (X,µ) π→ (Z, θ) π′→ (Y, ν) is a tower of probability-
preserving maps and M ≤ L2(µ) is a (π′ ◦ π)-module of rank r, then
L∞(θ) ·M is a π-module of rank at most r.

5.2. The non-ergodic Furstenberg–Zimmer inverse theorem. We
now present our non-ergodic extension of the Furstenberg–Zimmer inverse
theorem. This follows naturally from two separate propositions.

Proposition 5.6 (From relative non-weak-mixing to finite rank mod-
ules). If π : X → Y is relatively ergodic but not relatively weakly mixing,
then L2(µ) contains a non-trivial T -invariant finite-rank π-submodule.

Proof. This first proposition is proved just as in the ergodic case, so we
shall only sketch its proof, referring the reader to Chapter 9 in Glasner [28]
or Section 7 of Furstenberg [22] for a more careful treatment. Form the
relatively independent self-product X×π X with its natural coordinate pro-
jections π1, π2 : X×πX→ X. Note that by construction these maps quotient
to give a single factor copy of Y through π, and so up to (µ⊗π µ)-almost-
everywhere equality of functions we have L2(ν) ◦ π ◦ π1 = L2(ν) ◦ π ◦ π2.
The key idea is to choose a (T × T )-invariant function H that lies in
L2(µ⊗π µ)\(L2(ν) ◦ π ◦ π1), and then define from it a bounded operator A
on L2(µ) by

Aψ := Eµ⊗πµ
(
(ψ ◦ π2) ·H

∣∣π1

)
.

It is easy to see that this cannot be the identity if H 6∈ L2(ν)◦π◦π1. Replac-
ing H(x, x′) by either H(x, x′)+H(x′, x) or H(x, x′)− iH(x′, x) if necessary,
we may also arrange that A be self-adjoint. In defining this A we have pro-
duced a ‘relative Hilbert–Schmidt operator’, acting as a Hilbert–Schmidt
operator separately on each fibre Hy of the Hilbert space direct integral de-
composition L2(µ) =

	⊕
Y Hy ν(dy). It now admits a spectral decomposition

into finite-dimensional eigenspaces in each of these fibres, relative over the
factor π. In principle the list of corresponding eigenvalues can vary with
y ∈ Y , but it is standard (see Section 9.3 of Glasner [28]) that they do



Extensions of probability-preserving systems 165

so measurably and are S-invariant. Now we can simply make a measurable
selection of one of these non-zero eigenvalues over each ζS0 (y) ∈ ZS0 and asso-
ciate to that eigenvalue its corresponding finite-dimensional eigenspace My,
to produce a non-trivial π-submodule M of L2(µ) such that dim My is S-
invariant and almost surely finite, and now truncating this by retaining the
non-trivial space My only on the S-invariant set {y : dim My < M} for
some sufficiently large M gives a true finite-rank module. Its T -invariance
follows immediately from that of H and hence of A, completing the proof.

Our machinery of direct integrals of homogeneous spaces becomes nec-
essary for the second stage of the argument.

Proposition 5.7 (Coordinatization of isometric extensions). If π :
X → Y is a relatively ergodic extension for which L2(µ) is generated by
its T -invariant finite-rank π-submodules, then there are ZS0 -measurable ho-
mogeneous space data G•/K• with fibre repository U :=

∏
n≥1 U(n)N and a

cocycle-section ρ : Γ × Y → G• such that

X

π
��?

??
??

??
?
oo

∼= // Y n (G•/K•,mG•/K• , ρ)

canonical
vvmmmmmmmmmmmmmm

Y

Proof. Let M(n) for n ≥ 1 be a sequence of finite-rank π-modules gen-
erating L2(µ); since L2(µ) is separable we need only countably many.

Suppose M(n) has rank r and let φ1, . . . , φr be an orthonormal basis for
it as guaranteed by Lemma 5.3. It is easy to check that φj ◦ T γ , j ≤ r,
also form an orthonormal basis for M(n) for each γ ∈ Γ , and so we can
find a measurable cocycle Φ : Γ × Y → U(R(•)) with values in the finite-
dimensional unitary group such that

(φ1|π−1(Sγy) ◦ T γ , . . . , φR(y)|π−1(Sγy) ◦ T γ)

= Φ(γ, y)(φ1|π−1(y), . . . , φR(y)|π−1(y))

in Hy×· · ·×Hy for ν-almost every y (indeed, this equation serves as the defi-
nition of Φ and witnesses its measurability as a function of (γ, y)). From this
it follows that

∑
j≤r |φj(x)|2 is T -invariant, and by relative ergodicity can

therefore be factorized through π. It must therefore equal R(π(x)) almost
everywhere by the relative orthonormality of the φj .

Letting

φ : x 7→ 1
R(π(x))

(φ1(x), . . . , φR(y)(x)),

it follows that x 7→ (π(x), φ(x)) is a map X → Y n S2R(•)−1 (where S2r−1

denotes the unit sphere in Cr) which intertwines T with S n Φ. Letting
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ξ : Y → S2R(•)−1 be a measurable selection (in this case we could take it
to be constant on the level sets of R) and then noting that U(R(•)) y
S2R(•)−1 ∼= U(R(•))/StabU(R(•))(ξ(•)), it follows that (π, φ) coordinatizes a
subextension of X→ Y as the homogeneous space data extension S nΦ y
Y nU(R(•))/StabU(R(•))(ξ(•)) carrying some invariant measure. Finally, by
Corollary 4.9 we know that this can be adjusted to a genuine extension by
homogeneous space data carrying the associated direct integral measure.

Writing this subextension as X π(n)

−−→ Z(n) π(n)′
−−−→ Y, it is clear that

L2(π(n)
# µ)◦π(n) ≥M(n). Hence the target system of the factor π(1)∨π(2)∨· · ·

contains every M(n), and so must be equivalent to the whole system X.
Finally, Lemma 4.10 assures us that this can still be coordinatized as an
extension by homogeneous space data, completing the proof.

We should also check the converse of the preceding proposition in the
non-ergodic setting.

Lemma 5.8. A relatively ergodic extension by compact homogeneous
space data X := Y n (G•/K•,mG•/K• , ρ) with canonical factor map π :
X→ Y is generated by its finite-rank π-submodules.

Proof. Let U be the compact fibre repository for the data G•, and let
Hy := L2(mGy/Ky) for y ∈ Y ; it is easy to check that this defines a measur-
able family of Hilbert spaces. Let L : Gy y Hy be the left-regular unitary
action. Now for any continuous function ψ on U the associated operators

Ay :=
�

Gy

ψ(g)LgmG•(dg)

clearly form a measurable family in y and are each a compact operator
on Hy. Moreover, their eigenspaces are LGy -invariant, and so different mea-
surable selections of these eigenspaces now combine to form finite-rank π-
submodules of L2(µ) ∼=

	⊕
Y Hy ν(dy) that are T -invariant. Finally choosing a

single sequence (ψn)n≥1 of continuous mollifiers on U (that is, of continuous
functions on U such that mUxψn → δ1U in the vague topology as n→∞),
all possible measurable selections of eigenspaces of their associated compact
operators together generate the whole of L2(µ), completing the proof.

Given an arbitrary relatively ergodic extension π : X → Y that is not
relatively weakly mixing, Proposition 5.6 guarantees that its subextension
generated by all finite-rank π-submodules is non-trivial; and now applying
Proposition 5.7 to this subextension immediately gives our full version of
the inverse theorem. Combined with the ‘direct’ result of Lemma 5.8 this
gives the following.

Theorem 5.9 (Furstenberg–Zimmer Theorem in the non-ergodic set-
ting). Suppose that the extension π : X → Y is relatively ergodic. Then
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there is a unique maximal subextension X → Z → Y that can be coor-
dinatized as an extension of Y by homogeneous space data, it equals the
subextension generated by all finite-rank T -invariant π-modules, and π fails
to be relatively weakly mixing for T if and only if this subextension contains
π strictly.

Definition 5.10 (Maximal isometric subextension). The subextension
Z→ Y given by the preceding theorem is the maximal isometric subexten-
sion of π : X→ Y.

Remark. Let us digress to locate the need for relative ergodicity in the
above arguments. This occurred during the proof of Proposition 5.7 when
we argued that our orthonormal basis φ1, . . . , φr must have

∑
j≤r |φj(x)|2

measurable with respect to π in view of its T -invariance, and from this that
we could synthesize from this basis a map X → S2R(•)−1 which together
with π would lead to an explicit coordinatization by homogeneous space
data.

It is clear that given an extension that is not relatively ergodic, we can
still derive some structural consequences from the failure of relative weak
mixing as follows. A simple check shows that the argument that converts
a non-trivial invariant function on X ×π X to a finite-rank module over
π does not require relative weak mixing, and so we can still sensibly de-
fine the subextension X

ξ→ Z α→ Y generated by all finite-rank π-modules.
Next, any function on X that is actually T -invariant clearly defines a rank-1
such module, and so ξ certainly contains the factor ζT0 ∨ π. Now, in addi-
tion, any finite-rank module M over the factor π gives a finite-rank module
L∞((ζT0 ∨ π)#µ) ·M over ζT0 ∨ π. In light of this and the inverse theory for
the relatively ergodic case, ξ : X → Z must actually be contained in the
maximal isometric subextension of the joint factor map ζT0 ∨ π. Letting W
be the target system of ζT0 ∨ π, the maximal isometric subextension of the
relatively ergodic extension ζT0 ∨π now is coordinatizable as an extension by
compact homogeneous space data, and from the results of the next section
it will follow that the resulting subextension Z → W is also coordinati-
zable by compact homogeneous space data. It may, however, be properly
contained in the maximal isometric subextension of ζT0 ∨ π, since there may
be finite-rank modules over ζT0 ∨ π that cannot be obtained as above from
finite-rank modules over π.

We suspect that more can be said in general about which subextensions
of ζT0 ∨ π can be obtained from finite-rank modules over π, but we will not
explore this matter further here. Note that in several previous works, such as
Furstenberg and Katznelson’s proof of multidimensional multiple recurrence
in [24] and their later applications of similar ideas to prove other results in
density Ramsey theory in [25] and [26], this very concrete analysis in terms
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of extensions by homogeneous space data is avoided altogether. In its place is
used a much softer property of extension called ‘relative compactness’, which
is also a consequence of its being generated by finite-rank submodules and
turns out to be enough to enable a proof of the relevant multiple recurrence
results without the more precise information offered by a coordinatization.
We will not explore relations with this idea further here, but refer the reader
to Furstenberg’s book [23] for a treatment of such arguments.

We can now extend the following definition from the ergodic-base case.

Definition 5.11 (Distal extensions and distal towers). Given a system
extension π : X→ Y we note that ζT0 ∨ π coordinatizes the maximal factor
of X that is relatively invariant over π, and now write ζT1/π : X→ ZT1 (X/π)
to denote any choice of factor map that coordinatizes the maximal isomet-
ric subextension of ζT0 ∨ π. In general we define recursively an increasing
transfinite sequence of factors ζTη/π : X → ZTη/π(X/π) indexed by all ordi-
nals η by letting ζTη+1/π : X → ZTη+1/π(X/π) denote any choice of factor
map that coordinatizes the maximal isometric subextension of ζTη/π for each
η, and letting ζTη/π :=

∨
κ<η ζ

T
η/π when η is a limit ordinal. Note that for

any fixed system X there must be some ordinal ≤ ω1 at which this tower
stabilizes. If Y is a trivial system ({∗}, δ∗, id{∗}) we simplify this notation
to ζTη : X→ ZTη .

The extension π : X → Y is distal if
∨
η ζ

T
η/π ' idX . We refer to

ZTη (X/π) → Y as the maximal η-step distal subextension of π, and to the
totally ordered collection of all of these subextensions as the distal tower
of π.

As suggested at the beginning of this section, our inverse theorem can
quite easily be extended to account for relative non-ergodicity of more gen-
eral relatively independent self-joinings. The standard proof of this in the
case of ergodic base (Theorem 9.21 in Glasner [28]), which reduces this situ-
ation to that of the self-joining treated above, does not rely on the ergodicity
of the base system and so carries over essentially unchanged. We only state
the result here.

Theorem 5.12. Suppose that πi : Xi → Yi are relatively ergodic ex-
tensions for i = 1, . . . , n and that ν is a joining of Y1, . . . ,Yn forming the
system Y = (Y, ν, S) := (Y1×· · ·×Yn, ν, S1×· · ·×Sn). Suppose further that
X = (X,µ, T ) is similarly a joining of X1, . . . ,Xn that extends ν through
the coordinatewise factor map π : X → Y assembled from the πi, and such
that under µ the coordinate projections αi : X→ Xi are relatively indepen-
dent over the tuple of further factors πi ◦ αi. Then the intermediate factor
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map
ζT1

1/π1
∨ · · · ∨ ζTn1/πn

: X→ Z

whose target Z is a joining of the systems ZTi1 (Xi/πi) is equivalent to ζT1/π :
X → ZT1 (X/π). In particular, it contains the relatively invariant extension
ZT0 ∨Y → Y, which may be non-trivial.

We will call on this version of the inverse theorem when we come to our
applications in Section 7.

6. Factors and automorphisms of isometric extensions. In this
subsection we examine the possible forms of factors and automorphisms of
extensions by homogeneous space data, using as our main tool the non-
ergodic Mackey theory of Section 4.

6.1. Some more notation. We first need to set up some additional
notation that will help us to describe algebraic transformations between the
fibres Gy/Ky of our extensions.

Our first important convention is that given a Polish group U and two
compact subgroups G,G′ ≤ U , we identify a continuous isomorphism Φ :
G
∼=→ G′ with its graph {(g, Φ(g)) : g ∈ G} ≤ U × U . In view of the

results of Subsection 2.4, this sets up a bijective correspondence between
continuous isomorphisms and compact subgroups M ∈ Lat(U × U) with
the property that M has first and second projections equal to G and G′

respectively and M ∩ (U × {1U}) = M ∩ ({1U} × U) = {1U×U}. We write
Isom(G,G′) for this collection of isomorphisms, and interpret composition
Φ ◦ Φ′ for Φ ∈ Isom(G,G′) and Φ′ ∈ Isom(G′, G′′) in the obvious way. Note
that after fixing a complete separable metric on U , the resulting strong
topology on Isom(G,G′) is in general strictly stronger than the Vietoris
topology inherited from Lat(U × U), but the resulting Borel structures are
the same. Exactly similarly we can also interpret the collection Hom(G,G′)
of homomorphisms G→ G′, AutG = Isom(G,G) and EndG = Hom(G,G)
as collections of subgroups of U × U .

This identification made, the necessary definition follows very naturally.

Definition 6.1 (Homomorphisms sections). Suppose that (Y, ν) is a
standard Borel probability space and that Gi,•, i = 1, 2, are two different
measurable families of compact group data over Y with compact metrizable
repositories U and V respectively. Then a homomorphism section associated
to this data is a map y 7→ Φy : Y → Lat(U×V ) that is Borel for the Vietoris
measurable structure on Lat(U × V ) and is such that Φy ∈ Hom(G1,y, G2,y)
for ν-almost every y ∈ Y . We will sometimes denote this situation by Φ :
Y → Hom(G1,•, G2,•).
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We extend this definition in the obvious way to epimorphism sections,
isomorphism sections and automorphism sections.

The benefit of formulating our notion of ‘isomorphism section’ as above
will become clear shortly, when we use the Mackey theory in a self-joining of
a given extension to produce a measurable family of compact subgroups of
U ×U that we can then immediately reinterpret as an isomorphism cocycle
in this sense. In doing this we will also benefit from having the following
notation.

Definition 6.2 (Extensions by epimorphism sections). If β : (Y1, ν1)→
(Y2, ν2) is a probability-preserving map, Gi,•/Hi,• is measurable compact
homogeneous space data on Yi for i = 1, 2 and Φ : Y → Hom(G1,y, G2,β(y))
is a measurable epimorphism section such that Φy(H1,y) ⊆ H2,β(y) almost
surely then we write β n Φ• for the probability-preserving map

Y1 nG1,•/H1,• → Y2 nG2,•/H2,• : (y, gH1,y) 7→ (β(y), Φy(g)H2,β(y)).

More generally, if ρ : Y → G2,β(•) is a section then we will sometimes write
Lρ(y) (resp. Rρ(y)) for the translation of G2,β(•) by left rotation by ρ(y) (resp.
right rotation by ρ(y)), and define

β n (Lρ(•) ◦ Φ•)|
H1,•
H2,β(•)

: (y, gH1,•) 7→ (β(y), ρ(y) · Φy(g)H2,β(y)).

In case Hi,• ≡ {1Gi,•} we simplify this to

β n (Lρ(•) ◦ Φ•) : (y, g) 7→ (β(y), ρ(y) · Φy(g)).

Note that if (Y1, ν1) = (Y2, ν2) then β n Lρ(•) = β n ρ and β n Rρ(•) =
β n ρop in the original notation of Section 3. We introduce the above class
of fibrewise transformations, together with their new notation, to help us
describe more explicitly certain maps and joinings between isometric exten-
sions, in the sense of the following definition, and to help differentiate them
from those isometric extensions themselves, among which these new maps
serve as morphisms.

Definition 6.3 (Fibrewise automorphism and affine recoordinatizations).
Suppose that Y = (Y, ν, S) is a Γ -system, G•/K• are S-invariant compact
homogeneous space data over Y and σ : Γ × Y → G• is an ergodic cocycle-
section for S, and that Φ• : Y → Aut(G•) is an S-invariant automorphism
section and ρ : Y → G• a section. Then the map R := idY n(Lρ(•)◦Φ•)|K•Φ•(K•)
defines a recoordinatization

Y n (G•/K•,mG•/K• , σ)

canonical
((QQQQQQQQQQQQQQQ

oo R // Y n (G•/K ′•,mG•/K′• , σ
′)

canonical
vvlllllllllllllll

Y
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with K ′• := Φ•(K•) and

σ′(γ, y) := ρ(Sγy) · Φy(σ(γ, y)) · ρ(y)−1.

We refer to such a recoordinatization as a fibrewise affine recoordinatization.
If ρ ≡ 1G• then it is a fibrewise automorphism recoordinatization.

Remarks. 1. The condition that Φ• be S-invariant is needed in order
that R intertwine S n σ with another cocycle extension; without this con-
dition the new transformation will in general still involve also a non-trivial
automorphism-valued cocycle.

2. If G• and Φ• are as above then we have βn (Lρ(•) ◦Φ•) = βn (Coρ(•) ◦
Φ• ◦ Rρ(•)), where Coρ(y) ∈ Aut(Gy) is the inner automorphism of conju-
gation by ρ(y). It follows that we can always choose between expressing a
fibrewise affine recoordinatization by using fibrewise left rotations or fibre-
wise right rotations (or even some mixture of the two!). In general we will
prefer to write fibrewise affine recoordinatizations with rotation part acting
on the left, since this is the form in which the S-invariance of the automor-
phism part Φ• is directly visible, but occasionally this ability to conjugate
between the two forms will give some useful flexibility in how we write a
fibrewise affine recoordinatization.

Note that transformations of the form β n (Lρ(•) ◦ Φ•) y U × V for
compact Abelian groups U and V , β a rotation of U , ρ : U → V and
Φ : U → AutV are already objects of study in ergodic theory: examples
arise from explicitly coordinatizing a flow on a two-step solvmanifold (see,
for example, Auslander, Green and Hahn [2] or Starkov [41] for background),
with rather special conditions on the cocycles ρ and Φ that result (although
working explicitly with such coordinatizations would probably be a cum-
bersome way to handle solvflows). More generally, it is possible that an
enlarged theory of extensions by compact homogeneous space data could
be constructed to treat actions lifted by affine-valued cocycle comprising
both fibrewise rotations and automorphisms. Certainly, Zd-actions by affine
maps on compact groups have recently begun to receive greater attention
from ergodic theorists (see Schmidt [39], in particular), and it would be in-
teresting to know how far the results that are now known for such systems
could be ‘relativized’. In this paper, however, fibrewise automorphisms and
affine maps will play a strictly auxiliary rôle.

6.2. The structure theorems. The main results of this section
amount to structure theorems for factors and automorphisms of isometric ex-
tensions, generalizing the classical result (and also the proof) of Mentzen [36]
in the ergodic case (see also earlier work of Newton [37], and compare with
the classical argument of Veech in [44] for his condition for an extension to
be coordinatizable as a compact group skew-product).
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Theorem 6.4 (Relative Factor Structure Theorem). Suppose that Yi =
(Yi, νi, Si) for i = 1, 2 are Γ -systems and β : Y1 → Y2 is a factor map,
that Gi,•/Hi,• are Si-invariant core-free homogeneous space data on Yi and
that σi : Γ × Yi → Gi,• are ergodic cocycle-sections for the action Si, and
let Xi = (Xi, µi, Ti) := Yi n (Gi,•/Hi,•,mGi,•/Hi,• , σi) with canonical factor
ξi : Xi → Yi. Suppose further that β admits extension to a factor map
α : X1 → X2:

X1
α //

ξ1
��

X2

ξ2
��

Y1
β // Y2

Then there are an S1-invariant measurable family of epimorphisms Φ• :
G1,• → G2,β(•) such that Φ•(H1,•) ⊆ H2,β(•) almost surely and a section

ρ : Y1 → G2,β(•) such that α = β n (Lρ(•) ◦ Φ•)|
H1,•
H2,•

, and then

σ2(γ, β(y)) = ρ(Sγ1 y) · Φy(σ1(γ, y)) · ρ(y)−1

for ν1-almost all y and all γ ∈ Γ .

Remark. When S1 is ergodic this tells us that any extension of β to
a factor map of X1 must take the form of fibrewise application of a fixed
group automorphism and then left multiplication by a cocycle: this is the
result of Mentzen [36].

Proof. We will deduce this by considering the joining of X1 and X2

defined by the graph of α, proceeding in two steps.

Step 1. Suppose first that Hi,• ≡ {1Gi,•} for i = 1, 2. Set λ :=
(idX1 , α)#µ1; this is a (T1 × T2)-invariant probability measure on

X1 ×{β◦ξ1=ξ2} X2
∼= Y1 n (G1,• ×G2,β(•)),

which is an extension of Y1 via the natural factor map. Let us denote by πi,
i = 1, 2, the two coordinate projections X1×{β◦ξ1=ξ2}X2 → Xi, and, slightly
abusively, also the coordinate projections G1,• × G2,β(•) → G1,•, G2,β(•).
Since this is a graph joining, the first coordinate projection almost surely
determines the second, and so the joined system that results is actually
isomorphic to X1; it follows that λ is (T1 × T2)-relatively ergodic over Y1.

Applying Proposition 4.7 we obtain some S1-invariant Mackey group
data M• ≤ G1,• × G2,β(•) on Y and a section b : Y1 → G1,• × G2,β(•) such
that λ = ν nmb(•)−1M• . The measure λ must project onto µi under πi, and
so

π1#(ν nmb(•)−1M•) = ν nmπ1(b(•))−1π1(M•) = ν nmG1,•

and hence π1(M•) = G1,• almost surely, and similarly π2(M•) = G2,β(•)
almost surely.
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On the other hand, if L1,• and L2,• are the first and second slices of M•,
then we see that the coordinate factors π1 and π2 are actually relatively
independent over the further canonical factors

(X1, µ1, T1)→ (Y1, ν1, S1) n (G1,•/L1,•,mG1,•/L1,• , σ1)

and

(Y1, ν1, S1)⊗{β=ξ2} (X2, µ2, T2)

→ (Y1, ν1, S1) n (G2,β(•)/L2,•,mG2,β(•)/L2,• , σ2 ◦ β).

Of course, under a graphical joining of a factor map such as λ the sec-
ond coordinate projection is almost surely determined by the first, so we
must have L2,• ≡ {1G2,β(•)} almost surely. Combined with the property of
having full projections, this shows that M• is almost surely the graph of a
measurably-varying epimorphism Φ• : G1,• → G2,β(•).

Also, since M• has full one-dimensional projections we can multiply b by
some M•-valued cocycle if necessary to assume that b(•) = (1G1,• , ρ(•)). We
can now simply read off that when α(y, g) = (β(y), g′), then almost surely

(g, g′) = (m, ρ(y)Φy(m))

for some m ∈ G1,y. Hence we must have m = g, and so g′ = ρ(y)Φy(g): that
is, α = β n (Lρ(•) ◦Φ•), as required. Finally, with this expression in hand it
is immediate to check that the commutative diagram relating α, β, S and
T is equivalent to the requirement that

ρ(Sγ(y)) · Φy(σ1(γ, y)) = σ2(γ, β(y)) · ρ(y)

for ν1-almost every y and all γ ∈ Γ , which rearranges into the equation
stated.

Step 2. Now consider the case of general core-free Hi,• and let λ
be the graphical self-joining given previously, so as in Step 1 the system
(X1 ×{β◦ξ1=ξ2} X2, λ, T1 × T2) has a natural factor isomorphic to Y1 and is
isomorphic to X1 through the first coordinate projection, which also virtu-
ally determines the second coordinate projection.

Now in addition let X̃i → Xi be the implied covering group data ex-
tensions, and let λ̃ be any relatively ergodic lift of λ to an invariant join-
ing of X̃1 and X̃2. Arguing as in Step 1 now gives Mackey group data
M• ≤ G1,• ×G2,β(•) and a section b : Y1 → G1,• ×G2,β(•) such that

λ̃ = ν1 nmb(•)−1M•(H1,•×H2,β(•))
.

Since the cocycles σi are ergodic, it follows as before that M• has full
one-dimensional projections. The condition that the first coordinate almost
surely determine the second under λ becomes more subtle. Firstly, it re-
quires that the second slice L2,• of M• satisfy L2,• ·H2,β(•) = H2,β(•); but on



174 T. Austin

the other hand Lemma 2.8 tells us that L2,• EG2,β(•), and by the core-free
assumption H2,β(•) does not contain any non-trivial normal subgroup, so in
fact we must still have L2,• ≡ {1G2,β(•)}. It follows that M• still defines the
graph of an epimorphism Φ• : G1,• → G2,β(•). Secondly, this same condi-
tion on the determination of the second coordinate requires that Φ• have a
well-defined quotient between the spaces G1,•/Hi,• and G2,β(•)/H2,β(•), and
hence that Φ•(H1,•) ⊆ H2,β(•) almost surely.

This leads as before to the expression β n (Lρ(•) ◦ Φ•)|
H1,•
H2,β(•)

for α, and

the cocycle equation also follows as before from the condition that λ̃ is
(T̃1 × T̃2)-invariant (equivalent to the intertwining property in the previous
case).

Specializing the above now gives a structure theorem for groups of au-
tomorphisms of an extension.

Theorem 6.5 (Relative Automorphism Structure Theorem). Suppose
that Y = (Y, ν, S) is a Γ -system, that G•/H• are S-invariant core-free ho-
mogeneous space data on Y and that σ : Γ × Y → G• is an ergodic cocycle-
section for the action S, and let X = (X,µ, T ) := Y n (G•/H•,mG•/H• , σ).
Suppose further that Λ is a discrete group and R : Λ y (X,µ) is another
action that commutes with T and respects the canonical factor π : X → Y
(so it defines an action of Λ by automorphisms of the extension π). Then
for each h ∈ Λ there are an S-invariant measurable family of isomorphisms
Φh,• : G• → GR|hπ(•) such that Φh,•(H•) = HR|hπ(•) almost surely and a sec-
tion ρh : Y → GR|hπ(•) such that

Rh = R|hπ n (Lρh(•) ◦ Φh,•)|H•H
R|hπ(•)

for each h ∈ Λ, and then

• we have

σ(γ,R|hπ(y)) = ρh(Sγy) · Φh,y(σ(γ, y)) · ρh(y)−1

for ν-almost all y and all γ ∈ Γ and h ∈ Λ, and
• we have

Φh1h2,y = Φ
h1,R|

h2
π (y)

◦ Φh2,y

and
ρh1h2(y) = ρh1(R|h2

π (y)) · Φ
h1,R|

h2
π (y)

(ρh2(y))

for ν-almost all y and all h1, h2 ∈ Λ.

Proof. Consider first Rh for some fixed h ∈ Λ. Treating Rh as a factor
map of X and applying Theorem 6.4 gives immediately the representation
of Rh as

R|hπ n (Lρh(•) ◦ Φh,•)|H•H
R|hπ(•)
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for some section ρh and measurable family of continuous epimorphisms Φh,•,
and now the condition that Rh actually be equivalent to idX (that is, it is not
a proper factor map) gives that Φh,• is an isomorphism and Φ•(H•) = HR|π(•)
almost surely.

This establishes the existence of ρh and Φh,•, and also the first of the two
additional conclusions above. To deduce the second we need only compare
the resulting coordinatizations of each side of the equation Rh1h2 = Rh1◦Rh2

defining R as a Λ-action: substituting from above this becomes

R|h1h2
π n (Lρh1h2

(•) ◦ Φh1h2,•)|
H•
H
R|h1h2
π (•)

= (R|h1
π ◦R|h2

π ) n (L
ρh1

(R|h2
π (•)) ◦ Φh1,R|

h2
π (•) ◦ Lρh2

(•) ◦ Φh2,•)|
H•
H
R|h1h2
π (•)

,

and so we must have

ρh1h2(y) · Φh1h2,y(g) ·H
R|h1h2
π (y)

= ρh1h2(y) · Φh1h2,y(gHy)

= ρh1(R|h2
π (y)) · Φ

h1,R|
h2
π (y)

(ρh2(y) · Φh2,y(gHy))

= ρh1(R|h2
π (y)) · Φ

h1,R|
h2
π (y)

(ρh2(y)) · Φ
h1,R|

h2
π (y)

(Φh2,y(g)) ·H
R|h1h2
π (y)

for all g ∈ Gy for ν-almost every y ∈ Y . Since H
R|h1h2
π (y)

is core-free in Gy

almost surely, the validity of this equation for all g ∈ Gy implies the two
parts of the second additional conclusion above, completing the proof.

Remark. It should be possible to enhance the above theorem further
by allowing an arbitrary locally compact second countable group Λ and
imposing suitable continuity assumptions on the assignments h 7→ ρh of
measurable sections and h 7→ Φh,• of measurable families of isomorphisms.
The additional arguments required seem to be more fiddly than enlightening,
however, and so we leave the details to the interested reader.

Although Theorem 6.5 shows that the S-ergodic fibre systems above the
points ζS0 (y) ∈ ZS0 and ζS0 (R|hπy) ∈ ZS0 are isomorphic for all h ∈ Λ for
almost every y ∈ Y , it need not follow that these fibre systems are almost
all isomorphic to a single model system. The following simple example has
long been a part of ergodic-theoretic folklore.

Example. Let (Y, ν) := (T2,mT2), and form the direct integral space
X := Y n T2 with constant fibre T2 (so this is really just the direct product
Y × T2) and measure µ := mT2 ⊗ mT2 . Define T : Z y X by T (y, z) :=
(y, y+ z), so overall (X,µ) is the direct integral of the individual Kronecker
systems (T2,mT2 , Ry), writing Ry for the rotation by y ∈ T2.

In addition, suppose that S y T2 is any ergodic toral automorphism.
Then it is easy to check that S × S commutes with T ; in particular, it
carries fibres of the obvious factor map X → Y onto fibres, and so acts
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as an automorphism of the fibre system (T2,mT2 , Ry) onto (T2,mT2 , RSy).
However, the fibre systems (T2,mT2 , Ry) are not almost all isomorphic for
different y: the map

y 7→ (T2,mT2 , Ry)/∼Isomorphism

is not almost surely constant, even though it is invariant under the ergodic
transformation S. This is possible because the isomorphism equivalence re-
lation on the space of all Kronecker systems (suitably interpreted as pairs
comprising a monothetic compact metrizable subgroup of a suitable fixed
repository and a distinguished element for the rotation) is non-smooth.

Question 6.6. Can an example be found for which the group fibres Gy
themselves are not almost all continuously isomorphic above each R|π-ergodic
component of ν?

This may relate to the work of Conze and Raugi [15] on the behaviour
of measurable families of (not necessarily compact) groups related by mea-
surable cocycles, but we have not been able to answer the above as a direct
corollary of their work.

The following question may also be related to the above:

Question 6.7. Can an example be found in which for no coordinatiza-
tion of the extension is it possible that each Φy can be extended from Gy to
an automorphism of the whole repository group U?

The following corollaries concerning the extendability of automorphisms
will also prove useful later, and may be of some independent interest.

Corollary 6.8 (Condition for lifting an automorphism to a group
data extension). An action R of Λ by automorphisms of Y can be lifted
to a Λ-action by automorphisms of an ergodic group data extension Y n
(G•,mG• , σ) if and only if for every h ∈ Λ the cocycle Γ ×Y → G•×GR(•) :
(γ, y) 7→ (σ(γ, y), σ(γ,Rhy)) has relativized Mackey group data over Y that
is the graph of an isomorphism almost everywhere, and in this case any such
extended action is of the form h 7→ Rh n (Lρh(•) ◦Φh,•) for some families of
sections ρh : Y → G• and S-invariant cocycles Φh,• : Y → Isom(G•, GRh(•))
and Φh is unique up to composition with an arbitrary S-invariant inner
automorphism cocycle.

Corollary 6.9 (Automorphisms can always be lifted to core-free er-
godic covering group extensions). Suppose that Y is a Γ -system, G•/H•
are S-invariant core-free homogeneous space data and σ : Γ × Y → G• is
an ergodic cocycle-section. Set X := Y n (G•/H•,mG•/H• , σ) and X̃ :=
Xn (G•,mG• , σ). Then any action of a discrete group by automorphisms of
the canonical extension X → Y lifts to an action by automorphisms of the
tower X̃→ X→ Y.
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Proof. Let π : X → Y and π̃ : X̃ → Y be the canonical factor maps
and suppose that R is an automorphism of the extension π : X → Y.
Theorem 6.5 allows us to write R explicitly as R|π n (Lρ(•) ◦ Φ•)|H•HR|π(•)

for some ρ : Y → GR|π(•) and S-invariant Φ : Y → Isom(G•, GR|π(•))
such that Φy(Hy) = HR|π(y) almost surely; and, having done this, we have
that graph(Φ•) is the Mackey group data of the cocycle-section (γ, y) 7→
(σ(γ, y), σ(γ,Ry)), so that

σ(γ,R(y)) = b(Sγy) · Φy(σ(γ, y)) · b(y)−1

almost surely. This equation immediately tells us that we can lift R to the
transformation R̃ := R|π n (Lρ(•) ◦ Φ•) on X̃, and that this still commutes
with T̃ = S n σ. Given a whole Λ-action of automorphisms Rh, applying
this argument to each h ∈ Λ individually and considering the consistency
equations promised by Theorem 6.5 shows that the lifted maps still define
a Λ-action, and hence completes the proof.

7. Applications. In this section we offer two closely related applica-
tions of the theory developed above.

We first study the possible joint distribution of the isotropy factors ζTi0

corresponding to three commuting transformations T1, T2 and T3. This will
require some quite careful analysis in terms of Mackey group data, cocycles,
and representations given by the Relative Automorphism Structure Theo-
rem. We will then show that this analysis can also be brought to bear on a
detailed description of characteristic factors of the double non-conventional
ergodic averages associated to a pair of commuting transformations (see, for
example, [6] and the references listed there).

Throughout this section we specialize to the setting of Γ := Zd, and will
write e1, . . . , ed for its standard basis.

7.1. Application to joint distributions of isotropy factors. For
a generic Zd-action on a fixed atomless (X,µ) the isotropy factors ζT

�Λ

0 :
X→ ZT

�Λ

0 corresponding to subgroups Λ ≤ Zd are all trivial (indeed, it is a
classical result that a generic such action is totally weakly mixing). However,
if they are not all trivial then they generate a sublattice of the lattice of all
factors of (X,µ, T ) that can exhibit some quite rich structure.

Letting Ti := T ei , we will here consider only the further sublattice gen-
erated by the isotropy factors ζTI0 := ζ

Ti1 ,...,Tir
0 corresponding to the possible

choices of subset I := {i1, . . . , ir} ⊆ [d], where [d] := {1, . . . , d}.
Clearly in general the action of each Tj for j ∈ [d] \ I on the sets of ΣTI

X
can still be quite arbitrary, and so we cannot hope to say anything about
the structure of each isotropy factor as a system in its own right. Instead
we will focus on their joint distribution within the original system.
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Example. Let (X,µ, T1, T2) be the Z2-system (T2,Haar, R(α,0), R(0,α)),
where Rq denotes the rotation of the compact Abelian group T2 by an
element q ∈ T2 and we choose α ∈ T irrational. In this case we have natural
coordinatizations

ζTi0 : X → T : (t1, t2) 7→ t3−i,

and similarly, since T1T2 = R(α,α),

ζT1T2
0 : X → T : (t1, t2) 7→ t1 − t2.

It follows that in this example any two of ζT1
0 , ζT2

0 and ζT1T2
0 are independent,

but also that any two of them generate the whole system (and so overall
independence fails).

In this section we will employ the general machinery of non-ergodic iso-
metric extensions and the non-ergodic Furstenberg–Zimmer and Mackey
theories to describe this joint distribution in the case d = 3. It will turn out
that these factors are always relatively independent outside certain special
‘obstruction’ factors, which are in turn only a little more general than the
above example.

Theorem 7.1. Suppose that Ti : Z y (X,µ), i = 1, 2, 3, are three com-
muting actions. Then

(1) The triple of factors ζT1,T2
0 , ζT1,T3

0 , ζT2,T3
0 is relatively independent

over ζT0 .
(2) The triple of factors ζT1

0 , ζT2
0 , ζT3

0 is relatively independent over the
further triple of factors

ζT1
0 ∧ (ζT2

0 ∨ ζ
T3
0 ), ζT2

0 ∧ (ζT3
0 ∨ ζ

T1
0 ), ζT3

0 ∧ (ζT1
0 ∨ ζ

T2
0 ).

Theorem 7.2. We have

ζT3
0 ∧ (ζT1

0 ∨ ζ
T2
0 ) % ζT1,T3

0 ∨ ζT2,T3
0 ,

and the extension of systems

(ζT1,T3
0 ∨ ζT2,T3

0 )|
ζ
T3
0 ∧(ζ

T1
0 ∨ζ

T2
0 )

: (ζT3
0 ∧ (ζT1

0 ∨ ζ
T2
0 ))(X)→ ζT1,T3

0 ∨ ζT2,T3
0 (X)

can be coordinatized as the group extension

(ζT1,T3
0 ∨ ζT2,T3

0 )(X) n (G3,•,mG3,• , (τ3,1 ◦ ζ
T2,T3
0 ), (τ3,2 ◦ ζT1,T3

0 )op, 1)

canonical
��

ζT1,T3
0 ∨ ζT2,T3

0 (X)

for some T |
ζ
T1,T3
0 ∨ζT2,T3

0
-invariant compact group data G3,• and cocycle-sec-

tions τ3,1 : ZT2,T3
0 → G3,• and τ3,2 : ZT1,T3

0 → G3,• and similarly for the
extension (ζTi,Tj0 ∨ ζTi,Tk0 )|

ζ
Ti
0 ∧(ζ

Tj
0 ∨ζ

Tk
0 )

for any other permutation i, j, k of
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the indices 1, 2, 3 (in general with different group data Gi,• and cocycle-
sections τi,j).

These two results together amount to Theorem 1.1 of the Introduc-
tion. Heuristically, they assert that the joint distribution of the factor-triple
(ζTi0 )3i=1 fails to be relatively independent over the natural candidate factor-
triple (ζTi,Tj0 ∨ ζTi,Tk0 )3i=1 only up to single isometric extensions, and give
fairly explicit coordinatizations of those extensions.

It seems likely that these results could be extended with only routine
modifications to treat a triple of commuting actions Ti : Γi y (X,µ) of other
locally compact second countable groups Γi (the key feature being that the
different actions commute). We have restricted to a triple of Z-actions for
notational simplicity.

On the other hand, although we naturally expect Theorem 1.1 to be a
special case of a result for larger numbers of commuting transformations
(or actions), the analysis of the corresponding isotropy factors based on
the Furstenberg–Zimmer and Mackey theories becomes quickly much more
complicated, and we shall not pursue this generalization any further at
present.

Observe also that while Theorem 7.2 describes the structure of each
system (ζTi0 ∧ (ζTj0 ∨ ζ

Tk
0 ))(X) as an extension of ζTi,Tj0 ∨ ζTi,Tk0 (X) (which,

by Theorem 7.1, is itself just a relatively independent joining of ZTi,Tj0 and
ZTi,Tk0 over ZT0 ), it does not describe the joint distribution of the factor maps
ζTi0 ∧ (ζTj0 ∨ ζ

Tk
0 ). This would require a further analysis, using the relative

independence of the isotropy factors ZTi,Tj0 over ZT0 to understand first the
joint distribution of the ζTi,Tj0 ∨ ζTi,Tk0 (X) and then working upwards, and
would proceed using very similar ideas to those below but with relatively
smaller returns; we omit the details.

Our basic approach rests on an appeal to the Furstenberg–Zimmer in-
verse theory to reduce the problem to the study of certain isometric exten-
sions, followed by a detailed analysis of the possible structure of an associ-
ated Mackey group to obtain finer information about these extensions.

This strategy is already well-established in the literature from studies
of other questions working under more restrictive ergodicity assumptions.
Indeed, Furstenberg’s original paper [22] developing an ergodic-theoretic
approach to Szemerédi’s Theorem, for which much of the above-mentioned
machinery was originally developed, uses similar ideas to analyze the struc-
ture of a certain self-joining of a given ergodic Z-system en route to the proof
of multiple recurrence. That paper has since led to a considerably more de-
tailed study of the ‘non-conventional ergodic averages’ that appear in this
connexion, which we will revisit in the next section [12, 13, 14, 45, 27, 31, 47].
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In addition, Rudolph has given in [38] an analysis of a different question
rather more closely related to the study of isotropy factors: he obtains a
description of the possible eigenfunctions of the product system S × T y
(Y ×X, ν⊗µ) built from ergodic transformations S y (Y, ν) and T y (X,µ),
effectively using for the earlier stages of his work a special case of the analysis
to be given below applied to this latter product system.

We depart from these previous works in our use of the non-ergodic ver-
sions of the basic machinery. In this more general setting we will find that
the resulting structures are considerably more complex, even though the
description of the extensions ultimately obtained in Theorem 7.2 involves
only data Gi,• that are invariant for the whole action T . In particular,
many of these older works have ultimately reduced their subjects to the
study of factors that lie in a very special class of systems, the ‘pronil-
systems’ (see, in particular, Rudolph’s work [38] and the papers of Host
and Kra [31] and Ziegler [47] on non-conventional averages). Already in
the cases considered in this section we find that we must look beyond that
class.

7.2. Reduction to compositions of isotropy factors. We first prove
the (rather simpler) Theorem 7.1, by effecting a quite general reduction of
the problem to the study of certain composed isotropy factors.

Lemma 7.3. Suppose that T : Γ y (X,µ) is a probability-preserving
action of a locally compact secound countable amenable group Γ and that π :
(X,µ, T ) → (Y, ν, S) is a factor. Then ζT0 and π are relatively independent
over ζS0 ◦ π = π|ζT0 ◦ ζ

T
0 .

Proof. Let (IN )N≥1 be a left Følner sequence in Γ . If A ∈ π−1(ΣY ) and
B ∈ ΣX is T -invariant, then

µ(A ∩B) = lim
N→∞

�

X

( 1
mΓ (IN )

�

IN

1T γ(A)mΓ (dγ)
)
· 1B dµ

=
�

X

Eµ(1A | ζS0 ◦ π) · 1B dµ =
�

X

Eµ(1A | ζS0 ◦ π) · Eµ(1B | ζS0 ◦ π) dµ,

where the middle equality follows from the mean ergodic theorem.

Proof of Theorem 7.1. (1) If A ∈ ΣX is T1- and T2-invariant, B ∈ ΣX
is T1- and T3-invariant and C ∈ ΣX is T2- and T3-invariant then averaging
first under T3 gives
�

X

1A ·1B ·1C dµ =
�

X

Eµ(1A | ζT3
0 ) ·1B ·1C dµ =

�

X

Eµ(1A | ζT1,T2,T3
0 ) ·1B ·1C dµ,



Extensions of probability-preserving systems 181

and now averaging under T2 gives
�

X

Eµ(1A | ζT1,T2,T3
0 ) · 1B · 1C dµ

=
�

X

Eµ(1A | ζT1,T2,T3) · Eµ(1B | ζT2
0 ) · 1C dµ

=
�

X

Eµ(1A | ζT1,T2,T3
0 ) · Eµ(1B | ζT1,T2,T3

0 ) · 1C dµ

=
�

X

Eµ(1A | ζT1,T2,T3
0 ) · Eµ(1B | ζT1,T2,T3

0 ) · Eµ(1C | ζT1,T2,T3
0 ) dµ;

concatenating these equalities gives the result.

(2) This follows similarly. For this proof let ψi := ζTi0 ∧ (ζTj0 ∨ ζ
Tk
0 ).

If A ∈ ΣX is T1-invariant, B ∈ ΣX is T2-invariant and C ∈ ΣX is T3-
invariant then Lemma 7.3 applied to the action Ti and the factors ζTi0 and
π := ζ

Tj
0 ∨ ζ

Tk
0 gives that these are relatively independent over ψi, and hence

that
�

X

1A · 1B · 1C dµ =
�

X

Eµ(1A |ψ1) · 1B · 1C dµ

=
�

X

Eµ(1A |ψ1) · Eµ(1B |ψ2) · 1C dµ

=
�

X

Eµ(1A |ψ1) · Eµ(1B |ψ3) · Eµ(1C |ψ3) dµ,

as required.

7.3. Some isometric extensions and their associated Mackey
data. To prove Theorem 7.2 (and so complete the proof of Theorem 1.1)
we need to understand the structure of the composite factors ζTi0 ∧ (ζTj0 ∨
ζTk0 ) as extensions of ζTi,Tj0 ∨ ζTi,Tk0 ; most of our work will go into this. As
in the statement of the theorem we will treat the case (i, j, k) = (3, 1, 2),
the others being analogous. We will first obtain some isometricity for the
extensions

(ζT1,T3
0 ∨ ζT2,T3

0 )|
ζ
T3
0 ∧(ζ

T1
0 ∨ζ

T2
0 )

: (ζT3
0 ∧ (ζT1

0 ∨ ζ
T2
0 ))(X)→ ζT1,T3

0 ∨ ζT2,T3
0 (X),

and will then see a gradual extraction of finer and finer properties of these
isometric extensions from an analysis of the associated Mackey data, with
an occasional recoordinatization of the extensions where necessary.

The various isotropy factors stand related as in the following commuta-
tive diagram (where some of the obvious maps have not been named):
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X

ζ
T1
0 ∨ζ

T2
0

zzuuuuuuuuuuuuuuuuuuuu

��

ζ
T3
0

  B
BB

BB
BB

BB
BB

BB
BB

B

ζ
T1,T3
0 ∨ζT2,T3

0

��

(ζT1
0 ∨ ζ

T2
0 )(X)

((QQQQQQQQQQQQQ
ZT3

0

xxqqqqqqqqqqqq

(ζT3
0 ∧ (ζT1

0 ∨ ζ
T2
0 ))(X) // ζT1,T3

0 ∨ ζT2,T3
0 (X)

It will prove helpful to introduce some more notation. For i = 1, 2 let
αi := ζTi,T3

0 ∨ ζT1,T2
0 and Wi = (Wi, (αi)#µ, T |αi) be its target system.

Lemma 7.4. We have

ζT3
0 ∧ (ζT1

0 ∨ ζ
T2
0 ) - (ζT3

1/α1
∧ ζT1

0 ) ∨ (ζT3

1/α2
∧ ζT2

0 ).

Proof. By Lemma 7.3 the system (ζT1
0 ∨ ζ

T2
0 )(X) is a relatively indepen-

dent joining of ZT1
0 and ZT2

0 over their further factors ζT1,T2
0 |

ζ
T1
0

and ζT1,T2
0 |

ζ
T2
0

.

On the other hand the T3|ζT1
0 ∨ζ

T2
0

-invariant functions on (ζT1
0 ∨ ζ

T2
0 )(X) are

all virtually measurable with respect to the maximal subextension of

ζT1,T2
0 |

ζ
T1
0 ∨ζ

T2
0

: (ζT1
0 ∨ ζ

T2
0 )(X)→ ZT1,T2

0

that is isometric for the restricted action of T3, and so Theorem 5.12 implies
that this in turn is contained in (ζT3

1/α1
∧ ζT1

0 ) ∨ (ζT3

1/α2
∧ ζT2

0 ), as required.

At this point we will introduce some new notation for the basic systems
and factor maps under study. In addition to lightening the presentation, this
will make our main technical results simultaneously relevant to this and the
next section and so minimize the duplication of effort.

We have defined αi := ζTi,T3
0 ∨ ζT1,T2

0 with target Wi above. We define
also ζi := ζT3

1/αi
∧ ζTi0 and let Zi be its target system, and we let Z be the

target of ζ := ζ1 ∨ ζ2 (a joining of Z1 and Z2) and W be the target of
α := α1 ∨α2 (a joining of W1 and W2). As usual the choice of these target
systems is arbitrary up to isomorphism, but in this case it is natural (and
notationally convenient) to pick W to be

(W1 ×W2, (α1 ∨ α2)#µ, T |α1 × Tα2),

since we will often want to discuss separately the two coordinates of a point
(w1, w2) ∈W . These factors are now arranged as shown:
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X

ζ
��

Z
ζ1|ζ

{{vvv
vv

vv
vv

v

α|ζ

��

ζ2|ζ

##H
HH

HH
HH

HH
H

Z1

α1|ζ1

��

Z2

α2|ζ2

��

W
α1|α

{{vvv
vv

vv
vv α2|α

##H
HH

HH
HH

HH

W1

ζ
T1,T2
0 |α1

##F
FFFFFFF W2

ζ
T1,T2
0 |α2

{{xxxxxxxx

ZT1,T2
0

where W and Z are actually generated by all of their exhibited factors, and
the factors on left- and right-hand sides are relatively independent over their
factor maps to ZT1,T2

0 .
In this picture the transformations Ti = T ei have the following proper-

ties:

• Ti restricts to the identity on Zi and the factors beneath it, while acting
relatively ergodically on the extension ζT1,T2

0 |ζ3−i : Z3−i → ZT1,T2
0 , for

i = 1, 2;
• the extensions ζT1,T2

0 |αi : Wi → ZT1,T2
0 are relatively invariant for the

restriction of T3, and the extensions αi|ζi : Zi → Wi are relatively
ergodic and isometric for the restriction of T3.

Our goal is to identify the T3-invariant factor of Z (which we know is also
the overall T3-invariant factor by the above lemma).

In these terms we can now state our main technical result.

Proposition 7.5. In the situation described above, there are interme-
diate factors

Zi
ξi|ζi−−→ Yi

αi|ξi−−−→Wi

factorizing αi|ζi such that there are T -invariant compact group data G• and
cocycle-sections

σ : ZT1,T2
0 → G• that is T3|ζT1,T2

0
-relatively ergodic,

τ1 : ZT2,T3
0 → G• that is T1|ζT2,T3

0
-relatively ergodic and

τ2 : ZT2,T3
0 → G• that is T2|ζT1,T3

0
-relatively ergodic
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so that we can coordinatize

Y1

α1|ξ1 !!B
BB

BB
BB

B
oo

∼= //W1 n (G•,mG• , 1, (τ2 ◦ ζ
T1,T3
0 |α1)op, σ ◦ ζT1,T2

0 |α1)

canonical
sshhhhhhhhhhhhhhhhhhhhhhh

W1

and

Y2

α2|ξ2 !!B
BB

BB
BB

B
oo

∼= //W2 n (G•,mG• , (τ1 ◦ ζ
T2,T3
0 |α2)op, 1, σ ◦ ζT1,T2

0 |α2)

canonical
sshhhhhhhhhhhhhhhhhhhhhhh

W2

and such that the T3-invariant factor ζT3
0 ∧(ζT1

0 ∨ζ
T2
0 ) is contained in ξ1∨ξ2.

Proof of Theorem 7.2 from Proposition 7.5. This now follows simply
by unpacking the new notation. Let ξ := ξ1 ∨ ξ2 with target Y (a join-
ing of Y1 and Y2). We know that ξ1 and ξ2 (as factors of ζT1

0 and ζT2
0 )

are relatively independent over their further factors ζT1,T2
0 |ξi , i = 1, 2, and

hence certainly over the intermediate factors α1 and α2, and so the coor-
dinatizations of the extensions αi|ξi : Yi → Wi by group data given by
Proposition 7.5 combine to give a coordinatization of Y by the group data
G2
• and the combined cocycles. We now observe that the restriction of T3 to

this group data extension is described by the diagonal cocycle-section (σ, σ)
corresponding to the T3|ζT1,T2

0
-ergodic cocycle-section σ, and so we can sim-

ply deduce that the Mackey group data can be taken to be the diagonal
subgroup M• ∼= {(g, g) : g ∈ G•}, and now the associated Mackey section is
trivial by symmetry. This leads to the coordinatization of the T3-invariant
factor ζT3

0 ∧ (ζT1
0 ∨ ζ

T2
0 ) = ζT3

0 ∧ ζ = ζT3
0 ∧ ξ as given by the location of ZT3|ξ

0

in the following commutative diagram:

Y

ζ
T3
0 |ξ
��

oo
∼= //W n (G2

•,mG2
•
, (τop

1 , 1), (1, τop
2 ), (σ, σ))

canonical
��

ZT3|ξ
0

α|
ζ
T3|ξ
0

��2
22

22
22

22
22

22
oo

∼= // (ζT3
0 ∧ α)(X) n (M•\G2

•,mM•\G2
•
, (τop

1 , 1), (1, τop
2 ), 1)

canonical

wwnnnnnnnnnnnnnnnnnnnnnnnnnn

(ζT3
0 ∧ α)(X)

(where we have suppressed the need to lift τi through ζ
T3−i,T3

0 ). Now by



Extensions of probability-preserving systems 185

simply observing that the quotient M•\G2
• is canonically bijective with G•

under the map M• · (g1, g2)↔ g−1
1 · g2 and applying this bijection fibrewise,

the restricted action of T3 on ζ
T3|ξ
0 is of course trivial and the restricted

actions of T1 and T2 turn into the respective left and right actions by the
cocycles τ1 and τ2 asserted in Theorem 7.2 (where some additional subscripts
‘3’ from the statement of that theorem have also been suppressed).

We will prove Proposition 7.5 in several steps. First observe that since
the extensions αi|ζi : Zi → Wi are isometric and relatively ergodic for
T3|ζi , the non-ergodic Furstenberg–Zimmer theory of Section 5 enables us
to pick coordinatizations by core-free homogeneous space data for the (Ze3)-
subactions

Z�e3
i

αi|ζi ""D
DDDDDDD

oo
∼= //W�e3

i n (G′i,•/K
′
i,•,mG′i,•/K

′
i,•
, σ′i)

canonical
uukkkkkkkkkkkkkkkkk

W�e3
i

(recall that Z�e3
i denotes the subaction system given by retaining only the

action through T of the one-dimensional subgroup Ze3 ≤ Z3), where we
may also choose the cocycle sections σ′i to be ergodic.

Since ζ1 and ζ2 (like ζT1
0 and ζT2

0 ) are relatively independent over ζT1,T2
0

under µ, we can combine the above two coordinatizations to give

Z�e3

α|ζ ""E
EEEEEEEE

oo
∼= //W�e3 n (~G•/ ~K•,m ~G•/ ~K•

, ~σ)

canonical
uukkkkkkkkkkkkkk

W�e3

where ~G• := G′1,π1(•) × G
′
2,π2(•), ~K• := K ′1,π1(•) × K

′
2,π2(•) and ~σ := (σ′1 ◦

π1, σ
′
2 ◦ π2), and we here write πi for the obvious factor map W →Wi.

Of course, we do not know that the restrictions of T1 and T2 to the factors
αi|ζi : Zi → Wi are isometric, and so we have no similar coordinatization
of these transformations using homogeneous space data and cocycles. We
will appeal instead to the Relative Automorphism Structure Theorem 6.5
to describe them in terms of cocycles and fibrewise automorphisms.

First, however, an appeal to Corollary 4.4 gives a first step towards the
more explicit description of the T3|ξ-invariant factor in terms of the above
coordinatizations:

Proposition 7.6. There are T3|α-invariant Mackey group data M ′• ≤
~G• on W and a measurable section ~b : W → ~G• such that the factor map
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Z → Z
T3|α
0 n (M ′•\~G•/ ~K•) :

(w, g ~Kw) 7→
(
(ζT1,T3

0 ∨ ζT2,T3
0 )(w),M ′w ·~b(w) · g · ~Kw

)
coordinatizes the T3|ξ-invariant factor of Z.

The remainder of our work will go into analyzing this Mackey group data
M ′• and section b′ to deduce properties of the data (G′i,•/K

′
i,•, σ

′
i) that gave

rise to them, and eventually reduce them to the special form promised by
Proposition 7.5.

We now prove two technical lemmas that will underly our subsequent
analysis, and which it seems easiest to introduce separately.

Lemma 7.7. Suppose that (X,µ, T ) is a Z-system, G• is T -invariant
measurable compact group data on X and σ : X → G• a cocycle-section,
and that (Y, ν) is another standard Borel probability space. Suppose further
that λ is a (T × idY )-invariant joining of µ and ν. If M• ≤ G• is the
Mackey group data of G• and σ over (X,µ, T ) and π : X × Y → X is the
coordinate projection, then the Mackey group data N• of Gπ(•) and σ ◦ π
over (X × Y, λ, T × idY ) is given by Mπ(•) (up to a T -invariant measurable
choice of conjugates) λ-almost surely.

Remark. It is easy to see that N• ≤Mπ(•); the point of this proposition
is that if we adjoin to (X,µ, T ) a system on a new space (Y, ν) for which the
action is trivial, then the Mackey group data does not become any smaller.

Proof. We know from Section 4 that there is a section b : X×Y → Gπ(•)
such that b(Tx, y)−1 · σ(x) · b(x, y) ∈ N(x,y) for λ-almost every (x, y).

Let A be the λ-conegligible subset of X × Y where this coboundary
condition obtains, and let

B0 := {(x, y) ∈ A : some conjugate of N(x,y) is properly contained in Mx};
this is easily seen to be Borel and λ-almost (T × idY )-invariant, and so
writing B :=

⋂
n∈Z T

n(B0) we see that λ(B) = λ(B0) and that B is strictly
(T × idY )-invariant. It will suffice to show that B is λ-negligible, so suppose
otherwise. Then by Proposition 2.4 there are a non-negligible T -invariant
subset C ∈ ΣX and a T -invariant measurable selector η : C → Y such
that (x, η(x)) ∈ B almost surely. We deduce that b(Tx, η(x))−1 · σ(x) ·
b(x, η(x)) ∈ N(x,η(x)) for every x ∈ C with N(x,η(x)) properly contained in
some (clearly measurably-varying) conjugate of the Mackey group data Mx,
contradicting the conjugate-minimality of this latter that was proved in
part (4) of Theorem 4.1.

Corollary 7.8. In the notation set up earlier in this section, we have

{g1 : there exists g2 ∈ G′2,• such that (g1, g2) ∈M ′•} = G′1,•

almost surely, and similarly for the projection of M ′• onto G′2,•.
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Proof. We give the argument for i = 1. Simply observe that the extension
W�e3 →W�e3

1 is relatively invariant, and so the Mackey group data for our
coordinatization of the extension α|ζ1∨α2 : (ζ1 ∨ α2)(Z)�e3 → W�e3 must
simply be lifted from the Mackey group data for α1|ζ1 : Z�e3

1 → W�e3
1

downstairs. Since the former is clearly equal to the given one-dimensional
projection of M ′•, and the cocycle section σ′1 is assumed to be ergodic, this
completes the proof.

The next properties of M ′• that we deduce require a little more work.
We begin with a useful group-theoretic lemma.

Lemma 7.9 (Deconstructing a relation between two group correspon-
dences). Suppose that G1, G2 are compact groups and that M1,M2≤G1×G2

are two subgroups that both have full one-dimensional projections, and let
their one-dimensional slices be

L1,1 := {g ∈ G1 : (g, 1G2) ∈M1}, L1,2 := {g ∈ G2 : (1G1 , g) ∈M1}

and similarly L2,1, L2,2. Suppose further that Φi : Gi
∼=→ Gi and hi, ki ∈ Gi

for i = 1, 2 satisfy

(h1, h2) · (Φ1 × Φ2)(M1) · (k1, k2) = M2.

Then Φi(L1,i) = L2,i for i = 1, 2.

Proof. Suppose first that (g, 1G2) ∈ L1,1. Then the given equation tells
us that

(h1 · Φ1(g) · k1, h2 · k2) = (m1,m2)

for some m1,m2 ∈M2, and in this case m2 = h2 · k2 does not depend on g.
Since the above must certainly hold if g = 1G1 , applying it also for any
other g and differencing gives

(h1 · Φ1(g) · k1) · (h1 · Φ1(1G1) · k1)−1 = h1 · Φ1(g) · h−1
1 ∈ L2,1,

so Φ1(L1,1) ⊆ h−1
1 · L2,1 · h1. An exactly symmetric argument gives the

reverse inclusion, so in fact Φ1(L1,1) is a conjugate of L2,1. However, since
M1 and M2 have full one-dimensional projections, by Lemma 2.8 it follows
that in fact Φ1(L1,1) = L2,1, as required. The case of the other coordinate
is similar.

Lemma 7.10. If Hi,• ≤ G′i,πi(•) are the one-dimensional slices of M ′•,
then

(1) Hi,(w1,w2) α#µ-almost surely depends only on wi, so after modifying
on a negligible set we may write it as Hi,wi;
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(2) under the above coordinatizations, for i = 1, 2 the map

Wi n (G′i,•/K
′
i,•)→Wi n (G′i,•/(Hi,•K

′
i,•)) :

(wi, gK ′i,wi) 7→ (wi, gHi,wiK
′
i,wi)

defines a factor for the whole Z3-action T (that is, it is respected by
T1 and T2 as well as T3).

Proof. By symmetry it suffices to treat the case i = 1 for the first con-
clusion and i = 2 for the second (it will turn out that these come together).
First deduce from Corollary 7.8 and Lemma 2.8 that in factH1,(w1,w2)EG

′
1,w1

for almost every (w1, w2).
We will use the presence of the additional transformations of the factors

ζ1 and ζ2 given by T1. Of course, T1 just restricts to the identity transforma-
tion on ζ1. On the other hand, since T1|ζ2 commutes with the transformation
T3|ζ2 which is relatively ergodic for the extension Z2 → W2, the Relative
Automorphism Structure Theorem 6.5 allows us to express

T1|ζ2 ∼= T1|α2 n (Lρ′(•) ◦ Φ′•)|
K′2,•
K′

2,T1|α2 (•)

for some ρ′ : W2 → G′2,• and some T3|α2-invariant section Φ′• : W2 →
Isom(G′2,•, G

′
2,T1|α2 (•)) satisfying Φ′•(K

′
2,•) = K ′2,T1|α2 (•) almost surely.

Now observe from Corollary 6.9 that using the above expression and its
partner for T2|ζ1 we may extend all three transformations Tj |ζi , j = 1, 2, 3,

to the covering group extension α̃i : Z̃i → Zi
αi|ζi−−−→ Wi arising from our

core-free homogeneous-space-data coordinatization of T3|ζi , and that these
extensions retain commutativity and all the relative invariance, ergodicity
and isometricity properties listed above. Form the relatively independent
joining

Z̃ = Z̃1 ⊗{ζT1,T2
0 |α1◦α̃1=ζ

T1,T2
0 |α2◦α̃2}

Z̃2

with the coordinate projection factors back onto Z̃1 and Z̃2; with the re-
sulting factor map onto W it now defines a covering group extension of
α|ζ : Z → W whose Mackey data are still M ′• and b′ (by our initial con-
struction of these). Moreover, these new factors Z̃i and Z̃ are located in a
commutative diagram with the factors Wi and W just as we saw previously
for Zi and Z (except now not all as factors of the original overall system X,
but of some extended overall system).

It follows that for the purpose of proving this proposition, we may work
with these covering group extensions throughout without disrupting the final
conclusions; or, equivalently, that it suffices to treat the case in which the
core-free kernels K ′• are trivial. Let us therefore make this assumption for
the rest of this proof so as to lighten notation.
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Given this assumption, consider the condition that T1|ζ respect ζT3
0 |ζ

in terms of the above expression for T1|ζ2 and the Mackey data. First,
since M ′• has full one-dimensional projections we may take the Mackey sec-
tion ~b of Proposition 7.6 to be of the form ~b(w) = (1G1,w1

, b′(w)). Now the
above condition requires, in particular, that ζT3

0 |ζ(T1|ζ(z)) almost surely de-
pend only on ζT3

0 |ζ(z) for z ∈ Z; and on the other hand, in terms of the
above Mackey description, writing points of Z as (w, g1, g2) we know that
ζT3
0 |ζ(w, g1, g2) = ζT3

0 |ζ(w, g′1, g′2) if and only if

M ′w · (1, b′(w)) · (g1, g2) = M ′w · (1, b′(w)) · (g′1, g′2)

⇔ (g1, g2) ∈ (1, b′(w)−1) ·M ′w · (1, b′(w)) · (g′1, g′2).

Therefore the above relation between T1|ζ and ζT3
0 |ζ simply asserts that for

α#µ-almost every (w1, w2) ∈ W , for Haar-almost every (g′1, g
′
2) ∈ G′1,w1

×
G′2,w2

there is some (g′′1 , g
′′
2) ∈ G′1,w1

×G′2,T1|α2 (w2) such that

(idG′1,w1
×(Lρ′(w2) ◦Φ′w2

))
(
(1, b′(w1, w2)−1) ·M ′(w1,w2) ·(1, b

′(w1, w2)) ·(g′1, g′2)
)

= (1, b′(w1, T1|α2(w2))−1) ·M ′(w1,T1|α2 (w2)) · (1, b
′(w1, T1|α2(w2))) · (g′′1 , g′′2),

or, rearranging, that(
1G′1,w1

, b′(w1, T1|α2(w2))ρ′(w2)Φ′w2
(b′(w1, w2)−1)

)
(idG′1,w1

× Φ′w2
)(M ′(w1,w2))

·
(
g′1(g′′1)−1, Φ′w2

(b′(w1, w2)g′2)(b′(w1, T1|α2(w2))g′′2)−1
)

= M ′(w1,T1|α2 (w2)).

The two desired conclusions now follow from applying Lemma 7.9 to this
equation for the two coordinate projections onto G′1,w1

and G′2,w2
. Under the

first coordinate projection we obtain

H1,(w1,w2) = idG′1,w1
(H1,(w1,w2)) = H1,(w1,T1|α2 (w2)),

so H1,(w1,w2) is a T1|α-invariant subgroup of G′1,w1
, and so recalling that

T1|α is relatively ergodic on the extension α1|α : W → W1 we deduce that
H1,(w1,w2) is virtually a function of w1 alone, as required for conclusion (1).

For the second coordinate projection we obtain

Φ′w2
(H2,(w1,w2)) = H2,(w1,T1|α2 (w2)).

In view of the conclusion (1) obtained above we can simplify this to

Φ′w2
(H2,w2) = H2,T1|α2 (w2),

and now this is precisely the condition given by the Relative Automorphism
Structure Theorem 6.5 for T1|ζ2 to respect the given map as a factor map.
Since it is clear that the given map defines a factor for the restrictions of T2

(since this acts trivially on the whole of Z2) and T3 (since this acts on this
extension by a G2,•-valued cocycle-section, and so our factor map is simply
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the fibrewise quotient by the subgroup Hi,•, recalling our assumption that
K ′i,• is almost surely trivial), this completes the proof.

In view of the above result, we are now able to define our desired inter-

mediate factors Zi
ξi|ζi−−→ Yi

αi|ξi−−−→Wi by the commutative diagrams

Z1

ξ1|ζ1
��

oo
∼= //W1 n (G′1,•/K

′
1,•,mG′1,•/K

′
1,•
, 1G′1,• , (Lρ′1(•) ◦ Φ′1,•), σ′1)

canonical
��

Y1

α1|ξ1 ��8
88

88
88
oo

∼= //W1 n (G1,•/K1,•,mG1,•/K1,• , 1G1,• , (Lρ1(•) ◦ Φ1,•), σ1)

canonical
sshhhhhhhhhhhhhhhhhhhhhh

W1

and similarly for Y2, where Gi,• := G′i,•/Hi,•, Ki,• := (Hi,•K
′
i,•)/Hi,• and

ρi, Φi,• and σi are the appropriate quotients or restrictions of ρ′i, Φ
′
i,• and σ′i:

part (1) above gives that Hi,• is correctly defined as a function on Wi, and
part (2) gives that the above diagram defines a factor map for our whole
Z3-action.

The important feature of these new smaller extensions Yi → Wi is
that the Mackey group data M• of their joining under X takes a partic-
ularly simple form: after having quotiented out the one-dimensional slices
Hi,•, it is almost surely the graph of a continuous isomorphism. Indeed,
M• is clearly obtained from M ′• simply by quotienting out the normal sub-
group data H1,π1(•)×H2,π2(•), and from the definition of Hi,• it follows that
M• has full one-dimensional projections and trivial one-dimensional slices
almost everywhere, and so defines almost everywhere the graphs of some
measurably-varying T3|α-invariant isomorphisms Ψ(w1,w2) : G1,w1

∼=→ G2,w2 .
Henceforth we will refer to these as the Mackey isomorphisms. In addition
we set b := b′ · H2,π2(•), so that (1G1,π1(•) , b) is a Mackey section of the
extension Y �e3 →W�e3 associated to the choice of Mackey group data M•.

On the other hand, from the description given in Proposition 7.6 it fol-
lows that the T3-invariant factor is actually contained in the join of these
smaller isometric extensions αi|ξi : Yi →Wi, and so it will suffice to study
these new factors. The remaining steps of this subsection will give a recoor-
dinatization of these new factors into the form required by Proposition 7.5.

Corollary 7.11. We have ζT0 |α1(w1) = ζT0 |α2(w2) for α#µ-almost ev-
ery (w1, w2), and there are compact group data G• invariant for the whole
action T such that we can recoordinatize the extensions αi|ξi : Yi →Wi so
that G1,w1 = GζT0 |α1 (w1) = G2,w2 for α#µ-almost every (w1, w2).

Proof. The first assertion is clear from the definitions.
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By T3|αi-invariance the groups Gi,wi actually depend only on zi :=
ζT3
0 |αi(wi) ∈ Z

Ti,T3
0 , and similarly the isomorphism Ψ(w1,w2) depends only on

the image (z1, z2) of (w1, w2). In addition, by Theorem 7.1 the coordinates
z1, z2 of this image are relatively independent over ζT0 |α1(w1) = ζT0 |α2(ww)
under α#µ.

Now let P : ZT0
p→ ZT2,T3

0 be a probability kernel representing the dis-
integration of (ζT2,T3

0 )#µ over ζT0 |ζT2,T3
0

. For almost every z1 ∈ ZT1,T3
0 we

can choose a measurable family of isomorphisms Θ2,z2 : G2,z2

∼=→ G1,z1 de-
fined for P (ζT0 |ζT1,T3

0
(z1), · )-almost every z2 ∈ ZT2,T3

0 , because the Mackey
isomorphisms themselves witness that these almost surely exist. Making a
measurable selection of such a z1 in each fibre of ZT1,T3

0 → ZT0 , we now
take this family as defining a fibrewise isomorphism recoordinatization of
our initial homogeneous-space-data coordinatization of α2|ξ2 : Y2 → W2

obtained above. This has the effect of adjusting to a coordinatization in
which the covering group of the homogeneous space fibre over z2 ∈ Z2 is
P (ζT0 |ζT1,T3

0
(z1), · )-almost everywhere equal to G1,z1 , and with the kernel of

the homogeneous space fibre given by Θ2,z2(K2,z2) ≤ G1,z1 .
In particular, the covering group data of this new coordinatization de-

pends only on ζT0 |ζT1,T3
0

(z1) = ζT0 |α1(w1) = ζT0 |α2(w2). Exactly similarly we
can now recoordinatize α1|ξ1 : Y1 →W1 to have covering fibre groups also
depending only on ζT0 |α1(w1) = ζT0 |α2(w2). Since both these recoordinati-
zations are by fibrewise isomorphisms that are invariant for the relevant
restrictions of T3, the new coordinatizations of these extensions that re-
sult are still given as cocycle-section extensions for these restrictions of T3.
Finally, in this new coordinatization the measurable family of Mackey iso-
morphisms Ψ(w1,w2) clearly shows that after one more fibrewise recoordina-
tization by a T -invariant isomorphism we are left with the same T -invariant
group data G• everywhere.

Now let us re-apply the Relative Automorphism Structure Theorem 6.5
to write

T1|ξ2 = T1|α2 n (Lρ1(•) ◦ Φ1,•)|
K2,•
K2,T1|α2 (•)

and
T2|ξ1 = T2|α1 n (Lρ2(•) ◦ Φ2,•)

H1,•
H1,T2|α1 (•)

where now Φi,wi is T3|α3−i-invariant and takes values in AutGζT0 |αi (wi) for
i = 1, 2. In addition, we recall the notation Coρ(•) for the fibrewise automor-
phism of some measurable group data G• given by fibrewise conjugation by
a section ρ of G•.
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Proposition 7.12. The extensions αi|ξi : Yi →Wi can be recoordina-
tized by fibrewise affine transformations so that

(1) there are cocycles τi : W3−i → GζT0 |αi (•)
such that Lρi(•) ◦ Φi,• =

Rτi(•);
(2) the Mackey isomorphisms are trivial: Ψ• ≡ idG

ζT0 |α(•)
;

(3) the Mackey section is trivial: b ≡ 1G
ζT0 |α(•)

;

(4) the cocycle τi is invariant under T3|αi and the cocycle σi is invariant
under T3−i|αi.

Proof. This will follow from a careful consideration of the commutativ-
ity conditions relating the expressions for our three transformations on Yi.
We make our recoordinatizations in two steps, the first by fibrewise auto-
morphisms and the second by fibrewise rotations. We will construct these so
as to guarantee the asserted properties of the ingredients ρ and Φ, and will
then find that the asserted forms of Ψ and b are an immediate consequence.

First observe that just as in the proof of Lemma 7.10, we may lift all of
our commuting transformations Tj |αi to the covering group data extensions
of αi|ξi : Yi → Wi, and have that M• and b will still be Mackey data of
their relatively independent joining over ZT1,T2

0 , and therefore if we effect our
desired fibrewise recoordinatizations on these covering group data extensions
then simply quotienting will give the desired recoordinatizations of αi|ξi :
Yi →Wi. As in Lemma 7.10, this argument reduces our work to the special
case when K• ≡ {1G•}.

The remainder of our work breaks into five steps.

Step 1. We consider the case i = 1. First recall our earlier expression of
the fact that T1|ξ respects ζT3

0 |ξ: for α#µ-almost every (w1, w2) ∈W , setting
s := ζT0 |α1(w1), for Haar-almost any g′ ∈ Gs there is some g′′ ∈ Gs for which

(idGs × (Lρ1(w2) ◦ Φ1,w2))
(
(1, b(w1, w2)−1) ·M(w1,w2) · (1, b(w1, w2)) · (1, g′)

)
= (1, b(w1, T1|α2(w2))−1) ·M(w1,T1|α2 (w2)) · (1, b(w1, T1|α2(w2))) · (1, g′′).

We can rewrite this condition in terms of the Mackey isomorphisms to give

ρ1(w2) · (Φ1,w2 ◦ Lb(w1,w2)−1 ◦ Ψ(w1,w2))(•) · Φ1,w2(b(w1, w2) · g′)
= b(w1, T1|α2(w2))−1 · Ψ(w1,T1|α2 (w2))(•) · b(w1, T1|α2(w2)) · g′′,

and now if we write Ψ̃• := Cob(•)−1 ◦ Ψ• and Φ̃1,• := Coρ1(•) ◦ Φ1,• this in
turn becomes

(Φ̃1,w2 ◦ Ψ̃(w1,w2))(•) · ρ1(w2) · Φ1,w2(g′) = Ψ̃(w1,T1|α2 (w2))(•) · g′′

(so we have simply shifted all the ‘translation’ parts of our affine transfor-
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mations over to the right). Finally, this now clearly requires that

Φ̃1,w2 = Ψ̃(w1,T1|α2 (w2)) ◦ Ψ̃−1
(w1,w2)

almost everywhere: the automorphisms graphed by the Mackey group data
have themselves become a coboundary for the automorphism-valued cocy-
cle Φ̃1,•.

We will refer to the above as the ‘automorphism coboundary equation’
for the remainder of this proof. The condition that this hold for almost every
(w1, w2) also gives non-trivial information on the automorphisms Ψ̃(w1,w2) for
different w1, since w1 is absent from the left-hand side. Since the extension
α2|α : W→W2 is relatively invariant for the restrictions of T1 and T3, using
Proposition 2.4 we can therefore choose a T1-invariant measurable selector
η : W2 →W1 so that

Φ̃1,w2 = Ψ̃(η(w2),T1|α2 (w2)) ◦ Ψ̃−1
(η(w2),w2)

holds almost surely and so witnesses that Φ̃1,w2 is a coboundary in Aut(Gs)
for the transformation T1|α2 : W2 →W2.

Näıvely we should now like to use the cocycle Ψ̃η(•),• to make a fibrewise
automorphism recoordinatization of the extension α2|ξ2 : Y2 →W2 so that
the first of our automorphism-valued coboundary equations above gives a
simplification of Φ̃1,w2 . However, this idea runs into difficulties because the
new isomorphisms Ψ̃•, unlike Ψ•, are not necessarily T3-invariant, and so
applying them fibrewise may disrupt the coordinatization of T3|ξ2 as acting
by rotations.

Step 2. The best we can do at this stage is to apply fibrewise the
automorphisms Ψ−1

(η(w2),w2) to our coordinatization of α2|ξ2 . This gives some
improvement: in the resulting new coordinatization of this extension, our
automorphism coboundary equation above now reads

Φ̃1,w2 = Co−1
b(η(w2),T1|α2 (w2)) ◦ Cob(η(w2),w2) = Cob(η(w2),T1|α2 (w2))−1·b(η(w2),w2).

Recalling that Φ̃1,• = Coρ1(•) ◦ Φ1,• this unravels to give

Φ1,w2 = Co−1
ρ1(w2) ◦ Cob(η(w2),T1|α2 (w2))−1·b(η(w2),w2)

= Coρ1(w2)−1·b(η(w2),T1|α2 (w2))−1·b(η(w2),w2),

so we conclude, in particular, that the automorphism-valued cocycle Φ1,•
takes values in the compact subgroup of inner automorphisms, and so we
may represent it as Coθ(•) for some T3|α2-invariant section θ : W2→GζT0 |α2 (•).
By writing out the above automorphism coboundary equation in terms of θ
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it becomes

Coθ(w2) = Co−1
ρ1(w2) ◦ Cob(η(w2),T1|α2 (w2))−1·b(η(w2),w2)

= Coρ1(w2)−1·b(η(w2),T1|α2 (w2))−1·b(η(w2),w2),

and so if we now substitute into our original expression for T1|ξ2 we obtain

T1|ξ2 = T1|α2 n (Lρ1(•) ◦ Coθ(•)) = T1|α2 n (Rρ1(•) ◦ Coρ1(•)·θ(•))
= T1|α2 n (Rρ1(•) ◦ Cob(η(•),T1|α2 (•))−1·b(η(•),•)).

It follows that if we now make a second fibrewise recoordinatization of
α2|ξ2 : Y2 →W2, this time by rotating each fibre copy of Gs from the left
by b(η(w2), w2) (which virtually depends only on s = ζT0 |α2(w2)), we are left
with a resulting coordinatization of T1|ξ2 in the desired form of an opposite
action:

T1|ξ2 = T1|α2 nRτ1(•)

where
τ1(•) := b(η(•), •)−1 · b(η(•), T1|α2(•)) · ρ1(•).

Of course, both of the above recoordinatizations can be repeated anal-
ogously for the extension α1|ξ1 : Y1 → W1 to put T2|ξ1 into a similar
right-multiplicative form.

It follows that in the coordinatizations of these extensions that we have
now obtained, T3|ξi is still in the form of a cocycle-section extension T3|αinσi
(with a modified cocycle-section σi) and T1|ξ2 and T2|ξ1 are in the desired
right-multiplicative form, as for part (1) of the proposition.

Step 3. We now ‘invert’ the above implication to discover what conse-
quences these improved coordinatizations imply for the data Ψ• and b•.

Recall that our first automorphism cocycle equation held for almost all
(w1, w2), before we chose the measurable selector η, and so in our latest
coordinatization this tells us that

Coτ1(w2) = Ψ̃(w1,T1|α2◦ξ2 (w2)) ◦ Ψ̃−1
(w1,w2).

(Note that our first fibrewise recoordinatization above by automorphisms
rendered the cocycle Ψ• inner at (α2)#µ-almost all the points (η(w2), w2),
which depend on our choice of measurable selector η, but we have not yet
seen that this cocycle is inner for almost all (w1, w2) as a result of this
recoordinatization, hence our need to go back to the above form of this
equation for this stage of the argument.)

It follows that the class Ψ̃(w1,w2) ◦ Inn(Gs) ∈ Out(Gs) is invariant under
the action of idW1×T1|α2 = T1|α, and it follows similarly that it is invariant
under T2|α. On the other hand, we have Ψ̃(w1,w2) ◦ Inn(Gs) = Ψ(w1,w2) ◦
Inn(Gs) and this latter is clearly invariant under T3|α, since it arises from
the Mackey group data. Therefore it is actually T |α-invariant, and so since
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Inn(Gs) E Aut(Gs) is compact, and so the resulting space of equivalence
classes Out(Gs) is smooth, it is almost surely equal to Ψs ◦ Inn(G) for some
Borel map Ψ• : ZT0 → Aut(G•). Therefore one last fibrewise automorphism
recoordinatization of α2|ξ2 : Y2 → W2 by ΨζT0 |α2 (•) (which still does not
disrupt any of the properties guaranteed previously, provided we replace ρ1

and τ1 with ΨζT0 |α2 (•)(ρ1) and ΨζT0 |α2 (•)(τ1)) now gives Mackey group data of
the form

M• ≡ {(g, g0(•)gg0(•)−1) : g ∈ GζT0 |α(•)}

for some T3|α-invariant section g0 : W → GζT0 |α(•), and now we can simply
adjust the Mackey section b so that g0 ≡ 1, and so the Mackey group data
can be taken to be the diagonal subgroup almost everywhere.

Step 4. Having removed all the non-trivial outer automorphisms and
adjusted the joining Mackey group data, our automorphism coboundary
equation has now simplified down to

Φ̃1,w2 = Coτ1(•) ◦ Co−1
τ1(•) = id = Cob(w1,T1|α2 (w2))−1·b(w1,w2),

and hence we deduce that b(•) · C(GζT0 |α(•)), where C(GζT0 |α(•)) is the cen-
tre of GζT0 |α(•), is T1|α-invariant, and similarly that it is T2|α-invariant.
Making another measurable selection and recoordinatizing each fibre of
α2|ξ2 : Y2 → W2 by a left rotation by b(η(•), •) therefore preserves the
structure of T1|α as an opposite rotation (since the resulting additional co-
cycle b(w1, T1|α2(w2))−1 · b(w1, w2) acting on the left takes values in C(Gs),
and so may in fact be taken to act on either side); and after making this
recoordinatization we find that the Mackey section has also trivialized.

Step 5. Finally, let us look back at the relation between σ1 and σ2 that
is implied by the cocycle equation satisfied by the Mackey data given by
part (3) of Theorem 4.1 in light of this newly simplified Mackey group and
section: this now becomes simply that

σ2(w2) = σ1(w1)

α#µ-almost surely, and hence in this coordinatization it follows that each
σi virtually depends only on ζT1,T2

0 |αi , or, equivalently, is T3−i|αi-invariant.
Given this, the condition that T1|ξ2 and T2|ξ2 commute simply reads that
for almost every w2 ∈W2 we have

σ2(w2) · g · τ1(T3|α2(w2)) = σ2(T1|α2(w2)) · g · τ1(w2)
= σ2(w2) · g · τ1(w2) ∀g ∈ Gs,

and so we must also have that τ1 is T3|α2-invariant, and similarly that τ2 is
T3|α1-invariant. This completes the proof.
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The recoordinatization of the preceding proposition leaves only one detail
remaining for the proof of Proposition 7.5.

Corollary 7.13. In our homogeneous-space-data coordinatizations of
αi|ξi : Yi →Wi the core-free kernels Ki,• are almost surely trivial.

Proof. As remarked at the beginning of the preceding proof, we can lift to
the covering group extensions and make the adjustments of Proposition 7.12
there, and they will then quotient back down to well-defined recoordinatiza-
tions of the original extensions, because at each stage we have only applied
either fibrewise automorphism or fibrewise left rotations. From these we have
obtained expressions

T1|ξ2 = T1|α2 nRτ1

and similarly for T2|ξ1 at the level of the covering group extensions, and so
for these to have well-defined quotient it is necessary that for almost every
w1 all two-sided cosets g ·K2,w2 · τ1(w2) for g ∈ GζT0 |α2 (w2) actually be left
cosets of K2,w2 . This, in turn, requires that τ1 almost surely take values
in the normalizer NG

ζT0 |α2 (w2)
(K2,w2), which is a closed measurably-varying

subgroup of GζT0 |α2 (w2).
Now we recall that T1 restricts to a relatively ergodic action on the ex-

tension α2|ξ2 : Y2 → W2—a condition we have not exploited so far—and
so we must have

NG
ζT0 |α2 (w2)

(K2,w2) ·K2,w2 = GζT0 |α2 (w2)

almost surely, for otherwise the homogeneous space fibres of the extension
α2|ξ2 : Y2 → W2 would decompose into cosets of the closed subgroups
NG

ζT0 |α2 (w2)
(K2,w2) ·K2,w2 to give additional non-trivial invariant sets under

the restriction T1|α2 . However, since

NG
ζT0 |α2 (w2)

(K2,w2) ⊇ K2,w2 ,

this requires in fact that

NG
ζT0 |α2 (w2)

(K2,w2) = GζT0 |α2 (w2)

almost surely, and since K2,w2 is core-free this is possible only if K2,w2 = {1}
almost surely. An exactly similar argument treats K2,•.

As remarked previously, this completes the proof of Proposition 7.5.

7.4. Application to characteristic factors. We will finish this sec-
tion by offering a second application of our machinery (although in truth it
is largely a corollary of the above).

Since Furstenberg’s ergodic-theoretic proof of Szemerédi’s Theorem
in [22] and his extension with Katznelson of this result to the multi-
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dimensional setting in [24], considerable interest has been attracted by the
‘non-conventional’ ergodic averages

1
N

N∑
n=1

d∏
i=1

fi ◦ Tni

associated to a commuting d-tuple of probability-preserving transformations
T1, . . . , Td : Z y (X,µ), that emerge naturally in the course of those proofs.
That these averages converge in L2(µ) as N → ∞ in the case d = 2 was
first shown by Conze and Lesigne in [12], and their result has since been
extended in many directions [13, 14, 45, 30, 31, 46], culminating in the first
proof of the fully general case by Tao in [42]. We refer the reader to those
papers and to [6] for more thorough motivation and historical discussion of
this problem.

Conze and Lesigne’s proof of convergence is comparatively soft, using
only quite weak structural information about the above averages to show
that they converge (in particular, using only the structure of certain finite-
rank modules rather than their concrete coordinatizations). More recently,
other convergence results for non-conventional ergodic averages have been
based on a similar but more detailed analysis, resting on the notion of a
‘characteristic tuple of factors’. A tuple of factors ξi : X→ Yi is character-
istic if

1
N

N∑
n=1

d∏
i=1

fi ◦ Tni −
1
N

N∑
n=1

d∏
i=1

Eµ(fi | ξi) ◦ Tni → 0

in L2(µ) as N → ∞ for any f1, . . . , fd ∈ L∞(µ). Starting with the Conze–
Lesigne proof, most convergence proofs in this area require at some stage
the identification of a characteristic tuple of factors (or a suitable finitary
analog of them in the case of Tao’s proof) on which the restricted actions
of each Ti take simplified forms, so that the right-hand averages above can
be analyzed to prove convergence more easily.

A precise description of these characteristic factors in the special case
when Ti = T i for some fixed ergodic transformation T has now been given
in terms of the special class of ‘pronilsystems’ in work of Host and Kra [31]
(see also the subsequent approach of Ziegler [47]). Frantzikinakis and Kra
have extended this description to more general commuting tuples subject to
some additional ergodicity assumption in [19], but a description for arbitrary
tuples of commuting transformations, without those ergodicity assumptions,
seems to be more difficult. Indeed, it may be that no comparably clean and
useful description is available in the general case. However, at least when
d = 2 a reasonably simple coordinatization of a characteristic pair of factors
seems to have been folklore knowledge in ergodic theory for some time, and
in this subsection we will show how our theory enables a careful proof of it.
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Theorem 7.14 (Characteristic factors for double non-conventional aver-
ages). Given a Z2-system X = (X,µ, T1, T2), let Wi be the target system of
the joined factor ζTi0 ∨ζ

T1=T2
0 . Then X admits a characteristic pair of factors

ξi : X → Yi that extend the factors ζTi0 ∨ ζ
T1=T2
0 and can be described as

follows: there are T -invariant compact group data G•, a T1|ζT1=T2
0

-ergodic co-

cycle σ : ZT1=T2
0 → G, and a pair of Ti|

ζ
T3−i
0

-ergodic cocycles τi : ZT3−i
0 → G

such that we can coordinatize

(Y1, (ξ1)#µ)

α1|ξ1 ((PPPPPPPPPPPP
oo

∼= // (W1, (α1)#µ) n (G•,mG•)

canonicalttjjjjjjjjjjjjjjjj

(W1, (α1)#µ)

with

T1|ξ1 ∼= T1|α1 nσ◦ζT1=T2
0 |α1 and T2|ξ1 ∼= T2|α1 n(L

σ◦ζT1=T2
0 |α1

◦R
τ2◦ζ

T1
0 |α1

),

and similarly

(Y2, (ξ2)#µ)

α2|ξ2 ((PPPPPPPPPPPP
oo

∼= // (W2, (α2)#µ) n (G•,mG•)

canonicalttjjjjjjjjjjjjjjjj

(W2, (α2)#µ)

with

T1|ξ2 ∼= T1|α2 n(L
σ◦ζT1=T2

0 |α2

◦R
τ1◦ζ

T2
0 |α2

) and T2|ξ2 ∼= T2|α2 nσ◦ζT1=T2
0 |α2 .

Remarks. 1. The form of the coordinatizations given above with one
action extended by a cocycle and the other by an opposite cocycle, sim-
ilarly to Theorem 7.2, is a special feature of the case of two commuting
transformations. It would be possible to replace it with a coordinatization
by homogeneous space data (but not group data) in which both extensions
are by cocycles acting on fibres on the left, for example by enlarging G• to
G•×G•, quotienting by the diagonal subgroup {(g, g) : g ∈ G•} and having ρ
rotate G• × G• only in the first coordinate and σ1, σ2 only in the second.
It is presumably this more canonical but more fiddly representation, if any,
that would admit generalization to larger numbers of commuting transfor-
mations.

2. The above result describes the possible structures of the two charac-
teristic factors individually, but some opacity remains as to how they can be
joined inside X. While we suspect that the methods of the present section
can be brought to bear on this question also, we will not pursue this analysis
in detail here.
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The first steps of our analysis, which are essentially contained in Conze
and Lesigne [12] (as well as many subsequent papers; see, for example,
Furstenberg and Weiss [27] for a nice treatment of this stage of the proof),
give control over the asymptotic behaviour of our averages in terms of a cer-
tain two-fold self-joining of X. We will then complete the proof essentially
by re-applying Proposition 7.5 to certain factors of that self-joining.

We observe from the mean ergodic theorem that
�

X

1
N

N∑
n=1

(f1 ◦ Tn1 )(f2 ◦ Tn2 ) dµ =
�

X

f1 ·
1
N

N∑
n=1

(f2 ◦ (T2T
−1
1 )n) dµ

→
�

X

f1 · Eµ(f1 | ζT1=T2
0 ) dµ =

�

X2

f1 ⊗ f2 dµF

where µF is the Furstenberg self-joining, which in this case equals µ⊗
ζ
T1=T2
0

µ

(it has a much more complicated structure for larger numbers of commuting
transformations which is not yet well understood; see [6, 3] for further discus-
sion of this matter). It is easy to check that µF is invariant under the lifted
transformations T×2

1 and T×2
2 , and also under the diagonal transformation

~T := T1 × T2.
This self-joining now helps control our averages through the following

consequence of the van der Corput estimate (for which see, for example,
Bergelson [8]).

Lemma 7.15. If the pair of factors ξi : X→ Yi is such that ξi % ζT1=T2
0

and ζ ~T0 - ξ1 × ξ2 then this pair is characteristic.

Proof. This follows from a routine application of the van der Corput
estimate. Suppose that f1, f2 ∈ L∞(µ); clearly by symmetry and iterating
our argument, it suffices to prove that

1
N

N∑
n=1

(f1 ◦ Tn1 )(f2 ◦ Tn2 )− 1
N

N∑
n=1

(Eµ(f1 | ξ1) ◦ Tn1 )(f2 ◦ Tn2 )→ 0

in L2(µ) as N →∞, and hence (taking the difference of the two sides above)
that

1
N

N∑
n=1

(f1 ◦ Tn1 )(f2 ◦ Tn2 )→ 0

in L2(µ) if Eµ(f1 | ξ1) = 0.
Letting Fn := (f1 ◦ Tn1 )(f2 ◦ Tn2 ), by the van der Corput estimate this

will follow if we show that

1
M

M∑
h=1

1
N

N∑
n=1

〈Fn, Fn+h〉 → 0
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as N →∞ and then M →∞. Now we simply compute

1
N

N∑
n=1

〈Fn, Fn+h〉 =
1
N

N∑
n=1

�

X

(f1 ◦ Tn1 )(f2 ◦ Tn2 )(f1 ◦ Tn+h
1 )(f2 ◦ Tn+h

2 ) dµ

=
�

X

1
N

N∑
n=1

((f1 · (f1 ◦ T h1 )) ◦ Tn1 ) · ((f2 · (f2 ◦ T h2 )) ◦ Tn2 ) dµ

→
�

X2

(f1 ⊗ f2)((f1 ◦ T h1 )⊗ (f2 ◦ T h2 )) dµF,

so that if we now average also in h this converges by the mean ergodic
theorem to �

X2

(f1 ◦ π1) · (f2 ◦ π2) · g dµF

for some ~T -invariant function g. Finally, this last integral is zero if we have
EµF(f1 ◦ π1 |π2 ∨ ζ

~T
0 ) = 0, and this follows from our assumptions and the

relative independence of π1 and π2 over ζT1=T2
0 ◦ π1 under µF.

Since on the other hand Theorem 5.12 tells us that ζ ~T0 - (ζT1

1/ζ
T1=T2
0

◦π1)

∨ (ζT2

1/ζ
T1=T2
0

◦ π2), we can deduce the following at once.

Corollary 7.16 (Reduction to isometric extensions of isotropy fac-
tors). There is a characteristic pair of factors satisfying ξi - ζTi

1/ζ
T1=T2
0

for

i = 1, 2.

We can now present the factors introduced above as another instance of
the situation described before Proposition 7.5, and have that proposition do
the heavy lifting we need again here.

To see this, we define a system of three commuting transformations on
the Furstenberg self-joining. Let XF be the Z3-system (X2, µF, S1, S2, S3)
obtained by setting S1 := T×2

1
~T−1 = idX × (T1T

−1
2 ), S2 := T×2

2
~T−1 =

(T2T
−1
1 ) × idX and S3 := ~T . We observe directly from the definition of µF

that for i = 1, 2 the coordinate projection πi : X2 → X is equivalent to ζSi0 .
Now let Wi be (ζT1=T2

0 ∨ ζTi0 )(X) for i = 1, 2 and let Zi be the target of
the maximal subextension of ζT1=T2

0 ∨ ζTi0 : X → Wi that is isometric for
the restriction of Ti. Let

αi := (ζT1=T2
0 ∨ ζTi0 ) ◦ πi = ζS1,S2

0 ∨ ζSi,S3
0 : XF →Wi

and
ζi := ζTi1/αi

◦ πi : XF → Zi,
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and let ζ : XF → Z and α : XF → W be the joinings ζ1 ∨ ζ2 and α1 ∨ α2

respectively.
It is now routine to check from the basic results above that these data

satisfy the same conditions as were needed for Proposition 7.5 with XF in
place of X and Si in place of Ti: these factors are once again arranged as in
the commutative diagram

XF

ζ

��
Z

ζ1|ζ

zzvvv
vv

vv
vv

v

α|ζ

��

ζ2|ζ

$$H
HH

HH
HH

HH
H

Z1

α1|ζ1

��

Z2

α2|ζ2

��

W
α1|α

zzvvv
vv

vv
vv α2|α

$$H
HH

HH
HH

HH

W1

ζ
S1,S2
0 |α1

##F
FFFFFFF W2

ζ
S1,S2
0 |α2

{{xxxxxxxx

ZS1,S2
0

where we observe easily from the structure of µF = µ⊗
ζ
T1=T2
0

µ that ζS1=S2
0 '

ζT1=T2
0 ◦ π1 ' ζT1=T2

0 ◦ π2. In addition, the transformations Si enjoy the
following properties:

• Si restricts to the identity on Zi and the factors beneath it, while acting
relatively ergodically on the extension ζS1,S2

0 |ζ3−i : Z3−i → ZS1,S2
0 , for

i = 1, 2;
• the extensions ζS1,S2

0 |αi : Wi → ZS1,S2
0 are relatively invariant for the

restriction of S3, and the extensions αi|ζi : Zi → Wi are relatively
ergodic and isometric for the restriction of S3.

We can therefore apply Proposition 7.5 to these systems and maps to
deduce the following.

Proposition 7.17. There are intermediate factors Zi
ξi|ζi−−→Yi

αi|ξi−−−→Wi

factorizing αi|ζi such that there are S-invariant compact group data G• and
cocycle-sections

σ : ZS1,S2
0 → G• that is S3|ζS1,S2

0
-relatively ergodic,

τ1 : ZS2,S3
0 → G• that is S1|ζS2,S3

0
-relatively ergodic and
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τ2 : ZS2,S3
0 → G• that is S2|ζS1,S3

0
-relatively ergodic

so that we can coordinatize the actions of the transformations S as

Y1

α1|ξ1 !!B
BB

BB
BB

B
oo

∼= //W1 n (G•,mG• , 1, (τ2 ◦ ζ
S1,S3
0 |α1)op, σ ◦ ζS1,S2

0 |α1)

canonical
sshhhhhhhhhhhhhhhhhhhhhhh

W1

and

Y2

α2|ξ2 !!B
BB

BB
BB

B
oo

∼= //W2 n (G•,mG• , (τ1 ◦ ζ
S2,S3
0 |α2)op, 1, σ ◦ ζS1,S2

0 |α2)

canonical
sshhhhhhhhhhhhhhhhhhhhhhh

W2

and such that the (S3 = ~T )-invariant factor of XF is contained in ξ1 ∨ ξ2.

Proof of Theorem 7.14. Again this follows simply by unpacking the no-
tation of the above result: the tower of factors αi|ξi : Yi → Wi of XF are
all actually contained within the ith coordinate projection πi : XF → Xi,
and by definition we have Ti = (SiS3)|πi for i = 1, 2, and therefore the
above coordinatization of the action of S restricted to the tower of factors
α1|ξ1 : Y1 →W1 converts into a coordinatization description of T1|ξ1 as

(w, g) 7→ (T1|α1(w), σ(ζT1=T2
0 (w)) · g)

and of T2|ξ1 as

(w, g) 7→ (T1|α1(w), σ(ζT1=T2
0 (w)) · g · τ2(ζT1

0 (w))),

(since ζS1,S3
0 ' ζT1

0 ◦ π1) and similarly for T1|ξ2 and T2|ξ2 . This completes
the proof.

Remarks. 1. In fact, it is relatively easy to see by checking functions f1,
f2 that are constructed from measurable selections of representative func-
tions on the compact fibre groups G• that the characteristic pair of factors
ξi that we have now isolated is minimal, in that any other characteristic pair
ξ′1, ξ′2 satisfies ξi - ξ′i.

2. The results of the preceding subsection also give a precise picture of
the ~T -invariant factor of XF in terms of a diagonal Mackey group and trivial
Mackey section for the joining of the above coordinatizations of Y1 and Y2

inside XF; we omit these details here.

8. Further questions. This paper leaves open the obvious question of
how to generalize the analysis of Section 7 to describe in similar detail
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• the possible joint distributions among a larger collection of isotropy
factors ζT

�Γi
0 : X→ ZT

�Γi
0 for Γ1, . . . , Γd ≤ Zd;

• the possible structures of characteristic factors (and, relatedly,
Furstenberg self-joinings) for larger commuting tuples of transforma-
tions (or commuting actions of some other fixed group).

On the one hand, it seems likely that the machinery of extensions by
measurably-varying compact homogeneous spaces will be quite essential to
any further developments in this area. On the other, I suspect that even the
next cases to consider in the natural hierarchy (joint distributions of four
isotropy factors, or characteristic factors for three commuting transforma-
tions) become much more complicated, and it may be in general too much
to ask for the kind of precision that we obtained in Theorems 1.1 and 1.2.

There is an alternative viewpoint on questions such as these that may be
more tractable. Instead of asking about exact joint distributions or charac-
teristic factors for an initially given system, if we allow ourselves the freedom
to pass to any extension of that system, matters sometimes improve con-
siderably. Indeed, the new proofs of convergence for linear non-conventional
averages in [6] and of Furstenberg and Katznelson’s associated multidimen-
sional multiple recurrence theorem in [3] both relied on procedures for pass-
ing from an initially given system to some extension in which the relevant
characteristic factors and their joint distributions could be described much
more simply.

The constructions of those papers were abstract enough to work without
any of the machinery of homogeneous-space-data extensions. However, for
further applications of this idea, in particular to the problem of convergence
of related ‘polynomial non-conventional averages’ such as

1
N

N∑
n=1

(f1 ◦ Tn
2

1 )(f1 ◦ Tn
2

1 Tn2 )

(discussed, for example, by Bergelson and Leibman in [9]), it seems likely
that these more delicate tools will be necessary. In the forthcoming works
[4, 5] we will make such an analysis allowing ourselves to pass to extensions,
focusing on what improved characteristic factors can be found while retain-
ing some given algebraic relations among the transformations involved, and
will then use this to prove convergence of the above polynomial averages in
L2(µ) as N →∞.

In addition to these quite specialized applications, let us also mention
that there seem to be further issues on the general behaviour of extensions by
homogeneous space data to be explored. For example, in [7] it is shown that
some of the machinery of Furstenberg and Zimmer concerning finite-rank
modules of an extension can be extended to the setting in which the exten-
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sion is relatively finite measure-preserving, but the base, while ergodic, is
only assumed to be non-singular (that is, its measure is only quasi-invariant).
In that paper this machinery is needed for the proof of a result about the
lifting of the ‘multiplier property’ through certain kinds of extension, and
this will not require that these general results on finite-rank modules be
pushed very far. However, it might be interesting to examine whether that
development can be easily recovered without the assumption of ergodicity
of the base, using a version of the formalism of the present paper.
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