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Covering spaces and irreducible partitions
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D. J. Grubb (DeKalb, IL)

Abstract. An irreducible partition of a space is a partition of that space into solid
sets with a certain minimality property. Previously, these partitions were studied using the
cup product in cohomology. This paper obtains similar results using the fundamental group
instead. This allows the use of covering spaces to obtain information about irreducible
partitions. This is then used to generalize Knudsen’s construction of topological measures
on the torus. We give examples of such measures that are invariant under Hamiltonian
flows on certain symplectic manifolds.

1. Introduction. Topological measures were first constructed by Johan
Aarnes in [1] under the name of quasi-measures. They are generalizations
of regular Borel measures which represent functionals on C(X) spaces that
are linear on singly generated subalgebras. In a later paper [2], Aarnes gave
a general construction theorem for topological measures. However, except
in very nice spaces (those with g(X) = 0, see below) there are topological
difficulties in carrying out the specifics of this construction. In [4], a new
construction was discovered for the case where X is the torus. In [3], the
current author analyzed the “irreducible partitions” in the construction the-
orem and related them to aspects of the cohomology ring of the underlying
space. It is the goal of this paper to show that the fundamental group of the
space can be used instead and to generalize the recent construction given
by Knudsen in [4] to this more abstract setting.

We begin with a simple result from algebraic topology.

Proposition 1. Let X be a connected, locally path connected space.
Suppose that {Ui}ni=1 are disjoint connected open sets as are {Vj}mj=1 such
that X = (

⋃n
i=1 Ui) ∪ (

⋃m
j=1 Vj). Suppose that each Ui intersects each Vj

and that (
⋃n
i=1 Ui)∩ (

⋃m
j=1 Vj) has p components. Then there is a connected

covering space X̃ of X so that the group of deck transformations of X̃ is the
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free group on q = p−m− n+ 1 generators, FG(q) and so that each Ui and
each Vj is evenly covered.

Proof. This proof is a generalization of one in [5] for the case n = m = 1,
p = 2. We will construct X̃ by stitching together the sets Ui and Vj . Write
Ui ∩ Vj =

⋃pij

k=1Wijk where p =
∑

ij pij and each Wijk is connected. Make
a group with generators {γijk} and require relations γi11 = γ1j1 = 1 for
each i and j. This leaves q generators for the free group FG(q) where q =
p−m− n+ 1.

Let

Y =
( n⋃
i=1

Ui × {i} × {0} × FG(q)
)
∪
( m⋃
j=1

Vj × {j} × {1} × FG(q)
)
.

We make identifications (x, i, 0, w) ≡ (x, j, 1, wγijk) when x ∈ Wijk and
w ∈ FG(q). Let X̃ denote the resulting quotient space. With the obvious
projection, both Ui and Vj are evenly covered.

Clearly, for each w ∈ FG(q), the image of⋃
i

(Ui × {i} × {0} × {w}) ∪
⋃
j

(Vj × {j} × {1} × {w})

is connected since U1 connects to Vj via W1j1 and V1 connects to Ui via Wi11.
But now, the image of Ui × {i} × {0} × {w} connects to the image of Vj ×
{j} × {1} × {wγijk} through Wijk. Hence X̃ is connected.

One consequence of this result is that there is a surjective map of π1(X)
onto FG(q). If x0 ∈ U1, then a loop at x0 with image γijk can be obtained by
starting at x0, moving through U1 into W111, through V1 to Wi11, through
Ui into Wijk, through Vj into W1j1, and through U1 to x0. If i = 1, then the
loop just goes from x0 to W1jk, through Vj to W1j1 and through U1 to x0.

We say a subset A ⊆ X is solid if both A and X \A are connected. If A
is closed and solid, we say that A has ≤ n sides if there are arbitrarily small
neighborhoods V of A so that V \A has ≤ n components. We let g(X) + 1
denote the largest number of sides for a closed solid subset of X. In [3], basic
facts about the number g(X) are given when X is compact, connected and
locally connected.

Definition 2. Let n(X) denote the largest integer n so that there is a
surjective map from π1(X) onto FG(n).

Proposition 3. For X compact, we have g(X) ≤ n(X). In fact, if
{Ci}mi=1 is a disjoint collection of closed solid sets such that X \

⋃
iCi is

connected, and if Ci has si sides, then
∑m

i=1 si ≤ m+ n(X).

Proof. Choose mutually disjoint solid open sets U1, . . . , Um with Ci ⊆ Ui
and so that Ui \ Ci have si components. Let V1 = X \

⋃m
i=1Ci. The result

then follows from Proposition 1.
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This result should be compared to Corollary 18 and Proposition 20 of [3].
There, similar results are obtained with d(X) in place of n(X) where d(X) is
the maximal rank of an isotropic subgroup of the cohomology group H1(X).
In fact, n(X) ≤ d(X) so the proposition above is stronger. To see this, note
that a surjection of π1(X) to Fn is induced by a map of X to the wedge of
n circles, Wn. The corresponding map of H1(Wn) to H1(X) is injective and
has isotropic image of rank n.

Corollary 4. If π1(X) is finite, then g(X) = 0, and if π1(X) is
abelian, g(X) ≤ 1. Also, if g(X) = n(X) = 1, then any two disjoint closed
two-sided sets disconnect X.

In particular, if X is any topological group, g(X) ≤ 1.
Now suppose that disjoint closed solid sets Ci are given so that X \⋃m

i=1Ci is connected. The Ui in the proof can be chosen so that whenever
Ci ⊆ V ⊆ Ui with V open solid, V \ C has si components. Under this
restriction, the covering space obtained does not depend on the specific sets
Ui chosen. In fact, shrinking Ui does not change X̃ and any two choices of Ui
have a common shrinking. In this way we obtain a well defined covering space
X̃{Ci}. In the case of just one set C, we denote this space by X̃C and the
corresponding covering map by pC .

Recall that a collection of closed solid sets {Ci}ni=1 is said to generate
an irreducible partition if X \

⋃n
i=1Ci is disconnected while X \

⋃
i∈I Ci

is connected for every I ( {1, . . . , n}. In that case, each component of
X \

⋃n
i=1Ci is a solid open set and the collection P consisting of {Ci}

together with all such components {Uj} is said to be an irreducible partiton
of X. The trace of this partition, tr(P), is the sum

∑
si where si is the

number of sides of Ci. We have the following proposition concerning the
trace.

Proposition 5. Let P = {Ci}ni=1 ∪ {Uj}mj=1 be an irreducible partition
of X. Then tr(P) ≤ n(X) +m+ n− 1.

Proof. By a result from [3], there are open solid sets {Vi}ni=1 so that Ci ⊆
Vi and Vi \ Ci has exactly si components. Furthermore, each Uj intersects
each Vi. The result now follows from Proposition 1.

In fact, the proposition gives a covering space X̃ which evenly covers
each element of the partition P. Once again, this partition does not depend
on the sets Vi as long as they are sufficiently small. Thus we define a covering
space X̃P for each irreducible partition P.

Lemma 6. Suppose that C and D are closed, solid, two-sided subsets of
X such that some neighborhood of D is evenly covered and such that some
lift D̃ of D disconnects X̃C . Then X̃C and X̃D are equivalent as covering
spaces of X.



80 D. J. Grubb

Proof. The group of deck transformations of X̃C is singly generated. Let
σ : X̃C → X̃C be a generator. Write X̃C \ D̃ = U ∪ V where U and V are
disjoint open sets. Since D̃ ∩ σ(D̃) = ∅, we may assume that σ(D̃) ⊆ U . Let
A be a neighborhood of D which is evenly covered by X̃C and let Ã be the
component of p−1

C (A) which contains D̃. We may assume that A is solid,
that A \D has exactly two components and that σ(Ã) ⊆ U .

Now, X̃ = Ã∪U ∪V is connected with U and V disjoint, so Ã∩U 6= ∅ 6=
Ã∩V . Hence, Ã∩U and Ã∩V must be the two components of Ã\ D̃. Thus,
both of these sets are connected. Furthermore, the connectedness of X̃ again
shows that both U and V must be connected.

This allows us to write U = [U∩σ(V )]∪σ(D̃)∪σ(U), a disjoint union. Let
W = U ∩σ(V ). Since σ(A∩V ) ⊆W , W 6= ∅. Furthermore σn(W )∩σm(W )
= ∅ if n 6= m, and X̃C =

⋃∞
n=−∞ σ

n(D̃)∪ σn(W ). This shows that pC takes
W homeomorphically to X \ D and so pC evenly covers X \ D. It follows
that X̃C and X̃D are equivalent as covering spaces.

Another worthwhile observation is the following:

Lemma 7. Let p : X̃ → X be a covering map and U ⊆ X an open solid
set. Pick x0 ∈ U . Then U is evenly covered by p if and only if π1(U, x0) ⊆
Im p∗ where p∗ is the induced map between the fundamental groups of X̃
and X.

This follows since U is evenly covered if and only if p is one to one on
each component of p−1U . Clearly, if p is one-to-one on some component
of U , then π1(U, x0) ⊆ Im p∗. Conversely, a path between inverse images of
x0 will project to an element of π1(U, x0) which is not in Im p∗.

2. Construction in the case g = 1. Let As denote the collection of
solid subsets of X that are either open or closed. A solid set function is a
map µ : As → [0, 1] with the following properties:

(i) If C1, . . . , Cn are disjoint closed solid sets, then
∑
µ(Ci) ≤ 1.

(ii) If U is open and solid, then µ(U) = sup{µ(C) : C ⊆ U , C closed,
solid}.

(iii) If P = {Ci}ni=1 ∪ {Uj}mj=1 is an irreducible partition of X, then∑
µ(Ci) +

∑
µ(Uj) = µ(X) = 1.

It is a fundamental result of Aarnes that every solid set function extends
to a topological measure on X. That is, µ can be defined on all open or closed
sets to be additive on disjoint sets, regular, and monotone. In practice it is
the third condition on solid set functions that is the hardest to deal with. For
spaces with g(X) = 0, however, this condition reduces to µ(C)+µ(X\C) = 1
for all closed solid sets. It is this simplification that has allowed a wide variety
of topological measures to be constructed in that case. It is the goal of this
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paper to provide constructions for spaces with g(X) = 1. To do this, we
quickly review the main construction result from [3]. For convenience, all
sets are assumed to be solid unless otherwise mentioned.

Let X be a compact, connected, locally path connected space with
g(X) = 1 and with the property that whenever C and D are disjoint two-
sided sets in X, then X \ (C ∪D) is disconnected. For example, if n(X) = 1,
this is the case. It follows from [3] that there is an equivalence relation on
the class of closed two-sided sets, Cs2, defined as follows: C ∼ D when-
ever there exist C = C0, C1, . . . , Cn = D in Cs2 with Ck ∩ Ck+1 = ∅ for
all k ≤ n − 1. We will denote by E equivalence classes under this relation.
Notice also that C ∼ D implies that X̃C and X̃D are equivalent as covering
spaces by Lemma 6.

We classify the closed one-sided sets into three classes. The class B will
consist of all one-sided sets that are disjoint from some closed two-sided
set; the class F will consist of all one-sided sets which intersect every closed
two-sided set; and T will denote the class of those one-sided sets all of whose
neighborhoods contain some closed two-sided set.

The main result from [3] now says the following:

Theorem 8. With notation and assumptions as above, suppose that for
each equivalence class E we have a set function τE on E with the following
properties:

(i) If C1, . . . , Cn ∈ E are disjoint, then
∑
τE(Ci) ≤ 1,

(ii) If C ∈ E , then 1 − τE(C) = sup{τE(D) : C ∩ D = ∅}. We define
τE(X \ C) = 1− τE(C).

(iii) If X = C ∪D ∪ U ∪ V is an irreducible partition of X with C ∈ E ,
then τE(C) + τE(D) + τE(U) + τE(V ) = 1. By the results of [3], this
sum is defined.

Suppose also that we have a set function τF on F which satisfies (i) and (ii)
above. If we then define τ to be 0 on B, 1 on T , τF on F , and τE on each E,
then τ extends uniquely to a topological measure on X.

Our main task will be the construction of the set functions τE . With this
in mind, fix E and let K ∈ E . Let X̃ = X̃K . By construction, there is a
generator for the group of deck transformations of X̃ over X. Pick such a
generator and denote it by σ = σK . Notice that if C ′ is a lift of C in X̃, then
by construction, X̃ \C ′ has exactly two components, one of which contains
σ(C ′) and the other contains σ−1(C ′). If A ⊆ X̃ is disjoint from C ′, we say
that A is upstream from C ′ with respect to σ if it is contained in the same
component of X̃ \C ′ as σ(C ′), and downstream from C ′ if it is contained in
the same component as σ−1(C ′). Every connected set A disjoint from C ′ is
either upstream or downstream from C ′.
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Lemma 9. Let D ∈ E be another two-sided set equivalent to C. Then
there is a lift D′ of D and a component V of X̃ \ (C ′ ∪D′) such that V is
upstream from C ′ and downstream from D′ and C ′ ∪ V ∪D′ is connected.

Notice, in particular, that C ′ and D′ are disjoint.

Proof. First assume that C and D are disjoint. Then X \ (C ∪ D) has
exactly two components, say U and V . Furthermore, all of C,D,U, V are
evenly covered by X̃. Also, the closures of U and V both intersect both
C and D. Hence, there are lifts U ′ and V ′ of U and V whose closures
intersect C ′. We may assume that V ′ is upstream from C ′. Then there is a
lift, D′, of D that intersects the closure of V ′. Then D′ and V ′ satisfy the
conditions of the lemma.

Now suppose that C ∼ D in E . If C = C0, C1, . . . , Cn = D is a sequence
of two-sided sets with Ck ∩ Ck+1 = ∅, choose V ′1 and C ′1 with C ′1 a lift of
C1, and V ′1 a component of X̃ \ (C ′ ∪ C ′1) which is upstream from C ′ and
downstream from C ′1. Then pick V ′2 and C ′2 a lift of C2 with V ′2 upstream
from C ′1 and downstream from C ′2. Continue in this way to obtain C ′1, . . . , C

′
n

and V ′1 , . . . , V
′
n. Then set D′ = C ′n and V = V ′1 ∪ C ′2 ∪ V ′2 ∪ · · · ∪ V ′n.

Definition 10. A positive Borel probability measure µ is E-adapted if
whenever C ∈ E , we have µ(C) < 1.

We may lift µ = µE to a measure µ̃ on X̃ so that whenever p takes
C ′ to C homeomorphically, we have µ̃(C ′) = µ(C). Notice that if C ∈ E
and C ′ is a lift of C, then the union of C ′ and the bounded component of
X̃ \ (C ′ ∪ σ(C ′)) has measure 1.

Now let ν = νE , a probability measure on the circle S1, and K ∈ E be
fixed. We regard S1 as the unit interval with endpoints identified. Define
τE(C) for C ∈ E as follows: Pick lifts K ′ and C ′ of K and C so that X̃ \
(K ′ ∪ C ′) has only one bounded component, V , which is upstream from
K ′ and downstream from C ′. Then the closed interval [µ̃(V ), µ̃(V ∪ C ′)]
has length less than 1 and we regard it as a subset of S1. Set τE(C) =
ν([µ̃(V ), µ̃(V ∪ C ′)]).

Notice that if C ′′ is another lift of C upstream from K ′ and if V ′ is the
bounded component of X̃ \ (K ′∪C ′′), then µ̃(V )− µ̃(V ′) is an integer (since
µ(X) = 1) and µ̃(C ′) = µ̃(C ′′) = µ(C), so the intervals [µ̃(V ), µ̃(V ∪ C ′)]
and [µ̃(V ′), µ̃(V ′ ∪C ′′)] are the same in S1. Similar considerations involving
the lift K ′ show that τE(C) does not depend on K ′.

Now suppose that U = X \ C where C ∈ E . Then we define τE(U) =
1−τE(C). If V and C ′ are as above, then τE(U) = ν([µ̃(V ∪C ′), µ̃(V ∪C ′∪U ′))
where U ′ is the lift of U immediately upstream from C ′, i.e. so that C ′ ∪U ′
is connected. To see this, notice that µ̃(C ′ ∪ U ′) = µ̃(C ′) + µ̃(U ′) = µ(C) +
µ(U) = µ(X) = 1.
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Now suppose that C1, . . . , Cn are disjoint elements of E . Then X \ (C1 ∪
· · ·∪Cn) has exactly n components, U1, . . . , Un, and we may assume that the
sets are numbered so that Ck∪Uk∪Ck+1 is always connected. Let C ′1 be a lift
of C1 upstream from K ′. Then there are lifts C ′k and U ′k upstream from C ′1
and downstream from σ(C ′1). If V is the bounded component of X̃\(K ′∪C ′1),
then V ∪ C ′1 ∪ U ′1 is the bounded component of X̃ \ (K ′ ∪ C ′2), with similar
expressions for other C ′k. By construction, the intervals [µ̃(V ), µ̃(V ∪ C ′1)],
[µ̃(V ∪ C ′1 ∪ U ′1), µ̃(V ∪ C ′1 ∪ U ′1 ∪ C ′2)], . . . are disjoint in S1. Thus, since ν
is a probability measure on S1,

∑
τE(Ck) ≤ ν(S1) = 1. In fact,

∑
(τE(Ck) +

τE(Uk)) = 1. Thus, τE is additive on irreducible partitions of X from E .
Now suppose that C ⊆ X and ε > 0 are given. Using regularity of ν,

pick an interval [α, β] of S1 disjoint from [µ̃(V ), µ̃(V ∪C ′)] so that ν[α, β] +
τE(C) > 1 − ε. Next, use regularity of µ on X to find D ∈ E disjoint
from C with µ(C) + µ(D) > 1 − δ where 2δ is the distance between [α, β]
and [µ̃(V ), µ̃(V ∪ C ′)] in S1. Then by an analysis as above we see that
τE(D) + τE(C) > 1− ε.

This completes the construction of the set functions τE .
Finally, let τF : F → [0, 1] be any function satisfying (i) and (ii) in

Theorem 8 with E replaced by F . For example, if {x1, x2, x3} are in X, we
may define τF (F ) to be 1 if F contains at least two xi and 0 otherwise. More
generally, analogs of the finitely determined topological measures on spaces
with g(X) = 0 can be used for τF . Using the result from [3] mentioned
above, we then get a topological measure τ on X.

Theorem 11. Let X be a compact, connected, locally path connected
space with g(X) = 1 and such that whenever C and D are disjoint two-sided
sets, X \ (C ∪D) is disconnected. Suppose that for each equivalence class of
two-sided sets, E, we are given an E-adapted measure µE on X. Then the
above procedure gives a topological measure on X.

Now suppose that X is a closed oriented smooth n-manifold and suppose
that ΩE is an n-form with full support for each equivalence class E . If K ∈ E
is an (n − 1)-dimensional submanifold, the covering space XK is a non-
compact n-manifold, so Hn(XK) = 0. If pK : XK → X is the covering map,
then p∗KΩE is an exact form on XK , so there is an (n − 1)-form λE with
dλE = p∗KΩE . Let K ′ be a lift of K in XK .

Let the measure µE correspond to ΩE and let νE be the point mass at
the real number

	
K′ λE . Then, if C ∈ E is another (n − 1)-submanifold C

and if C ′ is a lift of C disjoint from K ′, we let U be the bounded component
of XK \ (K ′ ∪ C ′) and find

µ̃E(U ∪ C ′) = µ̃E(U) = µ̃E(U) =
�

U

ΩE =
�

C′

λE −
�

K′

λE .

Hence, τE(C) = 1 if
	
K′ λE =

	
C′ λE (mod 1) and τE(C) = 0 otherwise.
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This construction was inspired by the results of Knudsen in [4]. The
topological measures in that paper correspond to taking ΩE = f(xε)dxεdyε
with the lift K ′ corresponding to the set yε = 0.

Now suppose that (X,ω) is a 2n-dimensional symplectic manifold and we
chooseΩE = ωn, the corresponding volume form, for each E . If {Ht}0≤t≤1 is a
Hamiltonian with corresponding vector field {Xt}0≤t≤1 where i(Xt)ω = dH,
and flow {φt}0≤t≤1, we may lift to any cover XK to get the symplectic form
p∗Kω on XK , Hamiltonian H ◦ pK , and vector field {X̃t} with pK∗(X̃t) = Xt

and flow {φ̃t} with pK ◦ φ̃t = φt ◦ pK . Then

LX̃t
λE = i(X̃t)dλE + d(i(X̃t)λE) = d(n(H ◦ pK)(p∗Kω)n−1 + i(X̃tλE)).

Hence, if C ∈ E is a closed (2n − 1)-dimensional submanifold, the integral	
φ̃t(C′) λE is independent of t. Thus, τE(C) = τE(φt(C)). In particular, since
τE(K) = 1, we have φt(K) ∩ K 6= ∅ for each t. This proves the following
result.

Theorem 12. Suppose that (X,ω) is a compact symplectic manifold
with g(X) = 1 such that every pair {C,D} of closed, two-sided sets discon-
nects X. Then every two-sided, closed, (2n− 1)-dimensional submanifold is
non-displaceable via Hamiltonian flows.

Every symplectic manifold of the form M × Tn where M is simply con-
nected and T is the torus satisfies the conditions of this theorem.
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