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Characterization of compact subsets of curves
with ω-continuous derivatives
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Marcin Pilipczuk (Warszawa)

Abstract. We give a characterization of compact subsets of finite unions of disjoint
finite-length curves in Rn with ω-continuous derivative and without self-intersections.
Intuitively, our condition can be formulated as follows: there exists a finite set of regular
curves covering a compact set K iff every triple of points of K behaves like a triple of
points of a regular curve.

This work was inspired by theorems by Jones, Okikiolu, Schul and others that char-
acterize compact subsets of rectifiable or Ahlfors-regular curves. However, their classes of
curves are much wider than ours and therefore the condition we obtain and our methods
are different.

1. Introduction

Notation. By Rn we denote the standard n-dimensional Euclidean space
equipped with the l2 norm | · | and the scalar product 〈·, ·〉. Given a concave
non-decreasing function ω : [0,∞) → [0,∞) with ω(0) = 0 and continuous
at 0, we say that a function f : Rm → Rk is ω-continuous if for any different
x, y ∈ Rm we have |f(x) − f(y)| < ω(|x − y|). We say that f : Rm → Rk is
r-locally ω-continuous for some r > 0 if the aforementioned inequality holds
whenever |x− y| < r.

Our results. In this paper we focus on characterizing compact subsets
of regular curves in Rn. We give a characterization of compact subsets of
finite unions of disjoint embedded curves with ω-continuous derivative and
without self-intersections. Namely, we prove the following theorems.

Theorem 1.1. Let K be a compact subset of Rn satisfying the following
condition: there exists r0 > 0 and a concave non-decreasing function ω :
[0,∞) → [0,∞) with ω(0) = 0, continuous at 0, such that for all distinct
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x, y, z ∈ K, if |z − x| = diam{x, y, z} < r0 then

(1.1)
∣∣∣∣ y − x|y − x|

− z − y
|z − y|

∣∣∣∣ < ω(diam{x, y, z}).

Then there exists a finite family of finite-length curves without self-intersec-
tions with arc-length parametrizations γi : Ai → Rn, i = 1, . . . , N , where
Ai is either a circle or a closed segment, such that their images are dis-
joint, cover K and for every γi the derivative γ′i is locally 342ω-continuous.
Moreover, one can require that the total length of all curves γi is bounded by
5H1(K) + ε, where H1 is the one-dimensional Hausdorff measure and ε > 0
is chosen arbitrarily.

Theorem 1.2. Let γ : A → Rn be an arc-length parametrization of a
finite-length curve without self-intersections, where A is a closed segment or
a circle, such that γ′ is locally ω-continuous for some concave non-decreasing
function ω : [0,∞) → [0,∞) with ω(0) = 0 and continuous at 0. Then
there exists r0 > 0 such that for all distinct x, y, z ∈ γ(A), if |z − x| =
diam{x, y, z} < r0 then∣∣∣∣ y − x|y − x|

− z − y
|z − y|

∣∣∣∣ < 6ω(diam{x, y, z}).

Let us make a few remarks here. First, note that both theorems include
only conditions on the local continuity of the derivatives of the curves—that
is, we are only interested in the regularity of the curves at small scales.

Second, the natural approach to prove Theorem 1.1 may be to do a
construction at small scales and then use some compactness argument to
make the family of curves finite and disjoint. We follow the idea of the
first step in Section 3.2; however, note that the second part has to be more
involved, as shown by the following easy example. Let K be the image of a
regular curve, for example let K be a segment. As we require the images of
the curves to be closed and disjoint, the only way to cover a segment is to use
only one curve. Therefore we need some argument that allows us to merge
neighboring curves constructed at small scales. This is done in Section 3.3.

Finally, if in Theorem 1.1 we assume that (1.1) holds not for the wholeK,
but for a subset K \Z with H1(Z) = 0, then we can basically apply Theorem
1.1 to the closure of K \ Z and deduce that K is contained in the union of
the images of a finite family of regular curves and a set of one-dimensional
Hausdorff measure 0. We leave easy technical details to the reader.

Related work. A famous theorem by Jones [6] gives a characterization
of compact subsets of rectifiable curves in R2. Jones’s results were extended
to Rn by Okikiolu [9] and to Hilbert spaces by Schul [10]. There exists an
analogue of those theorems for rectifiable curves in general metric spaces
[4, 5] and Heisenberg groups [3]. Ahlfors-regular subsets are treated by Schul
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[10] and David and Semmes [1]. Lerman applied the idea of Jones’s β numbers
to rectifiable measures in Rn [8].

Inspired by these results, we have tried to find a characterization of com-
pact subsets of much more regular curves, in particular, of curves with regu-
lar arc-length parametrization. Note that all aforementioned results focus on
rectifiable or Ahlfors-regular sets and curves, which are much wider classes.
The examples gathered in Section 4 show that Jones’s β numbers carry insuf-
ficient information in our case and therefore we need a significantly different
condition. Intuitively, Jones-like conditions concern the set K only at one
scale and at a single location. Due to this, as our examples show, K might
make infinitely many 90◦ turns while having various β numbers relatively
small. Note that Jones’s construction in [6] indeed yields Lipschitz curves
which might turn and spiral without any control; this is the main difference
from our work. Moreover, to cover the whole set K, we need a condition that
involves every point of K, not just all points off a set of measure 0.

Therefore our characterization conditions are quite different than those
given by Jones, Okikiolu and Schul [6, 9, 10]. In Section 4 we discuss Jones-
like conditions applied to curves with arc-length parametrization with regu-
lar derivatives and we give two counter-examples showing that a Jones-like
characterization does not seem to suit our needs.

Note that equation (1.1) is quite similar to a condition that bounds the
inverse of the radius of the circumcircle of the triangle (x, y, z). This makes
our result related to the analysis of Menger curvature [4, 5, 7]. In particular,
the local construction presented in Section 3.2 seems to be similar to the
constructions of Hahlomaa [4].

Finally, one may notice that the results in our paper seem to be similar to
Whitney-type [11] theorems by Fefferman [2]. One can also view our results
as stating that there exists a regular curve through the whole set iff there
exists a regular curve through every set of three neighboring points.

Organization. In Section 2 we prove Theorem 1.2. This is a quite easy
and straightforward corollary from the definition of a locally ω-continuous
function. In Section 3 we prove Theorem 1.1, by providing a construction
algorithm for a family of curves. In Section 4 we discuss Jones-like conditions
for curves with arc-length parametrization with regular derivatives.

2. Properties of curves with ω-continuous derivative. In this sec-
tion we prove Theorem 1.2. Let γ : A → Rn be an arc-length parametriza-
tion of a finite-length curve without self-intersections, where A is a circle
or a closed segment. Let ω : [0,∞) → [0,∞) be a concave non-decreasing
function with ω(0) = 0, continuous at 0, and let rω > 0 be such that γ′ is
rω-locally ω-continuous.
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Let us start by choosing r1 > 0 such that r1 < rω, r1 < 1
2 diamA and

ω(r1) < 1/3.

Lemma 2.1. There exists r2 > 0 such that if |γ(s) − γ(t)| < r2 then
|t− s| < r1.

Proof. Let r2 = infs,t∈A : |s−t|≥r1 |γ(s)− γ(t)|. By the compactness of the
set {(s, t) ∈ A×A : |s−t| ≥ r1} there exist s0, t0 ∈ A satisfying |s0−t0| ≥ r1
and r2 = |γ(s0)− γ(t0)|. Therefore if |γ(s)− γ(t)| < r2 then |s− t| < r1. We
only need to prove that r2 > 0. But r2 = |γ(s0)−γ(t0)| and γ does not have
self-intersections.

To prove Theorem 1.2, set r0 := min(rω, r2). Take any distinct x, y, z ∈
γ(A) satisfying diam{x, y, z} < r0. Let x = γ(a), y = γ(b), z = γ(c). Since
diam{x, y, z} < r0 ≤ r2, we have diam{a, b, c} < r1 <

1
2 diamA. Therefore

even if A is a circle, there is a natural order of a, b, c in the interior of one
semicircle; we can assume a < b < c ≤ a + r1. Let v = γ′(a). Then for all
s ∈ [a, c] we have

(2.1) |v − γ′(s)| < ω(s− a) ≤ ω(c− a) < 1/3.

Note that for all a ≤ s1 ≤ s2 ≤ c we have

|γ(s2)− γ(s1)− v(s2 − s1)| =
∣∣∣ s2�
s1

(γ′(s)− v) ds
∣∣∣(2.2)

≤
s2�

s1

|γ′(s)− v| ds < (s2 − s1)ω(c− a).

So for all a ≤ s1 < s2 ≤ c (recall that γ is an arc-length parametrization),

s2 − s1 ≥ |γ(s2)− γ(s1)| ≥ |v(s2 − s1)| − |γ(s2)− γ(s2)− v(s2 − s1)|
> (1− ω(c− a))(s2 − s1)

and ∣∣∣∣ γ(s2)− γ(s1)
|γ(s2)− γ(s1)|

− γ(s2)− γ(s1)
s2 − s1

∣∣∣∣ =
∣∣∣∣1− |γ(s2)− γ(s1)|

s2 − s1

∣∣∣∣(2.3)

< ω(c− a).

Therefore by (2.2) and (2.3),∣∣∣∣ γ(s2)− γ(s1)
|γ(s2)− γ(s1)|

− v
∣∣∣ ≤ ∣∣∣∣ γ(s2)− γ(s1)

|γ(s2)− γ(s1)|
− γ(s2)− γ(s1)

s2 − s1

∣∣∣∣
+
∣∣∣∣γ(s2)− γ(s1)

s2 − s1
− v
∣∣∣∣

< 2ω(c− a).



Compact subsets of curves 179

By taking every (s1, s2) ∈ {(a, b), (b, c), (a, c)} we find that y−x
|y−x| ,

z−y
|z−y| and

z−x
|z−x| differ from v by less than 2ω(c− a) and we conclude that∣∣∣∣ y − x|y − x|

− z − y
|z − y|

∣∣∣∣ ≤ ∣∣∣∣ y − x|y − x|
− v
∣∣∣∣+
∣∣∣∣v − z − y

|z − y|

∣∣∣∣ < 2ω(c− a) + 2ω(c− a)

= 4ω(c− a) <
4
3
<
√

2.

Note that this in particular means that the triangle with vertices x, y, z has
an obtuse angle at vertex y and therefore |z − x| = diam{x, y, z}. Since
|z−x| > (1−ω(c− a))(c− a) > 2

3(c− a) we have (recall that ω is a concave
non-decreasing function)∣∣∣∣ y − x|y − x|

− z − y
|z − y|

∣∣∣∣ < 4ω(c− a) ≤ 4ω
(

3
2
|z − x|

)
≤ 6ω(|z − x|).

That completes the proof of Theorem 1.2.

3. Characterization of subsets of curves with ω-continuous der-
ivative. In this section we prove Theorem 1.1. This is done by an explicit
construction of the desired curve family. In Section 3.1 we investigate the
condition in (1.1) to prove that at small scales the set K lies approximately
along a straight line. We use this observation in Section 3.2 to provide an
explicit construction of one curve with properly regular derivative that covers
K ∩ B for some small ball B. Finally, in Section 3.3 we show that all these
small curves for different small balls B can be merged into the desired curve
family.

3.1. Preliminaries. Let us fix some global coordinate system in the
whole Rn, so we can compare points. We use this comparison procedure to
break ties in the constructing algorithm so that it is fully deterministic.

Definition 3.1. We say that x < y for x, y ∈ Rn if for some 1 ≤
k ≤ n we have xi = yi for 1 ≤ i < k and xk < yk (i.e., we sort points
lexicographically).

Given an isolated point x ∈ K, when we speak about the point of K (or
some closed subset of K) closest to x, we mean that we break ties using the
comparison procedure from Definition 3.1, i.e., we choose the smallest point
among the set of closest points. Such a point exists since K is compact and
the projection of a compact set onto any subspace is still a compact set.

Let K ⊂ Rn be a compact set, let ω : [0,∞) → [0,∞) be a concave
non-decreasing function with ω(0) = 0 and continuous at 0 and let r0 > 0
be such that for all distinct x, y, z ∈ K with |z − x| = diam{x, y, z} < r0 we
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have ∣∣∣∣ y − x|y − x|
− z − y
|z − y|

∣∣∣∣ < ω(diam{x, y, z}).

We can assume r0 is sufficiently small to ensure that ω(r0) < 0.001.
The constant 0.001 is far from optimal; we do not optimize constants in our
proofs. As we shall see, we only need that all constants that appear in the
proof are significantly smaller than 1.

Lemma 3.2. For any pairwise distinct x, y, z ∈ K, if

|z − x| = diam{x, y, z} < r0

then the angle ](x, y, z) is obtuse and∣∣∣∣ y − x|y − x|
− z − x
|z − x|

∣∣∣∣ < ω(diam{x, y, z}),∣∣∣∣ z − y|z − y|
− z − x
|z − x|

∣∣∣∣ < ω(diam{x, y, z}).

Proof. Since∣∣∣∣ y − x|y − x|
− z − y
|z − y|

∣∣∣∣ < ω(diam{x, y, z}) ≤ ω(r0) < 0.001

the triangle with vertices x, y, z has an obtuse angle at y. Therefore the angle
between the vectors y − x and z − y is acute and its measure is the sum of
the measures of the angles between y − x and z − x and between z − y and
z − x. Therefore ∣∣∣∣ y − x|y − x|

− z − x
|z − x|

∣∣∣∣ ≤ ∣∣∣∣ y − x|y − x|
− z − y
|z − y|

∣∣∣∣,∣∣∣∣ z − y|z − y|
− z − x
|z − x|

∣∣∣∣ ≤ ∣∣∣∣ y − x|y − x|
− z − y
|z − y|

∣∣∣∣,
which completes the proof.

Take any x0 ∈ K and r < 1
2r0 and let B = {x : |x − x0| ≤ r} and

KB = K ∩B. Now we are going to prove that KB lies approximately along
one line. Later, we construct curves for all small balls B and then merge
them into the desired family.

If KB consists of a single point there is nothing to do, so let x1, x2 ∈
KB be such that |x2 − x1| = diamKB > 0 (they exist by compactness of
K and B). Let d = diamKB < r0 and set orthonormal coordinates with
base vectors (e1, . . . , en) so that x1 = 0, x2 = (d, 0, . . . , 0) = de1. Then
(x2 − x1)/|x2 − x1| = e1.

Definition 3.3. We say that a point y ∈ KB is to the right [to the left ]
of x ∈ KB if 〈y, e1〉 > 〈x, e1〉 [〈y, e1〉 < 〈x, e1〉]. We say that y, y′ ∈ KB are
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on the same side [on opposite sides] of x ∈ KB if 0 6= sgn(〈y − x, e1〉) =
sgn(〈y′ − x, e1〉) [0 6= sgn(〈y − x, e1〉) 6= sgn(〈y′ − x, e1〉) 6= 0].

Lemma 3.4. Let x, y ∈ KB satisfy x 6= y and 〈x, e1〉 ≤ 〈y, e1〉. Then∣∣∣∣ y − x|y − x|
− e1

∣∣∣∣ < 2ω(d) < 0.002.

In particular, different points in KB have distinct first coordinate, and for
any two distinct points x, y ∈ KB one always lies to the right of the other
and sgn(〈x− y, e1〉) 6= 0.

Proof. If x = x1 and y = x2 there is nothing to prove. By symmetry, we
can assume y /∈ {x1, x2}. By Lemma 3.2 for the triangle x1, y, x2 (note that
|x2 − x1| = d = diam{x1, y, x2}),

(3.1)
∣∣∣∣ y − x1

|y − x1|
− e1

∣∣∣∣ < ω(d).

If x=x1 the proof is finished. Otherwise let us focus on the triangle x1, x, y.
By Lemma 3.2 one of the angles of this triangle is obtuse. We now prove
that this is the angle ](x1, x, y).

Note that x 6= x2, since otherwise

〈x1 − x, y − x〉 = −d(〈e1, y〉 − 〈e1, x〉) ≤ 0

and |y − x1| > |x2 − x1|, a contradiction. Thus we can use Lemma 3.2 for
the triangle x1, x, x2, obtaining∣∣∣∣ x− x1

|x− x1|
− e1

∣∣∣∣ < ω(d).

Therefore, by (3.1),∣∣∣∣ x− x1

|x− x1|
− y − x1

|y − x1|

∣∣∣∣ ≤ ∣∣∣∣ x− x1

|x− x1|
− e1

∣∣∣∣+
∣∣∣∣e1 − y − x1

|y − x1|

∣∣∣∣
< ω(d) + ω(d) < 0.002.

Therefore the angle ](x, x1, y) is acute.
Towards a contradiction, assume that ](x1, y, x) is obtuse. In this case,

by Lemma 3.2,∣∣∣∣ x− y|x− y|
− e1

∣∣∣∣ ≤ ∣∣∣∣ x− y|x− y|
− x− x1

|x− x1|

∣∣∣∣+
∣∣∣∣ x− x1

|x− x1|
− e1

∣∣∣∣ < 2ω(d) < 0.002.

This contradicts the assumption that 〈x, e1〉 ≤ 〈y, e1〉.
Therefore by applying Lemma 3.2 to the triangle x1, x, y we get∣∣∣∣ y − x|y − x|

− e1
∣∣∣∣ ≤ ∣∣∣∣ y − x|y − x|

− y − x1

|y − x1|

∣∣∣∣+
∣∣∣∣ y − x1

|y − x1|
− e1

∣∣∣∣ < 2ω(d).

In the following two corollaries we replace any assumptions on how points
x, y and z lie along the e1 axis at the cost of using the sgn operator in the
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equations. Note that the term sgn(〈y − x, e1〉) y−x
|y−x| is equal to

y−x
|y−x| if y lies

to the right of x, and to x−y
|x−y| if y lies to the left of x. Thus, this term is

always a unit vector parallel to y − x, but close to e1, and not −e1.
Merging Lemmas 3.2 and 3.4 we obtain

Corollary 3.5. For x, y, z ∈ KB, if y /∈ {x, z} then∣∣∣∣sgn(〈y − x, e1〉)
y − x
|y − x|

− sgn(〈z − y, e1〉)
z − y
|z − y|

∣∣∣∣ < ω(diam{x, y, z}).

Applying Lemma 3.4 once again we obtain

Corollary 3.6. For any distinct x, y ∈ KB,∣∣∣∣sgn(〈y − x, e1〉)
y − x
|y − x|

− e1
∣∣∣∣ < 2ω(d) < 0.002.

The following lemma is not used directly in the rest of the construction,
but formalizes the intuition that all points of KB lie along one line.

Lemma 3.7. Let x, y, z ∈ KB be pairwise distinct points. Then |z− x| =
diam{x, y, z} iff x and z lie on opposite sides of y.

Proof. First assume x and z lie on opposite sides of y. Assume x lies to
the left and z lies to the right. By Lemma 3.4,∣∣∣∣ y − x|y − x|

− z − y
|z − y|

∣∣∣∣ ≤ ∣∣∣∣ y − x|y − x|
− e1

∣∣∣∣+
∣∣∣∣e1 − z − y

|z − y|

∣∣∣∣ < 4ω(d) < 0.004.

Therefore the angle ](x, y, z) is obtuse.
Now assume |z − x| = diam{x, y, z}. If, say, z lies to the right of x then,

by Lemmas 3.4 and 3.2,∣∣∣∣ y − x|y − x|
− e1

∣∣∣∣ ≤ ∣∣∣∣ y − x|y − x|
− z − x
|z − x|

∣∣∣∣+
∣∣∣∣ z − x|z − x|

− e1
∣∣∣∣ < 3ω(d) < 0.003.

Therefore y lies to the right of x. Making the same calculations for z − y
instead of y − x we see that y lies to the left of z.

Lemma 3.8. Let x ∈ KB \ {x1, x2}. Then |x − x1| < d, |x − x2| < d,
i.e., the choice of x1 and x2 was unique up to numbering (i.e., up to a 180◦

rotation of the coordinate system).

Proof. Since diam{x1, x, x2} = |x2 − x1|, Lemma 3.2 implies that the
angle ](x1, x, x2) is obtuse and the sides x − x1 and x − x2 of the triangle
x1, x, x2 are shorter than the side x1 − x2.

To sum up, we have proved that all the points in KB lie approximately
along the line x1x2. It is worth noting that a similar analysis appears in [4,
Lemma 3.1], and there Hahlomaa uses the map x 7→ d(x, x1), instead of the
axis x1x2.
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3.2. The local construction. In this section we provide an algorithm
that allows us to construct one curve without self-intersections, with arc-
length parametrization γ : [a, b]→ Rn, such that γ′ is 342ω-continuous and
KB ⊂ γ([a, b]).

Lemma 3.9. Let y ∈ KB be an accumulation point of KB and let (yk)∞k=1
be a sequence of points of KB different from y and convergent to y. Then the
limit

lim
k→∞

sgn(〈yk − y, e1〉)
yk − y
|yk − y|

exists and is a vector of length 1.

Proof. Fix ε > 0 and let δ > 0 satisfy ω(2δ) < ε. AssumeM ∈ N satisfies:
for all k ≥ M we have |yk − y| < δ. Let k, l ≥ M . By Corollary 3.5 for the
triangle yk, yl, y,∣∣∣∣sgn(〈yk − y, e1〉)

yk − y
|yk − y|

− sgn(〈yl − y, e1〉)
yl − y
|yl − y|

∣∣∣∣ < ω(diam{y, yl, yk})

≤ ω(2δ) < ε.

Therefore this sequence converges and its limit is a vector of length 1, since
all terms have length 1.

Definition 3.10. For every y ∈ KB we define a unit vector vy ∈ Rn as
follows: if y is an accumulation point of KB, then

vy := lim
KB3y′→y

sgn(〈y′ − y, e1〉)
y′ − y
|y′ − y|

,

i.e., vy is a vector tangent to KB at y. Otherwise, let y∗ be the point of KB

closest to y (if there are many, choose the lexicographically smallest). Then

vy := sgn(〈y∗ − y, e1〉)
y∗ − y
|y∗ − y|

.

Let us now prove some properties of the chosen vectors vy.

Lemma 3.11. Let y ∈ KB. Then |vy − e1| ≤ 2ω(d) < 0.002.

Proof. By Corollary 3.6, for any x ∈ KB \ {y},∣∣∣∣sgn(〈x− y, e1〉)
x− y
|x− y|

− e1
∣∣∣∣ ≤ 2ω(d).

But |vy − e1| is a limit of such expressions (in the case of y being an accu-
mulation point of KB) or is equal to a single expression of that form.

Lemma 3.12. Let x, y ∈ KB, x 6= y. Then∣∣∣∣sgn(〈y − x, e1〉)
y − x
|y − x|

− vx
∣∣∣∣ < 2ω(|y − x|).
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Proof. If x is an accumulation point of KB, then take x◦ 6= x sufficiently
close to x such that

|x− x◦| < 1
2
|y − x|,

∣∣∣∣sgn(〈x◦ − x, e1〉)
x◦ − x
|x◦ − x|

− vx
∣∣∣∣ < 1

2
ω(|y − x|).

Then diam{x, y, x◦} ≤ 3
2 |y − x| and using Lemma 3.2 and Corollary 3.5 we

obtain∣∣∣∣sgn(〈y − x, e1〉)
y − x
|y − x|

− vx
∣∣∣∣

≤
∣∣∣∣sgn(〈y − x, e1〉)

y − x
|y − x|

− sgn(〈x− x◦, e1〉)
x− x◦

|x− x◦|

∣∣∣∣
+
∣∣∣∣sgn(〈x− x◦, e1〉)

x− x◦

|x− x◦|
− vx

∣∣∣∣
< ω

(
3
2
|y − x|

)
+

1
2
ω(|y − x|) ≤ 2ω(|y − x|).

Otherwise, note that by the definition of x∗ we have |x− x∗| ≤ |x− y| and
diam{x, x∗, y} ≤ 2|x− y|. Using Corollary 3.5 once again, we get∣∣∣∣sgn(〈y − x, e1〉)

y − x
|y − x|

− vx
∣∣∣∣

=
∣∣∣∣sgn(〈y − x, e1〉)

y − x
|y − x|

− sgn(〈x− x∗, e1〉)
x− x∗

|x− x∗|

∣∣∣∣
< ω(2|y − x|) ≤ 2ω(|y − x|).

Lemma 3.13. Let x, y ∈ KB, x 6= y. Then |vx − vy| < 4ω(|y − x|).

Proof. We use Lemma 3.12 twice:

|vx − vy| ≤
∣∣∣∣sgn(〈y − x, e1〉)

y − x
|y − x|

− vx
∣∣∣∣+
∣∣∣∣sgn(〈y − x, e1〉)

y − x
|y − x|

− vy
∣∣∣∣

< 2ω(|y − x|) + 2ω(|y − x|) = 4ω(|y − x|).

After these preparations, we now provide a construction of a sufficiently
regular curve that connects two points of KB.

Lemma 3.14. Let x, y ∈ KB and assume that y is to the right of x. Then
there exists a smooth curve with arc-length parametrization γ : [a, b] → Rn

such that

(i) γ(a) = x, γ(b) = y, γ′(a) = vx, γ′(b) = vy,
(ii) γ′ is 157ω(|y−x|)

|y−x| -Lipschitz continuous,
(iii) for any t ∈ [a, b], |γ′(t)− e1| ≤ 138ω(d) < 0.138,
(iv) for any distinct s, t ∈ [a, b], |s− t| ≥ |γ(s)− γ(t)| > 0.93|s− t|.
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Proof. Let d̂ = |y − x|. We start by defining γ̂ : [0, d̂] → Rn satisfying:
γ̂ ∈ C∞, γ̂(0) = x, γ̂(d̂) = y, γ̂′(0) = vx, γ̂′(d̂) = vy. However, γ̂ will not be
an arc-length parametrization. We will then bound γ̂′ to reparametrize γ̂ as
desired.

Let us define

γ̂(t) =
(
vy − vx
d̂2

−2
y − x− d̂vx

d̂3

)
t3 +

(
3
y − x− d̂vx

d̂2
− vy − vx

d̂

)
t2 +vxt+x.

It is easy to check that γ̂(0) = x and γ̂(d̂) = y. Moreover

γ̂′(t) = 3
(
vy − vx
d̂2

− 2
y − x− d̂vx

d̂3

)
t2 + 2

(
3
y − x− d̂vx

d̂2
− vy − vx

d̂

)
t+ vx.

It is easy to check that γ̂′(0) = vx and γ̂′(d̂) = vy. Note that by Lemmas
3.12 and 3.13,

|vy − vx| < 4ω(d̂),
∣∣∣∣y − xd̂ − vx

∣∣∣∣ < 2ω(d̂).

Therefore for 0 ≤ s < t ≤ d̂ we have

|γ̂′(t)− γ̂′(s)| < t− s
d̂

(
3

4ω(d̂)(t+ s)

d̂
+ 6

2ω(d̂)(t+ s)

d̂
(3.2)

+ 6 · 2ω(d̂) + 2 · 4ω(d̂)
)

≤ (t− s)68ω(d̂)

d̂
.

In particular, for s = 0,

(3.3) |γ̂′(t)− vx| < 68ω(d̂) ≤ 68ω(d) < 0.068.

And, by Lemma 3.11,

(3.4) |γ̂′(t)−e1| ≤ |γ̂′(t)−vx|+|vx−e1| < 68ω(d̂)+2ω(d) ≤ 70ω(d) < 0.07.

Therefore the projection of γ̂([0, d̂]) onto the first coordinate axis is injective,
the curve γ̂ goes roughly to the right (i.e., γ̂′ points to the right) and it has
no self-intersections.

Moreover, by (3.3) and the fact that |vx| = 1 we get 0.932 < |γ̂′(t)| <
1.068, so by standard techniques one can modify the parametrization γ̂ to
obtain an arc-length parametrization γ of the curve γ̂([0, d̂]). Namely, if
L(t) =

	t
0 |γ̂
′(s)| ds is the length function of γ̂, we define γ : [0, L(d̂)] → Rn

by γ(u) = γ̂(L−1(u)). Then

(3.5) γ′(u) = (L−1)′(u)γ̂′(L−1(u)) =
γ̂′(L−1(u))
|γ̂′(L−1(u))|

.
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We now check all conditions for γ. Item (i) is obvious from the definition
of γ̂ and (3.5). By (3.3), |γ̂′(t)−γ′(γ−1(γ̂(t)))| < 68ω(d). Therefore, by (3.4),
|γ′(u)− e1| < 138ω(d) < 0.138 and (iii) is satisfied. To check (iv), note that
by (3.4) for 0 ≤ t1 < t2 ≤ d̂,

|γ̂(t2)− γ̂(t1)| ≥ 〈γ̂(t2)− γ̂(t1), e1〉 =
t2�

t1

〈γ̂′(s), e1〉 ds

>

t2�

t1

0.93|γ̂′(s)| ds = 0.93(L(t2)− L(t1)).

Conversely, setting u1 = L(t1) and u2 = L(t2) we obtain

|γ(u2)− γ(u1)| ≥ 0.93(u2 − u1),

and (iv) is satisfied.

It remains to prove that γ′ is 157ω(d̂)

d̂
-Lipschitz continuous. Since all

functions here are C∞, we can compute

γ′′(u) = ((L−1)′)2(u)γ̂′′(L−1(u)) + (L−1)′′(u)γ̂′(L−1(u)).

Since 0.932 < |γ̂′(t)| < 1.068 we obtain 0.932 < L′(t) < 1.068 and 1/1.068 <

(L−1)′(u) < 1/0.932. Since γ̂′ is 68ω(d̂)

d̂
-Lipschitz continuous (by (3.2)), we

have

|((L−1)′)2(u)γ̂′′(L−1(u))| < 68
0.9322

ω(d̂)

d̂
< 78.285

ω(d̂)

d̂
.

Since (L−1)′(u) = 1/|γ̂′(L−1(u))|, we get

|(L−1)′′(u)γ̂′(L−1(u))| =
∣∣∣∣ ddu |γ̂′(L−1(u))|
|γ̂′(L−1(u))|2

∣∣∣∣|γ̂′(L−1(u))|

<

∣∣∣∣ 1
0.932

· (L−1)′(u)|γ̂′′(L−1(u))|
∣∣∣∣

<
1

0.9322
· 68

ω(d̂)

d̂
< 78.285

ω(d̂)

d̂
.

Therefore γ′ is 157ω(d̂)

d̂
-Lipschitz continuous.

Remark 3.15. Let us for a while swap the roles of x1 and x2, i.e., rotate
the coordinate system by 180◦. If we then connect x and y using Lemma
3.14, we obtain the same curve, but running backwards, since the formula
for γ̂ gives the unique polynomial of degree at most 3 that has fixed γ̂ and
γ̂′ at the endpoints.

Lemma 3.16. With the assumptions of Lemma 3.14, the constructed curve
γ has 169ω-continuous derivative.
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Proof. Let s, t ∈ [a, b]. By (iv) above,

b− a ≥ |y − x| > 0.93(b− a).

Since ω is non-decreasing,
ω(|y − x|)
|y − x|

<
ω(|b− a|)

0.93(b− a)
.

Recall that γ′ is 157ω(|y−x|)
|y−x| -Lipschitz continuous and ω is concave:

|γ′(t)−γ′(s)| < 157
ω(|y − x|)
|y − x|

|t−s| < 157
0.93

ω(b−a)
|t− s|
|b− a|

< 169ω(|t−s|).

Let πe1 : Rn → R be the projection onto the e1 axis. Since x1, x2 ∈ KB,
[0, d]\πe1(KB) is a finite or countable family of disjoint open segments (pi, qi)
with pi = πe1(xi) and qi = πe1(yi), xi, yi ∈ KB. For every i, let us connect
xi with yi by a curve γi constructed in Lemma 3.14. Let K̄B be the set KB

together with all the images of γi.
By the properties of γi, for every p ∈ [0, d] there exists exactly one f(p) ∈

K̄B such that p = πe1(f(p)). We now prove some properties of the function f .
Let us extend the definition of vx to x ∈ K̄B. If x is in the image of γi, let
vx = γ′i(γ

−1
i (x)), i.e., the tangent vector to γi at x. This definition works

properly at the endpoints xi, yi of γi by the definition of γi.

Lemma 3.17. For every x ∈ K̄B,

|vx − e1| < 138ω(d) < 0.138.

Proof. If x ∈ KB, then Lemma 3.11 does the job. Otherwise, use Lem-
ma 3.14(iii).

Lemma 3.18. For any distinct x, y ∈ K̄B,

|vx − vy| < 342ω(|x− y|).
Proof. If x, y ∈ KB, the statement is obvious by Lemma 3.13. Therefore

let us assume x /∈ KB, so x is in the image of the curve γi. If y is also in the
image of γi, Lemma 3.16 does the job. Otherwise, assume that y is to the
right of x, say. Then it is to the right of yi too.

If y ∈ KB then

|vx−vy| ≤ |vx−vyi |+|vyi−vy| ≤ 169ω(|x−yi|)+4ω(|yi−y|) ≤ 173ω(|y−x|).
Otherwise, let y be in the image of γj . Then

|vx − vy| ≤ |vx − vyi |+ |vyi − vxj |+ |vxj − vy|
≤ 169ω(|x− yi|) + 4ω(|yi − xj |) + 169ω(|xj − y|)
≤ 342ω(|y − x|).

Lemma 3.19. For every x ∈ K̄B the vector vx is tangent at x to the
set K̄B.
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Proof. For x ∈ K̄B \ KB the statement is obvious. Let now x = f(p)
∈ KB. If x is an endpoint of some curve γi, then γ′i at x equals vx, whether
x is a left or right endpoint of γi. On the other hand, if xn → x and xn 6= x,
xn ∈ KB, then, by the definition of vx,

lim
n→∞

sgn(〈xn − x, e1〉)
xn − x
|xn − x|

= vx.

This finishes the proof.

We conclude this section with the final theorem.

Theorem 3.20. Assume that K is a compact set and B is a closed ball
of radius smaller than 1

2r0. Let KB = K∩B and let d be the diameter of KB.
Pick x1, x2 ∈ KB such that |x1−x2| = d. Introduce orthonormal coordinates
(e1, . . . , en) such that x1 = 0, x2 = (d, 0, . . . , 0), i.e., x2 − x1 = de1. Then
there exists a curve without self-intersections with arc-length parametrization
γ : [0, L]→ Rn such that:

(i) γ(0) = x1, γ(L) = x2, d ≤ L < 1.161d;
(ii) γ′ is 342ω-continuous;
(iii) for all t ∈ [0, L] we have |γ′(t)− e1| < 138ω(d) < 0.138;
(iv) KB ⊂ γ([0, L]);
(v) for every t ∈ [0, L] we have γ′(t) = vγ(t);
(vi) if moreover the center of B belongs to KB, then γ([0, L]) ⊂ B.

Proof. First note that by Lemma 3.19 the function f : [0, d] → Rn is
continuous and differentiable and f ′(p)/|f ′(p)| = vf(p) for every p ∈ [0, d].
Moreover 〈f ′(p), e1〉 = 1, thus f ′(p) = vf(p)/〈vf(p), e1〉 and |f ′(p)| ≥ 1.
Note that, by Lemma 3.17, vf(p) points roughly to the right and |f ′(p)| ≤
1/(1 − 0.138). Therefore one can parametrize f([0, d]) = K̄B with an arc-
length parametrization γ : [0, L]→ Rn such that γ′(t) = vγ(t).

(iv) follows directly from the construction. (iii) is a corollary of Lemma
3.17 and the fact that d ≤ L ≤ d/(1− 0.138) < 1.161d. (ii) is a corollary of
Lemma 3.18.

Now assume that the center xc of B belongs to KB. Integrating the
inequality (iii) for |γ′(t)− e1|, we obtain∣∣∣∣sgn(〈y − x, e1〉)

y − x
|y − x|

− e1
∣∣∣∣ < 0.138

for all different x, y ∈ K̄B. Taking x = x1, x = x2 and x = xc, we have
|xc − x| ≤ max{|xc − x1|, |xc − x2|} and the proof is finished.

Remark 3.21. Note that we still keep the property from Remark 3.15.
If we swap x1 and x2, i.e., rotate the local coordinate system by 180◦, we get
the same curve K̄B, but running backwards. Indeed, vx changes to −vx and
by Remark 3.15 the images of the curves γi remain unchanged. Therefore,



Compact subsets of curves 189

by Lemma 3.8, the constructed curve K̄B does not depend on the chosen
local coordinate system (e1, . . . , en).

3.3. The global construction. In Section 3.2 we developed a way to
pass one curve through all points of K ∩ B for a closed ball B of diame-
ter smaller than r0. Now we would like to extend this construction to the
whole K. Naively, we would like to take the union of all curves for all small
balls B—it should look nice. Indeed, this way we get a slightly weaker result
than Theorem 1.1 quite immediately:

Theorem 3.22. With the assumptions of Theorem 1.1, there exists a
finite family of finite-length curves whose images cover K and:

(i) the curves admit arc-length parametrizations γi : [ai, bi] → Rn, i =
1, . . . , N ,

(ii) each γi is injective, i.e., its image does not have self-intersections,
(iii) the derivative γ′i is 342ω-continuous.

Unlike in Theorem 1.1, the images of γi and γj for i 6= j are not necessarily
disjoint.

Proof. Take r < 1
2r0 and set

B0 = {{x : |x− x0| ≤ r} : x0 ∈ K}.

Take a finite subfamily B′0 ⊂ B0 such that the interiors of the balls from B′0
cover K. For every B ∈ B′0 construct a curve γB using Theorem 3.20. The
family {γB : B ∈ B′0} is as desired.

Note that it does not seem easy to make the images of the curves disjoint
in the proof of Theorem 3.22. Consider an example when K is the image of a
regular curve, e.g., a segment. The only way to cover a segment with a finite
family of disjoint and closed images of curves is to use only one curve that
covers the whole segment. Therefore, to obtain disjoint images, we need to
merge curves γB for neighboring balls B.

We start by strengthening Remark 3.21, so that the local construction in
the neighborhood of some x ∈ K is totally independent even of the choice of
the ball B covering that a neighborhood. The problem is that the choice of
y∗ in Definition 3.10 depends on the choice of B. However, this can be easily
circumvented.

Take r∗ < 1
20r0. Let Klonely ⊂ K be the set of isolated points from K that

are at a distance of at least r∗ from other points of K. Klonely is finite and
we can remove it from K: at the end of the construction, every non-covered
point from Klonely can be covered by a sufficiently small segment. Therefore
we can assume that for every x ∈ K there exists y ∈ K \ {x} such that
|x− y| < r∗.
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Lemma 3.23. Let B be a closed ball with radius r, 2r∗ ≤ r < 1
2r0, and

suppose x ∈ K ∩ 1
2B is not an accumulation point of KB. Then x∗, taken

in Definition 3.10, is in fact one of the points closest to x in the entire K,
not only KB, and among all the points closest to x, x∗ is lexicographically
smallest.

Proof. For this x there exists y ∈ K such that |x − y| < r∗. Moreover,
since r ≥ 2r∗, we have {y : |x−y| ≤ r∗} ⊂ B. Therefore all the points closest
to x in K belong to B and the lemma is proved.

Definition 3.24. Let B be a closed ball with radius r < 1
2r0. Assume

there exist at least two points in K∩ 1
2B. Construct the curve γB for the ball

B, using Theorem 3.20. Let x be the first (1
2B is closed) point of K ∩ 1

2B on
the image of γB, and let y be the last point (or, equivalently, x is the leftmost
and y is the rightmost point of K ∩ 1

2B). We call the closed arc of γB from
x to y the inner curve of γB and we denote its arc-length parametrization
by γ̄B.

Lemma 3.25. Let B1, B2 be closed balls with radii r1, r2 such that 2r∗ ≤
r2 < r1 <

1
2r0 and B2 ⊂ 1

2B1. Assume that K ∩ 1
2B2 consists of at least two

points and the center of B2 belongs to K. Then the curve γ̄B2 is a subset
of γ̄B1.

Proof. Construct γB1 using Theorem 3.20. Let xl be the leftmost point
of K ∩ B2 (in the coordinate system used to construct γB1), and xr the
rightmost one. Since K ∩ 1

2B2 consists of at least two points, xl and xr are
well defined and are different. By Corollary 3.6 ball B1, all points x ∈ KB1

between xl and xr (in particular, the center of B2) are either equal to xl or
satisfy

(3.6)
∣∣∣∣ x− xl|x− xl|

− e1
∣∣∣∣ < 0.002,

and are either equal to xr or satisfy

(3.7)
∣∣∣∣ xr − x|xr − x|

− e1
∣∣∣∣ < 0.002.

Therefore, as the center of B2 is in K and between xl and xr, all points
x ∈ K ∩ B1 between xl and xr are in B2. Moreover, the angle ](xl, x, xr)
is obtuse, and |xr − xl| = diamK ∩ B2. Together with (3.6) and (3.7), this
means that, to construct γB2 using Theorem 3.20, the e1 axis connects xl
with xr and the order (to the left or right) on this axis is the same as on
the e1 axis in B1. Note that by Lemma 3.23, for every x ∈ 1

2B2 the point x∗

closest to x in K ∩B2 belongs to B2 ⊂ 1
2B1 and it is in fact the point closest

to x in the whole K. Therefore the choice of x∗ is independent of whether
we construct γB1 or γB2 .
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Let now x′l and x
′
r be the leftmost and the rightmost points of K ∩ 1

2B2.
Recall that the notion of leftmost and rightmost points is the same whether
we use the coordinate system of B1 or B2. Just as for B2, from Corollary 3.6
we can deduce that all points ofK∩B1 between x′l and x

′
r lie in

1
2B2. Together

with Remark 3.21, this implies that the construction process in Theorem 3.20
for γ̄B2 is part of the construction process for γB1 . Since B2 ⊂ 1

2B1, γ̄B2 is
in fact a subset of γ̄B1 .

Lemma 3.26. Let B2, B3 be closed balls with centers y2, y3 ∈ K and radii
2r∗ ≤ r2, r3 < 1

8r0. Assume that K ∩ 1
2B2∩ 1

2B3 6= ∅, and 1
2B2 and 1

2B3 have
at least two points of K each. Then the union of the curves γ̄B2 and γ̄B3 is
a curve with the same regularity as implied by Theorem 3.20.

Proof. Just note that B2 ∪B3 can be covered by a closed ball 1
2B1 such

that B1 has radius smaller than 1
2r0. Then both γ̄B2 and γ̄B3 are subsets

of γ̄B1 . Since K ∩ 1
2B2 ∩ 1

2B3 6= ∅, the union of these curves is connected.

We can now finish the proof of Theorem 1.1. Take any finite family B of
closed balls with centers in K and radii at least 2r∗ and smaller than 1

10r0
such that {int1

2B : B ∈ B} covers K. For each ball B ∈ B take γ̄B and let K̄
denote the union of all images of these curves. Note that K̄ has finite length,
since all the curves have finite length.

First, note that we can remove from B, one by one, the balls B such that
the image of γ̄B is contained in the images of the curves γ̄ for other balls
in B. Therefore we can assume that for every B ∈ B there exists a point in
the image of γ̄B that is not in any image of γ̄B′ for B 6= B′ ∈ B.

Take any x ∈ Rn and set

Bx = {B ∈ B : dist(x,B) ≤ r∗}.

If Bx = {y : |y − x| ≤ 2r∗ + 2
5r0}, then

⋃
Bx ⊂ 1

2Bx, and by Lemma 3.25
(note that the radius of Bx, i.e., 2r∗ + 2

5r0, is smaller than 1
2r0), all curves

γ̄B for B ∈ Bx are subsets of γ̄Bx . Intuitively, locally K̄ looks like a single
curve.

Let x ∈ K̄ and assume that x is contained in the images of γ̄ for (at
least) three different B1, B2, B3 ∈ B. Then all images of γ̄Bi for i = 1, 2, 3
are contained in the image of γ̄Bx and one of the images must be contained
in the union of the other two, which contradicts the previous assumption.

Now construct a graph with vertex set B and let B1 and B2 be connected
in this graph if the images of γ̄B1 and γ̄B2 coincide. By the previous obser-
vations, every vertex B ∈ B has degree at most 2: no other curve image may
be contained in the image of γ̄B and at every endpoint the image of γ̄B can
coincide with at most one other curve. Therefore our graph consists only
of paths and loops. By the previous observations, locally K̄ looks like one
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curve, so in total it is a finite union of curves (and some of them may be
closed, i.e., they may form images of circles).

What is left to prove is that for every curve in K̄ its arc-length parametri-
zation has locally 342ω-continuous derivative. However, note that if x, y ∈ K̄
and |x− y| < r∗, then K̄ in the neighborhood of x, y is a subset of γ̄Bx , and
this curve has 342ω-continuous derivative.

We conclude this section with the following lemma concerning the total
length of all constructed curves.

Lemma 3.27. For any ε > 0, by taking sufficiently small r∗ and by taking
the family B carefully in the above construction, the total length of all curves
can be bounded by 5H1(K) + ε, where H1 is the one-dimensional Hausdorff
measure.

Proof. Using the definition of H1, let X be a collection of arbitrary sets
of diameters smaller than 1

20r0 that cover K and∑
X∈X

diam(X) < H1(K) +
1
12
ε.

We may assume that every set in X contains a point of K. For every X ∈ X
we take a ball BX such that X ⊂ BX , the center of BX belongs to K, and
BX has diameter at most twice that of X. Let B0 = {BX : X ∈ X}; then
every BX ∈ B0 has diameter smaller than 1

10r0, has center in K and the
family B0 covers K. Moreover∑

BX∈B0

diam(BX) < 2H1(K) +
1
6
ε.

Since K is a compact set, we may assume that B0 is finite. Let r∗ =
1
2 minBX∈B0 diam(BX) and let B = {cl(2BX) : BX ∈ B0}. Then B is a
collection of closed balls of radii at least 2r∗ and smaller than 1

10r0, and
{int1

2B : B ∈ B} covers K. Moreover∑
B∈B

diamB < 4H1(K) +
1
3
ε.

Since we have chosen r∗, we may now remove the set Klonely from K.
Note that Klonely can be covered by segments of total length at most 1

2ε.
We now construct K̄ using our new family B. By Theorem 3.20(i), the

curve γB for B ∈ B has length smaller than 1.161 diam(B). Therefore K̄ has
total length at most

1
2
ε+ 1.161 ·

(
4H1(K) +

1
3
ε

)
< 5H1(K) + ε.
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4. Counter-examples for Jones-style conditions. In this section we
give two counter-examples that show that any Jones-like conditions seem to
work worse in the field of curves with regular derivatives. Intuitively, these
curves cannot turn fast, and therefore the condition should involve every
point in K, and not all points off a set of measure 0.

In this section we work only in R2, i.e., we do not use any high-dimen-
sional tricks. To simplify the notation, we treat R2 as the complex field C,
for example iv is the vector v rotated by 90◦ counterclockwise.

Let us recall the main techniques used by Jones [6]. Assume we have a
compact set K ⊂ R2. Given a square Q with sidelength l(Q) we denote by
SK(Q) one of the narrowest strips covering K ∩ 3Q, and by βK(Q) the ratio
width(SK(Q))/l(Q).

The main result of Jones [6] is that a compact set K ⊂ R2 is a subset of
a rectifiable curve iff the following sum is finite:

β2(K) =
∑

Q dyadic

β2
K(Q)l(Q).

Our examples show that measuring βK(Q) does not allow one to decide
whether K can be covered by a more regular curve.

Let ω : [0,∞)→ [0,∞) be a concave non-decreasing function continuous
at 0 with ω(0) = 0 and ω(x) > 0 for x > 0. We assume that ω(1) is much
smaller than 1; otherwise we may need some rescaling in the examples. We
are about to give two compact sets in R2 that cannot be covered by a finite
family of disjoint finite-length curves with locally ω-continuous derivative
(we call such curves regular curves for short). However, in both examples
the widths of SK(Q) are small and do not seem to carry much information.
Note that both sets satisfy the Jones condition and therefore they are subsets
of rectifiable curves.

Moreover, the set from the second example has two more properties. First,
it can be covered by four regular curves, but with an intersection, showing
that the condition in our result that the curves are disjoint is essential. This
example shows that the question whether a compact set K can be covered
by a finite union of regular curves, not necessarily disjoint, is significantly
different than the question this paper answers.

Second, if one applies Jones’s algorithm to construct a rectifiable curve
covering the set K from the second example, the curve obtained will have
an infinite number of turns by roughly 90◦ and therefore cannot be easily
smoothed to a curve with a regular derivative and finite length.

We are not going to give all details of the examples, but we want to give
an intuition why Jones’s approach seems to break down here.



194 M. Pilipczuk

4.1. Vertical strokes example. Let

K := {(0, 0)} ∪ {[(2−n, 0), (2−n, 2−nω(2−n))] : n ∈ Z+}.

This set consists of countably many vertical strokes of length 2−nω(2−n)
that converge to (0, 0). It is obviously compact, but for every n the triangle
(0, 0), (2−n, 0), (2−n, 2−nω(2−n)) has diameter smaller than 2 · 2−n and right
angle at (2−n, 0). Therefore, by Theorem 1.2, it cannot be covered by a finite
number of disjoint regular curves.

Let us explain, without using Theorem 1.2, why it cannot be covered. As-
sume, towards a contradiction, that it is covered by a finite family {γi}1≤i≤N .
By easy measure arguments, for every point (2−n, 0) there must be a curve
γi tangent to the stroke [(2−n, 0), (2−n, 2−nω(2−n))] at this point. Therefore
there must be one curve γi0 that is tangent to an infinite number of strokes at
their bottom endpoints. Note that between two such points the curve must
turn by 180◦, and since γi0 has locally ω-continuous derivative and finite
length, this cannot happen infinitely many times.

Let us now look at K from the point of view of the numbers βK(Q). If
there is only one stroke in 3Q, then βK(Q) = 0. Apart from dyadic squares
with corner at (0, 0), this is the case for sufficiently small dyadic squares.
However, for dyadic squares Q such that 3Q intersects more than one stroke
we have βK(Q) ≤ cω(l(Q)) for some universal constant c, which means that
these values are comparable to the values βK(Q) for a regular curve. There-
fore the numbers βK(Q) do not seem to yield any information in this case.

4.2. Snail example. Let a0 = 1 and an+1 = ω(an)an. By the assump-
tion that ω(1) is much smaller than 1, the sequence an is exponentially
quickly decreasing and it converges to 0. Let z0 = 0 ∈ C and zn+1 =
zn + ani

n·. Then the points zn form a snail-like structure and they converge
to some point z = limn→∞ zn. Moreover, since ω is small on [0, 1], the point
zn+1 is much closer to zn than zn is to zn−1. Let K = {z} ∪ {zn : n ≥ 0}.

Since ](zn−1, zn, zn+1) is a right angle, and diam{zn−1, zn, zn+1} < an−1

+ an, by Theorem 1.2, K is not covered by a finite family of disjoint regular
curves.

Let us now see what happens if we construct a rectifiable curve throughK,
using the algorithm by Jones [6]. The algorithm takes a sequence L0 ⊆ L1 ⊆
L2 ⊆ · · · of nets in K; the net Lm is an inclusion maximal subset of points in
K such that if x, y ∈ Ln, x 6= y, then |x−y| ≥ 2−m. The algorithm constructs
a converging sequence of curves Γm such that Lm is covered by Γm. The curve
Γm+1 is obtained from Γm by some local modifications. In our example, the
points zn are included in the consecutive nets one by one (since zn+1 is much
closer to zn than zn is to zn−1), and thus the construction ends up with some
sort of spiral and an infinite number of 90◦ (or close to 90◦) turns.
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On the other hand, precise calculations show that we can pass one regular
curve through all points of each of the sets Kl = {z} ∪ {z4k+l : k ∈ N} for
l = 0, 1, 2, 3. However, these curves intersect at z, and since this is a limit of
the whole sequence zn, the intersection there is unavoidable.
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