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Abstract. We prove:
(1) Every Baire measure on the Kojman–Shelah Dowker space admits a Borel exten-

sion.
(2) If the continuum is not real-valued-measurable then every Baire measure on

M. E. Rudin’s Dowker space admits a Borel extension.
Consequently, Balogh’s space remains the only candidate to be a ZFC counterexample to
the measure extension problem of the three presently known ZFC Dowker spaces.

1. Introduction. In the mid 1990s, after two decades in which
M. E. Rudin’s space [16] had been the only known absolute Dowker space,
two new ones were discovered [3, 13]. At a workshop on general topology,
held in Budapest in 1999, the new spaces were presented, and D. Fremlin
seized the opportunity to remind the speakers that only Dowker spaces could
provide counterexamples to the measure extension problem. He expressed
the hope that one of the three absolute spaces would eventually prove to be
an absolute counterexample to the problem.

Below we prove that two of the three potential candidates are not abso-
lute counterexamples to the measure extension problem, in fact, that a large
class of absolute Dowker spaces to which these two belong does not contain
an absolute counterexample.

The measure extension problem is the following: given a normal topolog-
ical space X and a probability measure µ on the minimal σ-algebra which
makes all continuous real functions on X measurable, does µ admit an ex-
tension to the σ-algebra of all Borel subsets of X?

The σ-algebra which is generated over a topological space X by all zero-
sets of continuous real-valued functions on X is called the Baire algebra of
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X and is denoted Ba(X). A probability measure on Ba(X) for a normal
space X is called a Baire measure. All Baire measures are regular, that is,
the measure of a set is the supremum of the measures of its measurable
closed subsets [8, 412D].

In most normal spaces the measure extension problem is solved posi-
tively by Mař́ık’s extension theorem [14]: if a normal topological space X
is countably paracompact then every Baire measure on X admits a unique
regular Borel extension. Mař́ık’s theorem, then, restricts the measure ex-
tension problem to normal spaces which are not countably paracompact.
By Dowker’s theorem [6], these are exactly the normal spaces X for which
X × [0, 1] is not normal. Such spaces are called Dowker spaces. Whether
Dowker spaces existed or not had been an open problem for quite some
time (see [17] for the history of the subject, which began with Borsuk’s
work on homotopy theory).

The existence of Dowker spaces has been established on the basis of
various additional (independent) axioms to the standard Zermelo–Fraenkel
with Choice axiom system, ZFC (see [17, 23]), mostly axioms in the di-
rection of Gödel’s constructibility axiom V = L. In 1970 also an absolute
Dowker space was constructed, that is, proved to exist in ZFC. Three abso-
lute Dowker spaces are known presently [16, 3, 13]. Prior to this paper, the
measure extension problem has not been decided in any one of them.

It is customary to call a normal space in which every Baire measure
admits an inner regular Borel extension a Mař́ık space (see [24]). Mař́ık’s
theorem says, then, that every normal non-Mař́ık space is Dowker. Ohta
and Tamano [15] call a normal space X quasi-Mař́ık if every Baire measure
on X admits some Borel extension. In this terminology, a counterexample
to the measure extension problem is a non-quasi-Mař́ık Dowker space.

The existence of Dowker spaces with the following prescribed measure
extendibility properties has been raised in the literature. Wheeler [24] asks
if there are Dowker spaces that are Mař́ık. Ohta and Tamano [15] ask if
quasi-Mař́ık non-Mař́ık Dowker spaces exist. And Fremlin [8] asks for a non-
Mař́ık Dowker space (that is, for a counterexample to the measure extension
problem).

Each of these three questions has been provided with a consistent posi-
tive answer. Fremlin [8] constructs a non-quasi-Mař́ık Dowker space of car-
dinality ℵ1 from the axiom ♣(ℵ1), and thus establishes the consistency of
a counterexample to the measure extension problem. Aldaz [2] uses the
same axiom to establish the consistent existence of a quasi-Mař́ık non-Mař́ık
Dowker space. He also proves, using a construction of M. G. Bell [4], that
under Martin’s Axiom, or even under the weaker axiom P (c), there exists
a Mař́ık Dowker space (thus showing that it is impossible to prove that all
Dowker spaces are non-Mař́ık).
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No absolute positive answers were known to any of these questions.
The following is a list of all presently known ZFC Dowker spaces:

(1) M. E. Rudin’s space XR [16], whose cardinality is (ℵω)ℵ0 ;
(2) Balogh’s space [3], whose cardinality is 2ℵ0 ;
(3) Kojman and Shelah’s space [13], whose cardinality is ℵω+1.

P. Simon [20] proved that space (1) was not Mař́ık shortly after its dis-
covery. Quasi-Mař́ıkness prior to this paper has not been decided in any of
the three spaces (in no extension of ZFC).

1.1. The results. We introduce an infinite class of normal spaces, the
class of Rudin spaces. Spaces (1) and (3) belong to this class. We prove in
ZFC that every Rudin space is a non-Mař́ık Dowker space and:

(A) Space (3) and any other space of cardinality ℵω+1 in this class are
quasi-Mař́ık.

(B) If the class of Rudin spaces contains a non-quasi-Mař́ık member
then the continuum is real-valued-measurable.

By (A), space (3) is an absolute quasi-Mař́ık non-Mař́ık space; this pro-
vides a positive ZFC solution to Ohta and Tamano’s question. Being quasi-
Mař́ık, space (3) is not an absolute counterexample to the measure extension
problem.

By (B), also space (1) is not an absolute counterexample to the measure
extension problem. It is impossible to prove in ZFC that the continuum is
real-valued-measurable (unless ZFC is inconsistent). Therefore (B) implies
that an absolute counterexample to the measure extension problem does
not exist in the class of Rudin spaces. In particular, Rudin’s space (1) is not
such an example.

Furthermore, it follows from (B) and Solovay’s theorem [22] that the
consistency strength of the existence of a non-quasi-Mař́ık Rudin space is
that of a measurable cardinal. This means that if the statement “there exists
a non-quasi-Mař́ık Rudin space” is consistent with ZFC, then this formal
consistency will have to be established from the assumption that the theory
ZFC + “there exists a measurable cardinal” is consistent. This is a much
stronger assumption than the assumption that ZFC is consistent.

Balogh’s space (2) remains now the only known candidate to be a ZFC
counterexample to the measure extension problem.

1.2. The method. The main tool we use is some further development
of Shelah’s PCF theory, which is then employed to analyze Baire measures
on Rudin spaces. Nonextendible Baire measures are shown to necessarily
come from a real-valued measure on the cardinality of the space. In Sub-
section 2.4 we indicate how to construct with PCF theory Rudin spaces
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whose cardinality is absolutely not real-valued-measurable. In these con-
structions no infinite products may be used: an infinite product of sets,
each with at least two members, has cardinality which is greater than
or equal to the continuum, which, by Solovay’s work, can be real-valued-
measurable.

1.3. Organization of the paper. In Section 2 we introduce the class
of Rudin spaces and develop their PCF-theoretic properties. Then we prove
that every Rudin space is Dowker and indicate how to prove that every
Rudin space contains a (closed) Rudin subspace of cardinality ℵω+1. In
Section 3 we prove that cofinal Baire measures on Rudin spaces do not ad-
mit regular Borel extensions, but always admit some Borel extensions, and
prove the main Baire-measure decomposition theorem: if the cardinality
of a Rudin space X is not real-valued-measurable then every Baire mea-
sure on X is a countable sum of measures concentrated on singletons and
of cofinal Baire measures supported on pairwise disjoint Rudin subspaces.
This suffices to prove that every Rudin space of non-real-valued-measurable
cardinality is quasi-Mař́ık. We conclude with some open problems in Sec-
tion 4. The PCF results contained in the Appendix are needed only in Sec-
tion 2.4.

2. Rudin spaces. We define Rudin spaces and develop their properties.
By ON we denote the class of ordinal numbers. The ordinal ω is the set

of natural numbers. For an ordinal α, cf α is the cofinality of α. By ONω

we denote the class of all functions from ω to ON. For f, g ∈ ONω we write
f ≤ g if f(n) ≤ g(n) for all n ∈ ω.

Let

P =
∏
n∈ω

(ωn+2 + 1) = {f : f ∈ ONω and (∀n)[f(n) ≤ ωn+2]
}
.

Let
T = {f : f ∈ P and (∀n)[cf f(n) > ℵ0]}.

Finally,
XR = {f ∈ T : (∃l)(∀n)[cf f(n) < ℵl]}.

XR is the underlying set of Rudin’s space (1). The topology on XR is defined
in 2.10 below.

2.1. m-clubs and m-stationarity in Xg for g ∈ T \XR. The topo-
logical properties of Rudin spaces follow from the PCF-theoretic properties
of (XR,≤). We establish the latter in this section.

The presentation is self-contained and no familiarity with PCF theory is
needed to read it.
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Definition 2.1. Suppose that g ∈ T .

(1) For each m ∈ ω let

Cgm = {n : cf g(n) = ℵm}.
Let

Cg≤m =
⋃

m′≤m
Cgm′ and Cg>m =

⋃
m′>m

Cgm′ .

(2) Let
Xg := {f ∈ XR : f ≤ g}.

If g ∈ XR, then by the definition of XR, there is some m such that
Cg≤m = ω, or equivalently, Cg>m = ∅ for all sufficiently large m. On the other
hand, if g ∈ T \XR, then Cgm 6= ∅ for infinitely many m ∈ ω.

Claim 2.2. Suppose g ∈ T \ XR. The partially ordered set (Xg,≤) is
directed.

Proof. Suppose h1, h2 ∈ Xg and let h = max{h1, h2}. For every n we
have ℵ0 < cf h(n) ≤ max{cf h1(n), cf h2(n)}, thus there is some ` such that
cf h(n) < ℵ` for all n and h ∈ XR. Also, h ≤ g, since h1 ≤ g and h2 ≤ g.
Thus h ∈ Xg and h1, h2 ≤ h.

Suppose (Q,≤) is any directed poset. Then for every p ∈ Q the set
{q ∈ Q : p ≤ q} is cofinal in (Q,≤), that is, for every t ∈ Q there is some
q ∈ Q such that t, p ≤ q. If S ⊆ Q is not cofinal in (Q,≤) then there is
p ∈ Q such that S ∩ {q ∈ Q : p ≤ q} = ∅ and thus Q \ S is cofinal in S. The
following follows immediately from this observation and Claim 2.2:

Claim 2.3. Suppose g ∈ T \XR. Then for every subset D ⊆ Xg, at least
one of the sets {D,Xg \D} is cofinal in (Xg,≤).

Definition 2.4. Suppose g ∈ T \XR. For m ∈ ω let

Dg
m = {h ∈ Xg : (∃n ∈ Cg>m)[h(n) = g(n)]},(i)

Xg
m = Xg \Dg

m = {h ∈ Xg : (∀n ∈ Cg>m)[h(n) < g(n)]}.(ii)

If g ∈ T \XR and h ∈ Xg
m satisfies f ≤ h then f ∈ Xg

m. Since Xg ⊆ XR,
for every h ∈ Xg we have h(n) < g(n) for all n ∈ Cg>m for some m. Then,
for every g ∈ T \XR, ⋂

m∈ω
Dg
m = ∅,(iii) ⋃

m∈ω
Xg
m = Xg.(iv)

Definition 2.5. Suppose that g ∈ T \ XR and m ∈ ω, m > 0. An
element f ∈ Xg is called m-normal in Xg if
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(1) f(c) = g(c) for all c ∈ Cg≤m,
(2) cf f(c) = ωm for all c ∈ Cg>m.

Claim 2.6. Suppose that g ∈ T \XR and m > 0. Then:

(1) If f ∈ Xg is m-normal in Xg then f ∈ Xg
m.

(2) For every h ∈ Xg
m there is an m-normal f ∈ Xg

m such that h ≤ f .
(3) For every m-normal h ≤ g the cofinality of

({f : f ∈ P and f < h},≤)

is equal to ℵm.
(4) The set of m-normal elements in Xg is ≤-directed.

Proof. Suppose h ∈ Xg
m. If f is an m-normal element in Xg then f(c) <

g(c) for all c ∈ Cg>m and hence f ∈ Xg
m.

To prove (2), suppose that h ∈ Xg
m. For every n ∈ Cg>m let f(n) ∈

g(n) \ (h(n) + 1) be an ordinal of cofinality ωm. Let f(n) = g(n) for all
n ∈ Cg≤m. The element f is m-normal in Xg and h ≤ f .

To prove (3), observe first that if C ⊆ ω is any nonempty set, m > 0
and h : C → ON satisfies cf h(n) = ℵm for all n ∈ C, then cf({f ∈ ONC :
f < h},≤) = ℵm. This can be seen by fixing, for every n ∈ C, a <-increasing
sequence 〈ζnα : α < ωm〉 with sup{ζnα : α < ωm} = h(n), and for every α < ω
letting fα(n) = ζnα . If f < h is any ordinal function on C, then cf h(n) > ℵ0

for n ∈ C, and so there is some α < ωm such that f(n) < fnα for all n ∈ C.
Next observe that the cofinality of a product of finitely many posets,

each with an infinite cofinality, is the maximum of their cofinalities. Now
(3) follows from the fact that ({f : f ∈ P and f < h},≤) is isomorphic to
the product of ({(f�Ai) : f ∈ P and f < h},≤) over all i ≤ m such that
there is some n with cf h(n) = ℵi, where Ai = {c ∈ ω : cf h(c) = ℵi}.

For part (4) it suffices to observe that max{h1, h2} is m-normal if h1, h2

are m-normal.

Definition 2.7. Suppose g ∈ T \XR and 0 < m ∈ ω.

(1) An m-club in Xg is a subset D ⊆ Xg which satisfies:

(a) Every h ∈ D is m-normal.
(b) D is cofinal in (Xg

m,≤), that is, for every h ∈ Xg
m there is some

f ∈ D such that h ≤ f .
(c) If hζ ∈ D for ζ < ωm and 〈(hζ�Cg>m) : ζ < ωm〉 is <-increasing,

then sup{hζ : ζ < ωm} ∈ D.

(2) A set S ⊆ Xg is m-stationary in Xg if S has a nonempty intersection
with every m-club in Xg.

Example. Suppose g ∈ T \XR and 0 < m ∈ ω. Assume that h ∈ Xg
m.

Then the set
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{f ∈ Xg : f is m-normal and h ≤ f}
is an m-club in Xg.

Claim 2.8. Suppose that g ∈ T \XR and m > 0.

(1) Every intersection of ℵm m-clubs is an m-club.
(2) If S ⊆ Xg is m-stationary then S is cofinal in (Xg

m,≤).
(3) Suppose S is not cofinal in Xg

m. Then Xg \ S contains an m-club
of Xg.

Proof. Suppose m > 0 and Dα is a given m-club for every α < ωm.
The intersection D :=

⋂
α<ωDα clearly satisfies conditions (a) and (c).

To see that it satisfies (b) let h be an arbitrary m-normal element in Xg.
By induction on α < ωm choose an m-normal element hα as follows. For
α = 0 let h0 = sup{h0

β : β < ωm} where h ≤ h0
0, h0

β ∈ Dβ and β < γ ⇒
(h0
β�C

g
>m) < (h0

γ�C
g
>m). This is clearly possible, as each Dβ is an m-club.

At limit α < ωm let hα = sup{hβ : β < α}, and for α+ 1 < ωm let hα+1 be
defined from hα the same way h0 is defined from h.

Let h∗ = sup{hα : α < ωm}. Since 〈hαβ : α < ωm〉 is <-increasing on
C>m, has supremum h∗ and each hαβ belongs to Dβ, it follows by (b) that
h∗ ∈ Dβ for all β < ωm. Clearly, h ≤ h∗, so we are done.

Part (2) follows from the fact that for every h ∈ Xg
m, the set {f ∈ Xg :

f is m-normal and h ≤ f} is an m-club.
(3) Let S ⊂ Xg be a subset which is not cofinal in Xg

m. From (2) it
follows that S is not m-stationary. In particular, there exists an m-club in
Xg \ S.

Lemma 2.9 (Fodor lemma for m-clubs). Suppose that g ∈ T \XR, 0 <
m ∈ ω and D is an m-club in Xg. Suppose that F : D → P with F (h) < h
for all h ∈ D. Then there is some f0 ∈ P and an m-stationary S ⊆ D such
that f0 < g and that F (h) < f0 for all h ∈ S.

Proof. Suppose that, contrary to the statement, for every f < g in P
there is an m-club Df such that F (h) 6< f for any h ∈ Df . By intersecting
each Df with D we assume that Df ⊆ D for all f < g in P .

By induction on ζ < ωm define hζ and Aζ so that the following hold:

(1) Aζ ⊆ {f ∈ P : f < hζ} is cofinal in ({f ∈ P : f < hζ},≤), |Aζ | = ℵm
and ξ < ζ ⇒ Aξ ⊆ Aζ .

(2) hζ ∈
⋂
{Df : f ∈

⋃
ξ<ζ Aξ} and ξ < ζ ⇒ (hξ�C

g
>m) < (hζ�C

g
>m).

Suppose that ζ < ωm, and hξ and Aξ are defined for all ξ < ζ. Pick
hζ ∈

⋂
{Df : f ∈

⋃
ξ<ζ Aξ} such that (hξ�C

g
>m) < (hζ�C

g
>m) and hξ|Cg≤m =

h0|Cg≤m for all ξ < ζ. Since |
⋃
ξ<ζ Aξ| = ℵm and the intersection of ℵm

m-clubs is an m-club, it is possible to pick hζ . (For ζ = 0 let hζ ∈ Xg
m be
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arbitrary.) Fix now a cofinal set B ⊆ {f ∈ P : f < hζ} satisfying |B| = ℵm
and let Aζ = B ∪

⋃
ξ<ζ Aξ.

Let h = sup{hζ : ζ < ωm}. Since hζ ∈ D for all ζ < ωm and D is an
m-club, h ∈ D. Denote now t := F (h) < h. Since 〈(hζ�Cg>m) : ζ < ωm〉
is strictly increasing with supremum (h�Cg>m), there is some ζ < ℵm such
that (t�Cg>m) < (hζ�C

g
>m). Notice that (t�Cg≤m) < (hζ�C

g
≤m) = (h�Cg≤m).

This means that t < hζ . Since Aζ is cofinal in {f ∈ P : f < hζ} and t ∈ P
satisfies t < hζ , there is some f ∈ Aζ such that t < f . Finally, since hξ ∈ Df

for all ζ < ξ < ωm, it follows that h ∈ Df . Now a contradiction follows,
since F (h) = t < f .

2.2. Topologically closed cofinal subsets of Xg for g ∈ T \ XR.
For f < g from P let

(f, g] = {h : h ∈ P and f < h ≤ g}.
The family of all sets (f, g] for f < g in P constitutes a basis for the box
product topology on P . In this topology, every basic open set (f, g] for f < g
in P is actually clopen.

All spaces that we shall consider are subspaces of T taken with the
induced box product topology from P . The first space we consider is
M. E. Rudin’s Dowker space from [16]:

Definition 2.10. The Rudin space XR ⊆ T is defined by

XR = {f ∈ T : (∃l)(∀n)[cf f(n) < ℵl]
}

and is equipped with the induced topology from the box product topology
on P .

If h ∈ XR and X ⊆ XR, then h belongs to the closure of X in XR if
and only if for all t ∈ P that satisfies t < h the set X ∩ (t, h] is nonempty.

Lemma 2.11. Let g ∈ T \XR and X ⊆ Xg. Assume that for all h < g
there exists f ∈ X such that h ≤ f . Then there exists m0 ∈ ω such that for
every h < g there exists f ∈ X ∩Xg

m0 such that h < f .

Proof. Suppose that for each m there is some hm < g such that hm 6≤ f
for all f ∈ X ∩ Xg

m. Let h = sup{hm : m ∈ ω}. Since cf g(c) > ω0 for all
c ∈ N, it follows that h < g. By the definition of h, h 6≤ f for all f ∈ X∩Xg

m

and m ∈ ω. Since
⋃
mX

g
m = Xg, this contradicts the assumption on X.

Lemma 2.12. Suppose g ∈ T \XR, X ⊆ Xg, and m0 > 0 has the property
that for all h < g there is some f ∈ X ∩Xg

m0 such that h < f . Then the set
of m-normal elements in the closure of X is cofinal in Xg

m for all m ≥ m0.

Proof. Let m ≥ m0 be given. Let m′ = max{n : n ≤ m and Cgn 6= ∅}
and fix a cofinal set A ⊆ (

∏
c∈Cg≤m

g(c),≤) of cardinality ℵm′ . Since m′ ≤ m,
we can fix an enumeration 〈tα : α < ωm〉 of A in which every t ∈ A appears
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ℵm times. Thus, the set {tα : β < α < ωm} is cofinal in (
∏
c∈Cg≤m

g(c),≤)
for every β < ωm.

Let h ∈ Xg
m be given. By induction on α < ωm find fα ∈ X ∩Xg

m0 such
that α < β < ωm implies that (fα�Cg>m) < (fβ�C

g
>m) and tα < (fα�Cg≤m).

Let f0 ∈ D be chosen so that t0 ∪ (h�Cg>m) < f0. This is possible by the
assumption on X because t0 ∪ (h�Cg>m) < g. At stage α > 0 let hα =
tα ∪ sup{(fβ�Cg>m) : β < α} and find fα ∈ D ∩Xg

m such that hα < fα.
Let f := (g�Cg≤m) ∪ sup{fα�Cg>m : α < ωm}. Clearly, f ∈ Xg, is m-

normal and h ≤ f . To see that f belongs to the closure of X let t < f be
arbitrary. Find some β < ωm such that (t�Cg>m) < (fβ�C

g
>m). Then find

some β < α < ωm such that (t�Cg≤m) < tα. Now fα ∈ (t, f ].

Theorem 2.13. Suppose g ∈ T \ XR and X ⊆ Xg is closed in XR.
Then X is cofinal in (Xg,≤) if and only if there is some m0 > 0 such that
X contains an m-club of Xg for all m ≥ m0.

Proof. If X ⊆ Xg is any cofinal set in (Xg,≤), then by Lemma 2.11
there exists some m0 such that for all f < g there is h ∈ X ∩ Xg

m0 such
that f < h. If X is also closed in XR, then by Lemma 2.12, for all m ≥ m0,
the set of all m-normal elements in X—denote it by Am—is cofinal in Xg

m.
Hence Am satisfies conditions (a) and (b) in Definition 2.7 of an m-club. It
also satisfies (c), since X is closed, and therefore Am ⊆ X is an m-club.

Conversely, suppose X ⊆ Xg is closed and contains an m-club for every
m ≥ m0 for some m0 > 0. Let h ∈ Xg be given. Since Xg =

⋃
mX

g
m,

there exists some m such that h ∈ Xg
m. By increasing m, we may assume

m ≥ m0. Since X contains an m-club, there is some m-normal f ∈ X such
that h ≤ f .

Remark. Taking g(n) = ωn+2 for all n, the spaceDg
m form > 1 is closed

and cofinal in Xg = XR but contains no m-clubs for m′ < m. This shows
that the restriction to m ≥ m0 for some m0 is necessary in Theorem 2.13.

Lemma 2.14. Suppose g ∈ T \ XR and X ⊆ Xg is closed in XR and
cofinal in (Xg,≤). Suppose m > 0 and X contains an m-club in Xg. Then
for every closed D ⊆ X, either D or X \D contains an m-club of Xg.

Proof. Suppose m > 0, E ⊆ X is an m-club of Xg and D ⊆ X is closed.
As D is closed, D ∩ E satisfies condition (c) in the definition of m-club.
Thus, if D ∩ E is cofinal in (E,≤), then D ∩ E is an m-club.

Otherwise, there is some f ∈ E such that {h : h ∈ E and f ≤ h}∩D = ∅,
which implies that X \D contains an m-club.

2.3. Rudin spaces

Definition 2.15. A space X is a Rudin space if there exists g ∈ T \XR

such that X ⊆ Xg is closed in XR and cofinal in (Xg,≤).
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Observe that Xg is clopen in XR for every g ∈ T \XR. This means that
for X ⊆ Xg, X is closed in XR iff X is closed in Xg. From now on we refer
to this situation just by “X ⊆ Xg is closed”.

Claim 2.16. XR is a Rudin space and for every g ∈ T \ XR, Xg is a
Rudin space.

Proof. The second part is obvious as Xg is clopen in XR and cofinal in
(Xg,≤). For the first part let g be defined by g(n) = ωn+2. Now Xg = XR.

Claim 2.17 ([16, Lemma 4]). XR is a P-space, that is, every countable
intersection of open subsets of XR is open.

Proof. Suppose Um ⊆ XR is open for eachm ∈ N and suppose f ∈
⋂
Um.

For each m there is some hm < f such that (hm, f ] ⊆ Uf . Since cf f(n) > ℵ0

for all n ∈ N, it follows that h = sup{hm : m ∈ N} satisfies h < f and
clearly (h, f ] ⊆

⋂
Um.

Corollary 2.18. Every Rudin space is a P -space.

Definition 2.19.

(1) A topological space X is collectionwise normal if for every discrete
family {Hj : j ∈ J} of closed subsets of X there exists a family
{Uj : j ∈ J} of open pairwise disjoint subsets of X such that for
every j ∈ J there is Hj ⊆ Uj .

(2) A normal topological space X is countably paracompact if for every
family {Dn : n ∈ ω} of closed subsets of X, if

⋂
n∈ωDn = ∅, then

there exists a family {Un : n ∈ ω} of open subsets of X such that
Dn ⊆ Un for every n ∈ ω and

⋂
n∈ω Un = ∅.

(3) A topological space X is Dowker if it is normal and not countably
paracompact.

Every collectionwise normal space is of course normal.

Theorem 2.20 (M. E. Rudin, [16]). XR is collectionwise normal.

Every Rudin space is a closed subspace of XR, therefore:

Corollary 2.21. Every Rudin space is collectionwise normal.

Lemma 2.22. Suppose that g ∈ T \XR and that X ⊆ Xg is closed and
cofinal in (Xg,≤). The collection of closed subsets of X which are cofinal in
(X,≤) has the finite intersection property, in fact, the intersection of two
closed and cofinal subsets of X is closed and cofinal.

Proof. Suppose D1, D2 ⊆ X are closed and cofinal in (X,≤). Then they
are closed and cofinal in (Xg,≤). By Theorem 2.13 applied to D1 and D2,
there is some m > 0 such that both D1 and D2 contain m-clubs of Xg. Now
by Claim 2.8, D1 ∩D2 contains an m-club of Xg and is therefore cofinal.

The intersection D1 ∩D2 is clearly closed.
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Definition 2.23. Suppose g ∈ T \XR and X ⊆ Xg is closed and cofinal
in (Xg,≤). For every m > 0 we define, analogously to Definition 2.4,

DX
m = X ∩Dg

m = {h ∈ X : (∃n ∈ Cg>m)[h(n) = g(n)]},(v)

Xm = X ∩Xg
m = X \DX

m = {h ∈ X : (∀n ∈ Cg>m)[h(n) < g(n)]}.(vi)

If X ⊆ Xg is closed and cofinal in (Xg,≤) and h ∈ Xm, then for every
t ∈ X such that t ≤ h we have t ∈ Xm. This makes Xn an open subset of X,
and Dm a closed subset of X for all m > 0. The set DX

m is clearly cofinal in
X for all m > 0. Finally,

⋂
mD

X
m = ∅ and X =

⋃
mXm.

Claim 2.24. Suppose g ∈ T \XR and X ⊆ Xg is closed and cofinal in
(Xg,≤). The collection of closed and cofinal subsets in (X,≤) does not have
the countable intersection property.

Proof. For every m > 0 the set DX
m is closed and cofinal in (X,≤) and⋂

m>0D
X
m = ∅.

Lemma 2.25. Suppose that g ∈ T \XR and D ⊆ Xg is closed and cofinal
in (Xg,≤). Then for every open U ⊂ Xg such that D ⊆ U there is f ∈ P
such that f < g and (f, g] ∩Xg ⊆ U .

Proof. Suppose that U ⊆ Xg is open and D ⊆ U is closed and cofinal in
(Xg,≤). For every h ∈ D, fix F (h) ∈ P so that F (h) < h and (F (h), h] ∩
Xg ⊆ U . This is possible because h ∈ U and U is open.

By Theorem 2.13 there exists some m0 > 0 and, for every m ≥ m0,
an m-club of Xg, Dm ⊆ D. By the Fodor Lemma for m-clubs, there is an
m-stationary Sm ⊆ Dm and fm < g such that for all h ∈ Sm we have
F (h) < fm. Let f = sup{fm : m ≥ m0}. Since cf g(n) > ℵ0 for all n, it
follows that f(n) < g(n) for all n, that is, f < g.

Suppose now that h ∈ (f, g] ∩Xg and we shall show that h ∈ U . There
is some m ≥ m0 such that h ∈ Xg

m, and since Sm is cofinal in Xg
m, there is

some t ∈ Sm such that h ≤ t. Now

h ∈ (f, t] ∩Xg ⊆ (fm, t] ∩Xg ⊆ U.
Thus Xg ∩ (t, g] ⊆ U .

Theorem 2.26. Every Rudin space is Dowker.

Proof. Every Rudin space is normal by 2.21.
Given a closed and cofinal X ⊆ Xg for some g ∈ T \XR, it follows that⋂

mD
X
m = ∅ and each DX

m is closed and cofinal in (X,≤). Therefore, each
DX
m is also closed and cofinal in (Xg,≤). Suppose Um ⊆ X is given for each

m so that Um is open and DX
m ⊆ Um, and let U∗m ⊆ Xg be open in Xg such

that Um = U∗m ∩X.
By Lemma 2.25, for every m ∈ ω there is fm ∈ P such that fm < g

and (fm, g] ∩ Xg ⊆ U∗m. So (fm, g] ∩ X ⊆ Um. Let f = supm∈ω fm. We
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have f < g and X ∩ (f, g] ⊆
⋂
m∈ω Um. Thus, by cofinality of X in (Xg,≤),⋂

m∈ω Um 6= ∅. This shows that X is not countably paracompact.

Theorem 2.27. Suppose g ∈ T \XR and X ⊆ Xg is closed and cofinal
in (Xg,≤). Then the collection of clopen and cofinal subsets of (X,≤) is a
σ-ultrafilter of clopen sets.

Proof. Suppose that for each i ∈ ω the set Di ⊆ X is clopen and cofinal
in (X,≤). By Lemma 2.25, for each i there is some fi < g such that X ∩
(fi, g] ⊆ Di. Now f = sup{fi : i ∈ ω} < g and X ∩ (f, g] ⊆

⋂
iDi. This

shows that a countable intersection of clopen and cofinal subsets of X is
cofinal in (X,≤). It is also clopen, since X is a P -space.

From Claim 2.3 it follows that for every clopen set D ⊆ X either D or
X\D is cofinal in (X,≤). Thus the clopen and cofinal sets form a σ-ultrafilter
of clopen sets in X.

2.4. Rudin spaces of bounded cardinality. In this section we prove
that every Rudin space contains a closed Rudin subspace of cardinality ℵω+1.
Certain statements in this subsection are sufficiently close to results of [13]
to be stated here without proofs. The main difference from [13] is that the
ideal at work there is the ideal of finite subsets of ω, whereas here we must
consider ideals which contain infinite sets. The operation of closing a set
X ⊂ XR under all possible modifications of a function f ∈ XR modulo the
ideal of finite sets does not increase the cardinality of the set beyond ℵω, but
an uncontrolled closure under all modifications modulo an ideal with infinite
sets increases cardinality up to (ℵω)ℵ0 . So, to handle all Rudin spaces, a new
approach has to be taken.

We assume familiarity with the following concepts: exact upper bound
(eub) of a given sequence of elements of ONω with respect to a given ideal
on ω, flatness of a given sequence of elements of ONω with respect to a given
ideal on ω, true cofinality and boundedness of a given subset of ONω with
respect to a given ideal on ω. All these concepts are defined in the Appendix.
See Definitions 5.1, 5.2, 5.5, together with formulations of Claim 5.3 and
Lemma 5.4.

Definition 2.28. Suppose g ∈ T \XR and X ⊆ Xg is closed and cofinal
in Xg.

(1) Let Ig be the ideal generated over ω by {Cg≤m : m ∈ N}.
(2) For each m with Cgm 6= ∅ fix a strictly increasing and continuous

sequence 〈tmα : α ≤ ωm〉 of functions on Cgm with tmωm = (g�Cgm)
and such that for every α ≤ ωm and for every n1, n2 ∈ Cgm we have
cf tmα (n1) = cf tmα (n2). Let

Dg = {h ∈ Xg : (∀m)(∃α ≤ ωm)[(h�Cgm) = tmα ]}.
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Claim 2.29. Dg is closed and cofinal in Xg.

Proof. Assume that f ∈ Xg \Dg. Find m ∈ ω and n ∈ Cgm such that

(vii) (∀α ≤ ℵm)[f(n) 6= tmα (n)].

By continuity of 〈tmα (n) : α ≤ ωm〉 there exists a largest α0 < ωm satisfying
tmα0

(n) < f(n). The set {h : h ∈ Xg and tmα0
(n) < h(n) ≤ f(n)} is open,

disjoint from Dg and contains f . This shows that Dg is closed.
To see that Dg is cofinal in (Xg,≤) suppose f ∈ Xg is arbitrary. Suppose

m ∈ ω is such that Cgm 6= ∅ and let tm = (f�Cgm). Since f ∈ Xg, for all but
finitely many n ∈ ω we have tm < (g�Cgm). Fix m0 ∈ ω so that m0 > 0 and
for all m > m0, if tm is defined, then tm < (g�Cgm). For each m > m0 for
which Cgm 6= ∅ find αm < ωm such that tm < tmαm . Since m ≥ 2 it follows
that cf g(n) = ωm ≥ ω2, so we may increase αm < ωm and assume that
cf αm = ω1. For each m ≤ m0 let αm = ωm, so tmαm = (g�Cgm). Now let
h =

⋃
m∈ωm, Cgm 6=∅ t

m
αm . Then f ≤ h ≤ g and since cf h(n) ≥ ω1 for all n, it

follows that h ∈ Xg and by definition of h, also h ∈ Dg.

Claim 2.30. Suppose g ∈ T \XR. Then every subset of Xg of cardinality
ℵω is bounded in (Xg,≤Ig) and the least cardinality of an unbounded subset
of (Xg,≤Ig), denoted by b(X,≤Ig), is a regular cardinal.

Proof. Let B = {fα : α < ℵω} ⊆ Xg be given. For every m > 0 and
n ∈ Cgm let

f ′(n) = sup{fα(n) : α < ωm−1 and fα(n) < g(n)}.
Since for n ∈ Cgm we have cf g(n) = ωm, the definition of f ′ implies that

f ′ < g.
Let α < ℵω be given. Then for somemα, which, without loss of generality,

satisfies α < ωmα , for all m > mα and n ∈ Cgm we have fα(n) < g(n);
therefore fα(n) ≤ f ′(n).

We showed that for every α < ℵω there is some mα such that (fα�Cgm) <
(f ′�Cgm) < (g�Cgm) for all m ≥ mα. Find some f ∈ Xg such that f ′ ≤ f ;
then fα <Ig f for all α < ℵω as required.

The proof that b(Xg,≤Ig) is regular is straightforward.

Theorem 2.31. Suppose g ∈ T \XR, X is closed and cofinal in (Xg,≤)
and tcf(X,≤Ig) = λ. Then there is a cofinal Rudin subspace Y ⊆ X of
cardinality λ.

Proof (sketch). Since we here generalize the proof from [13], we just give
the definition of a cofinal Rudin subspace Y ⊆ X and leave the proof that
Y is a closed subspace of X to the reader.

First, since Dg = DX
g is a closed and cofinal subset of X, by intersecting

X with Dg, we may assume that X ⊆ Dg (as this intersection also has
true cofinality λ). Since λ = tcf(X,≤Ig), λ is regular by Claim 2.30, and
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greater than ℵω. We can fix a sequence 〈hα : α < λ〉 of elements of X
which is <Ig -increasing and <Ig -cofinal in X such that for every α < λ with
cf α = ℵn, if h�α is flat, then hα is an eub of h�α. Let

(viii) Y = {h ∈ X : (∃α < λ)[h =Ig hα]}.
It is clear from the definition that Y is a cofinal subspace.

Claim 2.32. |Y | = λ.

Proof of the Claim. For every h ∈ Y there exists a (unique) α < λ such
that h =Ig hα. This means that there is some m such that hα(n) 6= h(n)⇒
n ∈ Cg≤m. Since X ⊆ Dg, for every m′ ≤ m the restriction (h�Cgm′) is one
of ωm′ fixed functions. In total, the number of possible h ∈ X which satisfy
h =Ig hα, for a given α < λ, is ≤ ℵω. This shows that |Y | ≤ λ × ℵω = λ.
The reverse inequality holds too, since hα ∈ Y for all α < λ.

The methods of [13] are sufficient to prove that Y is a closed subset of X,
so we omit the proof of this fact.

Below we shall need the following:

Lemma 2.33. Suppose g ∈ T \XR, Y ⊆ Dg is nonempty and g∗ ∈ ONω

is an eub of Y modulo Ig. Then there exists a sequence 〈α(m) : m ∈ ω〉 such
that α(m) ≤ ωm for all m and there exists some m0 ∈ ω such that for every
m ≥ m0,

(g∗�Cgm) = tmα(m).

Proof. For every m ∈ ω we define

α(m) = sup{β : tβm ≤ (g∗�Cgm)}.
From Definition 2.28 and Y 6= ∅ it follows that

tα(m)
m ≤ (g∗�Cgm).

For n ∈ Cgm define
h(n) = tα(m)

m (n) ≤ g∗(n).

The proof will be finished when we establish the equality

g∗ =Ig h.

From Claim 5.3 in the Appendix, in order to prove that g∗ =Ig h it is enough
to check that h is an upper bound of Y modulo Ig. Assume, then, to the
contrary, that there exists f ∈ Y such that f 6≤Ig h. Let

L = {m ∈ ω : (f�Cgm) 6≤ (h�Cgm)} = {m ∈ ω : (f�Cgm) > (h�Cgm)}.
Since f 6≤Ig h, the set L is infinite. The function g∗ is an upper bound of Y ,
hence there exists M0 ∈ ω such that

(ix) (f�C>M0
g ) ≤ (g∗�C>M0

g ).
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Let m ∈ L, m > M0. Fix β ≤ ℵm such that (f�Cgm) = tβm and observe that
from inequality (ix) it follows that β ≤ α(m), in particular

(h�Cgm) = tα(m)
m ≥ tβm = (f�Cgm),

but m ∈ L, and from the definition of L it follows that

(f�Cgm) > (h�Cgm),

a contradiction.

The following is a Rudin space analog of Shelah’s existence theorem for
an ℵω+1-scale [18, Theorem 2.5, p. 50].

Theorem 2.34. For every g ∈ T \XR and a Rudin space X closed and
cofinal in Xg there is some g∗ ≤ g in T \XR such that

(1) Ig∗ = Ig,
(2) tcf(X ∩Xg∗ ,≤Ig∗ ) = ℵω+1.

Proof.
We assume that X ⊆ Dg.
First we shall define a <Ig -increasing sequence h = 〈hα : α < ℵω+1〉

of members of X with an eub. In order to obtain an eub we will apply
Theorem 5.6 from the Appendix. In particular it says that a <Ig -sequence
h has an eub if for all k > 0 the set

{α < ℵω+1 : cf α = ℵk ∧ h�α is flat modulo Ig}
is stationary in ℵω+1.

Let S =
⋃
n>0 Sn ⊆ ℵω+1 be fixed so that S ∈ I[ℵω+1] and Sn ⊆ {α <

ℵω+1 : cf α = ℵn} is stationary. This is possible due to Shelah’s Theorem 5.8
(see the Appendix). Let Pα ⊆ P(α) be fixed for all α < ℵω+1 so that
|Pα| ≤ ℵω, α < β < ℵω+1 implies Pα ⊆ Pβ, otp c < ℵω for all c ∈ Pα and
such that for all δ ∈ Sn there is c ⊆ δ of ordertype ωn such that for all β < δ
we have c ∩ β ∈

⋃
α<δ Pα.

By induction on α < ℵω+1 we now construct a <Ig -increasing sequence
〈hα : α < ℵω+1〉 of members of X.

Let h0 ∈ X be arbitrary.
Suppose α < ℵω+1 and hβ is defined for all β < α. For all c ∈ Pα let

tc = sup{hβ+1 : β ∈ c}. Since otp c < ℵω, it follows that tc <Ig g. Since
|Pα| ≤ ℵω and |α| ≤ ℵω, by Claim 2.30 it is possible to choose hα ∈ X so
that tc <Ig hα for all c ∈ Pα and hβ <Ig hα for all β < α.

Claim 2.35. For n > 0 and every δ ∈ Sn, h�δ is flat.

Proof. Let δ ∈ Sn and fix c ⊆ δ cofinal in δ with otp c = ωn such that for
all β ∈ c there is some γ < δ such that c∩ β ∈ Pγ . According to Lemma 5.4
from the Appendix it suffices to show that h�δ is equivalent modulo Ig to
〈tc∩β : β ∈ c〉 where, according to the definition, tc∩β = sup{hα : α ∈ c∩β}.
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First, if α < δ is arbitrary, find β ∈ c and η ∈ c ∩ β satisfying

α < η < β.

Clearly,
hα ≤Ig hη ≤ tc∩β,

thus we see that for all α < δ there is some β ∈ c such that hα ≤Ig tc∩β.
Conversely, suppose β ∈ c is given. There is some α < δ so that c∩β ∈ Pα,

therefore by the inductive construction of hα we have tc∩β <Ig hα.

By Theorem 5.6 from the Appendix, there exists an exact upper bound
g′ of the sequence h = 〈hα : α < ℵω+1〉 such that

(x) (∀k)[{n : cf g′(n) < ℵk} ∈ Ig],
that is, the set {n : cf g′(n) < ℵk} is contained in some Cg≤m. Clearly, we
may assume that g′ ≤ g and that cf g′(n) > ℵ0 for all n.

For each α < ℵω+1 there is some m such that hα(n) < g′(n) for all
n ∈ Cg<m, so there is some m such that

{h ∈ X : (∀n ∈ Cg>m)[h(n) < g′(n)]}
is cofinal for <Ig below g′. Let now g∗ = (g�Cg≤m)∪(g′�Cg>m). Since g∗ differs
from g′ only on some Cg≤m, g∗ is also an eub of h modulo Ig.

Claim 2.36. Ig∗ = Ig.

Proof. We have to prove that

(1) for every k ∈ ω we have Cgk ∈ Ig∗ , or equivalently for every k ∈ ω
there exists m ∈ ω such that Cgk ⊆ C

g∗

≤m,
(2) for every k ∈ ω we have Cg

∗

k ∈ Ig, or equivalently for every k ∈ ω
there exists m ∈ ω such that Cg

∗

k ⊆ C
g
≤m.

First we prove (1). From Lemma 2.33 we may assume that for every
k ∈ ω there exists α(k) ≤ ℵk such that

(g∗�Cgk) = t
α(k)
k .

We fix k ∈ ω. Since from Definition 2.28 the cofinality of tα(k)
k is fixed, equal

to some ℵm, we have Cgk ⊆ C
g∗
m .

Statement (2) follows from (x).

As h demonstrates, tcf({h ∈ X : h ≤ g∗}, <Ig) = ℵω+1.

Theorem 2.37. For every Rudin space X there is a Rudin space Y ⊆ X
with |Y | = ℵω+1.

Proof. Suppose g ∈ T\XR andX ⊆ Xg is a Rudin space. By 2.34 there is
some g∗ ≤ g in T \XR such that Ig∗ = Ig and tcf(X∩Xg∗ ,≤Ig∗ ) = ℵω+1. By
2.31, X∩Xg∗ contains a closed and cofinal subspace Y of cardinality ℵω+1.
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3. Baire measures and their Borel extensions in Rudin spaces.
In this section we prove that all Rudin spaces are non-Mař́ık and that every
Rudin space whose cardinality is not real-valued-measurable is quasi-Mař́ık.

Definition 3.1. For a given space X and a σ-field σ ⊂ P(X), a function
µ : Σ → R is a finite measure if

(1) ∅, X ∈ Σ, µ(∅) = 0, µ(X) > 0,
(2) for every A,B ∈ Σ, if A ⊆ B then µ(A) ≤ µ(B),
(3) for every pairwise disjoint family {An : n ∈ ω} ⊆ Σ,

µ
(⋃
n∈ω

An

)
=
∑
n∈ω

µ(An).

Definition 3.2. For a given space X and a measure µ on a σ-field Σ
of subsets of X, we say that µ is concentrated on a singleton if there exists
x ∈ X such that for every A ∈ Σ we have µ(A) = µ(X) if and only if x ∈ A.

Definition 3.3. Let X be a topological space.

(1) A set A ⊆ X is functionally closed if there exists a continuous func-
tion f : X → [0, 1] such that A = f−1[{0}].

(2) The Baire σ-field Ba(X) on X is the σ-field generated by all func-
tionally closed sets.

(3) A finite measure defined on Ba(X) is called a Baire measure.

Recall that in a normal space X a closed set D ⊆ X is functionally
closed if and only if D is Gδ in X, and that X is called perfectly normal if
all closed subsets of X are functionally closed. All perfectly normal spaces
are countably paracompact, hence Dowker spaces are never perfectly normal.

Claim 3.4. Let X be a Rudin space. The Baire σ-field Ba(X) is equal
to the field of all clopen subsets of X.

Proof. By Claim 2.17 every countable intersection of clopen sets is
clopen. Thus, the field of all clopen subsets of X is a σ-field of sets.

Each clopen set is functionally closed trivially. Conversely, a functionally
closed set is closed and Gδ, hence clopen.

Definition 3.5. Let X be a topological space.

(1) The Borel σ-field Bor(X) on X is the σ-field generated by all closed
subsets of X.

(2) A measure on Bor(X) is called a Borel measure.

Definition 3.6. Let X be a topological space and let µ be a measure
on Bor(X). A Borel measure µ is called regular if for every A ∈ Bor(X),

µ(A) = sup{µ(F ) : F ⊆ A, F closed}.
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Definition 3.7. Let X be a normal topological space. We call X a
Mař́ık space if for every Baire measure µ : Ba(X) → [0, 1] there exists a
regular Borel measure which extends µ.

Definition 3.8. Suppose that X is a Rudin space. A Baire measure
µ on X is called cofinal if there exists 0 < r ∈ R such that for every set
A ∈ Ba(X),

µ(A) = r iff A is cofinal in X.

By Theorem 2.27 the collection of all clopen and cofinal subsets of a
Rudin space X forms a σ-ultrafilter of clopen sets. Since the family of all
clopen subsets of X coincides with the σ-field Ba(X), the clopen and cofinal
subsets of X form a σ-ultrafilter of Baire sets. A cofinal Baire measure
is, then, a two-valued measure that assigns the value r > 0 to all sets in
this σ-ultrafilter and the value 0 to all Baire sets which are not in this
σ-ultrafilter.

The next theorem generalizes Simon’s Theorem [20] that XR is not
Mař́ık. See also Wheeler [24].

Theorem 3.9. Suppose g ∈ T \ XR and X ⊆ Xg closed and cofinal
in Xg. If µ is a cofinal Baire measure on X then µ does not admit a regular
Borel extension. In particular, no Rudin space is Mař́ık.

Proof. Let µ be a cofinal Baire measure. We assume for simplicity that
µ(X) = 1. Assume to the contrary that there exists a regular Borel extension
of µ and denote this extension also by µ.

According to Definition 2.23 for every n ∈ ω we have

DX
m = X ∩Dg

m = {h ∈ X : (∃n ∈ Cg>m)[h(n) = g(n)]}.

Recall that for every m ∈ ω the set DX
m is closed and

⋂
m∈ωD

X
m = ∅. In

particular, limm→∞ µ(DX
m) = 0. We fix m0 ∈ ω such that µ(DX

m0
) < 1/2.

By Definition 2.23, Xm0 = X \ DX
m0

and by our choice of m0 we have
µ(Xm0) > 1/2. The set Xm0 is open and from the regularity of µ we con-
clude that there exists a closed subset F ⊆ Xm0 such that µ(F ) ≥ 1/2. By
normality of X there are open sets U and W such that DX

m0
⊆ U , F ⊆ W

and U ∩W = ∅.
Since DX

m0
is closed and cofinal and DX

m0
⊆ U , and U is open, by

Lemma 2.25 there exists f ∈ P so that f < g and X ∩ (f, g] ⊆ U . Thus U
contains a clopen and cofinal set X∩(f, g] whose measure is 1. Consequently,
µ(W ) = 0 and as F ⊆W also µ(F ) = 0, contrary to µ(F ) ≥ 1/2.

Theorem 3.10. Suppose g ∈ T \XR and X ⊆ Xg is closed and cofinal
in (Xg,≤). Let µ be a cofinal Baire measure on X. Then there is some
m0 > 0 such that for all m ≥ m0, µ extends to a Borel measure µm via the
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definition

(i) µm(B) =
{
µ(X) if B contains an m-club,
0 otherwise.

Proof. Since X ⊆ Xg is closed and cofinal in (Xg,≤), by Claim 2.13
there exists m0 > 0 such that X contains an m-club in Xg for all m ≥ m0.
We show that for all m ≥ m0 the condition (i) above defines a Borel measure
µm which extends µ.

By Lemma 2.25 and the Example after Definition 2.7, we know that every
clopen and cofinal subset B of X has the property that for every m ≥ m0

the set B contains an m-club. This shows that

µm(B) = µ(X) = µ(B)

for every set B belonging to the σ-ultrafilter in Ba(X) of all clopen and
cofinal subsets. According to Definition 3.8, this implies that µm(B) = µ(B)
for every B ∈ Ba(X).

Let

C = {B ⊆ X : (∀m ≥ m0)[B or X \B contains an m-club of Xg]}.
To finish the proof it is enough to show that C contains all Borel sets. We
prove this by showing that C is a σ-field to which all closed subsets of X
belong.

Suppose that D ⊆ X is closed. By Lemma 2.14, either D or X \ D
contains an m-club of Xg for every m ≥ m0, hence D ∈ C.

Obviously, if B ∈ C, then X \ B ∈ C. To see that C is closed under
countable intersections, suppose we are given Bn ∈ C for each n ∈ ω and
that m ≥ m0 is fixed. Either for every n ∈ ω the set Bn contains an m-club,
and then by Claim 2.8, the intersection

⋂
nBn also contains an m-club; or

for some n ∈ ω the set Bn does not contain an m-club, and then X \ Bn
contains an m-club, and since

X \Bn ⊆ X \
⋂
n∈ω

Bn,

also X \
⋂
n∈ω Bn contains an m-club.

If m2 > m1 ≥ m0 then µm1 6= µm2 , since any m1-club is disjoint from
any m2-club. The extensions described in Theorem 3.10 for all m ≥ m0

are not all possible extensions of µ. For every sequence r = {rm}m≥m0 of
nonnegative reals satisfying

∑
m≥m0

rm = 1 one can define a Borel extension
µr of µ via µr(B) =

∑
m≥m0

rm · µm(B), and this correspondence is clearly
injective. This shows that for a given Baire measure µ there are at least 2ℵ0
different Borel extensions.

Definition 3.11. A cardinal κ is real-valued-measurable if there exists
a measure µ : P (κ)→ [0, 1] which is 0 on singletons and such that µ(κ) = 1.
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If κ < λ are cardinals and κ is real-valued-measurable, then clearly also
λ is real-valued-measurable.

Theorem 3.12 (S. Ulam, [9, Theorem 1D]). If κ is the smallest real–
valued-measurable cardinal then κ is weakly inaccessible, that is, a regular
limit cardinal, and if the continuum is not real-valued-measurable, then κ
is 2-valued-measurable, hence is strongly inaccessible, that is, regular and
α, β < κ⇒ αβ < κ.

From Ulam’s theorem the following follows immediately:

Claim 3.13. Suppose α, β are infinite cardinals below the least real-
valued-measurable cardinal. Then αβ is real-valued-measurable iff 2ℵ0 is.

Proof. Let α, β be infinite. So 2ℵ0 ≤ αβ and hence if 2ℵ0 is real-valued-
measurable so is αβ. Conversely, if 2ℵ0 is not real-valued-measurable, the
least real-valued-measurable κ is strongly inaccessible by Ulam’s theorem.
Thus, if α, β < κ also αβ < κ.

In the next theorem the reason for working with the full class of Rudin
spaces becomes clear. In the generality of this class we can prove a structure
theorem for all Baire measures on sufficiently small Rudin spaces.

Theorem 3.14. Suppose g ∈ T \XR and X ⊆ Xg is closed and cofinal
in (Xg,≤). Suppose that |X| is not real-valued-measurable. Suppose µ is a
Baire measure on X. Then there are countable sets I and J , elements fi ∈ X
for all i ∈ I, clopen Rudin subspaces Xj ⊆ X for all j ∈ J and measures µi
for i ∈ I and µj for j ∈ J such that:

(1) for every i ∈ I, µi is a measure on X concentrated on the single-
ton {fi},

(2) if j1, j2 ∈ J and j1 6= j2 then Xj1 ∩Xj2 = ∅,
(3) for every j ∈ J , µj is a cofinal Baire measure on Xj.

Finally,
µ =

∑
i∈I

µi +
∑
j∈J

µj .

Proof. Fix a Baire measure µ on X and assume for simplicity that
µ(X) = 1.

For n ∈ ω and α ≤ g(n) let Un,α := {f ∈ X : f(n) ≤ α}. This is a clopen
set in X, and therefore belongs to Ba(X).

For each n ∈ ω we define by induction on ξ < ξn, for some ordinal
ξn < ω1 which will be specified below, a strictly increasing and continuous
countable sequence of ordinals αnξ ≤ g(n). Assuming that αnξ is defined, we
define the real number rnξ ∈ [0, 1] by

(ii) rnξ := µ(Un,αnξ ).
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Let αn0 = 0. Since f(n) > 0 for all f ∈ X we have Un,0 = ∅ and
rn0 := µ(Un,α0) = 0.

For limit ξ < ω1 let αnξ = sup{αnζ : ζ < ξ}. Since cf αnξ = ℵ0, it follows
that f(n) 6= αnξ for all f ∈ X and therefore

⋃
ζ<ξ Un,αnζ = Un,αnξ . Hence,

rnξ = sup{rnζ : ζ < ξ}.
If rnξ is defined and rnξ < 1, then necessarily αnξ < g(n), as Un,g(n) = X.

Let

(iii) αnξ+1 = min{α ≤ g(n) : µ(Un,α) > rnξ }.

If rnξ = 1 we stop the induction and put ξn = ξ + 1.
The induction has to terminate at some ξn < ω1, or else {rnζ : ζ < ω1} ⊆

[0, 1] would be order isomorphic to ω1, which is impossible.

Claim 3.15. For each n ∈ ω and ξ < ξn, cf αnξ > ℵ0 if and only if ξ is
a successor ordinal.

Proof. If ξ < ξn is limit, then by continuity αnξ has cofinality ℵ0.
Suppose that ξ = ζ + 1 < ξn. First we observe that αnζ+1 cannot be

a successor, since if αnζ+1 = β + 1 then Un,β+1 = Un,β, contrary to the
minimality of αnζ+1. We know then that αnζ+1 is limit, and need only prove
that its cofinality is uncountable. Suppose to the contrary that 〈βi : i ∈ ω〉
is strictly increasing with limit αnζ+1 and that β0 > αnζ . By the definition of
αnζ+1 (see formula (iii)),

µ(Un,βi) = µ(Un,αnζ ) for all i ∈ ω.

Since µ is σ-additive,

µ
(⋃

i

Un,βi

)
= µ(Un,αnζ ),

and since cf αnζ+1 = ℵ0, ⋃
i

Un,βi = Un,αnζ+1
.

This contradicts µ(Un,αnζ+1
) > µ(Un,αnζ ).

For each n ∈ ω let Sn = {αnξ : ξ < ξn}.
Suppose that x ∈

∏
n∈ω(Sn \ sup{Sn}); then for every n ∈ ω, min{Sn \

(x(n) + 1)} is well defined. Denote by xs the function in
∏
n∈ω Sn that

satisfies
xs(n) = min{Sn \ (x(n) + 1)} for all n ∈ ω.

For every x ∈
∏
n∈ω(Sn \ {supSn}) let

Ux = (x, xs] = {f ∈ X : (∀n ∈ ω)[x(n) < f(n) ≤ xs(n)]}.
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Let x ∈
∏
n∈ω Sn and suppose that for some n ∈ ω we have x(n) =

maxSn. In that case let
Ux = (x, g].

If x(n) = g(n) for some n ∈ ω then Ux = ∅. Thus Ux is a basic clopen subset
of X for all x ∈

∏
n∈ω Sn.

In the case that x(n) = maxSn and maxSn < g(n) we see that Ux ⊆
{f ∈X : f(n)>maxSn} and since µ(Un,maxSn)=1 it follows that µ(Ux)=0.
Hence,

Claim 3.16. If x ∈
∏
n∈ω Sn and for some n ∈ ω we have x(n) = maxSn

then µ(Ux) = 0.

It is obvious that X =
⋃
x∈

Q
n∈ω Sn

Ux. If x 6= y and x, y ∈
∏
n∈ω Sn then

clearly Ux ∩ Uy = ∅.
Since |X| is not real-valued-measurable, also the cardinality of the set

A =
{
x ∈

∏
n∈ω

Sn : Ux 6= ∅
}

is not real-valued-measurable. Given an arbitrary D ⊆ A, both
⋃
x∈D Ux and⋃

x∈A\D Ux are open, hence each of them is also clopen and µ-measurable.
By letting µ′(D) = µ(

⋃
x∈D Ux) we define a measure µ′ on P(A). Since

|A| is not real-valued-measurable, according to [8, Lemma 438Bb], we con-
clude that µ′ is a countable sum of measures concentrated on singletons, in
particular there exists a countable subset H ⊆ A such that

µ(Ux) > 0 iff x ∈ H
and

µ
(⋃
{Ux : x ∈ A \H}

)
= 0.

From now on we work with a fixed x, assuming that:

• µ((x, xs]) = µ(Ux) = ε > 0,
• for every n ∈ ω and α ∈ (x(n), xs(n)) we have µ({t ∈ X : x(n) <
t(n) ≤ α}) = 0.

The second item follows from the minimality of xs(n). From this and
from the countable additivity of µ we obtain:

Claim 3.17. For every function h which satisfies x < h < xs we have
µ((h, xs]) = ε; in particular, X ∩ (h, xs] 6= ∅.

The set H is countable and now we decompose it into two subsets I
and J , as stated in the Theorem, according to the following two cases:

Case 1: xs ∈ XR. In this case, as X is closed in XR, Claim 3.17 shows
that X ∩ (h, xs] 6= ∅ for each h < xs, in particular xs ∈ X. Therefore, for
every clopen and cofinal U ⊆ (x, xs] we have xs ∈ U and µ restricted to
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(x, xs] is concentrated on a singleton, because on a clopen U ⊆ (x, xs] we
have µ(U) = ε if and only if xs ∈ U .

Case 2: xs /∈ XR.

Since ℵ0 < cf xs(n) < ℵω for all n ∈ ω, it follows that xs ∈ T \XR. From
Claim 3.17 we conclude that µ�Ba(X ∩ Ux) is a cofinal Baire measure on
the Rudin space X ∩ Ux = X ∩ (x, xs].

We define

I = {x : xs ∈ H ∩XR},(iv)

J = {x : xs ∈ H \XR}.(v)

For every i = x ∈ I let µi := µ�Ba(X ∩ (x, xs]. This is indeed a measure
concentrated on the singleton {fi} := {xs}.

For each j = x ∈ J let µj = µ�Ba(X ∩ (x, xs]). This is indeed a cofinal
Baire measure on the Rudin space Xj := X ∩ (x, xs]. We have already
established that Xj1 ∩Xj2 = ∅ for j1 6= j2 in J .

It remains to show that µ =
∑

i∈I µi +
∑

j∈J µj . Let B ⊆ X be an
arbitrary Baire set. As µ(

⋃
x∈A\H Ux) = 0, it follows that µ(B) = µ(B ∩⋃

x∈H Ux). Since {Ux : x ∈ H} is a pairwise disjoint family of sets from
Ba(X), we find that µ(B) =

∑
x∈H µ(B ∩ Ux), which is exactly what we

need.

Theorem 3.18. If X is a Rudin space and |X| is not a real-valued-
measurable cardinal, then X is quasi-Mař́ık.

Proof. Let I, J , µi, µj and Xi, Xj for i ∈ I, j ∈ J and fi for i ∈ I be
as in Theorem 3.14. It is enough to extend each of the measures µi, µj to
Borel measures on Xi and Xj respectively.

If i ∈ I then µi is concentrated on the singleton {fi}. We define the
extension of µi on the whole P(X) by setting µi(A) = µi(X) if and only if
fi ∈ A, for each A ∈ P(X).

For j ∈ J many extensions of µj to a Borel measures on Xj exist by
Theorem 3.10.

Corollary 3.19 (ZFC). There are quasi-Mař́ık non-Mař́ık Dowker
spaces. In fact, every Rudin space contains a quasi-Mař́ık non-Mař́ık Rudin
subspace of cardinality ℵω+1.

Proof. Suppose X ⊆ XR is a Rudin space. By Theorem 2.37 fix a Rudin
subspace Y ⊆ X with |Y | = ℵω+1. Then Y is not Mař́ık by Theorem 3.9.
From Theorem 3.12 the cardinal |Y | is not real-valued-measurable, so Y is
quasi-Mař́ık by Theorem 3.18.

Theorem 3.20. If the continuum is not real-valued-measurable then
every Rudin space is quasi-Mař́ık.
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Proof. Every Rudin space has cardinality at most |XR| = (ℵω)ℵ0 . As
both ℵω and ω are smaller than the least real-valued-measurable, Claim 3.13
concludes the proof.

We conclude by commenting that in Claim 3.13 real-valued-measurabi-
lity can be replaced by weak inaccessibility for the special case αβ = (ℵω)ℵ0 .
Shelah’s upper bound for (ℵω)ℵ0 states

(ℵω)ℵ0 = max{2ℵ0 ,max pcf{ℵn}n∈ω}, max pcf{ℵn}n∈ω < ℵω4 .

As max pcf{ℵn}n∈ω < ℵω4 , it is smaller than the least weakly inaccessible
cardinal. Hence, from the equality above it follows that (ℵω)ℵ0 is weakly
inaccessible if and only if 2ℵ0 is.

Actually, from Shelah’s general theory of upper bounds it follows that
for every singular µ below the least fixed point, µcf(µ) is weakly inaccessible
if and only if 2cf(µ) is. By Gitik’s result [10] it is consistent for the least
fixed point µ itself that µcf(µ) is weakly inaccessible while 2cf(µ) = 2ℵ0 is
accessible.

4. Problems. Let us conclude with three problems. The first problem
is old and well known. The second is a weaker form of the first, localized to
the measure-theoretic context.

Problem 4.1. Is it consistent with ZFC that there are no Dowker spaces
of cardinality ℵ1?

Problem 4.2. Is it consistent that there is no counterexample to the
measure extension problem of cardinality ℵ1?

Problem 4.3. Is it provable in ZFC that every Rudin space is quasi-
Mař́ık?

5. Appendix: PCF preliminaries. We set some standard PCF ter-
minology and facts. The reader may consult [1, 5, 12, 18] for additional
details.

Recall that ONω denotes the class of all functions from ω to the Ordinal
Numbers. Let 0 ∈ ONω stand for the constant function 0.

Definition 5.1. Suppose I ⊆ P(ω) is an ideal on ω.

(1) For f, g ∈ ONω we write

f ≤I g if {n : f(n) > g(n)} ∈ I,
f <I g if {n : f(n) ≥ g(n)} ∈ I,
f =I g if {n : f(n) 6= g(n)} ∈ I.

In the case I = {∅} we omit I from the notation and write just <,≤
and =.
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(2) A function h ∈ ONω is an upper bound of a set A ⊆ ONω with
respect to <I (modulo <I , mod <I , modulo I) if for every f ∈ I we
have f ≤I h. For A ⊆ X ⊆ ONω we say that X is unbounded in X
with respect to ≤I there is no upper bound of A in X with respect
to ≤I .

(3) For X ⊂ ONω we define b(X,≤I) to be the smallest cardinality
of a ≤I -unbounded subset of X, if X has no maximum, and ∞
otherwise, where ∞ is taken to be larger than every cardinal.

(4) For A ⊆ X ⊂ ONω, A is cofinal in (X,≤I) if for every f ∈ X there
exists h ∈ A such that f ≤I h. The cofinality of (X,≤I), denoted
cf(X,≤I), is the smallest cardinality of A ⊆ X which is cofinal in
(X,≤I).

(5) For X ⊆ ONω we say that (X,≤I) has true cofinality if b(X,≤I) =
cf(X,≤I). If (X,≤I) has true cofinality we define the true cofinality
of (X,≤I), denoted tcf(X,≤I), by

tcf(X,≤I) = b(X,≤I).
We remark that unless b(X,≤I) =∞ we have b(X,≤I) ≤ cf(X,≤I) and

unless b(X,≤I) is finite, it is an infinite regular cardinal.
Let I ⊆ P(ω) be an ideal over ω which contains all finite subsets of ω.

Definition 5.2. Let I ⊆ P(ω) be an ideal over ω. A function h ∈ ONω

is an exact upper bound (eub) of A ⊆ ONω with respect to I if

(1) h is an upper bound of A with respect to ≤I ,
(2) for every w ∈ ONω, if w <I h then there exists f ∈ A such that

w <I f <I h.

Claim 5.3. Let I ⊆ P(ω) be an ideal over ω. If A ⊆ ONω contains some
h such that 0 <I h and both g, h ∈ ONω are eubs of A with respect to <I
then g =I h.

Lemma 5.4 (see [11, Claim 5]). Let I ⊆ P(ω) be an ideal over ω. Let
κ be a regular uncountable cardinal. Let f = 〈fα ∈ ONω : α < δ〉 be a <I-
increasing sequence of functions. The following conditions are equivalent:

(1) There is an eub f ∈ ONω of f such that {n ∈ ω : cf f(n) 6= κ} ∈ I.
(2) There exists a sequence h = 〈hα ∈ ONω〉 such that the sequence
〈hβ : β < κ〉 is <-increasing and

(a) for every α < δ there exists β < κ such that fα <I hβ,
(b) for every β < κ there exists α < δ such that hβ <I fα.

Definition 5.5. A given <I -increasing sequence of functions 〈fα ∈
ONω : α < λ〉 is flat of cofinality κ if one of the equivalent conditions
of Lemma 5.4 is satisfied.
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Theorem 5.6 ([11], [12, Theorem 20]). Let I ⊆ P(ω) be an ideal over ω.
Let λ > ℵ1 be a regular cardinal and let f = 〈fα ∈ ONω : α < λ〉 be a <I-
increasing sequence of functions. For every regular κ such that ω < κ < λ
the following conditions are equivalent:

(1) The sequence f has an eub f and {n ∈ ω : cf f(n) ≤ κ} ∈ I.
(2) The set {δ < λ : cf δ = κ, f�δ is flat of cofinality κ} is stationary

in λ.

Definition 5.7 (Shelah’s I[λ] ideal, see [18, Definition 2.3, p. 14]). For
a regular uncountable cardinal λ we define an ideal I[λ] as the family of all
S ⊆ λ such that there exists a sequence 〈Pα : α < λ〉 of sets and a club
E ⊆ λ with the following properties:

(1) Pα ⊆ P (α), |Pα| < λ,
(2) for every δ ∈ E ∩S there exists c ⊆ δ such that sup(c) = δ, otp(c) =

cf δ < δ and for every β ∈ c we have c ∩ β ∈
⋃
β<δ Pδ.

Theorem 5.8 (Shelah, [19]). For any two regular cardinals κ and λ such
that κ+ < λ there exists a stationary set S ⊆ {α < λ : cf α = κ} such that
S ∈ I[λ].
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