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On the uniqueness of periodic decomposition
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Abstract. Let a1, . . . , ak be arbitrary nonzero real numbers. An (a1, . . . , ak)-de-
composition of a function f : R → R is a sum f1 + · · · + fk = f where fi : R → R
is an ai-periodic function. Such a decomposition is not unique because there are several
solutions of the equation h1 + · · ·+ hk = 0 with hi : R→ R ai-periodic. We will give solu-
tions of this equation with a certain simple structure (trivial solutions) and study whether
there exist other solutions or not. If not, we say that the (a1, . . . , ak)-decomposition is es-
sentially unique. We characterize those periods for which essential uniqueness holds.

1. Introduction. We study finite sums of periodic functions. We fix
some periods a1, . . . , ak ∈ R\{0}, and consider sums f1 + · · ·+fk = f where
fi is an ai-periodic R → R function. Such a sum is called an (a1, . . . , ak)-
decomposition of f . We say that a decomposition has a certain property
(e.g. is bounded, integer-valued, measurable) if each function in the decom-
position has that property.

A natural question is which functions have an (a1, . . . , ak)-decomposition.
In [1] a necessary and sufficient condition was given. Another natural ques-
tion is: to what extent is such a decomposition unique? One of our goals
in this paper is to answer that question. If a function f : R → R has two
periodic decompositions

f = f1 + · · ·+ fk = f̃1 + · · ·+ f̃k (fi and f̃i are ai-periodic),

then the difference of these decompositions (hi := fi − f̃i) is a solution of
the following homogeneous equation:

(1.1) h1 + · · ·+ hk = 0 (hi is ai-periodic).

On the other hand, the sum of an (a1, . . . , ak)-decomposition and a solution
of the homogeneous equation (briefly, a homogeneous solution) is another
(a1, . . . , ak)-decomposition. Consequently, the homogeneous solutions tell us
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to what extent the (a1, . . . , ak)-decomposition is unique. To determine the
homogeneous solutions we do not really need to consider functions over R.
Instead, it suffices to solve (1.1) for functions over the additive subgroup
generated by the periods: A = a1Z + · · ·+ akZ. Translating these solutions
by some real number t gives us solutions on the coset A+t. Now by choosing
a solution separately on each coset ofA we can get any solution over R. (Note
that A is always isomorphic to Zd for some positive integer d.)

In the case of two periods (k = 2), the homogeneous equation is simply
h1 = −h2. So h1 and h2 are both a1- and a2-periodic and they are the
negative of each other. In the case of three or more periods one can get a
solution by setting all the functions but two equal to constant 0 and choosing
the remaining two functions to be the negative of each other and periodic
with respect to both periods. If a solution can be written as the sum of such
solutions, we say that it is trivial. More precisely:

Definition 1.1. A solution of the homogeneous equation (1.1) is trivial
if it can be written in the form

(1.2) hi =
k∑

j=1

hi,j (hi,i = 0, hi,j = −hj,i, hi,j is ai- and aj-periodic).

Again, the notion of trivial solutions can be defined for functions over
some coset of A. Clearly, a solution over R is trivial if and only if it is trivial
on each coset.

Definition 1.2. If every solution of the homogeneous equation is trivial
for some periods a1, . . . , ak, then the (a1, . . . , ak)-decomposition is unique
in the sense that any two decompositions differ by a trivial homogeneous
solution. In that case, we say that the decomposition is essentially unique.

Our main goal is to characterize those periods for which essential unique-
ness holds. First we show that this is not always the case, in other words,
there exist nontrivial homogeneous solutions. Let us consider periods a, b, c
where a and b are independent over Q and c = a+ b. It suffices to exhibit a
nontrivial solution over the additive subgroup A spanned by these periods,
aZ + bZ = {ax+ by : x, y ∈ Z} ' Z×Z. The corresponding periods in Z×Z
are (1, 0), (0, 1) and (1, 1). A (1, 0)-periodic function f(x, y) over Z×Z does
not depend on x so we simply write f(y). Similarly, we write g(x) for a
(0, 1)-periodic function and h(x− y) for a (1, 1)-periodic function. Now the
homogeneous equation is f(y) + g(x) + h(x − y) = 0. The functions in a
trivial solution are constant because a function that is periodic with at least
two of these periods must be constant on the whole Z × Z. Thus setting
f(y) = y, g(x) = −x and h(x− y) = x− y gives us a nontrivial solution of
the homogeneous equation.

Now suppose that the periods a, b, c are as in the definition below.
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Definition 1.3. A triple a, b, c of real numbers is a planar triple if
they are not linearly independent over Q but any two of them are linearly
independent.

Then c = r1a + r2b for some nonzero rational numbers r1, r2. It is not
hard to modify the above example to obtain a homogeneous solution on
A = aZ+bZ+cZ. This time a function in a trivial solution is not necessarily
constant on A but rather has a finite image on it, which still implies that
our solution cannot be trivial.

We will show that essential uniqueness holds if and only if there is no
planar triple among the periods. The “if” part will be proved in Section 3.
We sketch the proof for the simplest case here. Suppose that we have three
linearly independent periods a, b, c. Due to the above observations, we can
regard the problem over Z3 with periods (1, 0, 0), (0, 1, 0), (0, 0, 1). Then the
homogeneous equation is basically f(y, z) + g(x, z) + h(x, y) = 0, and a
solution being trivial means that there exist functions p(x), q(y), r(z) such
that f(y, z) = q(y) − r(z), g(x, z) = r(z) − p(x) and h(x, y) = p(x) − q(y).
(It clearly suffices to prove two of these equalities.) Now taking an arbitrary
solution of the homogeneous equation above, we evaluate the equation at z
and z+1 and compare: we obtain f(y, z+1)−f(y, z) = g(x, z)−g(x, z+1).
The left-hand side does not depend on x while the right-hand side does not
depend on y, thus both equal some function s(z) depending only on z. It
follows that f(y, z) = f(y, 0) + s(0) + · · ·+ s(z − 1) and g(x, z) = g(x, 0)−
s(0) − · · · − s(z − 1), so the solution is indeed trivial. When we have more
periods (but any three of them are still linearly independent), then we can
modify the above argument to get an inductive proof (see Lemma 3.2).
The general case (when we can have periods with rational ratio) is more
complicated and will be handled in Theorem 3.3.

For the “only if” part, we have already seen nontrivial solutions in the
case when the periods form a planar triple. If we add more periods, we can
extend the solution by adding zero functions. However, it might happen
that because of these extra periods a nontrivial solution becomes trivial. In
certain cases, it is not hard to see that the solution is still nontrivial, but
in general things get more complicated. A relatively simple way of proving
the existence of a nontrivial solution in the general case goes via another
problem.

The starting point is the following question posed in [5]: does the exis-
tence of a real-valued periodic decomposition of an integer-valued function
f imply the existence of an integer-valued periodic decomposition of f with
the same periods? In [1] the question was answered in the affirmative.

However, the integer-valued decomposition is not necessarily as nice as
the real-valued one. There exists a function f : R → {0, 1} that can be
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written as the sum of three periodic bounded functions but it does not have
a bounded integer-valued decomposition with the same periods ([5]). The
goal of Section 4 is to determine those periods for which this cannot happen,
i.e. for which the existence of a bounded real-valued periodic decomposition
of an integer-valued function f implies the existence of a bounded integer-
valued periodic decomposition of f with the same periods. (This problem
was posed by T. Keleti [6, Problem 3.6].) It turns out that the above im-
plication holds for any integer-valued f if and only if essential uniqueness
holds for the periods.

Theorem 1.4 (Main theorem). For nonzero periods a1, . . . , ak the fol-
lowing assertions are equivalent:

(i) There is no planar triple among a1, . . . , ak. (That is, any three pair-
wise linearly independent periods are linearly independent over Q).

(ii) The (a1, . . . , ak)-decomposition is essentially unique. (That is, every
solution of the homogeneous equation (1.1) is of the form (1.2).)

(iii) For any function f : R → Z the following implication holds: if
f decomposes into the sum of bounded real-valued ai-periodic func-
tions, then it also decomposes into the sum of bounded integer-valued
ai-periodic functions.

We will prove (i)⇒(ii) in Theorem 3.3, (ii)⇒(iii) in Theorem 4.1 and
(iii)⇒(i) in Theorem 4.4. In Section 5 we give a fourth equivalent assertion
(Proposition 5.2).

As a corollary, we answer another problem of T. Keleti [6, Problem 3.5].
He studied the measurable version of (iii) and asked for which periods the
existence of a bounded measurable real-valued (a1, . . . , ak)-decomposition
of a function f : R → Z implies the existence of a bounded measurable
integer-valued (a1, . . . , ak)-decomposition of f . In Theorem 5.4 we give a
characterization.

Our motivation to investigate the solutions of the homogeneous equation
(apart from the fact that we think it is a natural and interesting question)
was that it can be very helpful in this kind of problems when one has a
periodic decomposition and wants another decomposition with a certain
given property.

2. Preliminary lemmas. Recall that two nonzero real numbers are
said to be commensurable if their ratio is rational. Otherwise they are incom-
mensurable, that is, linearly independent over Q. (Linear independence will
always be meant over the field of rational numbers throughout this paper.)
Real numbers a1, . . . , ak are commensurable if any two of them are commen-
surable. Equivalently, a1, . . . , ak are commensurable if they have a common
multiple, a nonzero real number m for which m/ai ∈ Z (i = 1, . . . , k). The
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common multiple with the smallest absolute value is the least common mul-
tiple. The sign of the least common multiple is irrelevant. One can define
the greatest common divisor in a similar manner.

We will use two classes of linear operators that act on the set of R→ R
functions.

Definition 2.1. For a real number a the difference operator ∆a is de-
fined by

(∆af)(x) = f(x+ a)− f(x) (x ∈ R)

where f is an arbitrary R→ R function.

Definition 2.2. Let a,m be real numbers with m/a ∈ Z+. The operator
Mm

a gives the average of certain translates of the input function. For a
function f : R→ R let

(Mm
a f)(x) =

(
m

a

)−1 m/a−1∑
j=0

f(x+ ja) (x ∈ R).

Proposition 2.3. The operators ∆a and Mm
a have the following prop-

erties:

• A function f is a-periodic if and only if ∆af = 0.
• Both ∆a and Mm

a are linear operators.
• Both ∆a and Mm

a commute with ∆b for any b ∈ R. Consequently, ∆a

and Mm
a map each b-periodic function to a b-periodic function.

• Mm
a maps each m-periodic function to an a-periodic function.

• Mm
a maps each a-periodic function to itself.

Suppose that f̂ = ∆af for some functions f, f̂ and a period a. We call
f the lift-up of f̂ with respect to a. It is obvious that two lift-ups of the
same function differ by an a-periodic function. It is also clear that adding
an a-periodic function to a lift-up gives another lift-up.

Given periods a, b and a b-periodic function, we would like to know
whether we can lift up this function with respect to a in such a way that
the lift-up is also b-periodic. As we will see, this can always be done pro-
vided that a and b are incommensurable (Lemma 2.6). For commensurable
periods, we give a necessary and sufficient condition (Lemma 2.4), and we
also study the case when this condition fails (Lemma 2.8).

The next lemma is a special case of [2, Lemma 10] (see also [1, Lemma
3.3]).

Lemma 2.4. Let a, b ∈ R \ {0} be commensurable periods and f̂ : R→ R
be a b-periodic function. There exists a function f such that ∆af = f̂ and
∆bf = 0 if and only if f̂(x) + f̂(x + a) + f̂(x + 2a) + · · · + f̂(x + m − a)
= 0 (∀x ∈ R) for any real number m with m/a ∈ Z+ and m/b ∈ Z.
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In other words, f̂ has a b-periodic lift-up with respect to a if and only if
Mm

a f̂ = 0 for any m with m/a ∈ Z+ and m/b ∈ Z.

Remark 2.5. Since f̂ is b-periodic, the functions Mm
a f̂ are clearly the

same for any common multiple m of a and b, so it suffices to check the above
condition for one single m.

Lemma 2.6. Let a, b1, . . . , br be linearly independent periods (over Q).
Suppose that f̂ is a function for which ∆bi

f̂ = 0 (i = 1, . . . , r). Then there
exists a function f such that ∆af = f̂ and ∆bi

f = 0 (i = 1, . . . , r).

Proof. Take a point x0 ∈ R and define f(x0) arbitrarily. From x0, f can
be extended uniquely over the set aZ + x0 with ∆af = f̂ . Then we extend
f periodically with all periods b1, . . . , br. In this manner we get a uniquely
defined function over the set A + x0 where A = aZ + b1Z + · · · + brZ is
an additive subgroup of R. The uniqueness follows from the fact that the
points of A can be written uniquely as linear combinations of a, b1, . . . , br
with integer coefficients because of the linear independence of a, b1, . . . , br.
By the bi-periodicity of f̂ (i = 1, . . . , r), the equation ∆af = f̂ holds not
only on aZ + x0 but also on A+ x0.

We have now defined the lift-up with the desired properties on a coset
of A. However, we can do this independently on each coset.

Note that for commensurable periods a and b, a function f is a- and b-
periodic if and only if it is (a, b)-periodic, where (a, b) stands for the greatest
common divisor of a and b.

Definition 2.7. Let a ∈ R. A function L : R→ R is a-linear if ∆2
aL =

∆a∆aL = 0. (The name comes from the fact that L is a-linear if and only
if L|aZ+x0 is a linear function for any x0 ∈ R.)

Lemma 2.8. Let a, b be commensurable periods and f̂ : R → R be a
b-periodic function. There exists a lift-up of f̂ with respect to a of the form
f + L, where f is b-periodic and L is a-linear.

Suppose that f̂ is also c-periodic for a real number c that is incommen-
surable with a and b. Then f can be chosen to be b- and c-periodic.

Proof. Let m be the least common multiple of a and b (the one which
has the same sign as a). We decompose f̂ as

f̂ = (f̂ −Mm
a f̂) +Mm

a f̂ .

Now we use Proposition 2.3. Since f̂ is b-periodic (thus m-periodic), we infer
that Mm

a f̂ is a-periodic. Hence Mm
a maps it to itself: Mm

a (Mm
a f̂) = Mm

a f̂ .
Consequently, Mm

a maps the first summand above to 0. So that summand
has a b-periodic lift-up f with respect to a by Lemma 2.4. The second
summand is a-periodic, so every lift-up L of it is a-linear.
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If f̂ is b- and c-periodic, then so is f̂ −Mm
a f̂ . We have shown that the

latter has a b-periodic lift-up f with respect to a. We need to prove that
it has a lift-up g which is both b- and c-periodic. First we define g on the
subgroup A = (a, b)Z+cZ where (a, b) is the greatest common divisor of a, b.
By the incommensurability of (a, b) and c,

A =
⋃
j∈Z

(a, b)Z + jc

is a disjoint union. Consider f |(a,b)Z and let g|(a,b)Z+jc be the translate of
this function by jc for each j ∈ Z. Obviously, g|A is c-periodic. It is also
b-periodic because f is b-periodic. Finally,

(∆ag)(i(a, b) + jc) = (∆af)(i(a, b)) = (∆af)(i(a, b) + jc) (i, j ∈ Z),

since ∆af = (f̂ −Mm
a f̂) is c-periodic. This means that g is also a lift-up.

So we have defined g on A with the desired properties. Of course, we can
do the same on every coset of A.

We mention a stronger version of the previous lemma without proof.

Proposition 2.9 ([4]). Suppose that a, b are commensurable and f sat-
isfies ∆a∆bf = 0. Then f can be written as

f = L+ fa + fb (L is (a, b)-linear, ∆afa = ∆bfb = 0).

The theorems of this paper concern functions on R. One could study
these problems for functions on an Abelian group. This is not our goal in this
paper. Still, we will need a few simple lemmas about functions on Abelian
groups. Let A be an Abelian group. For a ∈ A and a function f : A → R,
set (∆af)(x) := f(x + a) − f(x) (x ∈ A). We say that f is a-periodic if
∆af = 0, and a-linear if ∆2

af = 0. Commensurability can also be defined:
two elements a, b of A are commensurable if they have a common multiple
(that is, there exist nonzero integers na, nb such that naa = nbb).

Lemma 2.10. Suppose that a, b are commensurable elements of an Abelian
group A and L is an a-linear function on A. If L is b-periodic or bounded,
then it is necessarily a-periodic too.

Proof. Let m = na for some positive integer n. The a-linearity of L
means that L(x+ 2a)− L(x+ a) = L(x+ a)− L(x) for all x. For a fixed x
let c = L(x+ a)−L(x) = L(x+ (i+ 1)a)−L(x+ ia) for any integer i. This
entails that

L(x+m)− L(x) =
n−1∑
i=0

(L(x+ (i+ 1)a)− L(x+ ia)) = nc.

If L is b-periodic, we choose m to be a common multiple of a and b. By
b-periodicity L(x+m)− L(x) = 0, thus c = 0, so L(x+ a) = L(x) indeed.
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If L is bounded with some bound K ∈ R+, then |L(x+m)−L(x)| ≤ 2K,
hence |c| ≤ 2K/n for all n, so c must be zero again.

The following corollary is a simple special case of a theorem stating that
the class of bounded A → R functions has the decomposition property, that
is, for a bounded function f : A → R the equation ∆a1 . . .∆ak

f = 0 implies
that f has a decomposition into the sum of bounded ai-periodic functions.
(This theorem was first proved by M. Laczkovich and Sz. Gy. Révész [7]; for
an alternative proof see [3].) The case a1 = · · · = ak = a entails the following
corollary for which we give a short proof for the sake of completeness.

Corollary 2.11. Suppose that ∆k
af = 0 for an element a of an Abelian

group A, a bounded function f : A → R and a positive integer k. Then f is
a-periodic.

Proof. For k = 1 this is obvious. For k ≥ 2, consider the function
L = ∆k−2

a f . It is bounded and a-linear, thus a-periodic by Lemma 2.10.
Consequently,

0 = ∆aL = ∆a∆k−2
a f = ∆k−1

a f.

We can repeat this argument until the exponent reaches 1, so ∆af = 0.

Lemma 2.12. Let A be an Abelian group, and a, b ∈ A. If f is an a-
periodic function, then ∆bf = ∆b+kaf for each integer k.

Proof. Indeed,

(∆bf)(x) = f(x+ b)− f(x) = f(x+ b+ ka)− f(x) = (∆b+kaf)(x).

3. Homogeneous solutions. In this section we study the following
problem: for which periods every solution of the homogeneous equation (1.1)
is trivial? If that is the case, we say that the (a1, . . . , ak)-decomposition is
essentially unique. (A solution is trivial if it can be written in the form
(1.2).) First we prove two special cases (Proposition 3.1 and Lemma 3.2)
that we will use to prove the general case (Theorem 3.3).

Proposition 3.1. If a1, . . . , ak are commensurable periods, then every
solution of the homogeneous equation is trivial.

Proof. The proof is by induction on k. The case k = 1 is obvious. Con-
sider a homogeneous solution h1 + · · ·+ hk = 0 (∆aihi = 0), and apply the
operator ∆a1 to this equation. We get

ĥ2 + ĥ3 + · · ·+ ĥk = 0 (ĥi = ∆a1hi).

This is a homogeneous solution with periods a2, . . . , ak. It must be trivial by
the inductive assumption, which means that there exist functions ĥi,j (2 ≤
i, j ≤ k) such that ĥi,j is ai- and aj-periodic, ĥi,j = −ĥj,i and ĥi =

∑k
j=2 ĥi,j

(2 ≤ i ≤ k). Since the periods are commensurable, being ai- and aj-periodic
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is the same as being (ai, aj)-periodic where (ai, aj) is the greatest common
divisor of ai and aj .

Let us lift up the functions ĥi,j with respect to a1. Lemma 2.8 implies
that these lift-ups can be written in the form hi,j +Li,j , where hi,j is (ai, aj)-
periodic, and Li,j is a1-linear.

The functions ĥi,j and ĥj,i are the negative of each other. It is clear that
they can be lifted up in such a way that hi,j = −hj,i too.

Moreover, we will show that the functions Li,j can be chosen such that

(3.1) hi =
k∑

j=2

hi,j + Li,j (i = 2, . . . , k).

Since hi and
∑k

j=2 hi,j +Li,j are both lift-ups of ĥi with respect to a1, they
differ by an a1-periodic function. Add this function to Li,j for some index j.
Then Li,j is still a1-linear and hi,j + Li,j is still a lift-up of ĥi,j , but now
(3.1) holds.

Consider
∑k

j=2 Li,j . It is clearly a1-linear, and (3.1) implies that it is also
ai-periodic. Hence by Lemma 2.10 it is a1-periodic. So let hi,1 =

∑k
j=2 Li,j

and h1,i = −hi,1. We have defined all hi,js. They are periodic with the
corresponding periods, hi,j = −hj,i and hi,1 was chosen such that hi =∑k

j=1 hi,j holds for i = 2, . . . , k. Then this holds for i = 1 automatically.
Indeed,

h1 = −h2 − · · · − hk = −
k∑

i=2

k∑
j=1

hi,j
∗= −

k∑
i=2

hi,1 =
k∑

i=2

h1,i.

The equality labelled ∗ holds because
k∑

i=2

k∑
j=2

hi,j = 0,

which follows from hi,j = −hj,i (2 ≤ i, j ≤ k).
We have shown that the solution hi (1 ≤ i ≤ k) is of the form (1.2), so

it is trivial.

Lemma 3.2. Suppose that a1 6∈ 〈ai, aj〉Q for every pair of indices 2 ≤
i, j ≤ k (in other words, either ai, aj are commensurable with each other but
not with a1, or a1, ai, aj are linearly independent). If every homogeneous so-
lution is trivial for the periods a2, . . . , ak, then this also holds for the periods
a1, . . . , ak.

Proof. We take an arbitrary homogeneous solution {hi}ki=1. Then the
functions ĥi = ∆a1hi (i = 2, . . . , k) give a homogeneous solution with peri-
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ods a2, . . . , ak. This must be a trivial solution, so there exist the correspond-
ing functions ĥi,j : R→ R (2 ≤ i, j ≤ k).

We claim that ĥi,j has a lift-up hi,j with respect to a1 such that ∆aihi,j =
∆ajhi,j = 0. If ai and aj are commensurable, then we need (ai, aj)-periodicity.
Since a1 is incommensurable with (ai, aj), we can apply Lemma 2.6 with
a = a1 and b1 = (ai, aj). If a1, ai and aj are linearly independent, then
Lemma 2.6 can be applied again, this time with a = a1, b1 = ai, b2 = aj .

We can assume that hj,i = −hi,j . (Lift up ĥi,j (i < j) first. Clearly, −hi,j

will be a lift-up of ĥj,i = −ĥi,j .) Let

hi,1 = hi − hi,2 − hi,3 − · · · − hi,k.

We claim that hi,1 is a1- and ai-periodic. Indeed,

∆a1hi,1 = ĥi − ĥi,2 − · · · − ĥi,k = 0,
∆aihi,1 = ∆aihi −∆aihi,2 − · · · −∆aihi,k = 0− 0− · · · − 0 = 0.

Finally, let h1,i = −hi,1. One can easily check (as in Proposition 3.1) that
the functions hi,j (1 ≤ i, j ≤ k) satisfy (1.2).

We are now in a position to prove the implication (i)⇒(ii) of Theo-
rem 1.4.

Theorem 3.3. If there is no planar triple among the periods a1, . . . , ak,
then the (a1, . . . , ak)-decomposition is essentially unique. (That is, if any
three pairwise incommensurable periods of a1, . . . , ak are linearly indepen-
dent over Q, then every solution of the homogeneous equation (1.1) is of the
form (1.2).)

Proof. The proof is by induction on k; the case k = 1 is obvious. Without
loss of generality we can assume that the periods that are commensurable
with a1 are exactly a1, . . . , al for some integer 1 ≤ l ≤ k.

Case 1: l = 1. In this case there is no period that is commensurable
with a1. Consequently, if ai and aj are incommensurable for some indices
i, j ≥ 2, then a1, ai, aj must be linearly independent. (Otherwise they would
be a planar triple.) Thus Lemma 3.2 can be applied, and we are done.

Case 2: l ≥ 2. Take an arbitrary homogeneous solution hi (i = 1, . . . , k).
The functions ĥi = ∆a1hi form a (necessarily trivial) homogeneous solution
with periods a2, . . . , ak. We consider the corresponding functions ĥi,j (2 ≤
i, j ≤ k) and we lift them up with respect to a1.

If l+ 1 ≤ i, j ≤ k, then a1 6∈ 〈ai, aj〉Q. In this case there exists an ai- and
aj-periodic lift-up hi,j as we have seen in the proof of Lemma 3.2.

If l + 1 ≤ i ≤ k and 2 ≤ j ≤ l, then ĥi,j is ai- and aj-periodic where a1

is commensurable with aj but not with ai. By Lemma 2.8 there is a lift-up
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of the form hi,j +Li,j , where hi,j is ai- and aj-periodic, and Li,j is a1-linear.
As we have seen in the proof of Proposition 3.1, we can assume that

hi =
k∑

j=2

hi,j +
l∑

j=2

Li,j = Li +
k∑

j=2

hi,j (l + 1 ≤ i ≤ k)

where Li =
∑l

j=2 Li,j is an a1-linear and (by the above equation) ai-periodic
function.

Using
∑k

i=l+1

∑k
j=l+1 hi,j = 0 (∗), we get

−
l∑

i=1

hi =
k∑

i=l+1

hi =
k∑

i=l+1

k∑
j=2

hi,j +
k∑

i=l+1

Li
∗=

k∑
i=l+1

l∑
j=2

hi,j +
k∑

i=l+1

Li.

Let L1 =
∑l

i=1 hi+
∑k

i=l+1

∑l
j=2 hi,j . Each summand is aj-periodic for some

1 ≤ j ≤ l, so L1 is m-periodic where m denotes the least common multiple
of a1, . . . , al. On the other hand,

L1 + Ll+1 + Ll+2 + · · ·+ Lk = 0,

thus L1 is a1-linear (all the other summands are a1-linear). Consequently,
L1 is a1-periodic by Lemma 2.10. This means that the functions Li (i =
1, l + 1, . . . , k) form a solution of the homogeneous equation with periods
a1, al+1, al+2, . . . , ak. The number of these periods is at most k − 1 because
l ≥ 2 by assumption. So it must be a trivial solution. Consequently, there
exist functions h′i,j (i, j ∈ {1, l + 1, . . . , k}) such that h′i,j = −h′j,i is ai- and
aj-periodic,

Li = h′i,1 +
k∑

j=l+1

h′i,j (i = 1, l + 1, . . . , k).

For i = l + 1, . . . , k we set

h′′i,j =


h′i,1 (j = 1),
hi,j (2 ≤ j ≤ l),
hi,j + h′i,j (l + 1 ≤ j ≤ k),

and h′′i,j := −h′′j,i if i ≤ l and j ≥ l + 1.
Now we define h′′i,j in the case when both indices are at most l. Since

l∑
i=1

hi = −
k∑

i=l+1

hi = −
k∑

i=l+1

k∑
j=1

h′′i,j =
k∑

i=1

k∑
j=l+1

h′′i,j =
l∑

i=1

k∑
j=l+1

h′′i,j ,

the ai-periodic functions gi := (hi−
∑k

j=l+1 h
′′
i,j) (i = 1, . . . , l) form a homo-

geneous solution with periods a1, . . . , al. These periods are commensurable,
so this must be a trivial solution by Proposition 3.1. Let us take the corre-
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sponding functions h′′i,j (1 ≤ i, j ≤ l) and complement the already defined
h′′i,js with these functions. This shows that h1, . . . , hk is a trivial solution.

4. Decomposition into bounded functions. In this section we de-
termine those periods for which the implication below holds for any function
f : R→ Z:

(4.1) ∃f1, . . . , fk : R→ R f = f1 + · · ·+ fk, ∆aifi = 0, fi bounded ?⇒
∃f̃1, . . . , f̃k : R→ Z f = f̃1 + · · ·+ f̃k, ∆ai f̃i = 0, f̃i bounded.

4.1. Connection with the homogeneous equation. Using a theo-
rem of B. Farkas et al. [1, Corollary 4.2], the implication (ii)⇒(iii) of Theo-
rem 1.4 can be proved easily.

Theorem 4.1. If every solution of the homogeneous equation (1.1) is
trivial for some periods a1, . . . , ak, then the implication (4.1) holds for any
function f : R→ Z.

Proof. Suppose that f : R → Z has a real-valued bounded periodic
decomposition with periods a1, . . . , ak. We mentioned in the introduction
that, for any periods, the existence of a real-valued periodic decomposition
of an integer-valued function on R implies the existence of an integer-valued
periodic decomposition with the same periods [1, Corollary 4.2]. So there
exist decompositions

f = f1 + · · ·+ fk = g1 + · · ·+ gk,

where fi : R → R is bounded, gi : R → Z is not necessarily bounded
and ∆aifi = ∆aigi = 0. The functions hi := fi − gi (i = 1, . . . , k) form a
homogeneous solution which must be trivial by assumption. Consider the
corresponding functions hi,j : R → R and define integer-valued functions
h̃i,j close to hi,j by

h̃i,j(x) =


[hi,j(x)], i < j,

dhi,j(x)e = −[−hi,j(x)] = −[hj,i(x)], i > j,

0, i = j.

Obviously, |h̃i,j(x) − hi,j(x)| < 1 for all i, j, x. It is also clear that the con-
ditions ∆ai h̃i,j = ∆aj h̃i,j = 0 and h̃i,j = −h̃j,i still hold. Set

h̃i =
k∑

j=1

h̃i,j (i = 1, . . . , k).
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These are integer-valued functions that form a homogeneous solution (h̃1 +
· · ·+ h̃k = 0, ∆ai h̃i = 0). They are also close to hi:

|h̃i(x)− hi(x)| ≤
∑

1≤j≤k, j 6=i

|h̃i,j(x)− hi,j(x)| < k − 1.

Clearly, the functions f̃i := gi + h̃i (i = 1, . . . , k) form an integer-valued
decomposition of f , and it is bounded because f̃i − fi is bounded:

|f̃i(x)−fi(x)| = |(gi(x)+ h̃i(x))−(gi(x)+hi(x))| = |h̃i(x)−hi(x)| < k−1.

According to Theorem 3.3 every homogeneous solution is trivial for pe-
riods with no planar triple among them, so in this case the implication (4.1)
holds. Now we show that it does not hold in other cases.

4.2. Negative results. A counter-example to (4.1) was given in [5]
where the authors constructed a function that is the sum of three bounded
periodic functions but it does not have a bounded integer-valued decompo-
sition with the same periods. We generalize this example.

Given three periods a1, a2, a3 forming a planar triple we take the two-
dimensional Q-linear subspace spanned by a1, a2, a3. We will define functions
on this subspace: fi (ai-periodic, bounded, real-valued) and gi (ai-periodic,
integer-valued) for i = 1, 2, 3 in such a way that f1 + f2 + f3 = g1 + g2 + g3
= f . Then we extend all these functions over R by zero. What we will
basically prove is that no matter how we add new periods a4, . . . , ak, this
extended function f will never have a bounded integer-valued (a1, . . . , ak)-
decomposition. We will do that in two steps: first we consider the case when
all periods are contained in the subspace spanned by a1, a2, a3 (Proposition
4.2), then we deal with periods outside that subspace (Lemma 4.3).

Proposition 4.2. Suppose that there are three pairwise incommensu-
rable periods among a1, . . . , ak ∈ Q × Q \ {(0, 0)}. Then there exists a
Q × Q → Z function which has a bounded real-valued decomposition but
no bounded integer-valued decomposition with periods a1, . . . , ak.

Proof. We can assume that a1, a2, a3 are pairwise incommensurable. It
follows that any two of them give a basis of Q × Q, so we can also assume
that a1 = (1, 0) and a2 = (0, 1). Denote the coordinates of ai by pi, qi ∈ Q.
We also know that p3, q3 6= 0 since a3 is not commensurable with a1, a2.

Note that for any rational number r, functions of the form (x, y) 7→ f(y)
are (r, 0)-periodic, functions of the form (x, y) 7→ f(x) are (0, r)-periodic,
and functions of the form (x, y) 7→ f(−q3x+ p3y) are (rp3, rq3)-periodic.

Fix an arbitrary irrational number t and consider the functions below.
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(We write [·], {·} for the integer part and fractional part, respectively.)

f1(x, y) = −{tp3y}, g1(x, y) = [tp3y],
f2(x, y) = {tq3x}, g2(x, y) = −[tq3x],
f3(x, y) = {t(−q3x+ p3y)}, g3(x, y) = −[t(−q3x+ p3y)].

By our remarks ∆aifi = ∆aigi = 0 for i = 1, 2, 3. Using

(−tp3y) + tq3x+ t(−q3x+ p3y) = 0,

we get f1+f2+f3 = g1+g2+g3. Denote this sum by f : Q×Q→ Z. The func-
tions f1, f2, f3 form a bounded real-valued (a1, a2, a3)-decomposition of f .
Then f also has a bounded real-valued (a1, . . . , ak)-decomposition because
the remaining functions in the decomposition (fi, i ≥ 4) can be chosen to
be constant 0.

We claim that f has no bounded integer-valued (a1, . . . , ak)-decomposi-
tion. Assume towards a contradiction that there exist functions g̃i such that

f = g̃1 + · · ·+ g̃k (g̃i : Q×Q→ Z is bounded and ai-periodic).

For the sake of simplicity, first we assume that every period is incommen-
surable with a1, that is, qi 6= 0 (i ≥ 2).

Let M be a common multiple of q2 = 1, q3, . . . , qk. Thus M/qi ∈ Z for
i = 2, . . . , k. We choose a positive integer N such that Npi ∈ Z for i ≥ 2.
Setting ni = MN/qi, we have

niai = (nipi, niqi) =
(
M

qi
(Npi),MN

)
∈ Z× {MN} (i = 2, . . . , k).

Applying the operator S = ∆n2a2 . . .∆nkak
to f , we get

Sf = Sg1 = S g̃1.
(Because S maps ai-periodic functions to 0 for i ≥ 2.) So S maps h1 :=
g1 − g̃1 to 0. We claim that

Sh1 = ∆n2a2 . . .∆nk−1ak−1
∆nkak

h1 = ∆n2a2 . . .∆nk−1ak−1
∆(MNpk/qk,MN)h1

= ∆n2a2 . . .∆nk−1ak−1
∆(0,MN)h1 = · · · = ∆(0,MN) . . .∆(0,MN)∆(0,MN)h1.

As h1 is a1 = (1, 0)-periodic and (MNpk/qk) ∈ Z, Lemma 2.12 entails that

∆nkak
h1 = ∆(MNpk/qk,MN)h1 = ∆(0,MN)h1.

Thus ∆nkak
can be replaced by ∆(0,MN). Since ∆(0,MN)h1 is also (1, 0)-

periodic, we can repeat the same argument to deduce that ∆nk−1ak−1
can

also be replaced by ∆(0,MN) and so on.
Finally we get

∆k−1
(0,MN)h1 = 0.

Now let us consider the function

L1(x, y) = h1(x, y)−tp3y = (h1(x, y)− [tp3y])−{tp3y} = −g̃1(x, y)−{tp3y}.
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It is bounded because both g̃1 and (x, y) 7→ {tp3y} are bounded. On the
other hand, ∆k−1

(0,MN)L1 = 0 since this holds for both h1 and (x, y) 7→ tp3y.
(The latter is (0, r)-linear for any r ∈ Q, and k − 1 ≥ 2.) Corollary 2.11
implies the (0,MN)-periodicity of L1. Hence

h1(0,MN)− h1(0, 0) = L1(0,MN)− L1(0, 0) + tp3MN = tp3MN /∈ Q,

though h1 is an integer-valued function, a contradiction.
Now we turn to the case when at least one of a4, . . . , ak is commensurable

with a1. First we change our notation a little. Let a2, . . . , ak now denote
those periods that are not commensurable with a1; those commensurable
with a1 are a1 = (r1, 0) = (1, 0), (r2, 0), . . . , (rl, 0). (Then the meaning of k
changes as well.) Let m be the least common multiple of r1 = 1, r2, . . . , rl.
Our original argument needs to be changed at only one point. After the
indirect assumption, we add up the functions corresponding to the periods
a1 = (r1, 0) = (1, 0), (r2, 0), . . . , (rl, 0). We get an (m, 0)-periodic function
G̃1. (The function corresponding to the period ai is still denoted by g̃i,
i ≥ 2.) This time we choose N such that Npi ∈ mZ. Since H1 := g1 − G̃1 is
m-periodic, we get a contradiction the same way.

The next lemma deals with periods outside Q×Q.

Lemma 4.3. Let d < D be positive integers, a1, . . . , al ∈ Qd ⊂ QD and
al+1, . . . , ak ∈ QD \ Qd. Suppose that there exists a function f : Qd → Z
which has a bounded real-valued (a1, . . . , al)-decomposition, but no bounded
integer-valued (a1, . . . , al)-decomposition. Let F : QD → Z be the extension
of f by zero. Then F has a bounded real-valued (a1, . . . , ak)-decomposition,
but no bounded integer-valued (a1, . . . , ak)-decomposition.

Proof. Let f = f1 + · · · + fl be a bounded real-valued (a1, . . . , al)-
decomposition. By definition,

F (x) =

{
f(x), x ∈ Qd,

0, x ∈ QD \Qd.

We can extend fi to Fi the same way (1 ≤ i ≤ l). Since ai ∈ Qd, Fi is
ai-periodic (1 ≤ i ≤ l). So F1 + · · ·+Fl is a bounded real-valued (a1, . . . , al)-
decomposition of F . Setting Fi = 0 (l < i ≤ k), we also get a bounded
real-valued (a1, . . . , ak)-decomposition of F .

To show that F has no bounded integer-valued (a1, . . . , ak)-decomposi-
tion, assume for contradiction that

F = G1 + · · ·+Gk (Gi : QD → Z is bounded and ai-periodic).

Consider the operator

S := ∆nl+1al+1
∆nl+2al+2

. . .∆nkak
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where nl+1, nl+2, . . . , nk are positive integers. Clearly, S maps every ai-
periodic function to 0 for l + 1 ≤ i ≤ k, thus

SF = SG1 + · · ·+ SGl,

where SGi : QD → Z is a bounded ai-periodic function (1 ≤ i ≤ l). Conse-
quently, SF has a bounded integer-valued (a1, . . . , al)-decomposition. Our
goal is to choose nl+1, nl+2, . . . , nk in such a way that the restriction of SF
to Qd is (−1)k−lf . This will be a contradiction since, by assumption, f has
no bounded integer-valued (a1, . . . , al)-decomposition.

First let nk be an arbitrary positive integer, and consider the function
(∆nkak

F )(x) = F (x+nkak)−F (x). It maps x ∈ Qd to −f(x), since ak /∈ Qd.
On the other hand, it is supported by a band parallel to Qd, that is, it
vanishes outside the set

Qd × ([−Kd+1,Kd+1] ∩Q)× · · · × ([−KD,KD] ∩Q) ⊂ QD

for some rational numbers Kd+1, . . . ,KD ≥ 0. (In this case Kj can be chosen
to be |(nkak)j |, the absolute value of the jth coordinate of the point nkak.)
Now we choose nk−1 such that nk−1ak−1 lies outside this band. (This is
possible because ak−1 /∈ Qd, so there must be an index j > d for which
the jth coordinate of ak−1 is not 0, thus (nk−1ak−1)j > Kj if nk−1 is large
enough.) Then the restriction of (∆nk−1ak−1

∆nkak
F )(x) to Qd equals f and

there still exists a band that supports this function. (The new Kj can be
chosen to be the sum of the old Kj and |(nk−1ak−1)j |.) Now we choose nk−2

such that nk−2ak−2 lies outside this new band and so on. Finally we get an
operator S for which SF |Qd = (−1)k−lf .

Now we complete the proof of Theorem 1.4 by showing the remaining
implication (iii)⇒(i).

Theorem 4.4. Let a1, . . . , ak ∈ R \ {0}. Suppose that there is a planar
triple (three pairwise incommensurable but linearly dependent real numbers)
among them. Then there is an R→ Z function that has a bounded real-valued
(a1, . . . , ak)-decomposition, but no bounded integer-valued (a1, . . . , ak)-de-
composition.

Proof. We can assume that {a1, a2, a3} is a planar triple. These three
periods span a two-dimensional Q-linear subspace of R. We can also assume
that the periods lying in this subspace 〈a1, a2, a3〉Q ∼= Q × Q are exactly
a1, . . . , al for some integer 3 ≤ l ≤ k. Let D denote the dimension of the Q-
linear subspace spanned by all the periods: 〈a1, . . . , ak〉Q ∼= QD. Obviously,
D ≥ 2.

By Proposition 4.2 there exists a function f over this Q×Q which has a
bounded real-valued (a1, . . . , al)-decomposition without having a bounded
integer-valued (a1, . . . , al)-decomposition. Then, by Lemma 4.3, there also
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exists F : QD → Z with a bounded real-valued (a1, . . . , ak)-decomposition
but without a bounded integer-valued (a1, . . . , ak)-decomposition. Extend-
ing F by zero over R, we get a function with the desired properties.

5. Corollaries and questions. We start this section with the following
observation. Suppose that we have some periods a1, . . . , al and a nontrivial
homogeneous solution h1 + · · · + hl = 0. Then it can be viewed as a solu-
tion with periods a1, . . . , ak for arbitrary extra periods al+1, . . . , ak (we just
complement the solution with zero functions, that is, we set hi ≡ 0, i =
l+ 1, . . . , k). It can happen that the solution becomes trivial because of the
extra periods. However, the following is true.

Proposition 5.1. For any planar triple a1, a2, a3 there exists a nontriv-
ial homogeneous solution h1 + h2 + h3 = 0 that remains nontrivial even if
we add arbitrary extra periods.

Proof. The proof of Theorem 4.1 tells us how to obtain a nontrivial ho-
mogeneous solution: take a bounded decomposition and an integer-valued
decomposition of the same function and take their difference; it will be
nontrivial provided that the function has no bounded integer-valued decom-
position.

We have also seen (see the second paragraph of Subsection 4.2) that for
any planar triple a1, a2, a3 there exists a bounded function f : R → Z with
a bounded (a1, a2, a3)-decomposition f1 + f2 + f3 = f and an integer-valued
(a1, a2, a3)-decomposition g1 + g2 + g3 = f ; furthermore, f has no bounded
integer-valued (a1, . . . , ak)-decomposition for any extra periods a4, . . . , ak.

Consequently, for arbitrary extra periods a4, . . . , ak, f has a bounded
decomposition (f1 + f2 + f3 + 0 + · · ·+ 0 = f) and an integer-valued decom-
position (g1+g2+g3+0+· · ·+0 = f) but it has no (a1, . . . , ak)-decomposition
that is both bounded and integer-valued. It follows, in view of the first para-
graph, that the homogeneous solution

(f1 − g1) + (f2 − g2) + (f3 − g3) + 0 + · · ·+ 0 = 0

is nontrivial. Since this holds for an arbitrary choice of additional periods,
we are done.

Next, we add one more statement to the list of equivalent assertions
in Theorem 1.4. Recall the already mentioned theorem that the class of
bounded R → R functions has the decomposition property: a function f :
R → R has a bounded real-valued (a1, . . . , ak)-decomposition if and only if
f is bounded and satisfies ∆a1 . . .∆ak

f = 0. Using this, we can rephrase
(iii) equivalently as follows.

Proposition 5.2. The following is also equivalent to (i)–(iii) of Theo-
rem 1.4:
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(iii′) If f : R → Z is bounded and ∆a1 . . .∆ak
f = 0, then f has a bounded

integer-valued (a1, . . . , ak)-decomposition.

As a corollary of Theorem 1.4 we answer another problem of T. Keleti
who studied (Lebesgue) measurable periodic decompositions of integer-
valued measurable functions in [6]. In [6, Theorem 2.5] he proved the equiv-
alence of seven assertions. We will need the equivalence of two of them.

Theorem 5.3 ([6]). Let a1, . . . , ak ∈ R \ {0}. Let B1, . . . , Bn denote
the equivalence classes of {a1, . . . , ak} with respect to the relation defined by
a ∼ b ⇔ a/b ∈ Q and bj be the least common multiple of the numbers in
Bj. (In fact, bj can be any element that is commensurable with the elements
in Bj .) The following two statements are equivalent.

(a) If an (everywhere) integer-valued function f on R has a bounded
measurable real-valued (a1, . . . , ak)-decomposition, then it also has an
almost everywhere integer-valued bounded measurable (a1, . . . , ak)-
decomposition.

(b) The real numbers 1/b1, . . . , 1/bn are linearly independent over Q.

If we want an (everywhere) integer-valued bounded measurable decom-
position, we have to fix the decomposition on an exceptional null set. To
do this, as pointed out in [6], we need to use the original (nonmeasurable)
version of this problem. Since we have solved it, we are able to answer the
measurable version too.

Theorem 5.4. Let a1, . . . , ak nonzero real number, and let b1, . . . , bn be
as defined in the previous theorem. The implication

f has a bounded measurable real-valued (a1, . . . , ak)-decomposition
⇒ f has a bounded measurable integer-valued (a1, . . . , ak)-decomposition

holds for any function f : R → Z if and only if the periods satisfy the
following two conditions:

• 1/b1, . . . , 1/bn are linearly independent over Q,
• any three of b1, . . . , bn are linearly independent over Q.

(Note that the second condition holds if and only if there is no planar triple
among a1, . . . , ak.)

Proof. If the first condition fails to hold then by Theorem 5.3 there
exists an integer-valued function that has a bounded measurable real-valued
(a1, . . . , ak)-decomposition, but it does not have a decomposition in which
the functions are bounded, measurable and (almost everywhere) integer-
valued.

If the second condition fails, then according to Theorem 4.4 there exists
an integer-valued function f that has a bounded real-valued (a1, . . . , ak)-
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decomposition, but no bounded integer-valued (a1, . . . , ak)-decomposition.
Moreover, f and the functions of its real-valued decomposition are all sup-
ported by a finite-dimensional Q-linear subspace. Such a subspace is count-
able, so it has measure zero. However, every function supported by a null set
is measurable. Consequently, f shows that the implication does not hold.

Now we suppose that both conditions are satisfied by a1, . . . , ak. Let us
take an integer-valued function f with a decomposition f = f1 + · · · + fk

where fi is bounded, measurable and ai-periodic. Theorem 5.3 entails that
there is a decomposition f = g1 + · · ·+ gk where gi is bounded, measurable,
almost everywhere integer-valued and ai-periodic.

From this point on, the proof goes as in [6, Proposition 3.3]. Set

Ej := {x ∈ R : gj(x) /∈ Z}, E =
( k⋃

j=1

Ej

)
+ a1Z + · · ·+ akZ.

Clearly, E has measure zero. Consider the integer-valued function F = fχE

which has a bounded real-valued decomposition g1χE + · · · + gkχE . By
Theorem 1.4 it also has a bounded integer-valued decomposition F =
G1 + · · ·+Gk. Then the functions

g̃j(x) = gjχR\E +GjχE

give us a bounded, measurable, everywhere integer-valued periodic decom-
position.

Finally, we mention a few open problems. We have seen that if there is
no planar triple among the periods, then we can get every solution of the
homogeneous equation (1.1) by adding up solutions of a certain simple type
(namely, solutions that contain only two nonzero functions). It would be nice
to have a similar theorem in general (when we have no restriction on the
periods). Let a solution be a basic solution if the periods that correspond
to nonzero functions are in a plane (by which we mean that they span a
one- or two-dimensional Q-linear subspace). Our conjecture is that every
homogeneous solution is the sum of basic solutions.

Problem 5.5. Is it true that every solution of the homogeneous equation
can be written as the sum of such solutions where the periods corresponding
to the nonzero functions of the decomposition span a Q-linear subspace with
dimension at most 2?

A positive answer to this question could be a first step towards describing
all homogeneous solutions. In that case it would be enough to determine the
basic solutions. It is easy to see that it suffices to do that on Z× Z.

Problem 5.6. Let a1, . . . , ak be nonzero elements of Z× Z. Determine
the solutions of the equation

h1 + · · ·+ hk = 0 (hi : Z× Z→ R, ∆aihi = 0).
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The case of three periods is solved [4].
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