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Abstract. This article investigates under what conditions nontransitivity can coexist
with the asymptotic average shadowing property. We show that there is a large class
of maps satisfying both conditions simultaneously and that it is possible to find such
examples even among maps on a compact interval. We also study the limit shadowing
property and its relation to the asymptotic average shadowing property.

1. Introduction. The theory of shadowing is one of the most important
topics in the modern theory of dynamical systems. During the last fifty years
many results on shadowing have been published, and there are books devoted
entirely to this subject (e.g. [13, 14]).

In recent years the notions of average shadowing property and asymp-
totic average shadowing property were introduced respectively by Blank [1]
and Gu [7]. The idea is to allow in a pseudo-orbit infinitely many errors of
high magnitude provided that such errors are sparse enough. These innova-
tions allow one to apply the theory of shadowing in a wider context than
was possible before and smoothly integrate it into several existing fields of
study (e.g. these definitions are natural in the case of random dynamical
systems). What makes these new concepts even more appealing is the fact
that they prove to be complex and nontrivial. The main aim of this article
is to continue the investigation of the properties of continuous maps with
the asymptotic average shadowing property (abbreviated AASP).

The definition of the AASP is stated in terms of limits of averages, which
in a natural way brings to mind the Birkhoff ergodic theorem. Therefore,
when looking at the setting from the topological point of view, one could
expect maps with the AASP to be transitive. Existing results further rein-
force this impression—namely, maps with the AASP are chain transitive [7],
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and equicontinuous maps with the AASP are topologically ergodic [8] (which
roughly speaking means that the set of hits N(U, V ) = {n : f−n(V )∩U 6= ∅}
has positive density for any two nonempty open sets U, V ). We proved in
[10] that surjections with the specification property always have the AASP
and, in some cases, there is equivalence between these two properties. The
only attempt to construct a nontransitive map with the AASP that we are
aware of was undertaken in [9, Example B]. This result, however, is prob-
lematic, as the constructed map does not have the AASP (it is defined on
an interval, 0 and 1 − ε are its fixed points and [1/2, 1] is its invariant set,
and therefore, by [10, Thm. 3.1], it cannot have this property). The proof
in [9] does establish that it has the limit shadowing property, though.

We construct (in Theorem 3.3) a class of nontransitive maps with the
AASP, though this result most probably does not cover the full spectrum
of possibilities. In particular, if we have a compact set A and a map f on it
that has the AASP, then this property will not be affected if we extend the
space by adding orbits with ω-limit sets contained in A as long as the new,
larger space is still compact. But obviously the dynamics on the extended
space will not be transitive. This family of examples does not exhaust the
full generality of Theorem 3.3.

The article is organized in the following way: In Section 2 we recall the
definitions and basic facts used in the later parts of the article. Section 3 con-
tains the main results. Among other things it provides a tool for recursively
constructing complicated examples of nontransitive dynamical systems with
the AASP (Theorem 3.11). In the next section we deal with the special case
of maps with maximal ω-limit sets. We also provide an example of a non-
transitive map on a compact interval which has the AASP (a map with a
“wandering interval”). Finally, in Section 5, we study the relations between
the limit shadowing property and the AASP.

2. Preliminaries. Let N = {0, 1, . . .} denote the set of natural numbers.
A set J ⊂ N is said to be of density zero provided that

lim
n→∞

1
n+ 1

#(J ∩ [0, n]) = 0.

Notation. Let J ⊂ N be a set such that N \ J is unbounded. Let {ai}∞i=0

be a sequence of real numbers. If there is b ∈ R such that the sequence
obtained from {ai}∞i=0 by deleting the terms with indices from J has limit b,
then we write limi 6∈J ai = b. In an analogous way we define lim supi 6∈J ai.

Throughout the paper we will assume that (X, d) is a compact metric
space and f : X → X is a continuous map. Given a point x ∈ X we
call the set {fn(x) : n ∈ N} the (positive) orbit of x and denote it by
Orb+(x, f). The ω-limit set (or the positive limit set) of a point x is the set
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ω(x, f) =
⋂∞
i=1 Orb+(f i(x), f). A point x is periodic if fn(x) = x for some

n > 0, and eventually periodic if fn(x) is periodic for some n > 0.
A set M ⊂ X is minimal if it is closed, nonempty, invariant (that is,

f(M) ⊂M) and contains no proper subset with these three properties. It is
well known that if M is minimal then the orbit of every point of M is dense
in M . A point x ∈ X is called minimal if it belongs to a minimal set.

The map f is transitive if for any pair of nonempty open sets U, V ⊂ X
there exists n > 0 such that fn(U)∩V 6= ∅. We say that f is totally transitive
if fn is transitive for all n ≥ 1, and (topologically) weakly mixing if f × f is
transitive on X ×X.

The map f has the specification property if for every ε > 0 there exists
M > 0 such that for every n ∈ N and any y1, . . . , yn ∈ X, given any
sequence of natural numbers a1 ≤ b1 < a2 ≤ b2 < · · · ≤ bn such that for
every 2 ≤ i ≤ n we have ai − bi−1 ≥ M one can find z ∈ X such that
d(fk(yi), fk(z)) ≤ ε for all 1 ≤ i ≤ n and ai ≤ k ≤ bi.

Recall that a finite sequence {xi}ni=0 is called a δ-pseudo-orbit of f (from
x0 to xn) if d(f(xi), xi+1) < δ for every 0 ≤ i < n. A map f is chain
transitive if for every x, y ∈ X and every δ > 0 there is a δ-pseudo-orbit
from x to y. A map f is said to be chain mixing if for any δ > 0 and any
x, y ∈ X there is a positive integer N such that for every integer n > N
there is a δ-pseudo-orbit from x to y of length n.

The next three definitions were introduced by Gu [7]:

Definition 2.1. The sequence {xi}∞i=0 ⊂ X is an asymptotic average
pseudo-orbit of f provided that

lim
n→∞

1
n+ 1

n∑
i=0

d(f(xi), xi+1) = 0.

Definition 2.2. The sequence {xi}∞i=0 ⊂ X is asymptotically shadowed
on average by a point z ∈ X provided that

lim
n→∞

1
n+ 1

n∑
i=0

d(xi, f i(z)) = 0.

Definition 2.3. The map f has the asymptotic average shadowing prop-
erty (abbreviated AASP) provided that every asymptotic average pseudo-
orbit of f is asymptotically shadowed on average by some point in X.

The reader can find several comments on the specification property and
its relationship to the AASP in [10].

3. Nontransitive maps with the AASP. Gu has proven in [7] that
surjections with the AASP are chain transitive. This result can be strength-
ened as follows:



38 M. Kulczycki and P. Oprocha

Theorem 3.1. If f is a surjection with the AASP then it is chain mix-
ing.

Proof. Gu has proven that if f has the AASP then so does fn for ev-
ery n ≥ 1 and that every map with the AASP is chain transitive (see [7,
Prop. 2.2 and Thm. 3.1]). But if fn is chain transitive for every n ≥ 1 then
f is chain mixing [15, Cor. 12].

Theorem 3.1 was first observed by Gu in the context of maps on con-
nected spaces, but as we can see above, this fact does not actually depend on
the structure of the space X (note that the results of Gu [7] were published
before [15] appeared).

If f is a surjection with the AASP then X is the only attractor for f . If
we skip the assumption that f is onto then the only attractor for f is the
maximal set A such that f(A) = A. One might therefore suspect that maps
with the AASP are always at least transitive. This statement turns out to be
false, however, as will be demonstrated in Theorem 3.3 and Example 3.13.

We have found the following lemma to be a very useful tool for studying
the AASP. It was extensively used by Gu in his first paper on the subject [7].

Lemma 3.2 ([16, Thm. 1.20]). Let {ai}∞i=0 be a bounded sequence of non-
negative real numbers. The following conditions are equivalent:

(1) limn→∞ n
−1
∑n−1

i=0 ai = 0,
(2) There exists a set J ⊂ N of density zero such that limn6∈J an = 0.

Note that by virtue of this lemma the notion of AASP is purely topolog-
ical and independent of the metric (as long as it induces the same topology).

The next theorem is the main result of this section.

Theorem 3.3. Let (X, d) be a compact metric space, let f : X → X be
a continuous map and let A ⊂ X be a closed set which is invariant under f
(that is, f(A) ⊂ A). Assume that the map f |A has the AASP and that for
every ε > 0 there exists n ∈ N such that for every x ∈ X we have

(3.1)
1
n

#{0 ≤ i < n : d(f i(x), A) < ε} > 1− ε.

Then the map f also has the AASP.

We split the proof into a few steps that are stated in the form of several
technical lemmas. For brevity we do not repeat the assumptions of Theo-
rem 3.3 when stating the lemmas.

Lemma 3.4. For every ε > 0 there exist n ∈ N and δ > 0 such that for
every finite δ-pseudo-orbit {xi}n−1

i=0 of f we have

(3.2)
1
n

#{0 ≤ i < n : d(xi, A) < ε} > 1− ε.
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Proof. Given ε > 0 use (3.1) to choose n ∈ N such that for every x ∈ X
we have

1
n

#{0 ≤ i < n : d(f i(x), A) < ε/2} > 1− ε/2.

The compactness of X and continuity of f allow one to find in a standard
way a constant δ > 0 such that for every finite δ-pseudo-orbit {xi}n−1

i=0 of f
and for every i ∈ {0, 1, . . . , n− 1} we have d(f i(x0), xi) < ε/2. Then by the
triangle inequality,

1
n

#{0 ≤ i < n : d(xi, A) < ε} > 1− ε/2 > 1− ε.

Lemma 3.5. For every ε > 0 there exist n ∈ N and δ > 0 such that for
every k ≥ n and every finite δ-pseudo-orbit {xi}k−1

i=0 of f we have

(3.3)
1
k

#{0 ≤ i < k : d(xi, A) < ε} > 1− ε.

Proof. Given ε > 0 use Lemma 3.4 to obtain n ∈ N and δ > 0 such that
(3.2) holds with ε/2. Fix k ≥ n and a finite δ-pseudo-orbit {xi}k−1

i=0 of f .
Assume that k = ln+ r, where l, r ∈ N and 0 ≤ r < n. Define

bj = #{j ≤ i < j + n : d(xi, A) ≥ ε}.

We can now compute:

1
k

#{0 ≤ i < k : d(xi, A) < ε}

≥ 1
k

[k − (b0 + bn + b2n + · · ·+ b(l−1)n)− bk−n]

≥ 1− n

k

[
b0
n

+
bn
n

+
b2n
n

+ · · ·+
b(l−1)n

n

]
− n

k

bk−n
n

> 1− lnε
2k
− nε

2k
≥ 1− ε

2
− ε

2
= 1− ε.

Lemma 3.6. If {xi}∞i=0 is an asymptotic average pseudo-orbit of f then
for every ε > 0 and every θ > 0 there exists a set Jθε ⊂ N such that

(3.4) lim sup
k→∞

1
k

#(Jθε ∩ [0, k)) ≤ θ

and d(xj , A) < ε for every j ∈ N \ Jθε .

Proof. Fix {xi}∞i=0 and ε, θ > 0. Set γ = min{ε, θ}. Use Lemma 3.5 to
obtain n ∈ N and δ > 0 such that (3.3) holds with γ in place of ε. Use
Lemma 3.2 for the sequence {d(f(xi), xi+1)}∞i=0 to obtain a set J of density
zero such that limi 6∈J d(f(xi), xi+1) = 0. We can assume that J is infinite
by extending it if necessary to a larger set of density zero. Define J1 to be
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N minus all sequences of consecutive numbers of length at least n that are
disjoint from J . Strictly speaking, we put

J1 = {i ∈ N : j1 ≤ i ≤ j2 for some j1, j2 ∈ J ∪ {0}, j2 − j1 ≤ n}.
Note that J ⊂ J1. Also note that J1 is of density zero, because

lim sup
k→∞

1
k + 1

#(J1 ∩ [0, k]) ≤ lim sup
k→∞

2n− 1
k + 1

#(J ∩ [0, k]) = 0.

As limi 6∈J d(f(xi), xi+1) = 0 we can find c ∈ J1 such that for every sequence
{p1, . . . , pj} of consecutive natural numbers that is disjoint from J1 and
such that p1 ≥ c the sequence {xp1 , . . . , xpj} is a δ-pseudo-orbit of f . Define
J2 = J1 ∪ {0, 1, . . . , c}. Note that J1 ⊂ J2 and J2 is of density zero, for

lim sup
k→∞

1
k + 1

#(J2∩ [0, k]) ≤ lim sup
k→∞

1
k + 1

#(J1∩ [0, k])+ lim sup
k→∞

c+ 1
k + 1

= 0.

We can thus select natural numbers q0 ≤ r0 < q1 ≤ r1 < · · · such that
N \ J2 =

⋃∞
i=0{qi, . . . , ri}. Additionally, for every j ∈ N we can demand

that n − 1 ≤ rj − qj < 2n − 1. Note that for every j ∈ N the sequence
{xqj , . . . , xrj} is a δ-pseudo-orbit of f .

Define Jθε = J2 ∪ {j ∈ N \ J2 : d(xj , A) ≥ ε}. It remains to prove that
the set Jθε has all the desired properties. For every j ∈ N define wj to be the
number of points in {xqj , . . . , xrj} that are closer than ε to A. By Lemma 3.5
for every j ∈ N we have wj/(rj − qj + 1) > 1 − θ. Given k ∈ N let s(k) be
the largest natural number such that qs(k) < k. To show that (3.4) holds we
calculate:

lim sup
k→∞

1
k

#(Jθε ∩ [0, k))

≤ lim
k→∞

1
k

#(J2 ∩ [0, k)) + lim sup
k→∞

1
k

s(k)∑
j=0

(rj − qj + 1− wj)

≤ lim sup
k→∞

1
k

s(k)∑
j=0

(rj − qj + 1)
(

1− wj
rj − qj + 1

)

≤ lim sup
k→∞

1
k

s(k)∑
j=0

(rj − qj + 1)θ

≤ θ lim sup
k→∞

k + 2n
k

≤ θ.

Since d(xj , A) < ε provided that j /∈ Jθε , the proof is finished.

Lemma 3.7. Let Ji ⊂ N be a sequence such that

lim
i→∞

lim sup
k→∞

1
k

#(Ji ∩ [0, k)) = 0.
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Then there is a set J of density zero and increasing sequences {mi}∞i=0,
{li}∞i=1 such that m0 = 0 and for every i = 1, 2, . . . we have

J ∩ [mi−1,mi) = Jli ∩ [mi−1,mi).

Additionally, the following conditions hold:

(1) when each set Ji is of density zero we can take li = i for all i,
(2) for any given sequence of infinite sets Ri ⊂ N we can choose mi in

such a way that mi ∈ Ri.

Proof. First fix a sequence {li}∞i=1 such that for every i = 1, 2, . . . we have
lim supk→∞(1/k)#(Jli ∩ [0, k)) < 1/2i+1, and a sequence {pi}∞i=1 such that
for every i = 1, 2, . . . and every k ≥ pi we have (1/k)#(Jli ∩ [0, k)) < 1/2i.

Put m0 = 0 and for i > 0 define inductively

mi =
{

min{r ∈ Ri : r ≥ mi−1 + 1, r ≥ pi+1} if the sets Ri are given,
max{mi−1 + 1, pi+1} if not.

Next define J by the condition J ∩ [mi−1,mi) = Jli ∩ [mi−1,mi).
It remains to notice that for every s ∈ N+ we have

lim sup
k→∞

1
k

#(J ∩ [0, k))

≤ lim sup
k→∞

1
k

( s∑
t=1

#(Jlt ∩ [mt−1,mt)) +
∞∑

t=s+1

#(Jlt ∩ [mt−1, k))
)

≤
∞∑

t=s+1

1
2t

=
1
2s

where [a, b) is understood to be the empty set for b ≤ a.

Lemma 3.8. If {xi}∞i=0 is an asymptotic average pseudo-orbit of f then
for every ε > 0 there exists a set Jε ⊂ N of density zero such that d(xj , A)
< ε for every j ∈ N \ Jε.

Proof. Fix {xi}∞i=0 and ε > 0. For every i ∈ N use Lemma 3.6 to obtain
the set J1/2i

ε . Next, denote Ji = J
1/2i

ε and observe that

lim
i→∞

lim sup
k→∞

1
k

#(Ji ∩ [0, k)) ≤ lim
i→∞

1
2i

= 0,

hence we can apply Lemma 3.7 to obtain a set J of density zero and a se-
quence {mi}∞i=0. In particular, for every j ∈ N \ J there is i such that
j ∈ N \ Ji and so d(xj , A) < ε by Lemma 3.6. The proof is finished by
putting Jε = J .

Lemma 3.9. If {xi}∞i=0 is an asymptotic average pseudo-orbit of f then
there exists a set J ⊂ N of density zero such that limi 6∈J d(xi, A) = 0.
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Proof. For every i ∈ N use Lemma 3.8 to obtain the set J1/2i . Since each
J1/2i is of density zero, the sequence Ji = J1/2i fulfills the assumptions of
Lemma 3.7, and therefore we can produce a set J of density zero and increas-
ing sequences {mi}∞i=0, {li}∞i=1 such that J ∩ [mi−1,mi) = Jli ∩ [mi−1,mi).
This guarantees that if j ∈ {mi + 1,mi + 2, . . .} \ J then j ∈ N \ J1/2n

for some n ≥ li+1 ≥ i + 1 and as a consequence d(xj , A) < 1/2i+1. Thus
limi 6∈J d(xi, A) = 0 and the proof is complete.

Proof of Theorem 3.3. Using the compactness of X and continuity of f
one can obtain in a standard way for every i ∈ N a constant δi > 0 such that
for every finite δi-pseudo-orbit {z0, . . . , z2i+1−1} of f and for every u ∈ X
such that d(z0, u) < δi we have d(f j(u), zj) < 1/2i for all 0 ≤ j < 2i+1.

Let {xi}∞i=0 ⊂ X be an asymptotic average pseudo-orbit of f . Let Q(1)

be the set of density zero provided by Lemma 3.9. Use Lemma 3.2 for the
sequence {d(f(xi), xi+1)}∞i=0 to obtain a set Q(2), also of density zero, such
that

lim
i 6∈Q(2)

d(f(xi), xi+1) = 0.

The set J = Q(1) ∪Q(2) is of density zero as the union of two such sets.
For every n ∈ N let Jn be the union of all sets of the form {l2n, . . . ,

(l + 1)2n − 1} (where l ∈ N) that contain at least one element from J . In
other words

Jn =
⋃
l∈Ωn

{l2n, . . . , (l + 1)2n − 1}

where Ωn is the collection of all those l ∈ N for which

{l2n, . . . , (l + 1)2n − 1} ∩ J 6= ∅.

Note that limk 6∈Jn d(xk, A) = 0 and limk 6∈Jn d(f(xk), xk+1) = 0 as these
properties carry over from the set J which is a subset of Jn. Additionally

lim sup
k→∞

1
k + 1

#(Jn ∩ [0, k]) ≤ lim sup
k→∞

2n

k + 1
#(J ∩ [0, k]) = 0.

Therefore each Jn is of density zero. Note that because of the properties
limk 6∈J d(f(xk), xk+1) = 0 and limk 6∈J d(xk, A) = 0 for every i ∈ N there is
Ki ∈ N such that d(f(xk), xk+1) < δi and d(xk, A) < δi provided that k 6∈ J
and k ≥ Ki. Define Ri = {l2i+1 − 1 : l ∈ Ωi+1, l ≥ Ki}.

We now apply Lemma 3.7 to obtain a set J ′. Notice that by the choice
of the sets Ri the following additional properties are satisfied:

• For every i ∈ N we have mi = l2i+1 − 1 for some l ∈ Ωi+1.
• d(f(xk), xk+1) < δi provided that k 6∈ J ′ and k ≥ mi.
• d(xk, A) < δi provided that k 6∈ J ′ and k ≥ mi.
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By the above properties the set N \ J ′ can be written as a union of
pairwise disjoint finite sequences of consecutive numbers of nondecreasing
length, where the length of each sequence equals 2i for some i ∈ N. Denote
these sequences by {ai, . . . , bi} where a0 < b0 < a1 < b1 < · · · , and put
B = {bi : i ∈ N}. By the definition of the set Jn we may additionally ensure
that if mi ≤ ak < mi+1 then bk − ak = 2i+1. Note that B is of density zero
because bk+1 − bk ≥ 2i+1 for every bk > mi+1.

Pick any p ∈ A. We will now define a sequence {yi}∞i=0 ⊂ A which will be
an asymptotic average pseudo-orbit of f with some additional properties. For
all i ∈ J ′ put yi = p. For every ai pick any point yai such that d(xai , yai) =
d(xai , A) and put {yai+1, . . . , ybi} = {f(yai), . . . , f

bi−ai(yai)}. Note that the
sequence {d(f(yi), yi+1)}∞i=0 satisfies the condition (2) of Lemma 3.2 with
the set J ′ ∪ B (which is of density zero, being the union of two such sets).
It is, therefore, an asymptotic average pseudo-orbit of f |A. Moreover, if
ai > mk then {xj}bij=ai is a δk-pseudo-orbit and so d(xai+j , f

j(yai)) < 2−k

for j = 0, . . . , bi − ai. In particular limi 6∈J ′ d(xi, yi) = 0.
The map f |A has the AASP, so we can select a point y ∈ A that asymp-

totically shadows {yi}∞i=0 on average, that is, limi 6∈C d(f i(y), yi) = 0 for some
set C of density zero. Observe that

lim sup
i 6∈J ′∪C

d(f i(y), xi) ≤ lim sup
i 6∈J ′∪C

d(f i(y), yi) + lim sup
i 6∈J ′∪C

d(yi, xi) = 0

and the set J ′ ∪C is of density zero. Therefore, by Lemma 3.2, y asymptot-
ically shadows {xi}∞i=0 on average, and the proof is complete.

In the next lemma we show that if the map has a special structure, then
the assumptions of Theorem 3.3 are satisfied.

Lemma 3.10. Let (X, d) be a compact metric space, let f : X → X be a
continuous map and let

A =
⋃
x∈X

ω(x, f).

Then for every ε > 0 there exists N ∈ N such that for every x ∈ X,

(3.5)
1
N

#{0 ≤ i < N : d(f i(x), A) < ε} > 1− ε.

Proof. Fix any ε > 0 and denote U = {x ∈ X : d(x,A) < ε}. The set U
is open, so D = X \ U is compact. Since ω(z, f) ⊂ A and f is continuous
we know that for every z ∈ D there is an open neighbourhood Vz of z and
n(z) > 0 such that for every y ∈ Vz,

(3.6)
1

n(z) + 1
#{0 ≤ i ≤ n(z) : f i(y) 6∈ U} ≤ ε

2
.

In particular, there are z1, . . . , zk ∈ D such that D ⊂
⋃k
i=1 Vzi . Denote
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m = max{n(z1), . . . , n(zk)}, pick l > 2/ε and let N = (l + 1)m. Fix any
x ∈ X. We need to verify that (3.5) holds. Set C = {0 ≤ i < N : f i(x) 6∈ U}.
There is a subset C ′ ⊂ C and a function ξ : C ′ → {1, . . . , k} such that

(1) if i ∈ C ′ then f i(x) ∈ Vzξ(i) ,
(2) [i, i+ n(zξ(i))] ∩ C ′ = {i},
(3) C ⊂

⋃
i∈C′ [i, i+ n(zξ(i))].

In particular from (2) and (3) it follows that
∑

i∈C′, i≤lm(n(zξ(i)) + 1) ≤ N .
To finish the proof it is enough to calculate

1
N

#{0 ≤ i < N : f i(x) 6∈ U}

≤ 1
N

∑
i∈C′

i≤lm

#{0 ≤ j ≤ n(zξ(i)) : f i+j(x) 6∈ U}+
m

N

≤ 1
N

∑
i∈C′

i≤lm

ε

2
(n(zξ(i)) + 1) +

1
l
≤ ε

2
+
ε

2
≤ ε.

Theorem 3.11. Let (X, d) be a compact metric space, let f : X → X be
a continuous map and let A ⊂ X be a closed set that is invariant under f .
Assume that the map f |A has the AASP and ω(x, f) ⊂ A for every x ∈ X.
Then f has the AASP.

Proof. This is a direct consequence of Lemma 3.10 and Theorem 3.3.

In particular, as a constant map on a one-point space has the AASP, we
have:

Corollary 3.12. Let (X, d) be a compact metric space and let f :
X → X be a continuous map. If there exists a point y ∈ X such that
ω(x, f) = {y} for every x ∈ X then f has the AASP.

This allows us to give a simple, yet nontrivial example of a nontransitive
map with the AASP—a task that previous research showed to be surpris-
ingly hard.

Example 3.13. The map f : S1 3 e2πix 7→ e2πix
2 ∈ S1 (where x ∈ [0, 1]

and S1 denotes the unit circle) has the AASP.

Fig. 1. Graph of the function x2 over the unit interval and the phase portrait of its lift
to S1
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It is easy to see that this map does not have the shadowing property
or the specification property, thus proving that the AASP does not imply
either of these two properties. In fact, by Theorem 3.1, an onto map with
the AASP and shadowing has to be mixing, while the map f is not even
transitive.

Remark. We proved in [10] that for surjections the specification prop-
erty implies the AASP. The above example shows that the converse impli-
cation does not hold.

Remark. In view of Example 3.13 one could wonder if the formulation
of Lemma 3.10 is not overly complicated. One could suspect that there
should exist a global upper bound N on the number of iterations that the
orbit of any point x ∈ X can spend outside any neighbourhood U of A; in
other words #(Orb+(x, f) \ U) < N .

The next example was introduced as [6, Example 17] for a completely dif-
ferent purpose, but it serves nicely to illustrate that this does not necessarily
have to be true.

Example 3.14. Let Σ2 be the set of bi-infinite sequences over the al-
phabet {0, 1}, i.e. Σ2 = {0, 1}Z. The set {0, 1} is given the discrete topology
and Σ2 is endowed with the product topology. We define the shift map
σ : Σ2 → Σ2 in the standard way, that is, σ(x)i = xi+1. It is easy to see
that σ is a homeomorphism.

Define a sequence {xn}∞n=1 ⊂ Σ2 by

xn = ∞00̇(10n)n0∞

and put

X = cl
( ∞⋃
n=1

∞⋃
i=−∞

{σi(xn)}
)
,

where cl denotes closure in Σ2, ∞0 and 0∞ are the sequences of zeros that
are infinite respectively to the left and to the right, and the dot marks the
symbol at position 0 in a bi-infinite sequence. Taking the closure simply
adds the point ∞00̇0∞ to the set. Note that σ(X) = X and so f = σ|X
is a homeomorphism of X. Let |y|1 denote the number of occurrences of
the symbol 1 in y ∈ Σ2. While in general |y|1 can be infinite we know that
|x|1 <∞ for every x ∈ X. Note that ω(x, σ) = {∞00̇0∞}. Put A = {∞00̇0∞}
and observe that the set U = {x ∈ X : x0 = 0} is an open neighbourhood
of A for which

#{i ∈ N : σi(xn) 6∈ U} = n.

4. Maximal ω-limit sets

Definition 4.1. Let f : X → X be a continuous map. We say that
a set A ⊂ X is a maximal ω-limit set for f if there is x ∈ X such that
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ω(x, f) = A and
ω(y, f) ∩A 6= ∅ ⇒ ω(y, f) ⊂ A

for every y ∈ X.

Definition 4.2. Two points x and y inX are said to be proximal if there
exists an increasing sequence {nk}∞k=0 with limk→∞ d(fnk(x), fnk(y)) = 0.

Definition 4.3. A point x ∈ X is said to be distal if x is not proximal
to any point in its orbit closure Orb+(x, f) other than itself.

Lemma 4.4. If there are x, y ∈ X such that any z ∈ X is not proximal
to at least one of the points x, y then f does not have the AASP.

Proof. The proof is rather standard (compare e.g. the proof of [10, The-
orem 3.1]). We include it for the sake of completeness. Define {ai}∞i=0 in the
following way:

ai =
{
f i(x) if 22k ≤ i < 22k+1 for some k ∈ N,
f i(y) otherwise.

Notice that for every j ∈ N and for every integer 2j ≤ k < 2j+1,

1
k

k−1∑
i=0

d(f(ai), ai+1) ≤ (j + 1)2−j diamX,

which implies that {ai}∞i=0 is an asymptotic average pseudo-orbit of f .
Next, suppose that {ai}∞i=0 is asymptotically shadowed on average by

some point z ∈ X. Neither the set
⋃∞
k=0{22k, . . . , 22k+1− 1} nor its comple-

ment in N has density zero, so z has to be proximal to both x and y, which
is impossible.

Theorem 4.5. If f has the AASP then it has at most one maximal
ω-limit set.

Proof. Let ω1, ω2 be maximal ω-limit sets. Fix any x ∈ ω1 and y ∈ ω2. By
Lemma 4.4 there is, a point z proximal to both x and y. Hence ω(z, f)∩ω1

6= ∅ and ω(z, f) ∩ ω2 6= ∅. But the sets ω1 and ω2 are maximal ω-limit sets
and therefore ω1 = ω2.

The above theorem is useful from at least two points of view. Firstly, for
a large class of maps it allows us to quickly verify that they do not have
the AASP (for example it works for many maps on topological graphs).
Furthermore, a combination of Theorems 4.5 and 3.11 gives an idea where
to look for an example of a nontransitive map with the AASP which is more
sophisticated than Example 3.13. We now present such a map.

Example 4.6. There exists a nontransitive map f : [0, 1] → [0, 1] with
the AASP.
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Proof. Start with the standard tent map T : [0, 1] → [0, 1], T (x) =
1 − |1 − 2x|. We will perform a construction similar to that of a Denjoy
map [4, Example 14.9]. First we choose a point z ∈ (0, 1) with a dense orbit
under T . Denote D0 = {z, T (z)} ∪ T−1({z}) and inductively set Dn+1 =
T (Dn) ∪ T−1(Dn). Finally put

D =
∞⋃
n=1

Dn.

Note that D ⊂ (0, 1) and D is dense in [0, 1]. Every point y ∈ [0, 1] has at
most two preimages under T . Therefore D is countable, say D = {xi : i ∈ Z}
where xi 6= xj for i 6= j. Observe that if Tn(xi) = xj for some n > 0
then i 6= j and xi /∈ Orb+(xj , T ), as otherwise z would be an eventually
periodic point. Just by the definition, both sets D and [0, 1]\D are invariant:
T (D) = D and T ([0, 1] \D) = [0, 1] \D. There is also a function φ : Z→ Z
so that T (xi) = xφ(i).

As the final step of our construction we remove all points xi from [0, 1]
and fill each hole with an interval Ii of length 2−|i|. This way a new contin-
uous map F is defined on the extended space in such a manner that:

(1) Each interval Ii is mapped homeomorphically onto Iφ(i).
(2) If all intervals Ii are collapsed back into single points then F reverts

to the map T .

As the domain of F is isometric to [0, 4] we can assume that F : [0, 4]→
[0, 4]. In this way every interval Ii becomes some interval [ai, bi] ⊂ (0, 4) and
there is a quotient map π : [0, 4] → [0, 1] that does not increase distances,
collapses every interval [ai, bi] into a single point (i.e. π([ai, bi]) = {xi}), and
has the property that T ◦π = π◦F . If we fix i, j such that xi 6∈ Orb+(xj) then
Fn((aj , bj)) ∩ (ai, bi) = ∅ for all n > 0. This shows that F is not transitive.
Additionally, if x ∈ (ai, bi) then ω(x, F ) ∩ (ai, bi) = ∅, which, since ω-limit
sets are closed, implies that (ai, bi)∩ω(x, F ) = ∅ for every x ∈ [0, 1]. Denote
A = [0, 4] \

⋃
i∈Z(ai, bi) and observe that ω(x, F ) ⊂ A for every x ∈ [0, 1].

It is known that the tent map T has the specification property (see [2]
or [3]). This combined with the fact that T is a surjection implies by [10,
Thm. 3.8] that T has the AASP. We will now prove that F |A also has the
AASP.

Let {yi}i∈N ⊂ A be an asymptotic average pseudo-orbit of F |A. Since
π does not increase distances, the sequence {π(yi)}i∈N is an asymptotic
average pseudo-orbit of T and so it is asymptotically shadowed on average
by some x ∈ [0, 1]. Let z ∈ A be a point such that π(z) = x. We claim that
{yi}i∈N is asymptotically shadowed on average by z.

Use Lemma 3.2 to obtain a set J ⊂ N for the sequence

{d(π(F i(z)), π(yi))}∞i=0 = {d(T i(x), π(yi))}∞i=0
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so that limi 6∈J d(π(F i(z)), π(yi)) = 0. Notice that d(F i(z), yi) is equal to
d(π(F i(z)), π(yi)) plus the sum of the lengths of all the intervals [aj , bj ] that
are between F i(z) and yi.

Let Ji be the set of all those natural numbers j for which the interval
[ai, bi] is between F j(z) and yj . Given any M ∈ N one can find a neigh-
bourhood U of xi so small that if π(F j(z)) ∈ U then π(F j+s(z)) 6∈ U for
s = 1, . . . ,M . This combined with the fact that limi 6∈J d(π(F i(z)), π(yi)) = 0
means that for any M ∈ N there is N > 0 such that for every k > N the
following implication holds:

J ∩ [k, k +M ] = ∅ ⇒ # (Ji ∩ [k, k +M ]) ≤ 1.

This implies that Ji is of density zero.
For every i ∈ N denote Qi =

⋃i
k=−i Ji and observe that each Qi is of

density zero, Qi ⊂ Qi+1 and if j 6∈ Qi then F j(z) and yj are contained in the
same connected component of the set [0, 4] \

⋃i
k=−i(ai, bi). In other words

d(F j(z), yj) ≤ d(T j(x), π(yj)) +
∑
|k|>i

2−|i|.

By Lemma 3.7 there is an increasing sequence {mi}∞i=0 such that the set

Q = J ∪
⋃
i∈N

(Qi ∩ [mi,mi+1))

is also of density zero. Notice that by the definition of the sets Qi we have
lim supi 6∈Q d(F i(z), yi) = 0 and so {yi}i∈N is asymptotically shadowed on
average by z. This proves that F |A has the AASP.

Applying Theorem 3.11 to our set A we conclude that the map F also has
the AASP. But we have already demonstrated that F is not transitive. The
desired map f : [0, 1]→ [0, 1] is obtained by putting f(x) = (1/4)F (4x).

Theorem 4.7. Let x be a distal point. Denote Y = Orb+(x, f). If f(x)
6= x then f |Y does not have the AASP.

Proof. Put y = f(x). First observe that there is no point proximal to
both x and y, as otherwise, by the definition of a distal point, we have x = z,
and since f(x) and z are also proximal, we finally get x = z = f(x), which
contradicts the assumptions.

Now, it is enough to apply Lemma 4.4.

Example 4.8. An irrational rotation of the circle is totally transitive
and therefore chain mixing. The only attractor is the whole circle. But such
a map does not have the AASP since every point is distal. This shows that
even both these properties together are not enough for the AASP.
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5. Shadowing, limit shadowing and the AASP. We say that f has
the weak limit shadowing property if for any sequence {xi}∞i=0 such that

lim
i→∞

d(f(xi), xi+1) = 0

there exists a point z ∈ X such that

lim
i→∞

d(f i(z), xi) = 0.

This notion was introduced by Eirola et al. [5] under the name of ‘limit
shadowing’. We reserve the latter name for a stronger property. Namely,
following some authors (e.g. [12]), we say that f has the limit shadowing
property if it has the shadowing property together with the weak limit shad-
owing property. The reason for this terminology is that in general there is no
equivalence between shadowing and weak limit shadowing, but shadowing
implies limit shadowing in some important cases (see [12]).

Not much is known about weak limit shadowing. Here we provide two
classes of maps with this property which are not expansive. In [10] we have
given an example of a class of maps which have limit shadowing but do not
have the AASP: transitive c-expansive maps with shadowing which are not
mixing. One of the simplest examples of this kind of map is on a finite space
with at least two points that are permuted in a single cycle. These examples,
however, leave much to be desired—the spaces are not connected and there
is an n and a decomposition of the space into pairwise disjoint sets invariant
under fn such that fn has the AASP on each set from the decomposition.
It is therefore natural to ask for a more interesting example:

Is there a map f with limit shadowing such that for any n ≥ 1 and
for any nonempty set A invariant under fn the map fn|A does not
have the AASP?

The answer to this question is positive. Odometers serve as an example.

Definition 5.1. Let µ = {mi}i∈N be an increasing sequence of positive
integers such that mi divides mi+1 for all i ∈ N. Let pi : Zmi → Zmi
be the cyclic permutation given by pi(n) = n + 1 mod mi. Define natural
projections πi : Zmi+1 → Zmi by putting πi(n) = n mod mi. The inverse
limit (with πi as bonding maps)

Gµ = lim←−Zmi = {(n0, n1, . . .) : ni ∈ Zmi , ni = πi(ni+1), i ∈ N}
is a well defined subset of the countable product

Zm0 × Zm1 × · · ·
endowed with the metric ρ(x, y) =

∑∞
i=0 2−id(xi, yi) where d is the discrete

metric on Z. The map p : Gµ → Gµ given by p(x)i = pi(xi) is called an
odometer (on the scale µ). Note that in our setting a single periodic orbit
is not an odometer.
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Theorem 5.2. Let f be an odometer on the scale µ. Then

(1) f has limit shadowing.
(2) For any n ≥ 1 and for any nonempty set A that is invariant under

fn the map fn|A does not have the AASP.

Proof. To show (1), first observe that the space is totally disconnected
and the map f is equicontinuous, so it has shadowing by [11, Prop. 4.7].
It remains to show that it also has the weak limit shadowing property. Let
{xi}∞i=0 ⊂ Gµ be such that limi→∞ d(f(xi), xi+1) = 0. By the definition of
the metric ρ this condition forces that for every k ∈ N there are zk ∈ Zmk
and Nk ∈ N such that for every i > Nk we have xik = zk + i mod mk. But
then the sequence z satisfies the condition limi→∞ d(f i(z), xi) = 0.

For the proof of (2) pick any x ∈ A and put y = fn(x). As the odometer
has no periodic points we get x 6= y. But there is no point proximal to both
x, y in the odometer, so the proof is finished by Lemma 4.4.

Theorem 5.3. Let f be a homeomorphism of the interval I with finitely
many fixed points p0 < · · · < pn. If {xi}∞i=0 is a sequence such that
limi→∞ d(f(xi), xi+1) = 0 then there is a j ∈ {0, . . . , n} such that
limi→∞ d(pj , xi)=0. In particular f has the weak limit shadowing property.

Proof. The map f has to be either strictly increasing or strictly decreas-
ing on every interval (pi, pi+1). Suppose it is strictly increasing on some
(pk, pk+1). It is elementary that if δ is small enough one can find open dis-
joint neighbourhoods Uk and Uk+1 of pk and pk+1 respectively such that any
δ-pseudo-orbit of f can pass from Uk to Uk+1 but not from Uk+1 to Uk. A sim-
ilar statement is true if f is strictly decreasing on (pk, pk+1) but the allowed
direction of travel is reversed. Applying this to every interval (pi, pi+1) we
obtain a collection of open disjoint neighbourhoods U0, . . . , Un of the points
p0, . . . , pn such that any δ-pseudo-orbit of f has to be eventually contained
in one of the sets Ui. Additionally, if δ is small enough, one can choose the
diameters of the sets Ui to be arbitrarily small. It remains to notice that for
any δ > 0 the sequence {xi}∞i=0 is eventually a δ-pseudo-orbit.

Applying the above theorem we can generate many examples of homeo-
morphisms with limit shadowing but without the AASP. Consider a hom-
eomorphism f : I → I with finitely many fixed points such that each fixed
point is an attractor for either f or f−1. Such an f has both shadowing and
weak limit shadowing, but it does not have the AASP, since by Theorem
3.1 it would have to be chain mixing, which is impossible.
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