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Abstract. A topological space is non-separably connected if it is connected but all of
its connected separable subspaces are singletons. We show that each connected sequential
topological space X is the image of a non-separably connected complete metric space EX
under a monotone quotient map. The metric dEX of the space EX is economical in the
sense that for each infinite subspace A ⊂ X the cardinality of the set {dEX(a, b) : a, b ∈ A}
does not exceed the density of A, |dEX(A×A)| ≤ dens(A).

The construction of the space EX determines a functor E : Top → Metr from the
category Top of topological spaces and their continuous maps into the category Metr of
metric spaces and their non-expanding maps.

1. Introduction. This paper was motivated by the problem of con-
structing a non-separably connected complete metric space, posed in [10]
and [11]. A topological spaceX is called separably connected if any two points
of X lie in a connected separable subspace. On the other hand, a topolog-
ical space X is non-separably connected if it is connected but all connected
separable subspaces of X are singletons.

The first example of a non-separably connected metric space was con-
structed by R. Pol [14] in 1975. Another example was given by P. Simon [17]
in 2001. In 2008, M. Morayne and M. R. Wójcik obtained a non-separably
connected metric group as the graph of an additive function from the real line
to a non-separable Banach space (see [18] or [11]). Recently E. Pol and R. Pol
[13] (answering a question posed in the preliminary version of this paper)
constructed a non-separably connected metric space which is connected and
locally connected. However, none of these non-separably connected spaces is
completely metrizable.
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In this paper we shall suggest a general (functorial) construction of non-
separably connected complete metric spaces. Our approach is based on the
notion of an economical metric space. This is a metric space (X, d) such that
for each infinite subspace A ⊂ X the set d(A×A) = {d(a, b) : a, b ∈ A} has
cardinality |d(A × A)| ≤ dens(A) where dens(A) = min{|D| : D ⊂ A ⊂ D}
stands for the density of A.

It is easy to see that each separable subspace of an economical metric
space is zero-dimensional and hence each connected economically metrizable
space is non-separably connected. The following theorem, which is the main
result of the paper, yields many examples of connected economical complete
metric spaces, thus resolving Problem 2 of [11]. This theorem is proved in
Section 9 (see Theorem 9.1).

Theorem 1.1. Each (connected) sequential topological space X is the
image of a (connected) economical complete metric space EX under a mono-
tone quotient map ξX : EX → X.

As we shall see, the construction of the space EX determines a functor

E : Top→Metr

from the category Top of topological spaces and their continuous maps to
the category Metr of metric spaces and their non-expanding maps. The
functor E will be defined as the composition E = ~ω ◦ D of the functor of
sequential decomposition D : Top → PMetr and the functor of infinite
iterated cobweb ~ω : PMetr → Metr. Here PMetr is the category of
premetric spaces and their non-expanding maps. A premetric space is a pair
(X, d) consisting of a set X and a function d : X × X → [0,∞) such that
d(x, x) = 0 for all x ∈ X. Premetric spaces will be considered in Section 3;
the functors D and ~ω are defined in Sections 4 and 6, respectively.

2. Economical metric spaces. We recall that the metric d of a metric
space (X, d) is economical if for each infinite subset A ⊂ X the set d(A×A) =
{d(a, b) : a, b ∈ A} has cardinality |d(A×A)| ≤ dens(A).

Typical examples of economical metric spaces are ultrametric spaces. We
recall that a metric d on a set X is called an ultrametric if it satisfies the
strong triangle inequality

d(x, z) ≤ max{d(x, y), d(y, z)} for all x, y, z ∈ X.

Proposition 2.1. Each ultrametric space is economical.

Proof. We should check that |d(A×A)| ≤ dens(A) for any infinite subset
A of an ultrametric space (X, d). Assuming that |d(A × A)| > dens(A), we
conclude that the set D = d(A×A)\{0} has cardinality |D| > dens(A). For
every t ∈ D select a pair of points xt, yt ∈ A with d(xt, yt) = t. Since the
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subspace B = {(xy, yt)}t∈D ⊂ A×A has cardinality |B| = |D| > dens(A) =
dens(A×A) ≥ dens(B), it is not discrete and hence has a non-isolated point
(xt, yt) ∈ B. Then we can find s ∈ D \ {t} such that the point (xs, ys) is so
near to (xt, yt) that

max{d(xs, xt), d(ys, yt)} < 1
3d(xt, tt) = t/3.

The triangle inequality for d guarantees that

s = d(xs, ys) ≥ d(xt, yt)− d(xt, xs)− d(yt, ys) > 1
3d(xt, yt) = t/3.

On the other hand, the strong triangle inequality implies that

s = d(xs, ys) ≤ max{d(xs, xt), d(xt, yt), d(yt, ys)} = d(xt, yt) = t.

For the same reason,

t = d(xt, yt) ≤ max{d(xt, xs), d(xs, ys), d(ys, yt)} = d(xs, ys) = s.

Unifying those inequalities, we get t = s, which contradicts the choice of s.

Proposition 2.1 implies that the Cantor cube 2ω = {0, 1}ω endowed with
the ultrametric

d({xn}, {yn}) = max
n∈ω
|xn − yn|/2n

is an economical metric space. Yet, the Cantor cube 2ω is homeomorphic
to the Cantor set C ⊂ R which, when endowed with the Euclidean metric
d(x, y) = |x− y|, is not economical. This justifies the following definition.

A topological space X is defined to be economically metrizable if the
topology of X is generated by an economical metric.

Proposition 2.2. If X is an economically metrizable space, then each
subspace A ⊂ X of density dens(A) < c is zero-dimensional. Consequently,
each connected economically metrizable space is non-separably connected.

Proof. Let d be an economical metric generating the topology of X.
Given any subspace A ⊂ X of density dens(A) < c, we see that |d(A×A)| ≤
dens(A) < c and hence the set R = [0,∞) \ d(A × A) is dense in (0,∞).
Since each ball BA(a, r), a ∈ A, r ∈ R, is open-and-closed in A, the space A
has a base of the topology consisting of open-and-closed sets, which means
that A is zero-dimensional.

Problem 2.3. Let X be an economical metric space and A ⊂ X be a
subspace of density dens(A) < c. Is A strongly zero-dimensional?

We recall that a metric space X is strongly zero-dimensional if for any
disjoint closed subsets A,B ⊂ X there is an open-and-closed subset U ⊂ X
such that A ⊂ U ⊂ X \B (see [7, 6.2.4]).

The following example constructed by E. Pol and R. Pol [13] shows that
Proposition 2.2 cannot be reversed.
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Example 2.4. There is a metrizable space X of weight ℵ1 such that
each separable subspace of X is zero-dimensional but X is not economically
metrizable.

In light of Proposition 2.2 and Example 2.4 the following problem arises
naturally:

Problem 2.5. Characterize topological spaces whose topology is gener-
ated by an economical metric.

We can also ask about the characterization of metrizable spaces X such
that any metric generating the topology of X is economical. This question
has the following answer:

Theorem 2.6. For a metrizable topological space X the following condi-
tions are equivalent:

(1) each metric generating the topology of X is economical;
(2) |f(A)| ≤ dens(A) for any subspace A ⊂ X and a continuous map

f : X → R;
(3) min{|A|, c} ≤ dens(A) for any subspace A ⊂ X.

Proof. (1)⇒(2). Assume that each metric generating the topology of X
is economical and fix any such metric d. Assume that |f(A)| > dens(A) for
some continuous function f : X → R and some subspace A ⊂ X. In this
case the set A is infinite. Without loss of generality, f(a) = 0 for some a ∈ A
and hence

|f(A)| = |{|f(x)| : x ∈ A}| = |{|f(x)− f(a)| : x ∈ A}|.
It is easy to see that the metric ρ on X defined by

ρ(x, y) = d(x, y) + |f(x)− f(y)|
generates the topology of X.

By our assumption, both metrics d and ρ are economical. Consequently
the sets {d(x, a) : x ∈ A}, {ρ(x, a) : x ∈ A} have cardinality ≤ dens(A).
Then

|f(A)| = |{|f(x)− f(a)| : x ∈ A}| = |{ρ(x, a)− d(x, a) : x ∈ A}| ≤ dens(A),

which is the desired contradiction.
(2)⇒(3). Assume that min{|A|, c} > dens(A) for some subset A ⊂ X

but |f(A)| ≤ dens(A) for any continuous function f : X → R. Without loss
of generality, A is a closed subspace of X. We claim that the space A is
strongly zero-dimensional. Given two disjoint closed subsets E,F ⊂ A we
should find an open-and-closed subset U ⊂ A such that E ⊂ U ⊂ A \ F .

By the normality of X there is a continuous function f : X → [0, 1]
such that f(E) ⊂ {0} and f(F ) ⊂ {1}. By our hypothesis, the set f(A)
has cardinality |f(A)| ≤ dens(A) < c. Consequently, we can find a number
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t ∈ (0, 1) \ f(A). Then U = A ∩ f−1([0, t)) is the required open-and-closed
set in A separating E from F .

By [7, 6.2.4, 7.3.15], the space A, being metrizable and strongly zero-
dimensional, embeds into the countable power Dω of the discrete space D
of cardinality |D| = dens(A) < c. Since D admits a continuous injective
map into the Cantor cube 2ω, the countable power Dω also admits such a
map. Taking into account that the Cantor cube embeds into the real line,
we conclude that the space A admits a continuous injective map g : A→ R.
By the Tietze–Urysohn Theorem [7, 2.1.8], the map g has a continuous ex-
tension f : X → R. Then |f(A)| = |g(A)| = |A| > dens(A) and this is a
contradiction.

The implication (3)⇒(1) is trivial.

3. Premetric spaces. The definition of a metric on a set X is well-
known: this is a function d : X ×X → [0,∞) satisfying four axioms:

(1) d(x, x) = 0,
(2) d(x, y) = 0 implies x = y,
(3) d(x, y) = d(y, x),
(4) d(x, z) ≤ d(x, y) + d(y, z),

for any points x, y, z ∈ X.
Deleting some of these axioms we obtain various generalizations of met-

rics: pseudometrics (they obey axioms (1), (3), (4)), quasimetrics (1), (2),
(4), symmetrics (1), (2), (3). The most radical generalization of a metric is
that of a premetric (see [3, §2.4]).

Definition 3.1. A premetric on a set X is any function d : X ×X →
[0,∞) such that d(x, x) = 0 for all x ∈ X. A premetric space is a pair (X, d)
consisting of a set X and a premetric d on X. In what follows, the premetric
of a premetric space X will be denoted by dX or just d if the set X is clear
from the context.

A map f : X → Y between two premetric spaces is called non-expanding
if dY (f(x), f(y)) ≤ dX(x, y) for all x, y ∈ X.

Premetric spaces and their non-expanding maps form a category PMetr
that contains the category Metr of metric spaces as a full subcategory.

Many notions related to metric spaces can still be defined for premetric
spaces. In particular, for any point x of a premetric space X we can define
the ball of radius r centered at x by the familiar formula

BX(x, r) = {y ∈ X : dX(x, y) < r}.
Also we can define a subset U of a premetric space X to be open if for

each point x ∈ U there is r > 0 with BX(x, r) ⊂ U . Open subsets of a
premetric space X form a topology called the premetric topology (see [3,
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§2.4]). Speaking about topological properties of premetric spaces we shall
always refer to this topology.

The following proposition can be immediately derived from the definition
of the premetric topology.

Proposition 3.2. Each non-expanding map between premetric spaces is
continuous.

Each subset A of a premetric space X carries the induced premetric
dA = dX |A × A. Then the identity inclusion id : A → X is non-expanding
and hence is continuous with respect to the premetric topologies. However
this inclusion is not necessarily a topological embedding.

Example 3.3 (Arens’ space). Consider the set

S2 = {(0, 0)} ∪ {(1/n, 0) : n ∈ N} ∪ {(1/n, 1/(nm)) : n,m ∈ N} ⊂ R2

endowed with the premetric

d(x, y) =


0 if x = y,
1/n if x = (0, 0) and y = (1/n, 0),
1/(nm) if x = (1/n, 0) and y = (1/n, 1/(nm)),
1 otherwise.

The topology on S2 generated by this premetric coincides with the largest
topology that induces the Euclidean topology on the convergent sequences

{(0, 0)} ∪ {(1/n, 0) : n ∈ N}
and

{(1/n, 0)} ∪ {(1/n, 1/(nm)) : m ∈ N}, n ∈ N.
It follows that (0, 0) is a non-isolated point of the subset A = {(0, 0)} ∪
{(1/n, 1/(nm)) : n,m ∈ N} ⊂ S2. On the other hand, the induced premetric
dA = d|A×A on A is {0, 1}-valued and generates the discrete topology on A.
This means that the indentity inclusion id : A → X is not a topological
embedding.

This example suggests the following

Definition 3.4. A premetric space X is called hereditary if for any
subset A ⊂ X the subspace topology on A coincides with the topology
generated by the premetric dA = dX |A2 induced from X.

In order to characterize hereditary premetric spaces let us introduce an-
other

Definition 3.5. A premetric d on X is called basic at a point x ∈ X
if the family of balls {BX(x, r)}r>0 is a neighborhood basis at x. This is
equivalent to saying that x is an interior point of each ball BX(x, r), r > 0.
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A premetric space X is called basic if its premetric dX is basic at each
point x ∈ X. In this case the premetric dX is also called basic.

Theorem 3.6. A premetric space is hereditary if and only if it is basic.

Proof. Assume that a premetric space X is not basic. This means that
some point x ∈ X fails to be an interior point of some ball BX(x, r), r > 0. It
follows that x is a non-isolated point of the subspace A = {x}∪(X\BX(x, r))
of X. On the other hand, this point is isolated in the topology generated by
the restriction dA = dX |A × A of the premetric dX on A. This means that
the premetric space X is not hereditary.

Now assume that a premetric space X is basic. Given any subset A ⊂ X,
endow it with the induced premetric dA = dX |A2 and consider the identity
inclusion idA : A→ X. The heredity property of X will follow as soon as we
check that the map idA is a topological embedding. The continuity of idA
follows from the non-expanding property of idA. To show the continuity of
the inverse map id−1

A : idA(A)→ A, take any point a ∈ idA(A) and a neigh-
borhood Ua ⊂ A of a. Next, find a positive r > 0 such that BA(a, r) ⊂ Ua.
Since the space X is basic, the ball BX(a, r) ⊂ X contains some open neigh-
borhood V ⊂ X of x. Since id−1

A (V ) ⊂ id−1
A (BX(a, r)) = BA(a, r) ⊂ Ua, we

see that the map id−1
A : idA(A)→ X is continuous.

Premetric spaces are tightly connected with weakly first-countable spaces
introduced by A. V. Arhangel’skii in [2]. We recall that a topological space
X is weakly first-countable if to each point x ∈ X one can assign a decreasing
sequence {Bn(x)}n∈ω of subsets of X that contain x so that a subset U ⊂ X
is open if and only if for each x ∈ U there is n ∈ ω with Bn(x) ⊂ U .

It is clear that each first-countable space is weakly first-countable. Arens’
space defined in Example 3.3 is weakly first-countable but not first countable.

The following proposition shows that premetric spaces relate to weakly
first-countable spaces in the same way as metric spaces relate to metrizable
topological spaces.

Proposition 3.7. A topological space X is weakly first-countable (resp.
first-countable) if and only if the topology of X is generated by a premetric
(resp. by a basic premetric).

Proof. If the topology of X is generated by a (basic) premetric d : X ×
X → [0,∞), then the family of balls {BX(x, 1/n)}n∈N, x ∈ X, witnesses
that X is weakly first-countable (resp. first-countable).

Now assume conversely that X is weakly first-countable and for every
x ∈ X fix a decreasing sequence of sets {Bn(x)}n∈ω witnessing that X
is weakly first-countable. If X is first-countable, then we can additionally
require that each set Bn(x) is a neighborhood of x.
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Those sequences determine the premetric d : X ×X → [0,∞) defined by

d(x, y) = inf{2−n : y ∈ Bn(x)}
for (x, y) ∈ X × X. This premetric is basic if and only if each Bn(x) is a
neighborhood of x in X.

Finally, observe that the topology of X is generated by the premetric d.

Our next aim is to characterize premetric spaces whose topology is first-
countable. It is clear that each basic premetric space is first-countable. How-
ever the converse is not true.

Example 3.8. On the set of integers Z consider the premetric

d(n,m) =
{

2−m if n = 0 and m > 0,
0 otherwise.

The topology on Z generated by this premetric is anti-discrete and hence
first-countable. However, the premetric space (Z, d) is not basic.

On the other hand, we shall show that for sequentially Hausdorff pre-
metric spaces the first-countability of the premetric topology is equivalent
to the basic property of the premetric.

A topological space X is called sequentially Hausdorff if any convergent
sequence {xn}n∈ω ⊂ X has a unique limit in X. Each Hausdorff space is
sequentially Hausdorff. The converse is not true: any uncountable space X
endowed the cocountable topology

τ = {∅} ∪ {U ⊂ X : |X \ U | ≤ ℵ0}
is sequentially Hausdorff but not Hausdorff.

We shall characterize sequentially Hausdorff premetric spaces as 2-sepa-
rating premetric spaces.

Definition 3.9. A premetric space X is called

• 1-separating if for any distinct points x, y ∈ X there is r > 0 such that
y /∈ BX(x, r);
• 2-separating if for any distinct points x, y ∈ X there is r > 0 such that
BX(x, r) ∩BX(y, r) = ∅.

The following characterization of 1-separating premetric spaces is imme-
diate.

Proposition 3.10. A premetric space X is 1-separating if and only if
it is a topological T1-space.

It is clear that a premetric space is 2-separating if its topology is Haus-
dorff. The converse is not true:

Example 3.11. Take any non-metrizable first-countable compact Haus-
dorff space K. By the Katětov Theorem [9] (see also [7, 4.5.15]), the cube
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K3 is not hereditarily normal and hence contains a non-normal subspace
Y ⊂ K3. Consequently, Y contains two closed disjoint sets A,B ⊂ Y that
have no disjoint neighborhoods in Y . It follows that the closures Ā and B̄
of those sets in K3 contain a common point c ∈ Ā ∩ B̄. Fix a decreasing
neighborhood base (Bn(x))n∈N at each point x ∈ K3 such that B1(x) = K3.
It is easy to see that the space X = Y ∪{A,B} endowed with the premetric
d defined by

d(x, y) =


inf{1/n : y ∈ Bn(x)} if x, y ∈ Y ,
inf{1/n : y ∈ Bn(c)} if x = A and y ∈ A,
inf{1/n : y ∈ Bn(c)} if x = B and y ∈ B,
1 otherwise

is 2-separating but not Hausdorff.

On the other hand, we have the following characterization:

Theorem 3.12. A premetric space is 2-separating if and only if it is
sequentially Hausdorff.

This theorem can be easily derived from the following useful characteri-
zation of convergence in 2-separating premetric spaces.

Proposition 3.13. A sequence {xn}n∈ω in a 2-separating premetric space
X converges to a point x ∈ X if and only if limn→∞ dX(x, xn) = 0.

Proof. The “if” part is trivial. To prove the “only if” part, assume that
a sequence {xn}n∈ω converges to x but limn→∞ dX(x, xn) 6= 0. This means
that for some r > 0 the set N = {n ∈ ω : xn /∈ BX(x, r)} is infinite. The
convergence of the sequence {xn} to x implies that the set U = X \{xn}n∈N
is not open in X.

We shall derive a contradiction by showing that for every y ∈ U there is
ε > 0 with BX(y, ε) ⊂ U . Assuming that no such ε exists, we conclude that
for some infinite subset M ⊂ N we get dX(y, xm) → 0 as M 3 m → ∞. In
this case we show that the set V = X\({y}∪{xm}m∈M ) is open in X. Indeed
given any point z ∈ V , we can use the 2-separating property of X to find
ε > 0 so small that BX(z, ε)∩B(y, ε) = ∅. Since the set F = {m ∈M : xm /∈
BX(y, ε) is finite, we can find a positive δ ≤ ε such that BX(z, δ) ∩ F = ∅.
It follows that B(z, δ) ⊂ V , witnessing that the set V is open.

Taking into account that

{xm}m∈M ∩BX(x, r) = ∅ and lim
M3m→∞

dX(y, xm) = 0,

we conclude that x 6= y and hence V is an open neighborhood of x. Since
M ⊂ {n ∈ ω : xn /∈ V } is infinite, we conclude that the sequence {xn}n∈ω
does not converge to x, which is the desired contradiction.
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Now we are ready to characterize first-countable spaces among 2-sepa-
rating premetric spaces. This will be done with the help of the Fréchet–
Urysohn property.

We recall that a topological space X is

• Fréchet–Urysohn if for each A ⊂ X and x ∈ clX(A) there is a sequence
{an}n∈ω ⊂ A that converges to x;
• sequential if for each non-closed subset A ⊂ X there is a sequence
{an}n∈ω ⊂ A that converges to a point x ∈ X \A.

By [2], each weakly first-countable space is sequential. Combining this
result with Proposition 3.7 we get

Proposition 3.14. Each premetric space is sequential.

Proof. We shall give a direct proof of this important fact for the conve-
nience of the reader. We need to show that a subset A ⊂ X of a premet-
ric space is closed if for each convergent sequence {an}n∈ω ⊂ A we have
limn→∞ xn ∈ A. Assuming that such a set A is not closed in the premetric
topology of X, we can find a point x ∈ X \A such that BX(x, 1/n) 6⊂ X \A
for any n ∈ N. This allows us to choose a point an ∈ BX(x, 1/n) ∩ A.
The definition of the premetric topology on X guarantees that the sequence
{an}n∈N ⊂ A converges to the points x ∈ X \A, which contradicts the choice
of the set A.

The following theorem characterizes first-countable premetric spaces
among 2-separating premetric spaces.

Proposition 3.15. For a 2-separating premetric space X the following
conditions are equivalent:

(1) X is basic;
(2) X is hereditary;
(3) X is first-countable;
(4) X is Fréchet–Urysohn.

If the equivalent conditions (1)–(4) hold, then X is Hausdorff.

Proof. The equivalence (1)⇔(2) has been proved in Theorem 3.6. The
implications (1)⇒(3)⇒(4) are trivial.

(4)⇒(1). Assume that a 2-separated premetric space X is Fréchet–Ury-
sohn. Assuming that X is not basic, we would find a point x ∈ X and a
radius r > 0 such that x is not an interior point of the ball BX(x, r). Since
X is Fréchet–Urysohn, there is a sequence {xn}n∈ω ⊂ X \ BX(x, r) that
converges to x. But this contradicts Proposition 3.13.
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4. The sequential decomposition of a topological space. In this
section we shall describe a functor D : Top → PMetr assigning to each
topological space X a premetric space DX called the sequential decomposi-
tion of X. This space is defined as follows.

Let S0 = {0} ∪ {1/n : n ∈ N} be a standard convergent sequence on
the real line. Then each convergent sequence {xn}n∈N in a topological space
X can be identified with the continuous map f : S0 → X that maps 1/n
onto xn and 0 onto the limit limn→∞ xn.

Therefore, the set C(S0, X) of all continuous functions from S0 to X can
be identified with the family of all convergent sequences in X.

The premetric space DX is defined as the set

DX = C(S0, X)× S0

endowed with the premetric

dDX((f, t), (g, s)) =


0 if f(t) = g(s),
|t− s| if f(t) 6= g(s) but f = g,
1 otherwise.

Any continuous map f : X → Y between topological spaces induces a
non-expanding map

Df : DX → DY, Df : (ξ, s) 7→ (f ◦ ξ, s).
In this way we have defined a functor

D : Top→ PMetr

from the category Top of topological spaces and their continuous maps to
the category PMetr of premetric spaces and their non-expanding maps.

For every topological space X the spaces DX and X are linked by the
evaluation map

cX : DX → X, cX : (f, x) 7→ f(x).

This map is natural in the sense that for any continuous map f : X → Y
between topological spaces the following diagram is commutative:

D
Df //

cX
��

DY

cY
��

X
f // Y

The evaluation map will be used to describe the topology of the space
DX. Namely, we shall show that a subset U ⊂ DX is open if and only if
U = c−1

X (V ) for some sequentially open subset V ⊂ X.
A subset V ⊂ X is called sequentially open if for each sequence {xn}n∈ω

in X that converges to a point x ∈ V there is n ∈ ω such that xm ∈ V for
all m ≥ n.
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Lemma 4.1. A subset U ⊂ DX is open if and only if U = c−1
X (V ) for

some sequentially open subset V ⊂ X.

Proof. First assume that U = c−1
X (V ) for some sequentially open subset

V ⊂ X. In order to show that U is open in DX we should find for any point
a ∈ U ⊂ DX a radius r > 0 such that BDX(a, r) ⊂ U .

Being an element of DX, the point a is of the form a = (f, t) for some
continuous map f : S0 → X and some t ∈ S0. If t 6= 0, then we can
find r > 0 such that (t− r, t+ r) ∩ S0 = {t}. For such r the ball BDX(a, r)
coincides with the set {(g, s) ∈ DX : g(s) = f(t)} and then cX(BDX(a, r)) =
{f(t)} = {cX(a)} ⊂ V and hence BDX(a, r) ⊂ U . If t = 0, then the sequence
{f(1/n)}∞n=1 converges to f(0) = cX(a) ∈ V . As V is sequentially open, there
is m ≥ 2 such that f(1/n) ∈ V for all n ≥ m. Then for the radius r = 1/m
we get BDX(a, r) ⊂ c−1

X (V ) = U .
Now assume that a set U ⊂ DX is open. First we show that U =

c−1
X (cX(U)). Given any a = (f, t) ∈ U find r > 0 with BDX(a, r) ⊂ U
and observe that

c−1
X (cX(a)) = {(g, s) ∈ DX : g(s) = f(t)}

⊂ {b ∈ DX : dDX(a, b) = 0} ⊂ BDX(a, r) ⊂ U,

witnessing that U = c−1
X (cX(U)). It remains to check that the set cX(U)

is sequentially open in X. Fix a sequence {xn}n∈N in X that converges to
a point x0 ∈ cX(U). Then the map f : S0 → X defined by f(0) = x0

and f(1/n) = xn for n ∈ N is continuous. Consider the point a = (f, 0) ∈
DX and observe that cX(a) = x0 ∈ cX(U). Since U is open, for the point
a ∈ c−1

X (x0) ⊂ U there is a radius r > 0 such that BDX(a, r) ⊂ U . Then for
every n > 1/r we get (f, 1/n) ∈ BDX(a, r) ⊂ U and hence xn = cX(f, 1/n) ∈
cX(U), witnessing that the set cX(U) is sequentially open in X.

Sequentially open subsets ofX form a topology onX. The setX endowed
with this topology is called the sequential coreflexion of X and is denoted
by sX.

Since each open subset of X is sequentially open, the identity map id :
sX → X is continuous. This map is a homeomorphism if and only if the
space X is sequential.

Lemma 4.1 implies the following important result:

Corollary 4.2. For every topological space X the map cX : DX → sX
is surjective, continuous, monotone, pseudo-open, and hereditarily quotient.

We recall that a surjective map f : X → Y between topological spaces is

• monotone if f−1(y) is connected for every y ∈ Y ;
• quotient if a set U ⊂ Y is open if and only if its preimage f−1(U) is

open in X;
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• hereditarily quotient if for every A ⊂ Y the restriction f |f−1(A) :
f−1(A)→ A is a quotient map;
• pseudo-open if for every y ∈ Y and an open set U ⊂ X containing
f−1(y) the point y lies in the interior of f(U) in Y .

We shall often use the following characterization of hereditarily quotient
maps, due to Arhangel’skii [1] (see also [7, 2.4.F(a)]).

Theorem 4.3. A map between topological spaces is hereditarily quotient
if and only if it is continuous and pseudo-open.

It is known that each quotient map onto a sequentially Hausdorff Fréchet–
Urysohn space is hereditarily quotient and pseudo-open (see [1] or [7,
2.4.F(c)]).

Quotient maps are important for us because of the following known fact
(see [7, 6.1.28]).

Lemma 4.4. Let f : X → Y be a monotone quotient map. The space X
is connected if and only if Y is connected.

This lemma combined with Corollary 4.2 implies:

Corollary 4.5. The sequential decomposition DX of a topological space
X is connected if and only if the sequential coreflexion sX of X is con-
nected. In particular, DX is connected for every connected sequential topo-
logical space X.

5. The complete oriented graph over a set. The complete oriented
graph ΓX over a set X is the set

ΓX = X ∪ {(x, y, t) ∈ X ×X × (0, 1) : x 6= y}

endowed with a special (path) metric. The points x ∈ X ⊂ ΓX are called
vertices of ΓX, and the sets

(x, y) = {(x, y, t) : t ∈ (0, 1)} and [x, y] = {x, y} ∪ (x, y)

are called oriented edges connecting distinct vertices x, y ∈ X. It will be
convenient to consider also degenerate edges (x, x) = ∅ and [x, x] = {x} for
x ∈ X.

Therefore,

ΓX =
⋃

x,y∈X
[x, y] = X ∪

⋃
x 6=y

(x, y).

Observe that the oriented edges [x, y] and [y, x] meet only in their endpoints:
[x, y] ∩ [y, x] = {x, y}.
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The graph ΓX is the image of the product X×X× [0, 1] under the map
〈·〉 : X ×X × [0, 1]→ ΓX defined by

〈·〉 : (x, y, t) 7→ 〈x, y, t〉 =


(x, y, t) if x 6= y and t ∈ (0, 1),
x if x = y or t = 0,
y if x = y or t = 1.

In particular, 〈x, y, 0〉 = 〈x, x, t〉 = 〈y, x, 1〉 = x for every x, y ∈ X and
t ∈ [0, 1].

Now, we define a metric dΓX on ΓX such that each edge [x, y] ⊂ ΓX,
x 6= y, is isometric to the unit interval [0, 1]. For this we put

d̃ΓX(〈x, y, t〉, 〈x, y, s〉) = |t− s|

for any distinct vertices x, y ∈ X and t, s ∈ [0, 1]. Next, we extend d̃ΓX to
a metric dΓX on ΓX by letting dΓX(a, b) be the minimal value of the sum∑n

i=1 d̃ΓX(ai−1, ai) where a = a0, a1, . . . , an = b and for any i ≤ n the points
ai−1, ai lie on some common edge [x, y] ⊂ ΓX.

It is easy to check that the metric dΓX has the following properties:

Proposition 5.1.

(1) The metric dΓX is complete and diamΓX ≤ 2.
(2) Each edge [x, y], x 6= y, is isometric to [0, 1].
(3) Each edge (x, y), x 6= y, is open in ΓX.
(4) Any two points a, b ∈ ΓX lying on closed disjoint edges are at dis-

tance dΓX(a, b) ≥ 1.
(5) If dΓX(a, b) < 1 for some a, b ∈ ΓX, then either a, b lie on the

same edge or else there is a vertex x ∈ X such that dΓX(a, b) =
dΓX(a, x) + dΓX(x, b).

The construction of the complete oriented graph determines a functor

Γ : Set→Metr

from the category Set of sets and their maps to the category Metr of metric
spaces and their non-expanding maps.

In fact, each map f : X → Y between sets determines a map Γf : ΓX →
ΓY defined by

Γf : 〈x, z, t〉 7→ 〈f(x), f(z), t〉.

It follows from the definition of the metrics on the graphs ΓX and
ΓY that the map Γf : ΓX → ΓY is non-expanding in the sense that
dΓY (Γf(a), Γf(b)) ≤ dΓX(a, b) for any a, b ∈ ΓX. Also it is clear that the
identity map id : X → X induces the identity map Γ id : ΓX → ΓX and
for any maps f : X → Y and g : Y → Z the composition Γg ◦Γf equals the
map Γ (g ◦ f). This means that Γ : Set→Metr is a functor.
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Proposition 5.2. For every injective map f : X → Y between sets the
induced map Γf : ΓX → ΓY is an isometric embedding.

Proof. The map f , being injective, admits a left inverse map g : Y → X
such that g ◦ f = idX . By functoriality of Γ , the maps Γf : ΓX → ΓY
and Γg : ΓY → ΓX are non-expanding and their composition satisfies
Γg ◦ Γf = Γ (g ◦ f) = Γ idX = idΓX . Then for every a, b ∈ ΓX the non-
expanding property of the maps Γf and Γg yields

dΓX(a, b) = dΓX(Γg(Γf(a)), Γ g(Γf(b)))≤dΓY (Γf(a), Γf(b)) ≤ dΓX(a, b),

which implies that dΓY (Γf(a), Γf(b)) = dΓX(a, b). This witnesses that Γf :
ΓX → ΓY is an isometric embedding.

6. The cobweb construction over a premetric space. In this sec-
tion we define the cobweb functor ~ : PMetr→Metr.

By the cobweb of a premetric space X we understand the following closed
subspace ~X of the complete oriented graph ΓX:

~X = {〈x, y, t〉 ∈ ΓX : t ≤ 1− d̄X(y, x)}} ⊂ ΓX,
where d̄X = min{1, dX} and dX is the premetric of X.

Let us explain this construction in more detail. For any distinct points
x, y ∈ X consider the unique point xy on the edge [x, y] ⊂ ΓX that lies
at distance dΓX(xy, y) = d̄X(y, x) = min{1, dX(y, x)} from the vertex y. It
follows that the set

[x, xy] = {〈x, y, t〉 ∈ ΓX : t ≤ dΓX(x, xy) = 1− d̄X(y, x)}
is a subarc of length 1 − d̄X(y, x) in [x, y] ⊂ ΓX. If dX(y, x) ≥ 1, then the
subarc [x, xy] degenerates to the singleton {x}.

The union
Sx =

⋃
y 6=x

[x, xy] \ {y}

will be called the spider centered at a point x ∈ X ⊂ ~X ⊂ ΓX. Each
spider Sx is an arcwise connected subspace of ΓX. Therefore

~X =
⋃
x 6=y

[x, xy] =
⋃
x∈X

Sx

is the union of all such spiders.
The cobweb ~X contains X as a discrete set of vertices. Consequently,

|X| ≤ dens(~X) ≤ |~X| ≤ c · |X|.
The reader should not be confused by the fact that the space X that has the
premetric topology will also be considered as the discrete subspace of the
cobweb ~X over X.
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Since ~X can be obtained from ΓX by deleting selected open arcs from
the edges of ΓX, the subspace ~X is closed in ΓX and hence is com-
plete with respect to the metric d~X = dΓX |~X × ~X induced from the
graph ΓX.

Next, we show that the construction of the cobweb space determines a
functor

~ : PMetr→Metr

from the category PMetr of premetric spaces and their non-expanding maps
to the category Metr of metric spaces.

Given any non-expanding map f : X → Y between premetric spaces,
consider the induced non-expanding map Γf : ΓX → ΓY between the
complete oriented graphs.

Lemma 6.1. Γf(~X) ⊂ ~Y .

Proof. Given any point a ∈ ~X ⊂ ΓX, find vertices x, y ∈ X such that
a ∈ [x, xy]. It follows that dΓX(x, a) ≤ dΓX(x, xy) = 1 − d̄X(y, x) where
d̄X = min{1, dX}. Now consider the image Γf(a) ⊂ ΓY . If f(a) ∈ Y , then
we are done because Y ⊂ ~Y ⊂ ΓY . So, we assume that f(a) ∈ ΓY \ Y . In
this case f(a) = (f(x), f(y), t) where a = (x, y, t) and t ≤ 1− d̄X(y, x). Since
the map f is non-expanding, d̄Y (f(y), f(x)) ≤ d̄X(y, x), and consequently
t ≤ 1− d̄X(y, x) ≤ 1− d̄Y (f(y), f(x)). Now the definition of ~Y guarantees
that f(a) = (f(x), f(y), t) ∈ [f(x), f(x)f(y)] ⊂ ~Y .

Lemma 6.1 allows us to define a map ~f : ~X → ~Y as the restriction
~f = Γf |~X. In this way we have proved

Theorem 6.2. ~ : PMetr→Metr is a functor.

Proposition 5.2 implies that this functor preserves isometric embeddings.

Proposition 6.3. For any injective non-expanding map f : X → Y
between premetric spaces the induced map ~f : ~X → ~Y is an isometric
embedding.

7. The compression map. In this section, given a premetric space X
we construct an important map πX : ~X → X called the compression map.
It is defined by the formula

πX(a) =
{
a if a ∈ X ⊂ ~X,
x if a = (x, y, t) ∈ ~X \X.

Observe that for every x ∈ X the preimage

π−1
X (x) = Sx =

⋃
X3y 6=x

[x, xy] \ {y}

coincides with the spider Sx centered at x.
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The compression map πX is natural in the sense that for any non-
expanding map f : X → Y between premetric spaces the following diagram
commutes:

~X
πX //

~f
��

X

f

��
~Y

πY // Y

In the following proposition we collect some simple properties of the
compression map.

Proposition 7.1. Let X be a premetric space. Then:

(1) πX(x) = x for all x ∈ X;
(2) πX : ~X → X is a monotone surjection;
(3) πX is locally constant on the open subset ~X \X of ~X;
(4) for any subset A ⊂ ~X we get |πX(A)| ≤ dens(A).

Proof. (1), (3) These items follow immediately from the definition of πX .
(2) Since each spider Sx = π−1

X (x), x ∈ X, is non-empty and (arcwise)
connected, the map πX is a monotone surjection.

(4) Let A ⊂ ~X. If A is finite, then |πX(A)| ≤ |A| = dens(A). So, we
assume that A is infinite.

Since X is discrete in ~X, we have |A∩X| ≤ dens(A). Since πX is locally
constant on ~X \X, it follows that |πX(A\X)| ≤ dens(A). Combining those
two facts, we get

|πX(A)| ≤ |πX(A ∩X)|+ |πX(A \X)| ≤ dens(A) + dens(A) = dens(A).

Next, we establish some metric properties of the compression map.

Proposition 7.2. Let X be a premetric space, dX be the premetric of X
and d̄X = min{1, dX}. Then

(1) d̄X(x, πX(a)) ≤ d~X(x, a) for every x ∈ X and a ∈ ~X;
(2) πX(B~X(x, r)) = BX(x, r) for any x ∈ X and r ∈ (0, 1];
(3) d~X(a, b) ≥ infx∈X [d̄X(x, πX(a)) + d̄X(x, πX(b))] for any a, b ∈ ~X;
(4) the compression map πX : ~X → X is non-expanding if and only if

d̄X is a pseudometric.

Proof. (1) Fix any x ∈ X and a ∈ ~X. We need to check that d̄X(x, y) ≤
d~X(x, a) where y = πX(a). This inequality is trivial if d~X(x, a) ≥ 1. So,
we assume that d~X(x, a) < 1.

Since a ∈ π−1
X (y) = Sy =

⋃
z 6=y[y, yz] \ {z}, there is a point z ∈ X \ {y}

such that a ∈ [y, yz]. By Proposition 5.1(4), the inequality d~X(x, a) < 1
implies that x ∈ {y, z}. If x = y, then we are done because d̄X(x, y) = 0 ≤
d~X(x, a). If x = z, then d̄X(x, y) = d̄X(z, y) = d~X(z, yz) ≤ d~X(z, a) =
d~X(x, a).
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(2) Fix any x ∈ X and a positive r ≤ 1. The preceding item implies
that πX(B~X(x, r)) ⊂ BX(x, r). The reverse inclusion will follow as soon
as, given any point z ∈ BX(x, r), we find a point y ∈ π−1

X (z) = Sz with
d~X(x, y) < r. If z = x, then we can put y = x. So, assume that z 6= x.

Consider the point zx ∈ [z, x] and observe that d~X(x, zx) = d̄X(x, z) ≤
dX(x, z) < r. If zx 6= x, then we can put y = zx ∈ Sz. If zx = x, then
[z, zx] = [z, x] and we can take any point y ∈ [z, zx) ⊂ Sz with d~X(x, y) < r.

(3) Take any two points a, b ∈ ~X and consider their images y = πX(a)
and z = πX(b). If y = z, then

inf
x∈X

[d̄X(x, y) + d̄X(x, z)] = 0 ≤ d~X(a, b).

So, we can assume that y 6= z.
If d~X(a, b) ≥ 1, then

d~X(a, b) ≥ 1 ≥ d̄X(y, z) ≥ inf
x∈X

[d̄X(x, y) + d̄X(x, z)]

and we are done. So, we can assume that d~X(a, b) < 1. In this case Propo-
sition 5.1(5) guarantees that d~X(a, b) = d~X(a, v) + d~X(v, b) for some
vertex v ∈ X ⊂ ΓX. Applying (1) we conclude that

d~X(a, b) = d~X(v, a) + d~X(v, b) ≥ d̄X(v, πX(a)) + d̄X(v, πX(b))
≥ inf

x∈X
[d̄X(x, πX(a)) + d̄X(x, πX(b))].

(4) If d̄X is a pseudometric, then for any a, b ∈ ~X the triangle inequality
for d̄X combined with the preceding item implies

d~X(a, b) ≥ inf
x∈X

[d̄X(x, πX(a)) + d̄X(x, πX(b))] ≥ dX(πX(a), πX(b)),

witnessing the non-expanding property of the compression map πX .
Now assume that the compression map πX : ~X → X is non-expanding.

Given any three points x, y, z ∈ X we shall prove that

(7.1) d̄X(x, z) ≤ d̄X(y, x) + d̄X(y, z).

This inequality is trivial if x = z or x = y. So, we assume that x 6= z and
x 6= y. Consider the points xy, zy ∈ ~X. If xy 6= y 6= zy, then πX(xy) = x,
πX(zy) = z and then

d̄X(x, z) = d̄X(πX(xy), πX(zy)) ≤ d~X(xy, zy)
≤ d~X(xy, y) + d~X(zy, y) = d̄X(y, x) + d̄X(y, z).

If xy = y and zy 6= y, then for every ε > 0 we can find a point c ∈
[x, xy) = [x, y) such that d~X(c, y) < ε and conclude that

d̄X(x, z) = d̄X(πX(c), πX(zy)) ≤ d~X(c, zy) ≤ d~X(c, y) + d~X(y, zy)
< ε+ d̄X(y, z) ≤ d̄X(y, x) + d̄X(y, z) + ε.
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Letting ε→ 0, we get the desired inequality (7.1). By a similar argument we
can treat the cases when zy = y.

For points x and y = z, inequality (7.1) yields d̄X(x, y) ≤ d̄X(y, x).
This implies that the premetric d̄X is symmetric and satisfies the triangle
inequality, so is a pseudometric.

Next, we establish some topological properties of the compression map.
In the following theorem we endow the premetric space X with the premetric
topology.

Theorem 7.3. For any premetric space X,

(1) the compression map πX : ~X → X is a monotone quotient surjec-
tion;

(2) πX : ~X → X is hereditarily quotient if and only if the premetric
space X is basic;

(3) the cobweb space ~X is connected if and only if so is the space X.

Proof. (1) By Proposition 7.1(2), πX is a monotone surjection. To show
that πX is continuous, take any open subset U ⊂ X. To check that π−1

X (U)
is open in ~X, fix any point a ∈ π−1

X (U). If a ∈ ~X \X, then the map πX
is locally constant and hence continuous at a. So, we assume that a ∈ X. In
this case the definition of the premetric topology on X yields a radius r ∈
(0, 1) such that BX(πX(a), r) ⊂ U . By Proposition 7.2(2), πX(B~X(a, r)) ⊂
BX(πX(a), r) ⊂ U and hence B~X(a, r) ⊂ π−1

X (U), witnessing that π−1
X (U)

is open in ~X.
To show that πX is quotient, take any subset A ⊂ X with π−1

X (A) open
in ~X. For every x ∈ A we get x ∈ π−1

X (A) and hence B~X(x, r) ⊂ π−1
X (A)

for some r ∈ (0, 1). It follows from Proposition 7.2(2) that

BX(x, r) = πX(B~X(x, r)) ⊂ πX(π−1
X (A)) = A.

Consequently, the set A is open in the premetric topology of X.
(2) Assuming that the premetric space X is basic, we check that the

compression map πX : ~X → X is pseudo-open and hence hereditarily
quotient. Fix any point x ∈ X and any open set U ⊂ ~X containing the
fiber π−1

X (x). Since x ∈ U , there is a positive r < 1 such that B~X(x, r) ⊂ U .
Now Proposition 7.2(2) implies that BX(x, r) = πX(B~X(x, r)) ⊂ πX(U)
and hence πX(U) is a neighborhood of x in X (because the ball BX(x, r) is
a neighborhood of x).

Now assume conversely that the compression map πX is hereditarily quo-
tient and hence pseudo-open. We need to check that the premetric dX of X
is basic at each point x ∈ X. This will follow as soon as we check that for any
positive r < 1 the ball BX(x, r) is a neighborhood of x in X. Observe that
the set U = Sx∪B~X(x, r) is an open neighborhood of the fiber Sx = π−1

X (x)
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in ~X. Since πX is pseudo-open, the image πX(U) = {x}∪πX(B~X(x, r)) =
BX(x, r) is a neighborhood of x in X.

(3) This item follows from (1) and Lemma 4.4.

Finally, we apply the compression map to study separablewise compo-
nents of the cobweb space ~X.

By the separablewise component of a point x of a topological space X
we understand the union C(x) of all separable connected subspaces of X
that contain the point x. It is standard to show that two separablewise
components are either disjoint or coincide. In a countably tight topological
space all separablewise components are closed. We recall that a topological
space X is countably tight if for each subset A ⊂ X and a point x ∈ Ā in its
closure there is a countable subset B ⊂ A such that x ∈ B̄.

We shall say that a topological space X contains no countable connected
subspaces if each non-empty at most countable connected subset of X is a
singleton. For example, each regular space contains no non-trivial countable
connected subspace.

Proposition 7.4. If a premetric space X contains no countable con-
nected subspace, then the fibers of the compression map πX : ~X → X
coincide with the separablewise components of ~X and also with the arc-
wise components of ~X. Consequently, X can be identified with the space of
separablewise (or arcwise) connected components of ~X.

Proof. Assuming that X contains no countable connected subspace, we
shall show that each spider Sx = π−1

X (x), x ∈ X, coincides with the sepa-
rablewise component C(x) of the point x in the cobweb ~X. Taking into
account the arcwise connectedness of the spider Sx, we conclude that Sx ⊂
C(x). To show that C(x) ⊂ Sx = π−1

X (x), fix any point y ∈ C(x) and find
a connected separable subspace A ⊂ ~X containing the points x and y. By
Proposition 7.1(4), the image πX(A) is at most countable. Being a connected
subspace ofX, the set πX(A) coincides with the singleton {x}. Consequently,
y ∈ A ⊂ π−1

X (x) = Sx.

Corollary 7.5. Two premetric spaces X,Y containing no countable
connected subspaces are homeomorphic provided their cobwebs ~X and ~Y
are homeomorphic.

Remark 7.6. It is well-known that a connected locally connected com-
plete metric space is arcwise connected [7, 6.3.11]. The cobweb over a con-
nected metric space is not locally connected, although it is locally connected
off a metrically discrete subset. This illustrates how important it is to assume
that the space is locally connected at each point if we want to conclude that
it is arcwise connected.
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8. The iterated cobweb construction. In this section we shall iterate
the cobweb functors and at the limit stage obtain the functor ~ω : PMetr→
Metr assigning to each premetric space X an economical complete metric
space ~ωX.

Given a premetric space X put ~1X = ~X and inductively ~n+1X =
~(~nX) for n ∈ N. In such a way we define the functors ~n : PMetr →
Metr for all n ∈ N. For every n ∈ N the spaces ~n+1X and ~nX are
linked by the compression map π~nX : ~n+1X → ~nX. This map is
non-expanding, surjective, monotone, and hereditarily quotient according
to Proposition 7.2(4) and Theorem 7.3.

The iterated cobweb spaces and their compression maps form the inverse
sequence

(8.1) · · · → ~n+1X → ~nX → · · · → ~1X.

Let
~ωX =

{
(xn)n∈ω ∈

∏
n∈N

~nX : ∀n ∈ N π~nX(xn+1) = xn

}
be the limit of this inverse sequence, and for every n ∈ N let

πωn : ~ωX → ~nX, πωn : (xk)k∈N 7→ xn,

denote the limit projection.
The space ~ωX is endowed with the metric

d~ωX(a, b) = max
n∈N

1
nd~nX(πωn (a), πωn (b))

that generates the topology of ~ωX inherited from the product
∏
n∈N ~nX.

Lemma 8.1. For every n ∈ N the limit projection πωn : ~ωX → ~nX is
a monotone hereditarily quotient surjection.

Proof. By Theorem 7.3(2), the bonding projections π~nX : ~n+1X →
~nX of the inverse sequence (8.1) are monotone hereditarily quotient surjec-
tions. Applying Theorem 9 and Corollary to Theorem 11 of [15], we conclude
that each limit projection πωn : ~ωX → ~nX is monotone and hereditarily
quotient.

Taking the composition of the projection πω1 : ~ωX → ~X with the
compression map πX : ~X → X we get an important map

πωX = πX ◦ πω1 : ~ωX → X.

Some properties of this map are collected in:

Theorem 8.2. For a premetric space X,

(1) ~ωX is an economical complete metric space of cardinality |~ωX|
≤ |X|ω;

(2) the map πωX : ~ωX → X is a monotone quotient surjection;
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(3) the map πωX is hereditarily quotient if and only if the premetric space
X is basic;

(4) the map πωX : ~ωX → X is non-expanding provided the premetric
d̄X = min{1, dX} is a pseudometric;

(5) the space ~ωX is connected if and only if ~ωX is non-separably
connected if and only if the space X is connected.

Proof. (1) The completeness of the metric d~ωX on ~ωX follows from
the completeness of the iterated cobwebs ~nX and the closedness of ~ωX
in the Tikhonov product

∏
n∈N ~nX.

To show that ~ωX is economical, take any infinite subset A ⊂ ~ωX and
observe that for every n ∈ N,

(8.2) |πωn (A)| = |π~nX(πωn+1(A))| ≤ dens(πωn+1(A)) ≤ dens(A)

according to Proposition 7.1(4).
Observe that for any a, b ∈ A we have

d~ωX(a, b) ∈ {n−1d~nX(πωn (a), πωn (b)) : n ∈ N}

and thus

d~ωX(A×A) ⊂ {n−1d~nX(x, y) : x, y ∈ πωn (A), n ∈ N}.

Combining this with (8.2) we get the desired inequality

|d~ωX(A×A)| ≤
∑
n∈N
|πωn (A)× πωn (A)| ≤ ℵ0 · dens(A)2 = dens(A),

confirming the economical property of the metric d~ωX .
Finally, we show that |~ωX| ≤ |X|ω. This is clear if X is a singleton. So,

we assume that |X| ≥ 2. It follows from the definition of cobweb space that
|~X| ≤ c · |X|. By induction, |~nX| ≤ c · |X| and then |~ωX| ≤ (c · |X|)ω
= |X|ω.

(2) By Lemma 8.1 and Theorem 7.3(1) the maps πω1 : ~ωX → ~X
and πX : ~X → X are quotient surjections. Then so is their composition
πωX = πX ◦ πω1 .

Next, we check that the map πωX is monotone. Given any point x ∈ X,
let C = (πωX)−1(x) = (πω1 )−1(Sx). Since the map πω1 : ~ωX → ~X is
hereditarily quotient, the restriction πωX |C : C → Sx is quotient. Now the
connectedness of the spider Sx and Lemma 4.4 guarantee that C is con-
nected.

(3) If the map πωX = πX ◦ πω1 is hereditarily quotient, then so is the
map πX : ~X → X and then the premetric space X is basic according
to Theorem 7.3(2). On the other hand, if the premetric space X is basic,
then by Theorem 7.3(2), the compression map πX : ~X → X is hereditarily
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quotient, and then the map πωX = πX ◦ πω1 is hereditarily quotient as the
composition of two hereditarily quotient maps.

(4) If the premetric d̄X = {1, dX} is a pseudometric, then Proposi-
tion 7.2(4) guarantees that the compression map πX : ~X → X is non-
expanding. Then πωX = πX ◦ πω1 is non-expanding as the composition of two
non-expanding maps.

(5) This follows from (2), Lemma 4.4 and Proposition 2.2.

Now we show that the construction of ~ωX can be completed to a functor
~ω : PMetr →Metr. Given any non-expanding map f : X → Y between
premetric spaces, consider the non-expanding maps ~nf : ~nX → ~nY for
all n ∈ N. The naturality of the compression maps implies the commutativity
of the following diagrams for all n:

~n+1X
~n+1f //

π~nX

��

~n+1Y

π~nY

��
~n(X)

~nf // ~nY

The commutativity of those diagrams ensures that the map

~ωf : ~ωX → ~ωY, ~ωf : (xn)n∈N 7→ (~nf(xn))n∈N,

is well-defined and that also the following diagram is commutative:

~ωX
~ωf //

πω
X

��

~ωY

πω
Y

��
X

f // Y

The commutativity of this diagram means that the maps πωX : ~ωX → X
compose components of the natural transformation πω : ~ω → Id of the
functor ~ω into the identity functor.

9. The functor of economical resolution. In this section we define
and study the functor E : Top → Metr of economical resolution. This
functor is defined as the composition

E = ~ω ◦ D

of the functors D : Top→ PMetr and ~ω : PMetr→Metr.
Thus EX = ~ω(DX) for every topological space X. Next, define the

resolution map ξX : EX → sX as the composition ξX = cX ◦ πωDX of two
maps: πωDX : ~ω(DX)→ DX and cX : DX → sX. We recall that sX stands
for the sequential coreflexion of X (which is X endowed with the topology
consisting of all sequentially open subsets).
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The maps ξX can be seen as the components of a natural transformation
ξ : E→ s from the functor E to the functor s of sequential coreflexion.

The following theorem describes some properties of the spaces EX and
maps ξX : EX → X. Below by a convergent sequence in a topological
space X we understand the image f(S0) of the standard convergent se-
quence S0 = {0} ∪ {1/n : n ∈ N} ⊂ R under a continuous map f :
S0 → X.

Theorem 9.1. For any topological space X,

(1) EX = ~ωDX is an economical complete metric space of cardinality
|EX| ≤ c · |X|ω;

(2) the map ξX : EX → sX is a monotone quotient surjection;
(3) the space EX is connected if and only if the sequential coreflexion sX

of X is connected;
(4) the map ξX : EX → X is quotient if and only if the space X is

sequential;
(5) the map ξX : EX → X is hereditarily quotient if and only if X is

Fréchet–Urysohn;
(6) each point a ∈ EX has a neighborhood Ua ⊂ EX whose image ξX(Ua)

lies in a convergent sequence in X.

Proof. (1) This follows from Theorem 8.2(1) and the fact that |DX| ≤
ℵ0 · |X|ω.

(2) The map ξX = πωX ◦ cX : EX → sX is quotient, being the composi-
tion of two maps which are quotient by Theorem 8.2(2) and Corollary 4.2.
To show that ξX is monotone, take any point x ∈ X and consider the preim-
age c−1

X (x) ⊂ DX. For any points y, z ∈ c−1
X (x) we get dDX(y, z) = 0 by the

definition of the premetric dD and [y, z] ⊂ S̄y by the definition of ~(DX).
Now we see that

⋃
y∈c−1

X (x) S̄y = (cX ◦ πX)−1(x) is a connected subspace
of ~(DX). By Lemma 8.1, the map πω1 : ~ωX → ~X is monotone and
hereditarily quotient. Consequently, the preimage

ξ−1
X (x) = (πω1 )−1(cX ◦ πX)−1(x))

is connected, witnessing that the map ξX is monotone.
(3) This follows from (2) and Lemma 4.4.
(4) If the space X is sequential, then sX = X and hence the map ξX :

EX → X is quotient by (2). If the map ξX : EX → X is quotient, then
the space X is sequential, being the image of a metrizable space under a
quotient map (see [7, 2.4.G]).

(5) If the map ξX : E(X)→ X is hereditarily quotient, then the space X
is Fréchet–Urysohn, being the image of a metrizable space under a heredi-
tarily quotient map (see [7, 2.4.G]).
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Now assume conversely that the space X is Fréchet–Urysohn. In this case
sX = X. First we show that the composition cX ◦ πDX : ~ ◦ DX → X is
pseudo-open. Given any point x ∈ X and an open set U ⊂ ~(DX) con-
taining the preimage (cX ◦ πDX)−1(x), we need to check that the image
V = cX ◦ πDX(U) is a neighborhood of x in X. Assuming the converse, we
could find a sequence {xn}n∈N ⊂ X \ V that converges to the point x. Con-
sider the continuous map f : S0 → X such that f(0) = x0 and f(1/n) = xn.
Consider the point a = (f, 0) ∈ DX. This point also belongs to the cobweb
~(DX) and lies in the set (cX ◦ πDX)−1(x) ⊂ U . Since U is open, there
is r ∈ (0, 1] such that B~DX(a, r) ⊂ U . Choose any integer n > 1/r. By
Proposition 7.2(2),

(f, 1/n) ∈ BDX(a, r) = πDX(B~DX(a, r)) ⊂ πDX(U)

and hence xn = f(1/n) = cX(f, 1/n) ⊂ cX ◦ πDX(U) = V , which contra-
dicts the choice of xn. This contradiction shows that the map cX ◦ πDX is
pseudo-open and hence hereditarily quotient.

By Lemma 8.1, the map πω1 : ~ω(DX)→ ~(DX) is hereditarily quotient.
Then ξX = cX ◦ πDX ◦ πω1 is hereditarily quotient as the composition of
hereditarily quotient maps.

(6) Since ξX = cX ◦ πDX ◦ πω1 and the map πω1 : ~ωDX → ~DX is
continuous, it suffices to check that each point a ∈ ~DX has a neighbor-
hood Ua whose image cX ◦ πDX(Ua) lies in a convergent sequence in X.
If a ∈ ~DX \ DX, then the map πDX is locally constant at a. Conse-
quently, a has a neighborhood Ua whose image cX(πDX(Ua)) is a single-
ton.

If a ∈ DX ⊂ ~DX, then a = (f, t) for some continuous map f ∈
C(S0, X) and some t ∈ S0. By the definition of the premetric dDX , we
get cX(BDX(a, 1)) ⊂ f(S0). Letting Ua = B~DX(a, 1) and applying Propo-
sition 7.2(2), we conclude that the image

cX ◦ πDX(Ua) = cX(BDX(a, 1)) ⊂ f(S0)

lies in the convergent sequence f(S0) in X.

10. Locally extremal functions on connected metric spaces. In
this section we shall apply the cobweb construction to exhibit a non-constant
locally extremal function defined on a connected complete metric space.

A function f : X → R is called locally extremal if each x ∈ X is a point of
local maximum or local minimum of f . In 1912 W. Sierpiński [16] proved that
each continuous locally extremal function f : R→ R is constant. In [6] this
result was generalized to continuous locally extremal functions f : X → R
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defined on a connected topological space X of weight w(X) < c. Another
generalization was proved by Fedeli and Le Donne [8]:

Theorem 10.1 (Fedeli, Le Donne). A continuous locally extremal func-
tion f : X → R defined on a connected topological space X with cellularity
c(X) < c is constant.

The cellularity requirement is essential in this theorem as shown by the
projection pr : [0, 1]× [0, 1]→ [0, 1] of the lexicographic square onto the in-
terval (see [6]). This projection is locally extremal but not constant. On the
other hand, the lexicographic square [0, 1]× [0, 1] is a first-countable linearly
ordered connected compact Hausdorff space.

Having in mind this example, Morayne and Wójcik asked in [10] and [11]
if there is a non-constant locally extremal function defined on a connected
(complete) metric space.

An example of such a function was first constructed by Fedeli and Le
Donne [8] and independently by the authors in [4]. In this paper we construct
such a non-constant locally extremal function with the help of the cobweb
construction.

Consider the set II = {−1,+1} × [0, 1] endowed with the premetric

d((i, x), (j, y)) =


x− y if i = −1 and x ≥ y,
y − x if i = +1 and y ≥ x,
1 otherwise.

By Theorem 7.3(1) the map πII : ~II→ II is a monotone quotient surjection.
Consider its composition with the projection

pr : II→ [0, 1], pr : (i, x) 7→ x.

Theorem 10.2. The composition f = pr◦πII : ~II→ [0, 1] is a surjective
continuous locally extremal function defined on the connected complete metric
space ~II.

Proof. It is easy to check that the premetric d on II generates the smallest
topology turning the projection pr : II → [0, 1] into a continuous map. En-
dowed with this topology, the space II is connected. Applying Theorem 7.3(3)
we conclude that ~II is a connected complete metric space.

We claim that the map pr ◦ πII : ~II → [0, 1] is locally extremal. Take
any point a ∈ ~II. If a /∈ II, then f is locally constant at a by Proposi-
tion 7.1(3). If a ∈ II, then consider the open unit ball Ua = B~II(a, 1) and
apply Proposition 7.2(2) to conclude that

f(Ua) = pr(πII(B~II(a, 1))) = pr(BII(a, 1)).
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Let a = (i, x) where i ∈ {−1,+1} and x ∈ [0, 1]. If i = −1, then f(Ua) =
pr(BII(a, r)) ⊂ (x − r, x] and thus a is a point of local maximum of f . If
i = +1, then f(Ua) = pr(BII(a, r)) ⊂ [x, x + r) and hence a if a point of
local minimum of f .

11. Some open problems. By Corollary 7.5, two metric spaces X,Y
are homeomorphic provided their cobwebs ~X, ~Y are homeomorphic.

Problem 11.1. Are metric spaces X,Y homeomorphic if so are the
spaces ~ωX and ~ωY ? In particular, are the spaces ~ω(Rn) and ~ω(Rm)
homeomorphic for some n 6= m?

In [12] E. Pol constructed for every n ∈ N a metric space of covering
dimension n having no separable subspaces of positive dimension.

Problem 11.2. Let n ∈ N. Is there an economical complete metric space
Xn of covering dimension dimXn = n?

A natural candidate for such a space would be (~ωX)n for a connected
metric space X.

Problem 11.3. Is dim(~ωX)n = n for every connected metric space X
and every n ∈ N?

In [11], Morayne and Wójcik constructed a non-separably connected
metric group which is an example of a (topologically) homogeneous non-
separably connected metric space.

A metric space X is called (topologically) homogeneous if for any two
points x, y ∈ X there is a bijective isometry (a homeomorphism) f : X → X
with f(x) = y.

Problem 11.4. Can a non-separably connected complete metric space be
(topologically) homogeneous? In particular, is there an economical connected
complete metric group?

Problem 11.5. Is the space ~ωX (topologically) homogeneous for some
metric space X that contains more than one point?
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This paper was developed over a long period of time gaining in generality
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more compact, may still be of interest to those who want to see the short-
est solution of the original problem of constructing a non-separably con-
nected complete metric space, without studying all the mechanisms in full
generality.
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