A two-dimensional univoque set

by

Martijn de Vries (Delft) and Vilmos Komornik (Strasbourg)

Abstract

Let $\mathbf{J} \subset \mathbb{R}^{2}$ be the set of couples (x, q) with $q>1$ such that x has at least one representation of the form $x=\sum_{i=1}^{\infty} c_{i} q^{-i}$ with integer coefficients c_{i} satisfying $0 \leq c_{i}<q, i \geq 1$. In this case we say that $\left(c_{i}\right)=c_{1} c_{2} \ldots$ is an expansion of x in base q. Let \mathbf{U} be the set of couples $(x, q) \in \mathbf{J}$ such that x has exactly one expansion in base q. In this paper we deduce some topological and combinatorial properties of the set \mathbf{U}. We characterize the closure of \mathbf{U}, and we determine its Hausdorff dimension. For $(x, q) \in \mathbf{J}$, we also prove new properties of the lexicographically largest expansion of x in base q.

1. Introduction. Let \mathbf{J} be the set consisting of all elements $(x, q) \in$ $\mathbb{R} \times(1, \infty)$ such that there exists at least one sequence $\left(c_{i}\right)=c_{1} c_{2} \ldots$ of integers satisfying $0 \leq c_{i}<q$ for all i, and

$$
\begin{equation*}
x=\frac{c_{1}}{q}+\frac{c_{2}}{q^{2}}+\cdots . \tag{1.1}
\end{equation*}
$$

If (1.1) holds, we say that $\left(c_{i}\right)$ is an expansion of x in base q, and if the base q is understood from the context, we sometimes simply say that $\left(c_{i}\right)$ is an expansion of x. The numbers c_{i} of an expansion $\left(c_{i}\right)$ are usually referred to as digits. We denote by $\lceil q\rceil$ the smallest integer larger than or equal to q. The alphabet A_{q} is the set of "admissible" digits in base q, i.e., $A_{q}=$ $\{0, \ldots,\lceil q\rceil-1\}$.

If $q>1$ and $0 \leq x \leq(\lceil q\rceil-1) /(q-1)$, then a particular expansion of x in base q, the so-called quasi-greedy expansion $\left(a_{i}(x, q)\right)$, may be defined recursively as follows. For $x=0$ we set $\left(a_{i}(x, q)\right):=0^{\infty}$. If $x>0$ and $a_{i}(x, q)$ has already been defined for $1 \leq i<n$ (no condition if $n=1$), then $a_{n}(x, q)$ is the largest element of A_{q} satisfying

$$
\frac{a_{1}(x, q)}{q}+\cdots+\frac{a_{n}(x, q)}{q^{n}}<x .
$$

[^0]One easily verifies that $\left(a_{i}(x, q)\right)$ is indeed an expansion of x in base q. Therefore

$$
(x, q) \in \mathbf{J} \Leftrightarrow q>1 \text { and } x \in J_{q}:=\left[0, \frac{\lceil q\rceil-1}{q-1}\right] .
$$

Let us denote by \mathbf{U} the set of couples $(x, q) \in \mathbf{J}$ such that x has exactly one expansion in base q. For example, $(0, q) \in \mathbf{U}$ for every $q>1$, but \mathbf{U} has many more elements. The main purpose of this paper is to describe the topological and combinatorial nature of \mathbf{U}. We will prove the following theorem:

Theorem 1.1.
(i) The set \mathbf{U} is not closed. Its closure $\overline{\mathbf{U}}$ is a Cantor set $\left({ }^{(1)}\right)$.
(ii) Both \mathbf{U} and $\overline{\mathbf{U}}$ are two-dimensional Lebesgue null sets.
(iii) Both \mathbf{U} and $\overline{\mathbf{U}}$ have Hausdorff dimension two.

As far as we know, this two-dimensional univoque set has not yet been investigated. There exist, however, a number of papers devoted to the study of its one-dimensional sections

$$
\mathcal{U}:=\{q>1:(1, q) \in \mathbf{U}\}
$$

and

$$
\mathcal{U}_{q}:=\left\{x \in J_{q}:(x, q) \in \mathbf{U}\right\}, \quad q>1 .
$$

The study of \mathcal{U} started with the paper of Erdős, Horváth and Joó [6] and continued in [4, [5], 7], [8], [15], [16], [17]. We recall in particular that \mathcal{U} and its closure \mathcal{U} have Lebesgue measure zero and Hausdorff dimension one.

The sets \mathcal{U}_{q} have been investigated in [3], [4], [5], [11, [13], [14. It is known (see [5) that \mathcal{U}_{q} is closed if and only if q does not belong to the null set $\overline{\mathcal{U}}$, and that the closure $\overline{\mathcal{U}_{q}}$ has Lebesgue measure zero for all noninteger bases $q>1$. Moreover, the set of numbers $x \in J_{q}$ having a continuum of expansions in base q has full Lebesgue measure for each noninteger $q>1$ (see [2], [20], 21]).

The key to the proof of Theorem 1.1 is an algebraic characterization of $\overline{\mathbf{U}}$ by using the quasi-greedy expansions $\left(a_{i}(x, q)\right)$. We write for brevity $\alpha_{i}(q):=a_{i}(1, q), i \in \mathbb{N}:=\{1,2, \ldots\}, q>1$. Note that $\alpha_{1}(q)=\lceil q\rceil-1$, the largest admissible digit in base q. In the statement of the following theorem we use the lexicographic order between sequences and we define the conjugate (in base q) of a digit $c \in A_{q}$ by $\bar{c}:=\alpha_{1}(q)-c$. If $c_{i} \in A_{q}$, $i \geq 1$, we shall also write $\overline{c_{1} \ldots c_{n}}$ instead of $\overline{c_{1}} \ldots \overline{c_{n}}$ and $\overline{c_{1} c_{2} \ldots}$ instead of $\overline{c_{1}} \overline{c_{2}} \ldots$

[^1]Theorem 1.2. A point $(x, q) \in \mathbf{J}$ belongs to $\overline{\mathbf{U}}$ if and only if

$$
\overline{a_{n+1}(x, q) a_{n+2}(x, q) \ldots} \leq \alpha_{1}(q) \alpha_{2}(q) \ldots \quad \text { whenever } a_{n}(x, q)>0
$$

Along with the quasi-greedy expansion, we also need the notion of the greedy expansion $\left(b_{i}(x, q)\right)$ for $x \in J_{q}$, introduced by Rényi [19]. It can be defined by a slight modification of the above recursion: if $b_{i}(x, q)$ has already been defined for all $1 \leq i<n$ (no condition if $n=1$), then $b_{n}(x, q)$ is the largest element of A_{q} satisfying

$$
\frac{b_{1}(x, q)}{q}+\cdots+\frac{b_{n}(x, q)}{q^{n}} \leq x
$$

Note that the greedy expansion $\left(b_{i}(x, q)\right)$ of a number $x \in J_{q}$ is the lexicographically largest expansion of x in base q. We denote the greedy expansion of 1 in base q by $\left(\beta_{i}(q)\right):=\left(b_{i}(1, q)\right)$.

The rest of this paper is organized as follows. In the next section we give a short overview of some basic results on greedy and quasi-greedy expansions, and we prove some new results concerning the coordinatewise convergence of sequences of these expansions. We shall prove (see Theorem 2.7) that the set of numbers $x \in J_{q}$ for which the greedy expansion of x in base q is not the greedy expansion of a number belonging to J_{p} in any smaller base $p \in(1, q)$ is of full Lebesgue measure and its complement in J_{q} is a set of first category and Hausdorff dimension one. We shall also prove (see Theorem 2.8) that for each word $v:=b_{\ell+1}(x, q) \ldots b_{\ell+m}(x, q)(\ell \geq 0, m \geq 1, x \in[0,1))$ there exists a set $Y_{v} \subset J_{q}$ of first category and Hausdorff dimension less than one such that the word v occurs in the greedy expansion in base q of every number belonging to $J_{q} \backslash Y_{v}$. Using (some of) the results of Section 2 we prove Theorem 1.2 in Section 3 and Theorem 1.1 in Section 4.
2. Greedy and quasi-greedy expansions. In this paper we consider only one-sided sequences of nonnegative integers. We equip this set of sequences $\{0,1, \ldots\}^{\mathbb{N}}$ with the topology of coordinatewise convergence. We say that an expansion is infinite if it has infinitely many nonzero elements; otherwise it is called finite. Using this terminology, the quasi-greedy expansion $\left(a_{i}(x, q)\right)$ of a number $x \in J_{q} \backslash\{0\}$ is the lexicographically largest infinite expansion of x in base q. Moreover, if the greedy expansion of $x \in J_{q}$ is infinite, then $\left(a_{i}(x, q)\right)=\left(b_{i}(x, q)\right)$.

The family of all quasi-greedy expansions is characterized by the following propositions (see [1] or [5] for a proof):

Proposition 2.1. The map $q \mapsto\left(\alpha_{i}(q)\right)$ is an increasing bijection from the open interval $(1, \infty)$ onto the set of all infinite sequences $\left(\alpha_{i}\right)$ satisfying

$$
\alpha_{k+1} \alpha_{k+2} \ldots \leq \alpha_{1} \alpha_{2} \ldots \quad \text { for all } k \geq 1
$$

Proposition 2.2. For each $q>1$, the map $x \mapsto\left(a_{i}(x, q)\right)$ is an increasing bijection from $J_{q} \backslash\{0\}$ onto the set of all infinite sequences $\left(a_{i}\right)$ satisfying

$$
a_{n} \in A_{q} \quad \text { for all } n \geq 1
$$

and

$$
a_{n+1} a_{n+2} \ldots \leq \alpha_{1}(q) \alpha_{2}(q) \ldots \quad \text { whenever } a_{n}<\alpha_{1}(q) .
$$

The quasi-greedy expansions have a lower semicontinuity property for the order topology induced by the lexicographic order. More precisely, we have the following result.

Lemma 2.3. Let $(x, q) \in \mathbf{J}$ and $\left(y_{n}, r_{n}\right) \in \mathbf{J}, n \in \mathbb{N}$. Then
(i) for each positive integer m there exists a neighborhood $\mathbf{W} \subset \mathbb{R}^{2}$ of (x, q) such that

$$
\begin{equation*}
a_{1}(y, r) \ldots a_{m}(y, r) \geq a_{1}(x, q) \ldots a_{m}(x, q) \quad \text { for all }(y, r) \in \mathbf{W} \cap \mathbf{J} ; \tag{2.1}
\end{equation*}
$$

(ii) if $y_{n} \uparrow x$ and $r_{n} \uparrow q$, then $\left(a_{i}\left(y_{n}, r_{n}\right)\right)$ converges to $\left(a_{i}(x, q)\right)$.

Proof. (i) We may assume that $x \neq 0$. By definition of the quasi-greedy expansion we have

$$
\sum_{i=1}^{n} \frac{a_{i}(x, q)}{q^{i}}<x \quad \text { for all } n=1,2, \ldots
$$

For any fixed positive integer m, if $(y, r) \in \mathbf{J}$ is sufficiently close to (x, q), then $r>\lceil q\rceil-1$, i.e., $A_{q} \subset A_{r}$, and

$$
\sum_{i=1}^{n} \frac{a_{i}(x, q)}{r^{i}}<y, \quad n=1, \ldots, m .
$$

These inequalities imply (2.1).
(ii) If $y_{n} \leq x$ and $r_{n} \leq q$, we deduce from the definition of the quasigreedy expansion that

$$
\left(a_{i}(x, q)\right) \geq\left(a_{i}\left(y_{n}, r_{n}\right)\right)
$$

for every n. Equivalently, we have

$$
a_{1}(x, q) \ldots a_{m}(x, q) \geq a_{1}\left(y_{n}, r_{n}\right) \ldots a_{m}\left(y_{n}, r_{n}\right)
$$

for all positive integers m and n. It remains to notice that by the previous part the reverse inequality also holds for each fixed m if n is large enough.

The family of greedy expansions has already been characterized by Parry [18]:

Proposition 2.4. For a given base $q>1$, the map $x \mapsto\left(b_{i}(x, q)\right)$ is an increasing bijection from J_{q} onto the set of all sequences (b_{i}) satisfying

$$
b_{n} \in A_{q} \quad \text { for all } n \geq 1
$$

and

$$
b_{n+1} b_{n+2} \ldots<\alpha_{1}(q) \alpha_{2}(q) \ldots \quad \text { whenever } b_{n}<\alpha_{1}(q)
$$

The greedy expansions have the following upper semicontinuity property:
Lemma 2.5. Let $(x, q) \in \mathbf{J},\left(y_{n}, r_{n}\right) \in \mathbf{J}, n \in \mathbb{N}$ and suppose $q \notin \mathbb{N}$. Then
(i) for each positive integer m there exists a neighborhood $\mathbf{W} \subset \mathbb{R}^{2}$ of (x, q) such that

$$
\begin{equation*}
b_{1}(y, r) \ldots b_{m}(y, r) \leq b_{1}(x, q) \ldots b_{m}(x, q) \quad \text { for all }(y, r) \in \mathbf{W} \cap \mathbf{J} \tag{2.2}
\end{equation*}
$$

(ii) if $y_{n} \downarrow x$ and $r_{n} \downarrow q$, then $\left(b_{i}\left(y_{n}, r_{n}\right)\right)$ converges to $\left(b_{i}(x, q)\right)$.

Proof. (i) By the definition of greedy expansions we have

$$
\sum_{i=1}^{n} \frac{b_{i}(x, q)}{q^{i}}>x-\frac{1}{q^{n}} \quad \text { whenever } b_{n}(x, q)<\alpha_{1}(q)
$$

If $(y, r) \in \mathbf{J}$ is sufficiently close to (x, q), then $A_{r}=A_{q}, \alpha_{1}(r)=\alpha_{1}(q)$, and

$$
\sum_{i=1}^{n} \frac{b_{i}(x, q)}{r^{i}}>y-\frac{1}{r^{n}} \quad \text { whenever } n \leq m \text { and } b_{n}(x, q)<\alpha_{1}(r)
$$

These inequalities imply 2.2 .
(ii) If $y_{n} \geq x$ and $r_{n} \geq q$, we deduce from the definition of the greedy expansion that

$$
\left(b_{i}(x, q)\right) \leq\left(b_{i}\left(y_{n}, r_{n}\right)\right)
$$

for every n. Equivalently, we have

$$
b_{1}(x, q) \ldots b_{m}(x, q) \leq b_{1}\left(y_{n}, r_{n}\right) \ldots b_{m}\left(y_{n}, r_{n}\right)
$$

for all positive integers m and n. It remains to notice that by the previous part the reverse inequality also holds for each fixed m if n is large enough.

From Lemmas 2.3 and 2.5 we deduce the following result:
Proposition 2.6. Consider $(x, q) \in \mathbf{J}$ with a noninteger base q and assume that the greedy expansion $\left(b_{i}(x, q)\right)$ is infinite. If $\left(y_{n}, r_{n}\right)$ converges to (x, q) in \mathbf{J}, then both $\left(a_{i}\left(y_{n}, r_{n}\right)\right)$ and $\left(b_{i}\left(y_{n}, r_{n}\right)\right)$ converge to $\left(b_{i}(x, q)\right)=$ $\left(a_{i}(x, q)\right)$.

Proof. For each positive integer m there exists a neighborhood $\mathbf{W} \subset \mathbb{R}^{2}$ of (x, q) such that for all $(y, r) \in \mathbf{W} \cap \mathbf{J}$,

$$
\begin{aligned}
a_{1}(x, q) \ldots a_{m}(x, q) & \leq a_{1}(y, r) \ldots a_{m}(y, r) \leq b_{1}(y, r) \ldots b_{m}(y, r) \\
& \leq b_{1}(x, q) \ldots b_{m}(x, q)
\end{aligned}
$$

The result follows from our assumption that $\left(a_{i}(x, q)\right)=\left(b_{i}(x, q)\right)$.

Theorem 2.7. Let $q>1$ be a real number. Then
(i) for each $r \in(1, q)$, the Hausdorff dimension of the set

$$
G_{r, q}:=\left\{\sum_{i=1}^{\infty} \frac{b_{i}(x, r)}{q^{i}}: x \in J_{r}\right\}
$$

equals $\log r / \log q$;
(ii) the set

$$
G_{q}:=\bigcup\left\{G_{r, q}: r \in(1, q)\right\}
$$

is of first category, has Lebesgue measure zero and Hausdorff dimension one.

Proof. (i) It is well known (see, e.g., [17, [18]) and easy to prove that the set of numbers $r>1$ for which $\left(\beta_{i}(r)\right)$ is finite is dense in $[1, \infty)$. Moreover, if $\left(\beta_{i}(r)\right)$ is finite and $\beta_{n}(r)$ is its last nonzero element, then $\left(\alpha_{i}(r)\right)=\left(\beta_{1}(r) \ldots \beta_{n-1}(r) \beta_{n}^{-}(r)\right)^{\infty}\left(\right.$ where $\left.\beta_{n}^{-}(r):=\beta_{n}(r)-1\right)$. By virtue of Propositions 2.1 and 2.4 we have $G_{s, q} \subset G_{t, q}$ whenever $1<s<t<q$. Hence it is enough to prove that $\operatorname{dim}_{H} G_{r, q}=\log r / \log q$ for those values $r \in(1, q)$ for which $\left(\alpha_{i}(r)\right)$ is periodic.

Fix $r \in(1, q)$ such that $\left(\alpha_{i}\right):=\left(\alpha_{i}(r)\right)$ is periodic and let $n \in \mathbb{N}$ be such that $\left(\alpha_{i}\right)=\left(\alpha_{1} \ldots \alpha_{n}\right)^{\infty}$. Let us denote by W_{r} the set consisting of the finite words

$$
w_{i j}:=\alpha_{1} \ldots \alpha_{j-1} i, \quad 0 \leq i<\alpha_{j}, \quad 1 \leq j \leq n
$$

and

$$
w_{\alpha_{n} n}:=\alpha_{1} \ldots \alpha_{n-1} \alpha_{n}
$$

Let \mathcal{F}_{r}^{\prime} be the set of sequences $\left(c_{i}\right)=c_{1} c_{2}$ such that for each $k \geq 0$ the inequality $c_{k+1} \ldots c_{k+n} \leq \alpha_{1} \ldots \alpha_{n}$ holds. Note that the set \mathcal{F}_{r}^{\prime} consists of those sequences $\left(c_{i}\right)$ such that each tail of $\left(c_{i}\right)$ (including $\left(c_{i}\right)$ itself) starts with a word belonging to W_{r}. It follows from Propositions 2.1 and 2.4 that a sequence $\left(b_{i}\right)$ is greedy in base r if and only if $b_{m} \in A_{r}$ for all $m \geq 1$ and

$$
b_{m+k+1} b_{m+k+2} \ldots<\alpha_{1} \alpha_{2} \ldots \quad \text { for all } k \geq 0, \text { whenever } b_{m}<\alpha_{1}
$$

Therefore, any greedy expansion $\left(b_{i}\right) \neq \alpha_{1}^{\infty}$ in base r can be written as $\alpha_{1}^{\ell} c_{1} c_{2} \ldots$ for some $\ell \geq 0$ (where α_{1}^{0} denotes the empty word) and some sequence $\left(c_{i}\right)$ belonging to \mathcal{F}_{r}^{\prime}. Conversely, if no tail of a sequence belonging to \mathcal{F}_{r}^{\prime} equals $\left(\alpha_{i}\right)$, then it is the greedy expansion in base r of some $x \in J_{r}$. Hence if we set

$$
\mathcal{F}_{r, q}:=\left\{\sum_{i=1}^{\infty} \frac{c_{i}}{q^{i}}:\left(c_{i}\right) \in \mathcal{F}_{r}^{\prime}\right\}
$$

then $\mathcal{F}_{r, q} \backslash G_{r, q}$ is countable and $G_{r, q}$ can be covered by countably many sets similar to $\mathcal{F}_{r, q}$. Since the union of countably many sets of Hausdorff dimension s is still of Hausdorff dimension s, we have $\operatorname{dim}_{\mathrm{H}} G_{r, q}=\operatorname{dim}_{\mathrm{H}} \mathcal{F}_{r, q}$.

We associate with each word $w_{i j} \in W_{r}$ a similarity $S_{i j}: J_{q} \rightarrow J_{q}$ defined by the formula

$$
S_{i j}(x):=\frac{\alpha_{1}}{q}+\cdots+\frac{\alpha_{j-1}}{q^{j-1}}+\frac{i}{q^{j}}+\frac{x}{q^{j}}, \quad x \in J_{q} .
$$

It follows from Proposition 2.1 and the definition of $\mathcal{F}_{r, q}$ that

$$
\begin{equation*}
\mathcal{F}_{r, q}=\bigcup S_{i j}\left(\mathcal{F}_{r, q}\right) \tag{2.3}
\end{equation*}
$$

where the union runs over all i and j for which $w_{i j} \in W_{r}$. Applying Proposition 2.1 again, it follows that r is the largest element of the set of numbers $t>1$ for which $\alpha_{i}(t)=\alpha_{i}, 1 \leq i \leq n$. Hence $\alpha_{1} \ldots \alpha_{n}<\alpha_{1}(q) \ldots \alpha_{n}(q)$ and therefore each sequence in \mathcal{F}_{r}^{\prime} is the greedy expansion in base q of some $x \in \mathcal{F}_{r, q}$. It follows that the sets $S_{i j}\left(\mathcal{F}_{r, q}\right)$ on the right side of 2.3 are disjoint. Moreover, the function $x \mapsto\left(b_{i}(x, q)\right)$ that maps $\mathcal{F}_{r, q}$ onto \mathcal{F}_{r}^{\prime} is increasing. Using the definition of \mathcal{F}_{r}^{\prime} it is easily seen that the limit of each monotonic sequence of elements in $\mathcal{F}_{r, q}$ belongs to $\mathcal{F}_{r, q}$. We conclude that the closed set $\mathcal{F}_{r, q}$ is the (nonempty compact) invariant set of this system of similarities. An application of Propositions 9.6 and 9.7 in [9] yields

$$
\operatorname{dim}_{\mathrm{H}} \mathcal{F}_{r, q}=\operatorname{dim}_{\mathrm{H}} G_{r, q}=s
$$

where s is the real solution of the equation

$$
\frac{\alpha_{1}}{q^{s}}+\cdots+\frac{\alpha_{n-1}}{q^{(n-1) s}}+\frac{\alpha_{n}+1}{q^{n s}}=1
$$

Since

$$
\frac{\alpha_{1}}{r}+\cdots+\frac{\alpha_{n-1}}{r^{n-1}}+\frac{\alpha_{n}+1}{r^{n}}=1
$$

we have $s=\log r / \log q$.
(ii) It follows at once from (i) that $\operatorname{dim}_{\mathrm{H}} G_{q}=1$. Let $r \in(1, q)$ be such that $\left(\alpha_{i}(r)\right)$ is periodic. The proof of (i) shows that

$$
G_{r, q} \subset \bigcup_{n=1}^{\infty}\left(a_{n}+b_{n} \mathcal{F}_{r, q}\right)
$$

for some constants $a_{n}, b_{n} \in \mathbb{R}(n \in \mathbb{N})$. Since $\mathcal{F}_{r, q}$ is a closed set of Hausdorff dimension less than one, it follows in particular that the sets $a_{n}+b_{n} \mathcal{F}_{r, q}$ are nowhere dense null sets. Since $G_{s, q} \subset G_{t, q}$ whenever $1<s<t<q$, the set G_{q} is a null set of first category.

Theorem 2.8. Let $q>1$ be a real number.
(i) Let $v:=b_{\ell+1}(y, q) \ldots b_{\ell+m}(y, q)$ for some $y \in[0,1)$ and some integers $\ell \geq 0$ and $m \geq 1$. The set Y_{v} of numbers $x \in J_{q}$ for which the word v does not occur in the greedy expansion of x in base q has Hausdorff dimension less than one.
(ii) The set Y of numbers $x \in J_{q}$ for which at least one word of the form $b_{\ell+1}(y, q) \ldots b_{\ell+m}(y, q)(\ell \geq 0, m \geq 1, y \in[0,1))$ does not occur in the greedy expansion of x in base q is of first category, has Lebesgue measure zero and Hausdorff dimension one.

Proof. (i) Using the inequality $\left(b_{i}(y, q)\right)<\left(\alpha_{i}(q)\right)$, it follows from Proposition 2.4 that for some $k \in \mathbb{N}$, there exist positive integers m_{1}, \ldots, m_{k} and nonnegative integers $\ell_{1}, \ldots, \ell_{k}$ satisfying $\alpha_{m_{j}}(q)>0$ and $\ell_{j}<\alpha_{m_{j}}(q)$ for each $1 \leq j \leq k$, such that v is a subword of

$$
w:=\alpha_{1}(q) \ldots \alpha_{m_{1}-1}(q) \ell_{1} \ldots \alpha_{1}(q) \ldots \alpha_{m_{k}-1}(q) \ell_{k}
$$

Let W_{q} and \mathcal{F}_{q}^{\prime} be the same as the sets W_{r} and \mathcal{F}_{r}^{\prime} defined in the proof of the previous theorem, but now with $\left(\alpha_{i}\right):=\left(\alpha_{i}(q)\right)$ and $n \geq$ $\max \left\{m_{1}, \ldots, m_{k}\right\}$ large enough that

$$
\begin{equation*}
\left(1+\frac{1}{q^{n}}\right)^{k}<1+\frac{1}{q^{m_{1}+\cdots+m_{k}}} \tag{2.4}
\end{equation*}
$$

If $w_{i_{1} j_{1}}, \ldots, w_{i_{k} j_{k}}$ are k words belonging to W_{q} such that

$$
i_{1} j_{1} \ldots i_{k} j_{k} \neq \ell_{1} m_{1} \ldots \ell_{k} m_{k}
$$

we associate with them a similarity $S_{i_{1} j_{1} \ldots i_{k} j_{k}}: J_{q} \rightarrow J_{q}$ defined by

$$
\begin{aligned}
S_{i_{1} j_{1} \ldots i_{k} j_{k}}(x) & =\frac{\alpha_{1}}{q}+\cdots+\frac{\alpha_{j_{1}-1}}{q^{j_{1}-1}}+\frac{i_{1}}{q^{j_{1}}} \\
& +\frac{\alpha_{1}}{q^{j_{1}+1}}+\cdots+\frac{\alpha_{j_{2}-1}}{q^{j_{1}+j_{2}-1}}+\frac{i_{2}}{q^{j_{1}+j_{2}}}+\cdots \\
& +\frac{\alpha_{1}}{q^{j_{1}+\cdots+j_{k-1}+1}}+\cdots+\frac{\alpha_{j_{k}-1}}{q^{j_{1}+\cdots+j_{k}-1}}+\frac{i_{k}}{q^{j_{1}+\cdots+j_{k}}} \\
& +\frac{x}{q^{j_{1}+\cdots+j_{k}}}, \quad x \in J_{q}
\end{aligned}
$$

Let \mathcal{G}_{q}^{\prime} denote the set of those sequences belonging to \mathcal{F}_{q}^{\prime} which do not contain the word w, and let

$$
\mathcal{G}_{q}:=\left\{\sum_{i=1}^{\infty} \frac{c_{i}}{q^{i}}:\left(c_{i}\right) \in \mathcal{G}_{q}^{\prime}\right\}
$$

Since $\left(\alpha_{i}\right)=\left(\alpha_{i}(q)\right)$, a sequence belonging to \mathcal{F}_{q}^{\prime} is not necessarily the greedy expansion in base q of a number $x \in J_{q}$, but this does not affect our proof. It is important, however, that any greedy expansion $\left(b_{i}\right) \neq \alpha_{1}^{\infty}$ in base q can be written as $\alpha_{1}^{\ell} c_{1} c_{2} \ldots$ for some $\ell \geq 0$ and some sequence $\left(c_{i}\right)$ belonging to \mathcal{F}_{q}^{\prime}. If Y_{w} denotes the set of numbers $x \in J_{q}$ for which the word w does not occur in $\left(b_{i}(x, q)\right)$ then the latter fact implies that the set $Y_{w} \backslash\left\{\alpha_{1} /(q-1)\right\}$ can be covered by countably many sets similar to \mathcal{G}_{q}.

It follows from the definition of \mathcal{G}_{q} that

$$
\mathcal{G}_{q} \subset \bigcup S_{i_{1} j_{1} \ldots i_{k} j_{k}}\left(\mathcal{G}_{q}\right)
$$

where the union runs over all $i_{1} j_{1} \ldots i_{k} j_{k}$ for which the similarity $S_{i_{1} j_{1} \ldots i_{k} j_{k}}$ is defined above. Hence

$$
\overline{\mathcal{G}_{q}} \subset \bigcup S_{i_{1} j_{1} \ldots i_{k} j_{k}}\left(\overline{\mathcal{G}_{q}}\right)
$$

and thus $\mathcal{G}_{q} \subset \mathcal{H}_{q}$ where \mathcal{H}_{q} is the (nonempty compact) invariant set of this system of similarities. Let $\tilde{\alpha}_{i}:=\alpha_{i}$ for $1 \leq i<n$ and $\tilde{\alpha}_{n}:=\alpha_{n}+1$. From Proposition 9.6 in [9] we know that $\operatorname{dim}_{H} \mathcal{H}_{q} \leq s$ where s is the real solution of the equation

$$
\begin{equation*}
\sum_{j_{1}=1}^{n} \sum_{j_{2}=1}^{n} \cdots \sum_{j_{k}=1}^{n}\left(\frac{\prod_{i=1}^{k} \tilde{\alpha}_{j_{i}}}{q^{\left(j_{1}+\cdots+j_{k}\right) s}}\right)-\frac{1}{q^{\left(m_{1}+\cdots+m_{k}\right) s}}=1 \tag{2.5}
\end{equation*}
$$

Denoting the left side of 2.5 by $C(s)$, we have

$$
C(1)+\frac{1}{q^{m_{1}+\cdots+m_{k}}}=\left(\sum_{i=1}^{n} \frac{\tilde{\alpha}_{i}}{q^{i}}\right)^{k}<\left(1+\frac{1}{q^{n}}\right)^{k}
$$

By (2.4) we have $C(1)<1$, and thus $\operatorname{dim}_{\mathrm{H}} Y_{v} \leq \operatorname{dim}_{\mathrm{H}} Y_{w} \leq \operatorname{dim}_{\mathrm{H}} \mathcal{H}_{q}<1$.
(ii) The proof of (i) shows that

$$
Y_{v} \subset Y_{w} \subset \bigcup_{n=1}^{\infty}\left(c_{n}+d_{n} \mathcal{H}_{q}\right)
$$

for some constants $c_{n}, d_{n} \in \mathbb{R}(n \in \mathbb{N})$. Arguing as in the proof of Theorem 2.7(ii) we may conclude that Y_{v} is a null set of first category. Since Y is a countable union of sets of the form Y_{v} the same properties hold for Y. Let $r \in(1, q)$ and let $G_{r, q}$ be the set defined in Theorem 2.7. Due to Theorem 2.7 (i) it is now sufficient to show that $G_{r, q} \subset Y$. By Proposition 2.1 there exists an integer $n \in \mathbb{N}$ such that $\alpha_{1}(r) \ldots \alpha_{n}(r)<\alpha_{1}(q) \ldots \alpha_{n}(q)$. Note that the greedy expansion in base q of a number $x \in G_{r, q}$ equals $\left(b_{i}\left(x^{\prime}, r\right)\right)$ for some $x^{\prime} \in J_{r}$ by Proposition 2.4. Applying Propositions 2.1 and 2.4 once more we conclude that the sequence $0 \alpha_{1}(q) \ldots \alpha_{n}(q) 0^{\infty}$ equals $\left(b_{i}(y, q)\right)$ for some $y \in[0,1)$ while the word $b_{1}(y, q) \ldots b_{n+1}(y, q)=0 \alpha_{1}(q) \ldots \alpha_{n}(q)$ does not occur in the greedy expansion in base r of any number belonging to J_{r}.

REMARK. In this remark we will briefly sketch a proof of Theorems 2.7(i) and 2.8 (i) that was pointed out to us by the anonymous referee. For $q>1$, let $\overline{B_{n}}(q)$ be the number of possible blocks of length n that may occur in $\left(b_{i}(x, q)\right)$ for some $x \in J_{q}$. Since $b_{n+1}(x, q) b_{n+2}(x, q) \ldots$ is the greedy expansion of $\sum_{i=1}^{\infty} b_{n+i} q^{-i}$ for each $n \in \mathbb{N}$ and $x \in J_{q}$, we have

$$
B_{n}(q)=\left|\left\{\left(b_{1}(x, q), \ldots, b_{n}(x, q)\right): x \in J_{q}\right\}\right| .
$$

Let σ_{q} be the one-sided left shift on the set $\left\{\left(b_{i}(x, q)\right): x \in J_{q}\right\}$. It is well known (see [12]) that its topological entropy $h_{\text {top }}\left(\sigma_{q}\right)$, defined by

$$
\begin{equation*}
h_{\mathrm{top}}\left(\sigma_{q}\right):=\lim _{n \rightarrow \infty} \frac{\log \left(B_{n}(q)\right)}{n} \tag{2.6}
\end{equation*}
$$

equals $\log q$. By some modifications of the proof of Proposition III. 1 in [10], one shows that $\operatorname{dim}_{\mathrm{H}} G_{r, q}=h_{\mathrm{top}}\left(\sigma_{r}\right) / \log q=\log r / \log q$. Theorem 2.8(i) may also be deduced from (2.6) and Proposition III. 1 in [10]. On the other hand, our proof of these results enables us to show that the sets G_{q} and Y in Theorem 2.7(ii) and 2.8(ii) are of first category. Moreover, Theorem 2.7(i) combined with the formula $\operatorname{dim}_{\mathrm{H}} G_{r, q}=h_{\mathrm{top}}\left(\sigma_{r}\right) / \log q$ gives an alternative proof of the fact that $h_{\text {top }}\left(\sigma_{q}\right)=\log q$ for each $q>1$.
3. Proof of Theorem 1.2. The following characterization of unique expansions readily follows from Proposition 2.4.

Proposition 3.1. Fix $q>1$. A sequence $\left(c_{i}\right)$ of integers $c_{i} \in A_{q}$ is the unique expansion of some $x \in J_{q}$ if and only if

$$
c_{n+1} c_{n+2} \ldots<\alpha_{1}(q) \alpha_{2}(q) \ldots \quad \text { whenever } c_{n}<\alpha_{1}(q)
$$

and

$$
\overline{c_{n+1} c_{n+2} \cdots}<\alpha_{1}(q) \alpha_{2}(q) \ldots \quad \text { whenever } c_{n}>0
$$

In what follows we use the notation $\left(a_{i}(x, q)\right),\left(b_{i}(x, q)\right),\left(\alpha_{i}(q)\right)$ and $\left(\beta_{i}(q)\right)$ as introduced in Section 1. If x and q are clear from the context, then we omit these arguments and we simply write a_{i}, b_{i}, α_{i} and β_{i}. If two couples (x, q) and $\left(x^{\prime}, q^{\prime}\right)$ are considered simultaneously, then we also write $a_{i}^{\prime}, b_{i}^{\prime}, \alpha_{i}^{\prime}$ and β_{i}^{\prime} in place of $a_{i}\left(x^{\prime}, q^{\prime}\right), b_{i}\left(x^{\prime}, q^{\prime}\right), \alpha_{i}\left(q^{\prime}\right)$ and $\beta_{i}\left(q^{\prime}\right)$.

Lemma 3.2. Given $(x, q) \in \mathbf{J}$, the following two conditions are equivalent:

$$
\begin{array}{ll}
\overline{a_{n+1} a_{n+2} \cdots} \leq \alpha_{1} \alpha_{2} \ldots & \text { whenever } a_{n}>0 \\
\overline{a_{n+1} a_{n+2} \cdots} \leq \beta_{1} \beta_{2} \ldots & \text { whenever } a_{n}>0
\end{array}
$$

Proof. Since $\left(\alpha_{i}\right) \leq\left(\beta_{i}\right)$, it suffices to show that if there exists a positive integer n such that

$$
a_{n}>0 \quad \text { and } \quad \overline{a_{n+1} a_{n+2} \cdots}>\alpha_{1} \alpha_{2} \ldots
$$

then there also exists a positive integer m such that

$$
a_{m}>0 \quad \text { and } \quad \overline{a_{m+1} a_{m+2} \cdots}>\beta_{1} \beta_{2} \ldots
$$

If the greedy expansion $\left(\beta_{i}\right)$ is infinite, then $\left(\beta_{i}\right)=\left(\alpha_{i}\right)$ and we may choose $m=n$. If $\left(\beta_{i}\right)$ has a last nonzero digit β_{ℓ}, then $\left(\alpha_{i}\right)=\left(\alpha_{1} \ldots \alpha_{\ell}\right)^{\infty}$ with $\alpha_{1} \ldots \alpha_{\ell-1} \alpha_{\ell}=\beta_{1} \ldots \beta_{\ell-1} \beta_{\ell}^{-}\left(\right.$where $\left.\beta_{\ell}^{-}:=\beta_{\ell}-1\right)$, and thus $\alpha_{\ell}<\alpha_{1}$. Since we have

$$
\overline{a_{n+1} a_{n+2} \ldots}>\left(\alpha_{1} \ldots \alpha_{\ell}\right)^{\infty}
$$

by assumption, there exists a nonnegative integer j satisfying

$$
\overline{a_{n+1} \ldots a_{n+j \ell}}=\left(\alpha_{1} \ldots \alpha_{\ell}\right)^{j} \quad \text { and } \quad \overline{a_{n+j \ell+1} \ldots a_{n+(j+1) \ell}}>\alpha_{1} \ldots \alpha_{\ell}
$$

Putting $m:=n+j \ell$ it follows that

$$
a_{m}>0 \quad \text { and } \quad \overline{a_{m+1} \ldots a_{m+\ell}} \geq \beta_{1} \ldots \beta_{\ell}
$$

Our assumption $\overline{a_{n+1} a_{n+2} \ldots}>\alpha_{1} \alpha_{2} \ldots$ implies $\left(\alpha_{i}\right)<\alpha_{1}^{\infty}$ and $\left(a_{i}\right) \neq \alpha_{1}^{\infty}$. It follows from Proposition 2.2 that $\left(a_{i}\right)$ has no tail equal to α_{1}^{∞}, so that $\overline{a_{m+\ell+1} a_{m+\ell+2} \cdots}>0^{\infty}$. We conclude that

$$
\overline{a_{m+1} a_{m+2} \cdots}>\beta_{1} \beta_{2} \ldots
$$

Definition. We say that $(x, q) \in \mathbf{J}$ belongs to the set \mathbf{V} if the conditions of the preceding lemma are satisfied. Moreover, we define

$$
\mathcal{V}_{q}:=\left\{x \in J_{q}:(x, q) \in \mathbf{V}\right\}, \quad q>1
$$

It follows from Proposition 3.1 that $\mathbf{U} \subset \mathbf{V} \subset \mathbf{J}$.
Proof of Theorem 1.2. We need to prove that $\overline{\mathbf{U}} \cap \mathbf{J}=\mathbf{V}$.
First we show that $\mathbf{V} \subset \overline{\mathbf{U}}$. To this end we introduce for each fixed $q>1$ the sets \mathcal{U}_{q}^{\prime} and \mathcal{V}_{q}^{\prime}, defined by

$$
\mathcal{U}_{q}^{\prime}:=\left\{\left(a_{i}(x, q)\right): x \in \mathcal{U}_{q}\right\} \quad \text { and } \quad \mathcal{V}_{q}^{\prime}:=\left\{\left(a_{i}(x, q)\right): x \in \mathcal{V}_{q}\right\}
$$

Observe that \mathcal{U}_{q}^{\prime} is simply the set of unique expansions in base q. It follows easily from Propositions $2.1,2.2$ and 3.1 that $\mathcal{U}_{q}^{\prime} \subset \mathcal{V}_{q}^{\prime}$ for each $q>1$, and that $\mathcal{V}_{q}^{\prime} \subset \mathcal{U}_{r}^{\prime}$ for each $r>q$ such that $\lceil q\rceil=\lceil r\rceil$. Since we also have $\overline{\mathcal{U}_{q}}=\mathcal{V}_{q}=[0,1]$ if $q>1$ is an integer, the result follows.

Next we show that $\overline{\mathbf{U}} \cap \mathbf{J} \subset \mathbf{V}$. Since $\mathbf{U} \subset \mathbf{V}$ it is sufficient to prove that if $(x, q) \in \mathbf{J} \backslash \mathbf{V}$, then $\left(x^{\prime}, q^{\prime}\right) \notin \mathbf{V}$ for all $\left(x^{\prime}, q^{\prime}\right) \in \mathbf{J}$ close enough to (x, q). By Lemma 3.2 there exist two positive integers n and m such that

$$
\begin{equation*}
a_{n}>0 \quad \text { and } \quad \overline{a_{n+1} \ldots a_{n+m}}>\beta_{1} \ldots \beta_{m} \tag{3.1}
\end{equation*}
$$

This implies in particular that q is not an integer, because otherwise $\left(\alpha_{i}\right)=$ $\left(\beta_{i}\right)=\beta_{1}^{\infty}$. Hence, if q^{\prime} is sufficiently close to q, then

$$
\begin{equation*}
\beta_{1}^{\prime} \ldots \beta_{m}^{\prime} \leq \beta_{1} \ldots \beta_{m} \tag{3.2}
\end{equation*}
$$

by Lemma 2.5. It follows from the definition of quasi-greedy expansions that

$$
\frac{a_{1}}{q}+\cdots+\frac{a_{j-1}}{q^{j-1}}+\frac{a_{j}^{+}}{q^{j}}+\frac{1}{q^{j+m}}>x \quad \text { whenever } a_{j}<\alpha_{1}
$$

where $a_{j}^{+}:=a_{j}+1$. If $\left(x^{\prime}, q^{\prime}\right) \in \mathbf{J}$ is sufficiently close to (x, q), then $\alpha_{1}=\alpha_{1}^{\prime}$, the inequality (3.2) is satisfied, $a_{1}^{\prime} \ldots a_{n+m}^{\prime} \geq a_{1} \ldots a_{n+m}$ by Lemma 2.3,
and

$$
\begin{align*}
\frac{a_{1}}{q^{\prime}}+\cdots+\frac{a_{j-1}}{\left(q^{\prime}\right)^{j-1}}+\frac{a_{j}^{+}}{\left(q^{\prime}\right)^{j}}+ & \frac{1}{\left(q^{\prime}\right)^{j+m}}>x^{\prime} \tag{3.3}\\
& \text { whenever } j \leq n+m \text { and } a_{j}<\alpha_{1}
\end{align*}
$$

Now we distinguish two cases.
If $a_{1}^{\prime} \ldots a_{n+m}^{\prime}=a_{1} \ldots a_{n+m}$, then we have

$$
a_{n}^{\prime}>0 \quad \text { and } \overline{a_{n+1}^{\prime} \ldots a_{n+m}^{\prime}}>\beta_{1} \ldots \beta_{m} \geq \beta_{1}^{\prime} \ldots \beta_{m}^{\prime}
$$

by (3.1) and (3.2). This proves that $\left(x^{\prime}, q^{\prime}\right) \notin \mathbf{V}$.
If $a_{1}^{\prime} \ldots a_{n+m}^{\prime}>a_{1} \ldots a_{n+m}$, then let us consider the smallest j for which $a_{j}^{\prime}>a_{j}$. It follows from (3.2) and (3.3) that

$$
a_{j}^{\prime}=a_{j}^{+}>0 \quad \text { and } \overline{a_{j+1}^{\prime} \ldots a_{j+m}^{\prime}}=\beta_{1}^{m}>\beta_{1} \ldots \beta_{m} \geq \beta_{1}^{\prime} \ldots \beta_{m}^{\prime}
$$

Hence $\left(x^{\prime}, q^{\prime}\right) \notin \mathbf{V}$ again.
Remark. It is the purpose of this remark to describe the set $\overline{\mathbf{U}} \backslash \mathbf{J}$. For each $m \in \mathbb{N}$, we define the number $q_{m} \in(m, m+1)$ by the equation

$$
1=\frac{m}{q_{m}}+\frac{1}{q_{m}^{2}}
$$

Fix $q \in\left(m, q_{m}\right]$. Since $\alpha_{1}(q)=m$ and $\alpha_{2}(q)=0$, Proposition 3.1 implies that a sequence $\left(c_{i}\right) \in\{0, \ldots, m\}^{\mathbb{N}}$ belongs to \mathcal{U}_{q}^{\prime} if and only if for each $n \in \mathbb{N}$, we have

$$
c_{n}<m \Rightarrow c_{n+1}<m \quad \text { and } \quad c_{n}>0 \Rightarrow c_{n+1}>0
$$

Denoting the set of all such sequences by D_{m}^{\prime} and putting, for $m>1$ (note that $D_{1}^{\prime}=\left\{0^{\infty}, 1^{\infty}\right\}$),

$$
D_{m}:=\left\{\sum_{i=1}^{\infty} \frac{c_{i}}{m^{i}}:\left(c_{i}\right) \in D_{m}^{\prime}\right\}
$$

one may verify that

$$
\overline{\mathbf{U}} \backslash \mathbf{J}=\{(0,1)\} \cup \bigcup_{m=2}^{\infty}\left(D_{m} \backslash[0,1]\right) \times\{m\}
$$

For $x \geq 0$, let $\mathcal{U}(x)=\{q>1:(x, q) \in \mathbf{U}\}$, and denote its closure by $\overline{\mathcal{U}(x)}$. With this notation, the set \mathcal{U} introduced in Section 1 equals $\mathcal{U}(1)$. The following corollary implies in particular that the sets $\overline{\mathcal{U}}(x) \backslash \mathcal{U}(x)$ are (at most) countable.

Corollary 3.3. Each element $q \in \overline{\mathcal{U}(x)} \backslash \mathcal{U}(x)$ is algebraic over the field $\mathbb{Q}(x)$.

Proof. If $q \in \overline{\mathcal{U}(x)} \backslash \mathcal{U}(x)$ and $q \notin \mathbb{N}$, then $(x, q) \in \mathbf{J}$ and thus $(x, q) \in \mathbf{V}$ by Theorem 1.2. If the sequence $\left(b_{i}(x, q)\right)$ is infinite, then it ends with
$\overline{\alpha_{1}(q) \alpha_{2}(q) \ldots}$, as follows from the definition of \mathbf{V} and Propositions 2.4 and 3.1. Hence x has a finite expansion in base q or x can be written as

$$
x=\frac{b_{1}(x, q)}{q}+\cdots+\frac{b_{n}(x, q)}{q^{n}}+\frac{1}{q^{n}}\left(\frac{\alpha_{1}}{q-1}-1\right)
$$

for some $n \geq 0$, whence q is algebraic over $\mathbb{Q}(x)$.
4. Proof of Theorem 1.1. We need some results on the Hausdorff dimension of the sets \mathcal{U}_{q} and \mathcal{V}_{q} for $q>1$. It follows from Theorem 1.2 that $\mathcal{U}_{q} \subset \overline{\mathcal{U}_{q}} \subset \mathcal{V}_{q}$. Moreover, if an element $x \in \mathcal{V}_{q} \backslash \mathcal{U}_{q}$ has an infinite greedy expansion in base q, then $\left(b_{i}(x, q)\right)$ must end with $\overline{\alpha_{1}(q) \alpha_{2}(q) \ldots}$, as follows from Propositions 2.4 and 3.1, hence $\mathcal{V}_{q} \backslash \mathcal{U}_{q}$ is (at most) countable and the sets $\mathcal{U}_{q}, \overline{\mathcal{U}_{q}}$ and \mathcal{V}_{q} have the same Hausdorff dimension for each $q>1$. Proposition 4.1 below is contained in the works of Daróczy and Kátai [4], Kallós [13], [14], Glendinning and Sidorov [11], and Sidorov [21]; for the reader's convenience we provide here an elementary proof.

Proposition 4.1. We have
(i) $\lim _{q \uparrow 2} \operatorname{dim}_{H} \mathcal{U}_{q}=1$;
(ii) $\operatorname{dim}_{H} \mathcal{U}_{q}<1$ for all noninteger $q>1$.

Proof. (i) Assume that $q \in(1,2)$ is larger than the tribonacci number, i.e.,

$$
\frac{1}{q}+\frac{1}{q^{2}}+\frac{1}{q^{3}}<1
$$

and let $N=N(q) \geq 2$ be the largest integer satisfying

$$
\frac{1}{q}+\cdots+\frac{1}{q^{2 N-1}}<1 .
$$

Hence $\alpha_{1}(q)=\cdots=\alpha_{2 N-1}(q)=1$. Let us denote by \mathcal{I}_{q} the set of numbers $x \in J_{q}$ which have an expansion $\left(c_{i}\right)$ in base q satisfying $0<c_{k N+1}+\cdots+$ $c_{(k+1) N}<N$ for every nonnegative integer k. Since in such expansions $\left(c_{i}\right)$, a zero (resp. one) is followed by at most $2 N-2$ consecutive ones (resp. zeros), it follows from Proposition 3.1 that $\mathcal{I}_{q} \subset \mathcal{U}_{q}$. It now suffices to prove that

$$
\begin{equation*}
\operatorname{dim}_{\mathrm{H}} \mathcal{I}_{q}=\frac{\log \left(2^{N}-2\right)}{N \log q} \tag{4.1}
\end{equation*}
$$

indeed, $q \uparrow 2$ implies $N \rightarrow \infty$, hence $\operatorname{dim}_{H} \mathcal{I}_{q} \rightarrow 1$ and consequently $\operatorname{dim}_{H} \mathcal{U}_{q} \rightarrow 1$.

Observe that

$$
\begin{equation*}
\mathcal{I}_{q}=\bigcup S_{c_{1} \ldots c_{N}}\left(\mathcal{I}_{q}\right) \tag{4.2}
\end{equation*}
$$

where the union is over the words $c_{1} \ldots c_{N}$ of length N consisting of zeros and ones satisfying $0<c_{1}+\cdots+c_{N}<N$, and $S_{c_{1} \ldots c_{N}}: J_{q} \rightarrow J_{q}$ is given by

$$
S_{c_{1} \ldots c_{N}}(x):=\left(\frac{c_{1}}{q}+\cdots+\frac{c_{N}}{q^{N}}\right)+\frac{x}{q^{N}}, \quad x \in J_{q} .
$$

Moreover, the set \mathcal{I}_{q} is closed (and thus compact) because the limit of a monotonic sequence in I_{q} converges to an element of I_{q}. In other words, \mathcal{I}_{q} is the (nonempty compact) invariant set of the iterated function system formed by these $2^{N}-2$ similarities. The sets $S_{c_{1} \ldots c_{N}}\left(\mathcal{I}_{q}\right)$ on the right side of (4.2) are disjoint because $S_{c_{1} \ldots c_{N}}\left(\mathcal{I}_{q}\right) \subset \mathcal{I}_{q} \subset \mathcal{U}_{q}$, and since all similarity ratios are equal to q^{-N}, it follows from Propositions 9.6 and 9.7 in [9] that the Hausdorff dimension s of \mathcal{I}_{q} is the real solution of the equation

$$
\left(2^{N}-2\right) q^{-N s}=1,
$$

which is equivalent to (4.1).
(ii) Let $q>1$ be a noninteger and let $n \in \mathbb{N}$ be such that $\alpha_{n}(q)<\alpha_{1}(q)$. It follows from Proposition 3.1 that the word $1(0)^{n}$ does not occur in $\left(b_{i}(x, q)\right)$ if x belongs to \mathcal{U}_{q}. Applying Theorem 2.8 (i) with $y=q^{-1}, \ell=0$ and $m=n+1$, we conclude that $\operatorname{dim}_{\mathrm{H}} \mathcal{U}_{q}<1$.

Proof of Theorem 1.1. (ii) Let $q>1$ be a noninteger. Since $\mathcal{V}_{q} \backslash \mathcal{U}_{q}$ is countable, Proposition 4.1 (ii) yields that $\operatorname{dim}_{H} \mathcal{V}_{q}<1$. This implies in particular that the set \mathcal{V}_{q} is a one-dimensional null set. Applying Theorem 1.2 (and the Remark following its proof) and Fubini's theorem we conclude that $\overline{\mathbf{U}}$ is a two-dimensional null set.
(i) Since \mathcal{U}_{q} is not closed for all $q>1$, \mathbf{U} cannot be closed. Since $\overline{\mathbf{U}}$ is a two-dimensional null set, it has no interior points. It remains to show that \mathbf{U} (and thus $\overline{\mathbf{U}}$) has no isolated points. If $q>1$ is an integer, then, as is well known, \mathcal{U}_{q} is dense in $J_{q}=[0,1]$. If $q>1$ is a noninteger, then each $(x, q) \in \mathbf{U}$ is not isolated because $\mathcal{U}_{q}^{\prime} \subset \mathcal{U}_{r}^{\prime}$ whenever $q<r$ and $\lceil q\rceil=\lceil r\rceil$.
(iii) From Corollary 7.10 in [9] we may conclude that for almost all $q>1$,

$$
\operatorname{dim}_{H} \mathcal{U}_{q} \leq \max \left\{0, \operatorname{dim}_{\mathrm{H}} \mathbf{U}-1\right\},
$$

which would contradict Proposition 4.1(i) if we had $\operatorname{dim}_{H} \mathbf{U}<2$.
Acknowledgements. We warmly thank the anonymous referee for suggesting alternative proofs of Theorems 2.7 (i) and 2.8 (i) (see the last Remark of Section 22, and for a very careful reading of the manuscript. The first author has been supported by NWO, Project no. ISK04G. Part of this work was done during a visit of the second author at the Department of Mathematics of the Delft University of Technology. He is grateful for this invitation and for the excellent working conditions.

References

［1］C．Baiocchi and V．Komornik，Greedy and quasi－greedy expansions in non－integer bases，arXiv：0710．3001， 2007.
［2］K．Dajani and M．de Vries，Invariant densities for random β－expansions，J．Eur． Math．Soc． 9 （2007），157－176．
［3］Z．Daróczy and I．Kátai，Univoque sequences，Publ．Math．Debrecen 42 （1993）， 397－407．
［4］－，一，On the structure of univoque numbers，ibid． 46 （1995），385－408．
［5］M．de Vries and V．Komornik，Unique expansions of real numbers，Adv．Math． 221 （2009），390－427．
［6］P．Erdős，M．Horváth and I．Joó，On the uniqueness of the expansions $1=\sum q^{-n_{i}}$ ， Acta Math．Hungar． 58 （1991），333－342．
［7］P．Erdős，I．Joó and V．Komornik，Characterization of the unique expansions $1=$ $\sum_{i=1}^{\infty} q^{-n_{i}}$ and related problems，Bull．Soc．Math．France 118 （1990），377－390．
［8］—，一，一，On the number of q－expansions，Ann．Univ．Sci．Budapest．Eötvös Sect． Math． 37 （1994），109－118．
［9］K．Falconer，Fractal Geometry．Mathematical Foundations and Applications，2nd ed．，Wiley，Chichester， 2003.
［10］H．Furstenberg，Disjointness in ergodic theory，minimal sets，and a problem in Dio－ phantine approximation，Math．Systems Theory 1 （1967），1－49．
［11］P．Glendinning and N．Sidorov，Unique representations of real numbers in non－ integer bases，Math．Res．Lett． 8 （2001），535－543．
［12］F．Hofbauer，β－shifts have unique maximal measure，Monatsh．Math． 85 （1978）， 189－198．
［13］G．Kallós，The structure of the univoque set in the small case，Publ．Math．Debrecen 54 （1999），153－164．
［14］－，The structure of the univoque set in the big case，ibid． 59 （2001），471－489．
［15］I．Kátai and G．Kallós，On the set for which 1 is univoque，ibid． 58 （2001），743－750．
［16］V．Komornik and P．Loreti，Unique developments in non－integer bases，Amer．Math． Monthly 105 （1998），636－639．
［17］－，一，On the topological structure of univoque sets，J．Number Theory 122 （2007）， 157－183．
［18］W．Parry，On the β－expansions of real numbers，Acta Math．Acad．Sci．Hungar． 11 （1960），401－416．
［19］A．Rényi，Representations for real numbers and their ergodic properties，ibid． 8 （1957），477－493．
［20］N．Sidorov，Almost every number has a continuum of β－expansions，Amer．Math． Monthly 110 （2003），838－842．
［21］－，Combinatorics of linear iterated function systems with overlaps，Nonlinearity 20 （2007），1299－1312．

Martijn de Vries
Delft University of Technology
Mekelweg 4
2628 CD Delft，the Netherlands
E－mail：martijndevries0＠gmail．com

Vilmos Komornik
Département de Mathématique
Université de Strasbourg
7 rue René Descartes
67084 Strasbourg Cedex，France E－mail：vilmos．komornik＠math．unistra．fr

[^0]: 2010 Mathematics Subject Classification: Primary 11A63; Secondary 11B83.
 Key words and phrases: greedy expansion, beta-expansion, univoque sequence, univoque set, Cantor set, Hausdorff dimension.

[^1]: $\left({ }^{1}\right)$ We recall that a Cantor set is a nonempty closed set having neither interior nor isolated points.

