
FUNDAMENTA

MATHEMATICAE

212 (2011)

A group topology on the free abelian group of cardinality c
that makes its square countably compact
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Abstract. Under p = c, we prove that it is possible to endow the free abelian group
of cardinality c with a group topology that makes its square countably compact. This
answers a question posed by Madariaga-Garcia and Tomita and by Tkachenko. We also
prove that there exists a Wallace semigroup (i.e., a countably compact both-sided can-
cellative topological semigroup which is not a topological group) whose square is countably
compact. This answers a question posed by Grant.

1. Introduction

1.1. Some history. It is known that a non-trivial free abelian group
does not admit a compact group topology. In 1990, Tkachenko [10] showed
that the free abelian group of size c can be endowed with a countably com-
pact group topology under CH. In 1998, Tomita [12] obtained such a topol-
ogy under MA(σ-centered) and, two years later, Koszmider, Tomita and
Watson [5] weakened the required form of Martin’s axiom to MAcountable.
In 2007, Madariaga-Garcia and Tomita [6] established the same result as-
suming the existence of c pairwise incomparable selective ultrafilters (accord-
ing to the Rudin–Keisler ordering in ω∗); in particular, they showed that the
existence of a countably compact group topology on the free abelian group
of size c is compatible with the total failure of Martin’s axiom (in the sense
of Baumgartner [1]).

Tomita [12] showed that if a non-trivial free abelian group is endowed
with a group topology, then its ωth power cannot be countably compact.
Under p = c, we prove that there exists a group topology on the free abelian
group of size c that makes its square countably compact. This answers a ques-
tion posed by Madariaga-Garcia and Tomita in [6] and by Tkachenko in [9].
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In 1952, Numakura [7] showed that every compact both-sided cancella-
tive topological semigroup is a topological group. Three years later, Wal-
lace [14] asked whether every countably compact both-sided cancellative
topological semigroup is a topological group, and this question remains open
in ZFC. Counterexamples to Wallace’s question have been called Wallace
semigroups. In 1996, Robbie and Svetlichny [8] answered Wallace’s ques-
tion in the negative under CH. In the same year, Tomita [11] showed that
there exists a Wallace semigroup under MAcountable. It is worth noting that
Madariaga-Garcia and Tomita [6] constructed a Wallace semigroup from c
pairwise incomparable selective ultrafilters.

Tomita [11] showed that the 2cth power of a Wallace semigroup cannot
be countably compact. Under p = c, we prove that there exists a both-
sided cancellative topological semigroup which is not a topological group
and whose square is countably compact. This answers question 4 of [4].

1.2. Basic results, notation and terminology. In what follows, all
group topologies are assumed to be Hausdorff. We recall that a topological
space X is countably compact if every infinite subset of X has an accumu-
lation point.

The following definition was introduced in [2] and is closely related to
countable compactness.

Definition 1.1. Let p be a free ultrafilter on ω and let {xn : n ∈ ω} be
a sequence in a topological space X. We say that x ∈ X is a p-limit point
of {xn : n ∈ ω} if, for every neighborhood U of x, {n ∈ ω : xn ∈ U} ∈ p. In
this case, we write x = p- lim{xn : n ∈ ω}.

The set of all free ultrafilters on ω will be denoted by ω∗.
It is not difficult to prove that a topological spaceX is countably compact

if, and only if, each sequence in X has a p-limit point for some p ∈ ω∗.
The next two propositions are related to the concept of p-limit and will

be used to prove Theorem 2.6.

Proposition 1.2. If p ∈ ω∗ and {Xi : i ∈ I} is a family of topological
spaces, then (yi)i∈I ∈

∏
i∈I Xi is a p-limit point of {(xni )i∈I : n ∈ ω} ⊂∏

i∈I Xi if, and only if, yi = p- lim{xni : n ∈ ω} for every i ∈ I.

Proposition 1.3. Let G be a topological group and p ∈ ω∗.

(1) If {xn : n ∈ ω} and {yn : n ∈ ω} are sequences in G and x, y ∈ G
are such that x = p- lim{xn : n ∈ ω} and y = p- lim{yn : n ∈ ω},
then x+ y = p- lim{xn + yn : n ∈ ω}.

(2) If {xn : n ∈ ω} is a sequence in G and x ∈ G is such that x =
p- lim{xn : n ∈ ω}, then −x = p- lim{−xn : n ∈ ω}.
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If A is a set, then

[A]ω = {X ⊂ A : |X| = ω}, [A]<ω = {X ⊂ A : |X| < ω}.

A pseudointersection of a family G of sets is an infinite set that is ⊂∗ in
every member of G. We say that a family G of infinite sets has the strong
finite intersection property (SFIP, for short) if every finite subfamily of G
has infinite intersection. The pseudointersection number p is the smallest
cardinality of any G ∈ [ω]ω with SFIP but with no pseudointersection.

We denote the set of natural numbers by N, the integers by Z, the ra-
tionals by Q and the reals by R. The unit circle group, which is identified
with R/Z, will be denoted by T and the set of all non-empty open arcs of T
will be denoted by B.

Let Λ be a set of ordinal numbers and let G be a group. If f ∈ GΛ,
the support of f is the set {λ ∈ Λ : f(λ) 6= 0}, which will be indicated by
supp f . The direct sum

⊕
λ∈ΛG is the set of all elements of GΛ that have

finite support and will be denoted by G(Λ).
An abelian group F is free abelian if there exist a non-empty set X and

a function σ : X → F such that, for every function f from X to an abelian
group G, there is a unique group homomorphism g : F → G satisfying
g ◦ σ = f . It is well-known that a free abelian group of size c is isomorphic
to Z(c), and therefore to Z(c×ω).

We end this section by presenting some notation that will be used
throughout this article.

If J ∈ Q(c×ω), then

J =
∑

(µ,k)∈supp J

J(µ, k) · χ(µ,k)

where χ(µ,k) : c× ω → Q is given by

χ(µ,k)(ξ, n) =
{

1 if (ξ, n) = (µ, k),
0 if (ξ, n) 6= (µ, k).

If (µ, k) ∈ supp J , we can write

J(µ, k) =
p(J, (µ, k))
q(J, (µ, k))

where p(J, (µ, k)), q(J, (µ, k)) ∈ Z, gcd(p(J, (µ, k)), q(J, (µ, k))) = 1 and
q(J, (µ, k)) > 0. Define

b(J) = lcm{q(J, (µ, k)) : (µ, k) ∈ supp J}
and, for each (µ, k) ∈ supp J , set

a(J, (µ, k)) = p(J, (µ, k)) · b(J)
q(J, (µ, k))

.
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Finally, define

|a(J)| = max{|a(J, (µ, k))| : (µ, k) ∈ supp J}.

2. Countably compact squares of free abelian groups. We will
show that a free abelian group of size c admits a group topology whose square
is countably compact. Since every free abelian group of size c is isomorphic
to Z(c×ω), it suffices to endow any isomorphic copy of Z(c×ω) with such a
topology.

Our strategy is to construct a group monomorphism Φ : Q(c×ω) → Tc

so that Φ[Z(c×ω)] has countably compact square when considered with the
subspace topology induced by Tc. Such an embedding will be obtained “co-
ordinate by coordinate”—that is, we will associate to each α < c a group
homomorphism φα : Q(c×ω) → T satisfying two significant conditions and
Φ will be the diagonal product of the family {φα : α < c}. One of these
conditions will guarantee that Φ is injective and the other will ensure that
every component of a pair of sequences in Φ[Z(c)] admits a p-limit point for
some p ∈ ω∗.

Each mapping φα will be defined in two stages: we will first construct
a group homomorphism from a countable subgroup of Q(c×ω) to T by in-
duction, and then we will extend it to the whole group Q(c×ω). In every
inductive step, we will approximate the values of the group homomorphism
by non-empty open arcs of T with suitable properties. To make this pos-
sible, we must deal with appropriate families of sequences in Q(c×ω) which
we start to sort now.

Definition 2.1. If f : ω → Z(c×ω), then f is said to be of type 1 if
|f(n)| > n for every n ∈ ω, where |f(n)| = max{|f(n)(µ, k)| : (µ, k) ∈
supp f(n)}; f is said to be of type 2 if supp f(n) \

⋃
m<n supp f(m) 6= ∅ for

every n ∈ ω.

The following result can be found in [6].

Proposition 2.2. Let g : ω → Z(c×ω). There exists j : ω → ω strictly
increasing such that g ◦ j is either constant or of type 1 or 2.

According to Proposition 2.2, every non-trivial sequence in Z(c×ω) admits
a subsequence of type 1 or 2. Therefore, in order to provide this space with a
countably compact topology, it suffices to assign accumulation points to all
sequences of type 1 or 2. The advantage of dealing only with those sequences
is that there exists enough “freedom” in assigning to them accumulation
point—so, approximations by arcs become viable.

The idea of “reducing” the family of sequences to which accumulation
points will be assigned will also be used to endow the free abelian group of
size c with a group topology that makes its square countably compact. In
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this case, we will consider finite families of sequences in Q(c×ω) which will
be called of type A, B and C.

A family of type A is composed of sequences that are of type 1 or 2,
but whose supports are pairwise disjoint. The calculations in this case are
similar to those in [6]. Dealing with families of types B and C requires
new ideas, since they contain a pair {f0, f1} of sequences in Q(c×ω) whose
supports are not disjoint, and therefore cannot be treated separately. We will
consider the ratio an = |f0(n)(θn,mn)|/|f1(n)(θn,mm)| for some (θn,mn) ∈
supp f0(n) ∩ supp f1(n).

Families of type C are related to sequences {an : n ∈ ω} converging to
irrational numbers. In this case, we will use Kronecker’s theorem to work di-
rectly with the sequence of pairs. Families of type B are related to sequences
{an : n ∈ ω} converging to 0. After dealing with f0, a smaller arc A will be
left and we will need |f1(n)(θn,mn)| ·A to be large enough in order to deal
with f1.

If {an : n ∈ ω} converges to a non-zero rational number, either we are
able to use diophantine equations and obtain a family of type A or we have
to write a rational linear combination of sequences in Z(c×ω) and consider a
family of type B. Thus, we end up working with sequences in Q(c×ω) instead
of Z(c×ω). This forces us to define a topology in Q(c×ω) and then take the
subspace topology.

Definition 2.3. Let F = {f0, . . . , fk} be a finite family of sequences in
Q(c×ω). We say that F is of type A if:

• f0, . . . , fk : ω → Z(c×ω) are of type 1 or 2;
• supp fi(n) ∩ supp fj(n) = ∅ for all n ∈ ω and i, j ∈ {0, . . . , k} such

that i 6= j.

If F is of type A, put d(F ) = 1. We say that F if of type B if:

• f2, . . . , fk : ω → Z(c×ω) are of type 1 or 2;
• f0(n) = (1/d(F ))f̃0(n) and f1(n) = (1/d(F ))f̃1(n) for every n ∈ ω,

where f̃0, f̃1 : ω → Z(c×ω) are of type 1 or 2 and d(F ) is a positive
integer;
• supp f0(n) ⊂ supp f1(n) for every n ∈ ω;
• supp fi(n) ∩ supp fj(n) = ∅ for all n ∈ ω and i, j ∈ {2, . . . , k} such

that i 6= j;
• supp fi(n)∩ supp fj(n) = ∅ for all n ∈ ω, i ∈ {0, 1} and j ∈ {2, . . . , k};
• for each n ∈ ω, there exists (θn,mn) ∈ supp f0(n) such that the se-

quence {
f0(n)(θn,mn)
f1(n)(θn,mn)

: n ∈ ω
}

is strictly monotonic and converges to 0.
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We say that F is of type C if:

• f0, . . . , fk : ω → Z(c×ω) are of type 1 or 2;
• supp f0(n) = supp f1(n) for every n ∈ ω;
• supp fi(n) ∩ supp fj(n) = ∅ for all n ∈ ω and i, j ∈ {2, . . . , k} such

that i 6= j;
• supp fi(n)∩ supp fj(n) = ∅ for all n ∈ ω, i ∈ {0, 1} and j ∈ {2, . . . , k};
• for each n ∈ ω, there exists (θn,mn) ∈ supp f0(n) such that the se-

quence {
f0(n)(θn,mn)
f1(n)(θn,mn)

: n ∈ ω
}

is strictly monotonic and converges to ξ ∈ R \Q.

If F is of type C, put d(F ) = 1.

The set F of all families of type A, B or C enables us not only to recover
a subsequence of any pair of sequences in Z(c×ω), but also to construct the
coordinates φα of the embedding Φ. The following two propositions support
these statements. Their proofs will be presented in Sections 3 and 4.

Proposition 2.4. Let g, h : ω → Z(c×ω). There exist F ∈ F , j : ω → ω
strictly increasing and g̃, h̃ ∈ Z(c×ω) such that (g ◦ j)(n) = g̃+

∑
f∈F aff(n)

and (h ◦ j)(n) = h̃ +
∑

f∈F bff(n) for every n ∈ ω, where af , bf ∈ Z for
every f ∈ F .

Before stating the next proposition, we fix an enumeration {Jα : α < c}
of Q(c×ω) \ {0} and an enumeration {Fξ : 0 < ξ < c} of F such that

(∗)
⋃
n∈ω

supp f(n) ⊂ ξ × ω for every f ∈ Fξ and every ξ ∈ ]0, c[.

The cardinality of Fξ will be denoted by n(Fξ) and we will write Fξ =
{fξ,0, . . . , fξ,n(Fξ)−1}.

Proposition 2.5. (p = c) For each α < c and each ξ ∈ ]0, c[ there exists
Sξ,α ∈ [ω]ω such that if α < β < c, then Sξ,β ⊂∗ Sξ,α. There also exists a
group homomorphism φα : Q(c×ω) → T such that:

(i) φα(Jα) 6= 0 + Z;
(ii) The sequence {φα(fξ,i(n)) : n ∈ Sξ,α} converges to φα(χ(ξ,i)) for

every i ∈ {0, . . . , n(Fξ)− 1}.
We end this section by showing how Propositions 2.4 and 2.5 can be used

to endow the free abelian group of size c with a group topology that makes
its square countably compact.

Theorem 2.6. (p = c) There exists a group topology on the free abelian
group of cardinality c that makes its square countably compact.
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Proof. It follows from Proposition 2.5(i) that

Φ : Q(c×ω) → Tc, J 7→ Φ(J),

given by
Φ(J)(α) = φα(J) for every α < c

is a group monomorphism. Thus, Φ[Z(c×ω)] is isomorphic to Z(c×ω), and since
Tc is a topological group, the subspace topology induced by Tc in Φ[Z(c×ω)]
turns Φ[Z(c×ω)] into a topological group.

Let g, h : ω → Φ[Z(c×ω)]. It follows from Proposition 2.4 that there exist
ξ ∈ ]0, c[, j : ω → ω strictly increasing and g̃, h̃ ∈ Z(c×ω) such that

(Φ−1 ◦ g ◦ j)(n) = g̃ +
∑

i<n(Fξ)

aξ,i · fξ,i(n)

and
(Φ−1 ◦ h ◦ j)(n) = h̃+

∑
i<n(Fξ)

bξ,i · fξ,i(n)

for every n ∈ ω, where aξ,i, bξ,i ∈ Z for every i < n(Fξ).
Fix pξ ∈ ω∗ containing {Sξ,α : α < c}. According to Proposition 2.5(ii),

the sequence {φα(fξ,i(n)) : n ∈ Sξ,α} converges to φα(χ(ξ,i)) for all i ∈
{0, . . . , n(Fξ)− 1} and α < c. Thus,

φα(χ(ξ,i)) = pξ- lim{φα(fξ,i(n)) : n ∈ ω}
for all i ∈ {0, . . . , n(Fξ)− 1} and α < c.

It follows from Proposition 1.2 that

Φ(χ(ξ,i)) = pξ- lim{Φ(fξ,i(n)) : n ∈ ω}
and Proposition 1.3 implies that

Φ
(
g̃ +

∑
i<n(Fξ)

aξ,i · χ(ξ,i)

)
= pξ- lim

{
Φ
(
g̃ +

∑
i<n(Fξ)

aξ,i · fξ,i(n)
)

: n ∈ ω
}
,

Φ
(
h̃+

∑
i<n(Fξ)

bξ,i · χ(ξ,i)

)
= pξ- lim

{
Φ
(
h̃+

∑
i<n(Fξ)

bξ,i · fξ,i(n)
)

: n ∈ ω
}
.

Consequently, (Φ(g̃ +
∑

i<n(Fξ)
aξ,i · χ(ξ,i)), Φ(h̃ +

∑
i<n(Fξ)

bξ,i · χ(ξ,i))) =

pξ- lim{(g(n), h(n)) : n ∈ ω}. Therefore, Φ[Z(c×ω)]×Φ[Z(c×ω)] is a countably
compact group.

3. Proof of Proposition 2.4. In this section, we restate and prove
Proposition 2.4, which shows that it is possible to recover a subsequence of
any pair of sequences in Z(c×ω) from an element of F and from translations
in Z(c×ω).

Proposition 2.4. Let g, h : ω → Z(c×ω). There exist F ∈ F , j : ω → ω
strictly increasing and g̃, h̃ ∈ Z(c×ω) such that (g ◦ j)(n) = g̃+

∑
f∈F aff(n)
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and (h ◦ j)(n) = h̃ +
∑

f∈F bff(n) for every n ∈ ω, where af , bf ∈ Z for
every f ∈ F .

Proof. Let g0, g1, h0, h1 : ω → Z(c×ω) be given by

g0(n) =
∑

(µ,k)∈supp g(n)\supph(n)

g(n)(µ, k) · χ(µ,k),

g1(n) =
∑

(µ,k)∈supp g(n)∩supph(n)

g(n)(µ, k) · χ(µ,k),

h0(n) =
∑

(µ,k)∈supph(n)\supp g(n)

h(n)(µ, k) · χ(µ,k),

h1(n) =
∑

(µ,k)∈supph(n)∩supp g(n)

h(n)(µ, k) · χ(µ,k).

Note that g(n) = g0(n) + g1(n) and h(n) = h0(n) + h1(n) for every n ∈ ω.
It follows from Proposition 2.2 that there exists j1 : ω → ω strictly

increasing such that g0 ◦ j1, g1 ◦ j1, h0 ◦ j1 and h1 ◦ j1 are of type 1, 2
or constant. If g1 ◦ j1 or h1 ◦ j1 are constant, it is not difficult to realize
that there exist F ∈ [ωQ(c×ω)]<ω of type A and g̃, h̃ ∈ Z(c×ω) such that
(g ◦ j1)(n) = g̃+

∑
f∈F aff(n) and (h ◦ j1)(n) = h̃+

∑
f∈F bff(n) for every

n ∈ ω, where af , bf ∈ Z for every f ∈ F . Hence, we can suppose that g1 ◦ j1
and h1 ◦ j1 are of type 1 or 2.

Let

A=
{

(g1 ◦ j1)(n)(µ, k)
(h1 ◦ j1)(n)(µ, k)

: (µ, k)∈ supp(g1◦j1)(n) = supp(h1◦j1)(n), n∈ω
}
.

If A is a finite set—say, A = {p0/q0, . . . , pk/qk} where pi, qi ∈ Z \ {0},
qi > 0 and gcd(pi, qi) = 1 for every i ∈ {0, . . . , k}—consider

g1,i(n) =
∑

(µ,k)∈supp(g1◦j1)(n),
(g1◦j1)(n)(µ,k)
(h1◦j1)(n)(µ,k)

=
pi
qi

(g1 ◦ j1)(n)(µ, k) · χ(µ,k),

h1,i(n) =
∑

(µ,k)∈supp(h1◦j1)(n),
(g1◦j1)(n)(µ,k)
(h1◦j1)(n)(µ,k)

=
pi
qi

(h1 ◦ j1)(n)(µ, k) · χ(µ,k),

for all n ∈ ω and i ∈ {0, . . . , k}. Note that

(g1 ◦ j1)(n) =
k∑
i=0

g1,i(n), (h1 ◦ j1)(n) =
k∑
i=0

h1,i(n).

If i ∈ {0, . . . , k} and n ∈ ω, then supp g1,i(n) = supph1,i(n). Moreover,

g1,i(n)(µ, k)
h1,i(n)(µ, k)

=
pi
qi
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for every (µ, k) ∈ supp g1,i(n) = supph1,i(n). Since gcd(pi, qi) = 1, it follows
that qi |h1,i(n)(µ, k) for every (µ, k) ∈ supp g1,i(n) = supph1,i(n). Let fi :
ω → Z(c×ω) be given by

fi(n)(µ, k) =
h1,i(n)(µ, k)

qi

for every (µ, k) ∈ c× ω. We have

(g1 ◦ j1)(n) =
k∑
i=0

pi · fi(n), (h1 ◦ j1)(n) =
k∑
i=0

qi · fi(n).

Choose j2 : ω → ω strictly increasing and such that fi ◦ j2 is constant
or of type 1 or 2, and define si = fi ◦ j2 for every i ∈ {0, . . . , k}. Put also
sk+1 = g0 ◦ j1 ◦ j2 and sk+2 = h0 ◦ j1 ◦ j2. Let {n0, . . . , nl} be a strictly
increasing enumeration of the set I = {i ∈ {0, . . . , k} : si is not constant}.
If sk+1 and sk+2 are constant, put F = {sni : 0 ≤ i ≤ l}; if sk+1 is not
constant and sk+2 is constant, put F = {sni : 0 ≤ i ≤ l} ∪ {sk+1}; if sk+1

is constant and sk+2 is not, put F = {sni : 0 ≤ i ≤ l} ∪ {sk+2}; if sk+1 and
sk+2 are not constant, put F = {sni : 0 ≤ i ≤ l} ∪ {sk+1} ∪ {sk+2}. We see
that F is of type A, and therefore belongs to F .

Note that

(g ◦ j1 ◦ j2)(n) =
∑

i∈{0,...,k}\I

si(0) + sk+1(n) +
l∑

i=0

pni · sni ,

(h ◦ j1 ◦ j2)(n) =
∑

i∈{0,...,k}\I

si(0) + sk+2(n) +
l∑

i=0

qni · sni ,

for every n ∈ ω.
If A is infinite, there exist j2 : ω → ω strictly increasing and {(θn,mn) :

n ∈ ω} ⊂ c × ω such that g1 ◦ j1 ◦ j2 and h1 ◦ j1 ◦ j2 are of type 1 or 2,
(θn,mn) ∈ supp (g1 ◦ j1 ◦ j2)(n) ∩ supp (h1 ◦ j1 ◦ j2)(n) for every n ∈ ω, and

(g1 ◦ j1 ◦ j2)(n)(θn,mn)
(h1 ◦ j1 ◦ j2)(n)(θn,mn)

→ ξ

strictly monotonically for some ξ ∈ [−∞,+∞].
If ξ = 0, put s0 = g1 ◦ j1 ◦ j2, s1 = h1 ◦ j1 ◦ j2, s2 = g0 ◦ j1 ◦ j2 and

s3 = h0 ◦ j1 ◦ j2. Consider I = {i ∈ {0, 1, 2, 3} : si is not constant}. Note
that 0, 1 ∈ I. If 2, 3 ∈ I, then F = {s0, s1, s2, s3} is of type B, and therefore
belongs to F . Define j = j1◦j2 and g̃ = h̃ = 0. Then (g◦j)(n) = s0(n)+s2(n)
and (h ◦ j)(n) = s1(n) + s3(n) for every n ∈ ω. If 2 ∈ I and 3 6∈ I, put
F = {s0, s1, s2}, j = j1 ◦ j2, g̃ = 0 and h̃ = s3(0). If 2 6∈ I and 3 ∈ I, put
F = {s0, s1, s3}, j = j1 ◦ j2, g̃ = s2(0) and h̃ = 0. Finally, if 2, 3 6∈ I, put
F = {s0, s1}, j = j1 ◦ j2, g̃ = s2(0) and h̃ = s3(0).
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If ξ = −∞ or ξ = +∞, then (h1◦j1◦j2)(n)(θn,mn)
(g1◦j1◦j2)(n)(θn,mn) → 0; now proceed as in

case ξ = 0.
If ξ ∈ R \Q, put s0 = g1 ◦ j1 ◦ j2, s1 = h1 ◦ j1 ◦ j2, s2 = g0 ◦ j1 ◦ j2 and

s3 = h0 ◦ j1 ◦ j2. Consider I = {i ∈ {0, 1, 2, 3} : si is not constant}. Note
that 0, 1 ∈ I. If 2, 3 ∈ I, then F = {s0, s1, s2, s3} is of type C, and therefore
belongs to F . Define j = j1◦j2 and g̃ = h̃ = 0. Then (g◦j)(n) = s0(n)+s2(n)
and (h ◦ j)(n) = s1(n) + s3(n) for every n ∈ ω. The other cases (2 ∈ I and
3 6∈ I; 2 6∈ I and 3 ∈ I; 2, 3 6∈ I) are treated in an analogous way.

If ξ ∈ Q\{0}, then ξ = p/q, where p, q ∈ Z\{0}, q > 0 and gcd(p, q) = 1.
Set

r0(n) =
q · (g1 ◦ j1 ◦ j2)(n)− p · (h1 ◦ j1 ◦ j2)(n)

q
,

r1(n) =
(h1 ◦ j1 ◦ j2)(n)

q
,

for every n ∈ ω. Put also r2 = g0 ◦ j1 ◦ j2 and r3 = h0 ◦ j1 ◦ j2. There exists
j3 : ω → ω strictly increasing such that

n 7→ q · (g1 ◦ j1 ◦ j2 ◦ j3)(n)− p · (h1 ◦ j1 ◦ j2 ◦ j3)(n)

is of type 1, 2 or constant. If the sequence is of type 1 or 2, put s̃0 =
q · (g1 ◦ j1 ◦ j2 ◦ j3)− p · (h1 ◦ j1 ◦ j2 ◦ j3), s̃1 = h1 ◦ j1 ◦ j2 ◦ j3, s2 = r2 ◦ j3
and s3 = r3 ◦ j3. Set I = {i ∈ {2, 3} : si is not constant}. If 2, 3 ∈ I, then
F = {s0, s1, s2, s3} is of type B, where s0(n) = (1/q)s̃0(n) and s1(n) =
(1/q)s̃1(n) for every n ∈ ω. Put j = j1 ◦ j2 ◦ j3, g̃ = 0 and h̃ = 0. It follows
that g ◦ j(n) = s0(n) + p · s1(n) + s2(n) and h ◦ j(n) = q · s1(n) + s3(n) for
every n ∈ ω. The other cases (2 ∈ I and 3 6∈ I; 2 6∈ I and 3 ∈ I; 2, 3 6∈ I)
are treated in an analogous way.

If the sequence n 7→ q · (g1 ◦ j1 ◦ j2 ◦ j3)(n) − p · (h1 ◦ j1 ◦ j2 ◦ j3)(n) is
constant, there exists J ∈ Z(c×ω) such that

q · (g1 ◦ j1 ◦ j2 ◦ j3)(n)(µ, k)− p · (h1 ◦ j1 ◦ j2 ◦ j3)(n)(µ, k) = J(µ, k)

for all (µ, k) ∈ c× ω and n ∈ ω.
Fix (µ, k) ∈ c × ω. Since gcd(p, q) = 1, the diophantine equation qx −

py = J(µ, k) has infinitely many solutions. If x = x(µ,k), y = y(µ,k) is a
particular solution of qx − py = J(µ, k), then all of its solutions are given
by x = x(µ,k) − pt, y = y(µ,k) − qt for t ∈ Z. Hence, for every n ∈ ω and
(µ, k) ∈ supp (g1 ◦ j1 ◦ j2 ◦ j3)(n) = supp (h1 ◦ j1 ◦ j2 ◦ j3)(n), there exists
tn,(µ,k) ∈ Z such that

(g1 ◦ j1 ◦ j2 ◦ j3)(n)(µ, k) = x(µ,k) − ptn,(µ,k),

(h1 ◦ j1 ◦ j2 ◦ j3)(n)(µ, k) = y(µ,k) − qtn,(µ,k).

Note that if (µ, k) 6∈ supp J , then one can put x(µ,k) = 0, y(µ,k) = 0.
We also remark that if p, q > 0, one can choose x(µ,k), y(µ,k) ≥ 0. Hence, for



Countably compact square of free abelian groups 245

every n ∈ ω,

(g1 ◦ j1 ◦ j2 ◦ j3)(n) =
∑

(µ,k)∈supp(g1◦j1◦j2◦j3)(n)

g1 ◦ j1 ◦ j2 ◦ j3)(n)(µ, k) · χ(µ,k)

=
∑

(µ,k)∈supp J

x(µ,k) · χ(µ,k) + p ·
∑

(µ,k)∈supp(g1◦j1◦j2◦j3)(n)

−tn,(µ,k) · χ(µ,k)

and, analogously,

(h1 ◦ j1 ◦ j2 ◦ j3)(n) =
∑

(µ,k)∈supp(h1◦j1◦j2◦j3)(n)

(h1 ◦ j1 ◦ j2 ◦ j3)(n)(µ, k) ·χ(µ,k)

=
∑

(µ,k)∈supp J

y(µ,k) · χ(µ,k) + q ·
∑

(µ,k)∈supp(h1◦j1◦j2◦j3)(n)

−tn,(µ,k) · χ(µ,k).

Moreover,

n 7→
∑

(µ,k)∈supp J

x(µ,k) · χ(µ,k)

and
n 7→

∑
(µ,k)∈supp J

y(µ,k) · χ(µ,k)

are constant.
Fix j4 : ω → ω strictly increasing such that the sequence s0(n) =∑

(µ,k)∈supp(g1◦j1◦j2◦j3◦j4)(n)−tn,(µ,k) · χ(µ,k) is of type 1 or 2. Define j =
j1 ◦ j2 ◦ j3 ◦ j4, g̃ =

∑
(µ,k)∈supp J x(µ,k) ·χ(µ,k), h̃ =

∑
(µ,k)∈supp J y(µ,k) ·χ(µ,k),

s1 = g0◦j and s2 = h0◦j. Set I = {i ∈ {1, 2} : si is not constant}. If 1, 2 ∈ I,
then F = {s0, s1, s2} is of type A, and therefore belongs to F . Moreover,
(g ◦ j)(n) = g̃ + p · s0(n) + s1(n) and (h ◦ j)(n) = h̃ + q · s0(n) + s2(n), for
every n ∈ ω. The other cases (1 ∈ I and 2 6∈ I; 1 6∈ I and 2 ∈ I; 1, 2 6∈ I)
are treated in an analogous way.

4. Proof of Proposition 2.5. This section is devoted to proving Propo-
sition 2.5. As mentioned, we will concern ourselves primarily with the con-
struction of group homomorphisms from countable subgroups of Q(c×ω) to T.
These countable subgroups will be of the form Q(E×ω) for some E ∈ [c]ω and
the following proposition shows how to construct inductively a suitable E.
We remark that property (∗) of {Fξ : 0 < ξ < c} will be used to carry out
the induction.

Proposition 4.1. If J ∈ Q(c×ω) \ {0}, there exists E ∈ [c]ω such that
supp J ⊂ E × ω and such that if ξ ∈ E \ {0}, then

⋃
n∈ω supp f(n) ⊂ E × ω

for every f ∈ Fξ.
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Proof. Define E(0) = ω. If ξ ∈ ]0, c[, define by induction

E(ξ) = {ξ} ∪
⋃
µ∈Xξ

E(µ)

where
Xξ =

{
θ < c : ∃m ∈ ω such that (θ,m) ∈

⋃
i<n(Fξ)

⋃
n∈ω

supp fξ,i(n)
}

and let
E =

⋃
ζ∈XJ

E(ζ)

where
XJ = {θ < c : ∃m ∈ ω such that (θ,m) ∈ supp J}.

It is clear that suppJ ⊂E×ω. An inductive argument shows that E(ξ)∈ [c]ω

for every ξ < c, and therefore E ∈ [c]ω. Another inductive argument shows
that if α∈E(β), then E(α)⊂E(β). Thus, if ξ∈E\{0}, then

⋃
n∈ω supp fξ,i(n)

⊂ E × ω for every i < n(Fξ).

The next three lemmas are the technical part relative to the types A,
B and C respectively and will be used to prove Lemma 4.5, which will
be necessary in the successor step of the induction in Proposition 4.6. Their
proofs can be skipped on a first reading, without affecting the understanding
of what follows.

We recall that B denotes the set of all non-empty open arcs of T.

Lemma 4.2. Let ε > 0, A0, . . . , Ak ∈ B, G ∈ [c × ω]<ω, ψ : G → B and
{H0, . . . ,Hk} ⊂ Z(c×ω) such that suppHi ∩ suppHj = ∅ for all i, j ≤ k with
i 6= j. For each i ≤ k, let (µi, ki) ∈ suppHi be such that:

(1) |Hi(µi, ki)|ε > 4 and δ(ψ(µi, ki)) ≥ ε, or
(2) (µi, ki) 6∈ G.

Denote G∪ suppH0∪ · · · ∪ suppHk by G̃. There exists ε̃ ≤ ε/2 such that for
every ˜̃ε ≤ ε̃ there exists ψ̃ : G̃→ B satisfying the following conditions:

(i) ψ̃(ξ, n) ⊂ ψ(ξ, n) for every (ξ, n) ∈ G;
(ii) δ(ψ̃(ξ, n)) = ˜̃ε for every (ξ, n) ∈ G̃;
(iii) δ(

∑
(ξ,n)∈suppHi

Hi(ξ, n) · ψ̃(ξ, n)) < ε for every i ≤ k;
(iv) Ai ∩

∑
(ξ,n)∈suppHi

Hi(ξ, n) · ψ̃(ξ, n) 6= ∅ for every i ≤ k.

Proof. Define

ε̃ = min
{{

δ(ψ(ξ, n))
2

: (ξ, n) ∈ G
}
∪
{

ε

2 ·
∑

(ξ,n)∈suppHi
i≤k

|Hi(ξ, n)|

}}
and choose ˜̃ε ≤ ε̃.

If (ξ, n) ∈ G̃ \
⋃
i≤k suppHi, define ψ̃(ξ, n) as the element of B centered

at the middle point of ψ(ξ, n) with diameter ˜̃ε.
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Fix i ∈ {0, . . . , k}. If (ξ, n) ∈ suppHi \ {(µi, ki)}, define z(ξ,n) ∈ T in
the following way: if (ξ, n) ∈ G, then z(ξ,n) is the middle point of ψ(ξ, n); if
(ξ, n) 6∈ G, then z(ξ,n) is chosen arbitrarily. Set

xi =
∑

(ξ,n)∈suppHi\{(µi,ki)}

Hi(ξ, n) · z(ξ,n).

If (µi, ki) 6∈ G, choose z(µi,ki) ∈ T such that

(a) xi +Hi(µi, ki) · z(µi,ki) ∈ Ai.

If (µi, ki) ∈ G, let z̃(µi,ki) be the middle point of ψ(µi, ki) and A be the
open arc of T centered at z̃(µi,ki) with diameter ε/4. Note that Hi(µi, ki) ·A
= T, and therefore there exists z(µi,ki) ∈ A such that

(b) xi +Hi(µi, ki) · z(µi,ki) ∈ Ai.

For each (ξ, n) ∈
⋃
i≤k suppHi, let ψ̃(ξ, n) be the open arc of T centered

at z(ξ,n) with diameter ˜̃ε.
Conditions (i) and (ii) are clearly satisfied, (iii) follows from the choice

of ε̃, and (iv) follows from (a) and (b).

Lemma 4.3. Let d ∈ N \ {0}, ε > 0, A0, A1 ∈ B with δ(A0) ≥ ε and
δ(A1) ≥ ε, G ∈ [c × ω]<ω, ψ : G → B and {H0, H1} ⊂ Z(c×ω) where
suppH0 ⊂ suppH1. Let (µ, k), (ν, l) ∈ suppH0 (not necessarily distinct) be
such that:

(1) δ(ψ(µ, k)) ≥ ε if (µ, k) ∈ G;
(2) |H0(ν, l)|ε > 4d and δ(ψ(ν, l)) ≥ ε if (ν, l) ∈ G;
(3) |H1(µ, k)|ε ≥ 4d|H0(µ, k)|.

Denote G∪suppH0∪suppH1 by G̃. There exists ε̃ ≤ ε/2 such that for every
˜̃ε ≤ ε̃ there exists ψ̃ : G̃→ B satisfying the following conditions:

(i) d · ψ̃(ξ, n) ⊂ ψ(ξ, n) for every (ξ, n) ∈ G;
(ii) δ(ψ̃(ξ, n)) = ˜̃ε for every (ξ, n) ∈ G̃;
(iii) δ(

∑
(ξ,n)∈suppHi

Hi(ξ, n)) · ψ̃(ξ, n)) < ε for every i < 2;

(iv) Ai ∩
∑

(ξ,n)∈suppHi
Hi(ξ, n) · ψ̃(ξ, n) 6= ∅ for every i < 2.

Proof. Define

ε̃ = min
{{

δ(ψ(ξ, n))
2d

: (ξ, n) ∈ G
}
∪
{

ε

2d ·
∑

(ξ,n)∈suppHi
i<2

|Hi(ξ, n)|

}}
and choose ˜̃ε < ε̃.

If (ξ, n) ∈ G̃ \
⋃
i<2 suppHi define ψ̃(ξ, n) as the element of B centered

at the dth root of the middle point of ψ(ξ, n) with diameter ˜̃ε.
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If (ν, l) = (µ, k), then for each (ξ, n) ∈ suppH1\{(µ, k)}, define z(ξ,n) ∈ T
in the following way: if (ξ, n) ∈ G, then d·z(ξ,n) is the middle point of ψ(ξ, n);
if (ξ, n) 6∈ G, then z(ξ,n) is chosen arbitrarily. Set also

x0 =
∑

(ξ,n)∈suppH0\{(µ,k)}

H0(ξ, n) · z(ξ,n),

x1 =
∑

(ξ,n)∈suppH1\{(µ,k)}

H1(ξ, n) · z(ξ,n).

Fix z̃(µ,k) ∈ T such that H0(µ, k) · z̃(µ,k) is the middle point of A0 − x0;
if (µ, k) ∈ G, we also require that d · z̃(µ,k) is contained in the open arc of T
centered at the middle point of ψ(µ, k) with diameter ε/4. Let A be the arc
centered at z̃(µ,k) with diameter ε/(4d|H0(µ, k)|). From (3), it follows that
there exists z(µ,k) ∈ A such that

(c) H1(µ, k) · z(µ,k) ∈ A1 − x1.

We also have

(d) H0(µ, k) · z(µ,k) ∈ A0 − x0.

If (ν, l) 6= (µ, k), then for each (ξ, n) ∈ suppH1 \ {(µ, k), (ν, l)}, define
z(ξ,n) ∈ T in the following way: if (ξ, n) ∈ G, then d · z(ξ,n) is the middle
point of ψ(ξ, n); if (ξ, n) 6∈ G, then z(ξ,n) is chosen arbitrarily.

If (µ, k) ∈ G, let d · z̃(µ,k) be the middle point of ψ(µ, k). If (µ, k) 6∈ G, let
z̃(µ,k) be an arbitrary element of T. Choose z(ν,l) such that H0(ν, l) · z(ν,l) is
the middle point of A0− x̃0− x; if (ν, l) ∈ G, we also require that d · z(ν,l) is
contained in the open arc of T centered at the middle point of ψ(ν, l) with
diameter ε/4, where

x̃0 =
∑

(ξ,n)∈suppH0\{(µ,k),(ν,l)}

H0(ξ, n) · z(ξ,n), x = H0(µ, k) · z̃(µ,k).

Define
x0 = x̃0 +H0(ν, l) · z(ν,l).

It follows that x is the middle point of A0 − x0.
Let A be the arc centered at z̃(µ,k) with diameter ε/(4d|H0(µ, k)|).

From (3), it follows that there exists z(µ,k) ∈ A such that

(c′) H1(µ, k) · z(µ,k) ∈ A1 − x1.

We also have

(d′) H0(µ, k) · z(µ,k) ∈ A0 − x0.

For each (ξ, n) ∈
⋃
i<2 suppHi, let ψ̃(ξ, n) be the open arc of T centered

at z(ξ,n) with diameter ˜̃ε.
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Conditions (i) and (ii) are clearly satisfied, (iii) follows from the choice
of ε̃, and (iv) follows from (c), (d), (c′) and (d′).

If ξ ∈ R \Q, it follows from Kronecker’s theorem that {(x+ Z, ξx+ Z) :
x ∈ R} is a dense subset of the torus T2 = R2/Z2. Thus, for each ε > 0,
there exists l > 0 such that if I ⊂ R is an interval of length greater than l,
then {(x+ Z, ξx+ Z) : x ∈ I} is ε-dense in T2. Fix such an l = l(ε, ξ).

Lemma 4.4. Let ξ ∈ R \ Q, ε > 0, A0, A1 ∈ B with δ(A0) ≥ ε and
δ(A1) ≥ ε, G ∈ [c × ω]<ω, ψ : G → B and {H0, H1} ⊂ Z(c×ω) where
suppH0 = suppH1. Let (µ, k) ∈ suppH0 and a > l(ε/8, ξ) be such that:

(1) δ(ψ(µ, k)) ≥ ε if (µ, k) ∈ G;
(2) |H1(µ, k)|ε ≥ 4a;

(3)
∣∣∣∣ |H0(µ, k)|
|H1(µ, k)|

· a− ξ · a
∣∣∣∣ < ε

8
.

Denote G∪suppH0∪suppH1 by G̃. There exists ε̃ ≤ ε/2 such that for every
˜̃ε ≤ ε̃ there exists ψ̃ : G̃→ B satisfying the following conditions:

(i) ψ̃(ξ, n) ⊂ ψ(ξ, n) for every (ξ, n) ∈ G;
(ii) δ(ψ̃(ξ, n)) = ˜̃ε for every (ξ, n) ∈ G̃;
(iii) δ(

∑
(ξ,n)∈suppHi

Hi(ξ, n) · ψ̃(ξ, n)) < ε for every i < 2;
(iv) Ai ∩

∑
(ξ,n)∈suppHi

Hi(ξ, n) · ψ̃(ξ, n) 6= ∅ for every i < 2.

Proof. Define

ε̃ = min
{{

δ(ψ(ξ, n))
2

: (ξ, n) ∈ G
}
∪
{

ε

2 ·
∑

(ξ,n)∈suppHi
i<2

|Hi(ξ, n)|

}}

and choose ˜̃ε ≤ ε̃.
If (ξ, n) ∈ G̃ \

⋃
i<2 suppHi, define ψ̃(ξ, n) as the element of B centered

at the middle point of ψ(ξ, n) with diameter ˜̃ε.
For each (ξ, n) ∈ suppH1 \ {(µ, k)}, define z(ξ,n) ∈ T in the following

way: if (ξ, n) ∈ G, then z(ξ,n) is the middle point of ψ(ξ, n); if (ξ, n) 6∈ G,
then z(ξ,n) is chosen arbitrarily. Set also

x0 =
∑

(ξ,n)∈suppH0\{(µ,k)}

H0(ξ, n) · z(ξ,n),

x1 =
∑

(ξ,n)∈suppH1\{(µ,k)}

H1(ξ, n) · z(ξ,n).

If (µ, k) ∈ G, choose z̃(µ,k) ∈ T such that z̃(µ,k) is the middle point of
ψ(µ, k). If (µ, k) 6∈ G, choose z̃(µ,k) arbitrarily.
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Let A be the arc centered at z̃(µ,k) with diameter ε/4. In order to show
that there exists z(µ,k) ∈ A such that

H0(µ, k) · z(µ,k) ∈ A0 − x0, H1(µ, k) · z(µ,k) ∈ A1 − x1,

it suffices to prove that {(H1(µ, k) · x,H0(µ, k) · x) : x ∈ A} is ε/4-dense
in T2. This occurs if, and only if,

X =
{(

x+ Z,
H0(µ, k)
H1(µ, k)

· x+ Z
)

: x ∈ H1(µ, k) · Ã
}

is ε/4-dense in T2, where Ã is an interval of R such that Ã+ Z = A.
From the choice of a and from (3), it follows that{(

x+ Z,
H0(µ, k)
H1(µ, k)

· x+ Z
)

: x ∈ ]0, a[
}

is ε/4-dense in T2. Thus, from (2),

Y =
{(

x+ Z,
H0(µ, k)
H1(µ, k)

· x+ Z
)

: x ∈ ]0, |H1(µ, k)| · ε/4[
}

is also ε/4-dense in T2. Since ]0, |H1(µ, k)| · ε/4[ = H1(µ, k) · Ã+ r for some
r ∈ R, we have

Y = X +
(
r + Z,

H0(µ, k)
H1(µ, k)

· r + Z
)
,

and since translations in T2 are isometries, it follows that X is ε/4-dense
in T2.

Fix z(µ,k) ∈ A such that
H0(µ, k) · z(µ,k) ∈ A0 − x0,(e)
H1(µ, k) · z(µ,k) ∈ A1 − x1.(f)

For each (ξ, n) ∈
⋃
i<2 suppHi, let ψ̃(ξ, n) be the open arc of T centered

at z(ξ,n) with diameter ˜̃ε.
Conditions (i) and (ii) are clearly satisfied, (iii) follows from the choice

of ε̃, and (iv) follows from (4) and (4).

Lemma 4.5. Let d ∈ N \ {0}, ε > 0, A0, . . . , Ak ∈ B with δ(Ai) ≥ ε for
every i ≤ k, G ∈ [c × ω]<ω and ψ : G → B such that δ(ψ(θ,m)) ≥ ε for
every (θ,m) ∈ G. Let F = {f0, . . . , fk} ∈ [ωQ(c×ω)]<ω be of type A, B or C.
For every sufficiently large n in ω, there exists ε̃ ≤ ε/2 such that for every
˜̃ε ≤ ε̃ there exists ψ̃ : G̃ = G ∪ supp f0(n) ∪ · · · ∪ supp fk(n) → B satisfying
the following conditions:

(i) d · ψ̃(θ,m) ⊂ ψ(θ,m) for every (θ,m) ∈ G;
(ii) δ(ψ̃(θ,m)) = ˜̃ε for every (θ,m) ∈ G̃;
(iii) δ(

∑
(θ,m)∈supp fi(n) a(fi(n), (θ,m)) · ψ̃(θ,m)) < ε for every i ≤ k;

(iv) Ai ∩
∑

(θ,m)∈supp fi(n) a(fi(n), (θ,m)) · ψ̃(θ,m) 6= ∅ for every i ≤ k.
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Proof. Let φ : G → B be such that δ(φ(θ,m)) = ε/d and d · φ(θ,m) =
ψ(θ,m) for every (θ,m) ∈ G. We will consider each type separately.

Case 1: F is of type A. In this case, a(fi(n), (θ,m)) = fi(n)(θ,m) for
all n ∈ ω, (θ,m) ∈ supp fi(n) and i ≤ k. Fix i ∈ {0, . . . , k}. If fi is of type 1,
there are only finitely many n’s such that |fi(n)|ε ≤ 4d; if fi is of type 2,
there are only finitely many n’s such that supp fi(n) ⊂ G. Therefore, for all
but finitely many n’s we have |fi(n)|ε > 4d or supp fi(n) \G 6= ∅, for every
i ≤ k. Choose such an n. Applying Lemma 4.2 for ε/d > 0, A0, . . . , Ak ∈ B,
G ∈ [c × ω]<ω, φ : G → B and {f0(n), . . . , fk(n)} ⊂ Z(c×ω) we obtain
ε̃ ≤ ε/(2d) such that, for every ˜̃ε ≤ ε̃, there exists ψ̃ : G̃ → B satisfying the
following conditions:

• d · ψ̃(θ,m) ⊂ d · φ(θ,m) = ψ(θ,m) for every (θ,m) ∈ G;
• δ(ψ̃(θ,m)) = ˜̃ε for every (θ,m) ∈ G̃;
• δ(

∑
(θ,m)∈supp fi(n) a(fi(n), (θ,m)) · ψ̃(θ,m)) < ε/d ≤ ε for every i ≤ k;

• Ai ∩
∑

(θ,m)∈supp fi(n) a(fi(n), (θ,m)) · ψ̃(θ,m) 6= ∅ for every i ≤ k.

Case 2: F is of type B. In this case, f0 = (1/d̃)f̃0 and f1 = (1/d̃)f̃1,
where f̃0, f̃1 : ω → Z(c×ω) and d̃ is a positive integer. We have a(fi(n), (θ,m))
= f̃i(n)(θ,m) for all n ∈ ω, (θ,m) ∈ supp fi(n) and i < 2, and we also
have a(fi(n), (θ,m)) = fi(n)(θ,m) for all n ∈ ω, (θ,m) ∈ supp fi(n) and
i ∈ {2, . . . , k}. For all but finitely many n’s we have |fi(n)|ε > 4d or
supp fi(n) \G 6= ∅, for every i ≤ k. Also, for all but finitely many n’s there
exists (θn,mn) ∈ supp f0(n) such that |f̃1(n)(θn,mn)|ε > 4d|f̃0(n)(θn,mn)|.
Choose such an n.

Applying Lemma 4.3 for d ∈ N \ {0}, ε/d > 0, A0, A1 ∈ B, Ḡ =
G ∩ (supp f0(n) ∪ supp f1(n)), ψ̄ = ψ�Ḡ : Ḡ → B and {f̃0(n), f̃1(n)} ⊂
[Z(c×ω)]<ω, we obtain ˜̄G = Ḡ ∪ supp f0(n) ∪ supp f1(n) and ˜̄ε ≤ ε/(2d) such
that, for every ˜̄̃ε ≤ ˜̄ε, there exists ˜̄ψ : ˜̄G→ B satisfying the following condi-
tions:
• d · ˜̄ψ(θ,m) ⊂ ψ̄(θ,m) = ψ(θ,m) for every (θ,m) ∈ Ḡ;
• δ( ˜̄ψ(θ,m)) = ˜̄̃ε for every (θ,m) ∈ ˜̄G;
• δ(

∑
(θ,m)∈supp fi(n) f̃i(n)(θ,m) · ˜̄ψ(θ,m)) < ε/d ≤ ε for every i < 2;

• Ai ∩
∑

(θ,m)∈supp fi(n) f̃i(n)(θ,m) · ˜̄ψ(θ,m) 6= ∅ for every i < 2.

Applying Lemma 4.2 for ε/d > 0, A2, . . . , Ak ∈ B, Ĝ = G \ (supp f0(n)∪
supp f1(n)), φ̂ = φ�Ĝ : Ĝ → B and {f2(n), . . . , fk(n)} ⊂ [Z(c×ω)]<ω, we

obtain ˜̂
G = Ĝ ∪ supp f2(n) ∪ · · · ∪ supp fk(n) and ˜̂ε ≤ ε/(2d) such that, for

every ˜̂̃
ε ≤ ˜̂ε, there exists ˜̂

φ : ˜̂
G→ B satisfying the following conditions:

• d · ˜̂
φ(θ,m) ⊂ d · φ̂(θ,m) = ψ(θ,m) for every (θ,m) ∈ Ĝ;
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• δ( ˜̂
φ(θ,m)) = ˜̂̃

ε for every (θ,m) ∈ ˜̂
G;

• δ(
∑

(θ,m)∈supp fi(n) fi(n)(θ,m) · ˜̂
φ(θ,m)) < ε/d ≤ ε for every i ∈

{2, . . . , k};
• Ai ∩

∑
(θ,m)∈supp fi(n) fi(n)(θ,m) · ˜̂

φ(θ,m) 6= ∅ for every i ∈ {2, . . . , k}.

Put ε̃ = min{˜̄ε, ˜̂ε}. If (θ,m) ∈ ˜̄G, define ψ̃(θ,m) = ˜̄ψ(θ,m), and if (θ,m)

∈ ˜̂
G, define ψ̃(θ,m) = ˜̂

φ(θ,m), where ˜̄ψ and ˜̂
φ are related to ε̃. Note that

ψ̃ is well-defined since ˜̄G ∩ ˜̂
G = ∅.

Case 3: F is of type C. In this case, a(fi(n), (θ,m)) = fi(n)(θ,m) for
all n ∈ ω, (θ,m) ∈ supp fi(n) and i ≤ k. For all but finitely many n’s we
have |fi(n)|ε > 4d or supp fi(n) \ G 6= ∅, for every i ≤ k. Fix a > l(ε/8, ξ),
where ξ ∈ R \ Q is the limit of the sequence

{f0(n)(θn,mn)
f1(n)(θn,mn) : n ∈ ω

}
. There

are only finitely many n’s such that∣∣∣∣ |f0(n)(θn,mn)|
|f1(n)(θn,mn)|

· a− ξ · a
∣∣∣∣ ≥ ε

8d
.

Also, there are only finitely many n’s such that |f1(n)(θn,mn)|ε < 4a.
Therefore for all but finitely many n’s we have |fi(n)|ε > 4d or

supp fi(n) \G 6= ∅, for every i ≤ k. Also, there exists (θn,mn) ∈ supp f1(n)
such that ∣∣∣∣ |f0(n)(θn,mn)|

|f1(n)(θn,mn)|
· a− ξ · a

∣∣∣∣ < ε

8d
and |f1(n)(θn,mn)|ε ≥ 4a. Choose such an n.

Applying Lemma 4.4 for ξ ∈ R \ Q, ε/d > 0, A0, A1 ∈ B, Ḡ = G ∩
(supp f0(n)∪supp f1(n)), φ̄ = φ�Ḡ : Ḡ→ B and {f̃0(n), f̃1(n)} ⊂ [Z(c×ω)]<ω,
we obtain ˜̄G = Ḡ ∪ supp f0(n) ∪ supp f1(n) and ˜̄ε ≤ ε/(2d) such that, for
every ˜̄̃ε ≤ ˜̄ε, there exists ˜̄φ : ˜̄G→ B satisfying the following conditions:

• d · ˜̄φ(θ,m) ⊂ d · φ̄(θ,m) = ψ(θ,m) for every (θ,m) ∈ G;
• δ( ˜̄φ(θ,m)) = ˜̄̃ε for every (θ,m) ∈ G̃;
• δ(

∑
(θ,m)∈supp fi(n) fi(n)(θ,m) · ˜̄φ(θ,m)) < ε/d ≤ ε for every i < 2;

• Ai ∩
∑

(θ,m)∈supp fi(n) fi(n)(θ,m) · ˜̄φ(θ,m) 6= ∅ for every i < 2.

Applying Lemma 4.2 for ε/d > 0, A2, . . . , Ak ∈ B, Ĝ = G \ (supp f0(n)∪
supp f1(n)), φ̂ = φ�Ĝ : Ĝ → B and {f2(n), . . . , fk(n)} ⊂ [Z(c×ω)]<ω, we

obtain ˜̂
G = Ĝ ∪ supp f2(n) ∪ · · · ∪ supp fk(n) and ˜̂ε ≤ ε/(2d) such that, for

every ˜̂̃
ε ≤ ˜̂ε, there exists ˜̂

φ : ˜̂
G→ B satisfying the following conditions:

• d · ˜̂
φ(θ,m) ⊂ d · φ̂(θ,m) = ψ(θ,m) for every (θ,m) ∈ Ĝ;

• δ( ˜̂
φ(θ,m)) = ˜̂̃

ε for every (θ,m) ∈ ˜̂
G;
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• δ(
∑

(θ,m)∈supp fi(n) fi(n)(θ,m) · ˜̂
φ(θ,m)) < ε/d ≤ ε for every i ∈

{2, . . . , k};
• Ai ∩

∑
(θ,m)∈supp fi(n) fi(n)(θ,m) · ˜̂

φ(θ,m) 6= ∅ for every i ∈ {2, . . . , k}.

Put ε̃ = min{˜̄ε, ˜̂ε}. If (θ,m) ∈ ˜̄G, define ψ̃(θ,m) = ˜̄φ(θ,m), and if

(θ,m) ∈ ˜̂
G, define ψ̃(θ,m) = ˜̂

φ(θ,m), where ˜̄φ and ˜̂
φ are related to ε̃.

Proposition 4.6. Let J ∈ Q(c×ω) \ {0} and E ∈ [c]ω be as in Proposi-
tion 4.1. For each ξ ∈ E \ {0}, let Rξ ∈ [ω]ω. There exists a group homo-
morphism φ�Q(E×ω) : Q(E×ω) → T such that:

(i) φ�Q(E×ω)(J) 6= 0 + Z;
(ii) for each ξ ∈ E \ {0}, there exists Sξ ∈ [Rξ]ω such that the sequence
{φ�Q(E×ω)(fξ,i(n)) : n ∈ Sξ} converges to φ�Q(E×ω)(χ(ξ,i)) for every
i ∈ {0, . . . , n(Fξ)− 1}.

Proof. Let {θn : n ∈ ω} be an enumeration of E \ {0} such that

|{n ∈ ω : θ = θn}| = ω

for every θ ∈ E \ {0}. Let also {en : n ∈ ω} be an enumeration of E × ω.
We will make an inductive construction in order to obtain a group homo-
morphism φ�Q(E×ω) : Q(E×ω) → T satisfying (i) and (ii).

Put G0 = suppJ ∪ {(θ0, i) : i < n(Fθ0)} ∪ {e0}. For each (ξ, n) ∈ G0,
choose y(ξ,n) ∈ R such that∑

(ξ,n)∈supp J

J(ξ, n) · y(ξ,n) =
1
2

and define
x(ξ,n) =

1
b(J)

· y(ξ,n) + Z.

We have ∑
(ξ,n)∈supp J

a(J, (ξ, n)) · x(ξ,n) =
1
2

+ Z.

Let ψ0(ξ, n) be the open arc of T centered at x(ξ,n) with diameter r0/b(J)
where

r0 =
1

4 ·
∑

(ξ,n)∈supp J |a(J, (ξ, n))|
.

Since 1
2

+ Z ∈
∑

(ξ,n)∈supp J

a(J, (ξ, n)) · ψ0(ξ, n)

and

δ
( ∑

(ξ,n)∈supp J

a(J, (ξ, n)) · ψ0(ξ, n)
)
≤

∑
(ξ,n)∈supp J

|a(J, (ξ, n))|δ(ψ0(ξ, n)) ≤ 1
4
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it follows that

0 + Z 6∈
∑

(ξ,n)∈supp J

a(J, (ξ, n)) · ψ0(ξ, n).

This concludes the first step of the induction. We remark that ψ0 will be
used to show that condition (i) of this proposition is satisfied.

Now, we start the successor stage. Fix m ∈ ω and suppose we have
defined rm > 0, b−1 = 0, bm−1 ∈ Rθm−1 (if m ≥ 1), Gm ∈ [E × ω]<ω and
ψm : Gm → B such that δ(ψm(ξ, n)) = rm/(b(J) ·

∏
j<m d(Fθj )) for every

(ξ, n) ∈ Gm. Before stating the Claim that takes care of step m + 1, we
briefly comment on its statement.

Condition (1) of the Claim is used to make the sequence {rk : k ∈ ω} of
positive real numbers converge to 0. This is important to define the required
homomorphism, since the lengths of the arcs of the function ψk are related
to rk. Conditions (1), (4) and (5) are used to define φ�Q(E×ω)(χ(ξ,n)) as an
intersection of decreasing arcs.

Roughly speaking, ψm+1(ξ, n) is associated to a root of a point of
ψm(ξ, n) and the size of the arcs ψm+1(ξ, n) guarantees that such a root
is uniquely defined. This is necessary, since we want to embed a vector
space over Q into T.

Finally, conditions (1), (6) and (7) are used to produce a triangular in-
equality which shows that the image of each element of a family of type A, B
or C is sent near to the image of their pre-assigned accumulation points. This
last fact, together with condition (2) and the definition of bm, is used to show
that the pre-assigned accumulation points are preserved. Condition (3) keeps
track of the domain of the arc functions, which needs to be finite at each
stage, but increasing to E × ω.

Claim. There exist rm+1 > 0, bm ∈ Rθm, Gm+1 ∈ [E × ω]<ω and
ψm+1 : Gm+1 → B satisfying the following conditions:

(1) 2rm+1 ≤ rm;
(2) bm > bm−1;
(3) Gm+1 = Gm∪supp fθm,0(bm)∪· · ·∪supp fθm,n(Fθm )−1(bm)∪{em+1}∪
{(θm+1, i) : i < n(Fθm+1)};

(4) d(Fθm) · ψm+1(ξ, n) ⊂ ψm(ξ, n) for every (ξ, n) ∈ Gm;
(5) δ(b(J) ·

∏
j<m+1 d(Fθj ) ·ψm+1(ξ, n)) = rm+1 for every (ξ, n) ∈ Gm+1;

(6) δ(
∑

(ξ,n)∈supp fθm,i(bm) a(fθm,i(bm), (ξ, n)) · ψm+1(ξ, n)) < rm/(b(J) ·∏
j<m d(Fθj )) for every i < n(Fθm);

(7) ψm(θm, i) ∩
∑

(ξ,n)∈supp fθm,i(bm) a(fθm,i(bm), (ξ, n)) · ψm+1(ξ, n) 6= ∅
for every i < n(Fθm).
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Proof of the claim. Since Fθm is of type A, B or C and Rθm is infinite, one
can choose bm ∈ Rθm so that bm > bm−1 and Lemma 4.5 can be applied
for d(Fθm), rm/(b(J) ·

∏
j<m+1 d(Fθj )), ψm(θm, 0), . . . , ψm(θm, n(Fθm) − 1),

Gm, ψm, Fθm and bm. We obtain G̃ = Gm ∪ supp fθm,0(bm) ∪ · · · ∪
supp fθm,n(Fθm )−1(bm), ε̃ ≤ rm/(2b(J) ·

∏
j<m+1 d(Fθj )) and, for rm+1 =

ε̃/(b(J) ·
∏
j<m+1 d(Fθj )), there exists ψ̃ : G̃→ B satisfying (i)–(iv) of Lem-

ma 4.5. Define Gm+1 = G̃∪{em+1}∪{(θm+1, i) : i < n(Fθm+1)}. If (ξ, n) ∈ G̃,
define ψm+1(ξ, n) = ψ̃(ξ, n). If (ξ, n) ∈ Gm+1 \ G̃, let ψm+1(ξ, n) be an ele-
ment of B with diameter rm+1/(b(J) ·

∏
j<m+1 d(Fθj )).

By finite induction, we have rm > 0, bm ∈ Rθm , Gm ∈ [E × ω]<ω

and ψm : Gm → B satisfying (1)–(7) for every m ∈ ω. Note that
⋃
m∈ω Gm

= E × ω.
Since T is a complete metric space and (rm)m∈ω is a sequence of positive

real numbers that converges to 0, and since (4) and (5) hold, we conclude
that if (ξ, n) ∈ E × ω, then⋂
m≥N(ξ,n)

b(J) ·
∏
j<m

d(Fθj ) · ψm(ξ, n) =
⋂

m≥N(ξ,n)

b(J) ·
∏
j<m

d(Fθj ) · ψm(ξ, n)

is a one-element set, where N(ξ,n) = min{m ∈ ω : (ξ, n) ∈ Gm}. Denote by
φ(χ(ξ,n)) the unique element of this set.

If m ≥ N(ξ,n), there exists a unique element of ψm(ξ, n) whose multi-
plication by b(J) ·

∏
j<m d(Fθj ) is equal to φ(χ(ξ,n)). We shall denote this

element by

φ

(
1

b(J) ·
∏
j<m d(Fθj )

· χ(ξ,n)

)
.

For each (ξ, n) ∈ E × ω, consider

G(ξ,n) =
{

1
b(J) ·

∏
j<m d(Fθj )

· χ(ξ,n) ∈ Q(E×ω) : m ≥ N(ξ,n)

}
and extend φ to a group homomorphism φ�G : G→ T, where G is the group
generated by

⋃
(ξ,n)∈G×ω G(ξ,n).

Since T is a divisible group, one can extend φ�G to a group homomor-
phism φ�Q(E×c) : Q(E×ω) → T. It remains to show that conditions (i) and
(ii) are satisfied.

We have

φ�Q(E×c)(J) =
∑

(ξ,n)∈supp J

a(J, (ξ, n)) · φ�Q(E×c)

(
1

b(J)
· χ(ξ,n)

)
∈

∑
(ξ,n)∈supp J

a(J, (ξ, n)) · ψ0(ξ, n).
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Since
0 + Z 6∈

∑
(ξ,n)∈supp J

a(J, (ξ, n)) · ψ0(ξ, n)

we conclude that φ�Q(E×c)(J) 6= 0 + Z. Therefore, (i) is satisfied.
Fix ξ ∈ E \ {0} and i ∈ {0, . . . , n(Fξ) − 1}. Set I = {m ∈ ω : ξ = θm}

and Sξ = {bm : m ∈ I}. It is clear that Sξ ∈ [Rξ]ω. We will show that
{φ�Q(E×c)(fξ,i(n)) : n ∈ Sξ} converges to φ�Q(E×c)(χ(ξ,i)). Since

φ�Q(E×c)(fθm,i(bm))

∈
∑

(ξ,n)∈supp fθm,i(bm)

a(fθm,i(bm), (ξ, n)) · b(J) ·
∏
j<m

d(Fθj ) · ψm+1(ξ, n)

and
φ�Q(E×c)(χ(θm,i)) ∈ b(J) ·

∏
j<m

d(Fθj ) · ψm(θm, i)

it follows from (6) and (7) that δ(φ�Q(E×c)(fθm,i(bm)), φ�Q(E×c)(χ(θm,i)))
≤ 2rm, and therefore condition (ii) is also satisfied.

We are ready to extend each group homomorphism obtained from Propo-
sition 4.6 to the whole group Q(c×ω).

Proposition 4.7. Let J ∈ Q(c×ω)\{0}. For each ξ ∈ ]0, c[, let Rξ ∈ [ω]ω.
There exists a group homomorphism φ : Q(c×ω) → T such that:

(i) φ(J) 6= 0 + Z;
(ii) for each ξ ∈ ]0, c[, there exists Sξ ∈ [Rξ]ω such that the se-

quence {φ(fξ,i(n)) : n ∈ Sξ} converges to φ(χ(ξ,i)) for every i ∈
{0, . . . , n(Fξ)− 1}.

Proof. According to Proposition 4.1, there exists E ∈ [c]ω such that
supp J ⊂ E×ω and such that if ξ ∈ E \ {0}, then

⋃
n∈ω supp f(n) ⊂ E×ω,

for every f ∈ Fξ.
It follows from Proposition 4.6 that there exists a group homomorphism

φ�Q(E×ω) : Q(E×ω) → T such that:

(1) φ�Q(E×ω)(J) 6= 0 + Z;
(2) for each ξ ∈ E \ {0}, there exists Sξ ∈ [Rξ]ω such that the sequence
{φ�Q(E×ω)(fξ,i(n)) : n ∈ Sξ} converges to φ�Q(E×ω)(χ(ξ,i)) for every
i ∈ {0, . . . , n(Fξ)− 1}.

Let {αξ : ξ < c} be a strictly increasing enumeration of c \ E.
Choose Sα0 ∈ [Rα0 ]ω such that {φ�Q(E×ω)(fα0,i(n)) : n ∈ Sα0} is conver-
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gent for every i < n(Fα0). Note that this is possible, since α0 = min(c \E),⋃
i<n(Fα0 )

⋃
n∈ω supp fα0,i(n) ⊂ α0 × ω and T is sequentially compact.

Denote by φ̃�Q((E∪{α0})×ω)(χ(α0,i)) the limit point of {φ�Q(E×ω)(fα0,i(n)) :
n ∈ Sα0} for every i < n(Fα0). If i ≥ n(Fα0), define φ̃�Q((E∪{α0})×ω)(χ(α0,i))
arbitrarily. Finally, if H ∈ Q(E×ω) put φ̃�Q((E∪{α0})×ω)(H) = φ�Q(E×ω)(H).

LetHα0 be the subgroup of Q(c×ω) generated by Q(E×ω)∪{χ(α0,n) : n∈ω}.
It is possible to extend φ̃�Q((E∪{α0})×ω) to a group homomorphism from
Hα0 to T, and since T is divisible, it is possible to extend φ̃�Q((E∪{α0})×ω)

to a group homomorphism φ�Q((E∪{α0})×ω) : Q((E∪{α0})×ω) → T such that
φ�Q((E∪{α0})×ω)(J) 6= 0 + Z and so that, for each ξ ∈ (E ∪{α0}) \ {0}, the se-
quence {φ�Q((E∪{α0})×ω)(fξ,i(n)) : n ∈ Sξ} converges to φ�Q((E∪{α0})×ω)(χ(ξ,i))
for every i ∈ {0, . . . , n(Fξ)− 1}.

By induction, we obtain Sξ ∈ [Rξ]ω for every ξ ∈ ]0, c[ and a group
homomorphism φ : Q(c×ω) → T satisfying (i) and (ii).

The assumption p = c together with Proposition 4.7 implies Proposi-
tion 2.5, which will be restated and proved below.

Proposition 2.5. (p = c) For each α < c and ξ ∈ ]0, c[ there exists
Sξ,α ∈ [ω]ω such that if α < β < c, then Sξ,β ⊂∗ Sξ,α. There also exists
a group homomorphism φα : Q(c×ω) → T such that:

(i) φα(Jα) 6= 0 + Z;
(ii) the sequence {φα(fξ,i(n)) : n ∈ Sξ,α} converges to φα(χ(ξ,i)) for every

i ∈ {0, . . . , n(Fξ)− 1}.

Proof. For each ξ ∈ ]0, c[, put Rξ,0 = ω. Applying Proposition 4.7 to J =
J0 and Rξ = Rξ,0, we obtain a group homomorphism φ0 : Q(c×ω) → T such
that φ0(J0) 6= 0 + Z and Sξ,0 ∈ [Rξ,0]ω such that the sequence {φ0(fξ,i(n)) :
n ∈ Sξ,0} converges to φ0(χ(ξ,i)) for every i ∈ {0, . . . , n(Fξ)− 1}.

Fix β < c and suppose that Sξ,α ∈ [ω]ω is defined for every α < β so
that Sξ,δ ⊂∗ Sξ,γ for all γ < δ < β and ξ ∈ ]0, c[. Suppose also that we have
constructed a group homomorphism φα : Q(c×ω) → T such that φα(Jα) 6=
0 + Z and the sequence {φα(fξ,i(n)) : n ∈ Sξ,α} converges to φα(χξ,i) for
all i ∈ {0, . . . , n(Fξ) − 1} and α < β. We shall show that it is possible to
choose Sξ,β ∈ [ω]ω so that Sξ,β ⊂∗ Sξ,α for all α < β and ξ ∈ ]0, c[ and that
it is also possible to construct a group homomorphism φβ : Q(c×ω) → T such
that φβ(Jβ) 6= 0 + Z and the sequence {φβ(fξ,i(n)) : n ∈ Sξ,β} converges to
φβ(χξ,i) for every i ∈ {0, . . . , n(Fξ)− 1}.

If β is a successor ordinal—say, β = α + 1—put Rξ,β = Sξ,α for every
ξ ∈ ]0, c[ and apply Proposition 4.7 to J = Jβ and Rξ = Rξ,β. If β is a limit
ordinal, consider, for each ξ ∈ ]0, c[, the family {Sξ,α : α < β}. By inductive
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hypothesis, this family has the SFIP, and since we are assuming p = c, it
has a pseudointersection Rξ,β . Then, apply Proposition 4.7 to J = Jβ and
Rξ = Rξ,β.

5. Concerning Wallace’s problem. It is consistent (with ZFC) that
Wallace semigroups can have the square countably compact.

Theorem 5.1. (p = c) There exists a both-sided cancellative topological
semigroup which is not a topological group and whose square is countably
compact.

Proof. Consider S = {Φ(J) ∈ Tc : J ∈ N(c×ω)}. Clearly, S is a both-
sided cancellative topological semigroup which is not a topological group.
Let {(g(n), h(n)) : n ∈ ω} be a sequence in S×S, where g, h : ω → Φ[N(c×ω)].
According to the proof of Proposition 2.4, there exist ξ ∈ ]0, c[, j : ω → ω
strictly increasing and g̃, h̃ ∈ N(c×ω) such that

(Φ−1 ◦ g ◦ j)(n) = g̃ +
∑

i<n(Fξ)

aξ,i · fξ,i(n),

(Φ−1 ◦ h ◦ j)(n) = h̃+
∑

i<n(Fξ)

bξ,i · fξ,i(n),

for every n ∈ ω, where aξ,i, bξ,i ∈ N for every i < n(Fξ).
It was shown in Theorem 2.6 that(
Φ
(
g̃ +

∑
i<n(Fξ)

aξ,i · χ(ξ,i)

)
, Φ
(
h̃+

∑
i<n(Fξ)

bξ,i · χ(ξ,i)

))
= pξ- lim{(g(n), h(n)) : n ∈ ω}

for some pξ ∈ ω∗. As Φ(g̃+
∑

i<n(Fξ)
aξ,i ·χ(ξ,i)), Φ(h̃+

∑
i<n(Fξ)

bξ,i ·χ(ξ,i)) ∈
Φ[N(c×ω)], it follows that S × S is countably compact.

6. Final remarks. In 1990, Comfort [3] asked for which cardinals κ ≤ 2c

there exists a topological group G such that Gα is countably compact for
every α < κ and Gκ is not countably compact. It was shown by Tomita [13]
that, assuming a cardinal arithmetic and the existence of 2c selective ultra-
filters, every κ ≤ 2c admits such a topological group. However, these groups
have finite order 2.

Tomita [12] showed that the ωth power of a non-trivial topological free
abelian group cannot be countably compact. Tomita [11] also showed that
the 2cth power of a Wallace semigroup cannot be countably compact.

These results motivate the following questions:

Problem 6.1. For which cardinals κ ∈ ]3, ω] does there exist a group
topology on the free abelian group of cardinality c whose powers smaller than
κ are countably compact?
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Problem 6.2. Is it true that every group of cardinality c that admits
a countably compact group topology admits one whose square is countably
compact?

Problem 6.3. For which cardinals κ ≤ 2c does there exist a group topol-
ogy on a non-torsion abelian group G such that Gα is countably compact for
every α < κ and Gκ is not countably compact?

Problem 6.4. For which cardinals κ ∈ ]3, 2c] does there exist a Wallace
semigroup whose powers smaller than κ are countably compact?
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